Fourier Analysis - Web course

COURSE OUTLINE

Cesaro summability and Abel summability of Fourier series, Mean square convergence of Fourier series, A continuous function with divergent Fourier series, Applications of Fourier series Fourier transform on the real line and basic properties, Solution of heat equation Fourier transform for functions in L^p , Fourier transform of a tempered distribution Poisson summation formula, uncertainty principle, Paley-Wiener theorem, Tauberian theorems, Spherical harmonics and symmetry properties of Fourier transform, Multiple Fourier series and Fourier transform on R^n

COURSE DETAIL

Module No.	Topic/s	Hours
1	Definition, examples and uniqueness of Fourier series, Convolution, Cesaro summability and Abel summability of Fourier series, Mean square convergence of Fourier series, A continuous function with divergent Fourier series, Applications of Fourier series such as isoperimetric problem, wave equation, etc.	10
2	The Schwartz space, Fourier transform on the real line and basic properties, Approximate identity using Gaussian kernel, Solution of heat equation, Fourier inversion formula, Fourier transform for functions in L ^p , 1=p=2,Theory of distributions, Fourier transform of a tempered distribution	12
3	Poisson summation formula, Heisenberg's uncertainty principle, Hardy's theorem, Paley-Wiener theorem, Wiener's theorem, Wiener-Tauberian theorem, Spherical harmonics and symmetry properties of Fourier transform, Multiple Fourier series and Fourier transform on R ⁿ	18

References:

- 1. E. M. Stein and Rami Shakarchi, Fourier Analysis, An introduction, Princeton University press, 2003.
- 2. W. Rudin, Functional Analysis, Tata Mcgraw-hill, 1985.

NPTEL

http://nptel.iitm.ac.in

Mathematics

Pre-requisites:

Real Analysis, Measure theory, Complex Analysis

Additional Reading:

H. Dym and H. P. McKean, Fourier series and Integrals, Academic press, 1972.

Coordinators:

Dr. R. Radha

Department of MathematicsIIT Madras

Dr. S. Thangavelu

Department of MathematicsIISc Bangalore

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in