Advanced Matrix Theory and Linear Algebra for Engineers - Video course

COURSE OUTLINE

Introduction, Vector Spaces, Solutions of Linear Systems, Important Subspaces associated with a matrix, Orthogonality, Eigenvalues and Eigenvectors, Diagonalizable Matrices, Hermitian Matrices, General Matrices, Jordan Canonical form (Optional)*, Selected Topics in Applications (Optional)*

COURSE DETAIL

Module No.	Topic/s	Hours
1	 Introduction: First Basic Problem – Systems of Linear equations - Matrix Notation – The various questions that arise with a system of linear eqautions Second Basic Problem – Diagonalization of a square matrix – The various questions that arise with diagonalization 	3
2	 Vector Spaces 1. Vector spaces 2. Subspaces 3. Linear combinations and subspaces spanned by a set of vectors 4. Linear dependence and Linear independence 5. Spanning Set and Basis 6. Finite dimensional spaces 7. Dimension 	6
3	 Solutions of Linear Systems Simple systems Homogeneous and Nonhomogeneous systems Gaussian elimination Null Space and Range Rank and nullity Consistency conditions in terms of rank General Solution of a linear system Elementary Row and Column operations Row Reduced Form Triangular Matrix Factorization 	6
4	Important Subspaces associsted with a matrix 1. Range and Null space 2. Rank and Nullity 3. Rank Nullity theorem 4. Four Fundamental subspaces 5. Orientation of the four subspaces	4

NPTEL http://nptel.iitm.ac.in

Mathematics

Coordinators:

Prof. Vittal Rao Centre For Electronics Design and TechnologyIISc Bangalore

5	Orthogonality	5
	 Inner product Inner product Spaces Cauchy – Schwarz inequality 	
	4. Norm 5. Orthogonality	
	 6. Gram – Schmidt orthonormalization 7. Orthonormal basis 2. Expansion in terms of orthonormal basis 	
	 8. Expansion in terms of orthonormal basis – Fourier series 9. Orthogonal complement 10. Decomposition of a vector with respect to a subspace 	
	and its orthogonal complement – Pythagorus Theorem	
6	Eigenvalues and Eigenvectors	5
	 What are the ingredients required for diagonalization? Eigenvalue – Eigenvector pairs Where do we look for eigenvalues? – characteristic equation 	
	 Algebraic multiplicity Eigenvectors, Eigenspaces and geometric multiplicity 	
7	Diagonalizable Matrices	5
	 Diagonalization criterion The diagonalizing matrix Cayley-Hamilton theorem, Annihilating polynomials, Minimal Polynomial 	
	 Diagonalizability and Minimal polynomial Projections Decomposition of the matrix in terms of projections 	
8	Hermitian Matrices	5
	 Real symmetric and Hermitian Matrices Properties of eigenvalues and eigenvectors Unitary/Orthoginal Diagonalizbility of Complex Hermitian/Real Symmetric matrices Spectral Theorem Positive and Negative Definite and Semi definite matrices 	
9	<u>General Matrices</u>	5
	 The matrices AA^T and A^{TA} Rank, Nullity, Range and Null Space of AA^T and A^TA Strategy for choosing the basis for the four fundamental subspaces Singular Values 	
	 Singular Value Decomposition Pseudoinverse and Optimal solution of a linear system of equations The Geometry of Pseudoinverse 	
10	Jordan Cnonical form*	5
	 Primary Decomposition Theorem Nilpotent matrices Canonical form for a nilpotent matrix 	

11

Selected Topics in Applications*

- 1. Optimization and Linear Programming
- 2. Network models
- 3. Game Theory 4. Control Theory
- 5. Image Compression

A joint venture by IISc and IITs, funded by MHRD, Govt of India

8-10 http://nptel.iitm.ac.in