Statistical Inference - Video course

COURSE OUTLINE

Point Estimation: Parametric point estimation, unbiasedness, consistency, efficiency, method of moments and maximum likelihood, lower bounds for the variance of an estimator, Frechet-Rao-Cramer, Bhattacharya, Chapman-Robbins-Kiefer inequalities. Sufficiency, minimal sufficiency, Factorization Theorem, Rao-Blackwell Theorem, completeness, Lehmann-Scheffe Theorem, UMVUE, Basu's Theorem, invariance, best equivariant estimators,

Testing of Hypotheses: Tests of hypotheses, simple and composite hypotheses, types of error, Neyman-Pearson Lemma, families with monotone likelihood ratio, UMP, UMP unbiased and UMP invariant tests. Likelihood ratio tests - applications to one sample and two sample problems, Chi-square tests. Wald's sequential probability ratio test.

Interval estimation: methods for finding confidence intervals, shortest length confidence intervals.

Mathematics

Pre-requisites:

Probability Theory

Additional Reading:

- 1. Theory of Point Estimation by E.L. Lehmann & G. Casella
- 2. Testing Statistical Hypotheses by E.L. Lehmann

Coordinators:

Prof. Somesh Kumar Department of MathematicsIIT Kharagpur

COURSE DETAIL

Module No.	Topic/s	Lectures
1	Introduction and Motivation	1
2	Basic concepts of point estimation: unbiasedness, consistency and efficiency of estimators, examples.	1
3	Finding Estimators: method of moments and maximum likelihood estimators, properties of maximum likelihood estimators, problems.	3
4	Lower Bounds for the Variance: Frechet-Rao- Cramer, Bhattacharya, Chapman-Robbins-Kiefer inequalities, generalization of Frechet-Rao-Cramer to higher dimensions, problems.	4
5	Data Reduction: Sufficiency, Factorization Theorem, Rao-Blackwell Theorem, minimal sufficiency, completeness, Lehmann-Scheffe Theorem, applications in deriving uniformly minimum variance estimators, Ancillary statistics, Basu's Theorem,problems.	6
6	Invariance: Best equivariant estimators, problems.	2
7	Bayes and Minimax Estimation: Concepts and applications.	3
8	Testing of Hypotheses: Basic concepts, simple and composite hypotheses, critical region, types of error, most powerful test, Neyman-Pearson Lemma,	2

	applications.	
9	Tests for Composite Hypotheses: Families with monotone likelihood ratio, uniformly most powerful tests, applications.	3
10	Unbiasedness: Unbiased tests, similarity and completeness, UMP unbiased tests.	3
11	Likelihood Ratio Tests - applications to one sample and two sample problems.	3
12	Invariant Tests	2
13	Contingency Tables & Chi-square tests.	2
14	Wald's sequential probability ratio test.	2
15	Interval estimation: methods for finding confidence intervals, shortest length confidence intervals, problems.	3

References:

- 1. An Introduction to Probability and Statistics by V.K. Rohatgi & A.K. Md. E. Saleh.
- 2. Statistical Inference by G. Casella & R.L. Berger.
- 3. A First Course on Parametric Inference by B.K. Kale
- 4. Modern Mathematical Statsitics by E.J. Dudewicz & S.N. Mishra
- 5. Introduction to the Theory of Statistics by A.M. Mood, F.A. Graybill and D.C. Boes

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in