
Probability and Statistics - Video course

COURSE OUTLINE

Algebra of sets, introduction to probability, random variables, probability distributions, moments, moment generating function, Markov and Chebyshev inequalities, special discrete and continuous distributions, function of a random variable, joint distributions, bivariate normal distribution, transformation of random vectors, central limit theorem, sampling distributions, point estimation, unbiasedness, consistency, method of moments and maximum likelihood estimation, confidence intervals for parameters in one sample and two sample problems from normal populations, testing of hypotheses, Neyman-Pearson lemma, tests for one sample and two sample problems for normal populations.

COURSE DETAIL

Module No.	Topic/s	Lectures
1	Algebra of Sets: sets and classes, limit of a sequence of sets, rings, sigma- rings, fields, sigma-fields, monotone classes.	2
2	Probability: Classical, relative frequency and axiomatic definitions of probability, addition rule and conditional probability, multiplication rule, total probability, Bayes' Theorem and independence, problems.	4
3	Random Variables: Discrete, continuous and mixed random variables, probability mass, probability density and cumulative distribution functions, mathematical expectation, moments, probability and moment generating function, median and quantiles, Markov inequality,	3

Pre-requisites:

• Set Theory and Calculus

Additional Reading:

- 1. Modern Mathematical Statistics by E.J. Dudewicz & S.N. Mishra
- 2. Introduction to the Theory of Statistics by A.M. Mood, F.A. Graybill and D.C. Boes

Hyperlinks:

• none

Coordinators:

Prof. Somesh Kumar Department of MathematicsIIT Kharagpur

Chebyshev's inequality, problems.	
4 Special Distributions: Disc uniform, binomial, geometric, nega binomial, hypergeometric, Pois continuous uniform, expone gamma, Weibull, Pareto, beta, non lognormal, inverse Gaussian, Cau d o u b I e exponential distribut reliability and hazard rate, reliabilit series and parallel systems, problem	ative son, ntial, rmal, uchy, ions, ty of
5 Function of a random varia problems.	able, 1
6 Joint Distributions: Joint, marginal and conditional distributions, produc moments, correlation and regression independence of random variables, bivariate normal distribution, problem	it 4 n,
7 Transformations : functions of ran vectors, distributions of order statis distributions of sums of ran variables, problems.	
8 Sampling Distributions: The Ce Limit Theorem, distributions of sample mean and the sample varia for a normal population, Chi-Squa and F distributions, problems.	the ance
9 Descriptive Statistics: Graphical representation, measures of location and variability.	ns 2
10 Estimation: Unbiasedness, consistency, the method of moments and the method of maximum likeliho estimation, confidence intervals for parameters in one sample and two sample problems of normal populati confidence intervals for proportions, problems.	ons,
11 Testing of Hypotheses: Null and alternative hypotheses, the critical a	nd 8

acceptance regions, two types of error, power of the test, the most powerful test and Neyman-Pearson Fundamental Lemma, tests for one sample and two sample problems for normal populations, tests for proportions, Chi- square goodness of fit test and its applications, problems.	
References:	-
 An Introduction to Probability and Statistics by V.K. Rohatgi & A.K. Md. E. Saleh. 	
2. Introduction to Probability and Statistics by J.S. Milton & J.C. Arnold.	
 Introduction to Probability Theory and Statistical Inference by H.J. Larson. 	
 Introduction to Probability and Statistics for Engineers an Scientists by S.M. Ross 	t
5. A First Course in Probability by S.M. Ross	
6. Probability and Statistics in Engineering by W.W. Hines, D.C. Montgomery, D.M. Gpldsman & C.M. Borror	
Lectures in Probability by M. Kac (for example on independent events)	
 C.K. Wong (1972) A note on mutually independent events. Annals of Statistics, V. 26, 27.(for example on independent events). 	
9. Measure Theory by P. Halmos (for algebra of sets)	
joint venture by IISc and IITs, funded by MHRD, Govt of India	<u>http://nptel.iitm.ac</u>