A Basic Course in Real Analysis -Video course

COURSE OUTLINE

It is a first level course on Functional Analysis. The motto is to familiarize the students with basic concepts, principles and methods of Functional analysis and its applications.

COURSE DETAIL

Module	Learning Units	Lectures	
Module I	 Dedekind Theory of Irrational numbers:- Rational numbers, section of Rational numbers, Irrational numbers, real Numbers, Dedekind Theorem, The Continuum Exercise- Tutorial Cantor's Theory of Irrational numbers:- Cantor's Theory, Convergent sequence of real numbers, Equivalence of the definition of Dedekind & Cantor Sets of Points- The upper & lower bounds, l.u.b. & g.l.b. of sets, limiting point, Weierstrass Theorem, Derived sets, Countable & Non constable sets, Cardinal numbers, Open & Closed sets, Closure of a set, Perfect set, Heine-Borel Theorem 	14	Pre-requisites: • Nil. Additional Reading: • Nil. Hyperlinks: • Nil. Coordinators: Prof. P.D. Srivastava Department of Mathema Kharagpur
Module II	1. Limit of Sequences of Real Numbers:-	13	

NPTEL http://nptel.iitm.ac.in

Mathematics

t of MathematicsIIT

		 Bounded sequences, Null sequences, Monotone sequences, Convergent sequences, Fundamental theorems on limit, limit sup, limit inf of sequences, Ratio Test & other Tests, Cauchy theorems, Cauchy Convergence Criteria Exercises- Tutorial 		
		2. Infinite Series of Real numbers:-		
		 Introduction of infinite series, Tests for its convergence, Absolute convergence, Conditional convergence 		
		3. Limit of functions		
		 Concepts of Limit of functions, Limit Theorems, Some extension of Limit Concepts, Exercises- Tutorials 		
ĺ	Module	1. Continuity of Functions:-	9	
	III	 Cauchy's and Heine's definitions of continuity, Properties of Continuous functions, Uniform continuity, Absolute continuity, Discontinuous Functions, Types of Discontinuities 		
		2. Differentiability:-		
		 Concept of Derivatives, Rolle's theorem, Mean value theorem, L' Hospital Rule, Taylors Theorem Exercises- Tutorial 		
	Module IV	1. Riemann Integration / Reimann- Stieltjes Intergral:-	8	
		• The Upper and lower R-integrals, Integrable (R) functions, Properties of definite and indefinite integral, Mean value theorems, Absolute convergence, convergence, Test for improper integrals. Definition & Existence of the Reimann- Stieltjes Integral & its properties Exercise, Tutorial		

References:	
1. W. Rudin - Principles of Mathematica Analysis - Mc. Graw Hill Int. Edition (3rd)	
2. Robert G. Bartle and Donald R. Shebert - Introduction to Real Analysis - Wiley India, 3rd ed.	
 Sterling K. Berberian - A First course in Real Analysis - 1994, Springer Verlag, Ny. Inc. 	
4. N. Saran - Theory of Function of Real Variable	
A joint venture by IISc and IITs, funded by MHRD, Govt of India	<u>http://nptel.iitm.ac.in</u>