Functional Analysis - Video course

COURSE OUTLINE

It is a first level course on Functional Analysis. The motto is to familiarize the students with basic concepts, principles and methods of Functional analysis and its applications.

CONTENTS: Metric spaces with example, Complete metric spaces, Separable Metric Space, Compact sets, Normed & Banach spaces, Convergence, Bounded linear functionals and operators, Dual spaces, Refexive Spaces, Adjoint Operator, Inner Product Space and Hilbert Spaces with example, Projection theorem, Orthonormal sets and sequences, Total Orthonormal Sets, Riesz Representation theorem, Self adjoint, Unitary and Normal operators, Hilbert -Adjoint Operator,The Hahn Banach Extension theorem, Uniform boundedness theorem (The Banach Steinhaus theorem), Open mapping theorem and Closed graph theorem.

COURSE DETAIL

Module No.	Topic/s	Lectures
1	Metric Spaces	2
	1. Metric spaces with examples	
	2. Holder inequality & Minkowski inequality	
	3. Various concepts in a metric space	
	4. Separable metric space with examples	
	5. Convergence, Cauchy sequence , Completeness	
	6. Examples of Complete & Incomplete metric spaces	
	7. Completion of Metric spaces +Tutorial	
	8. Vector spaces with examples	
2	Normed / Banach Spaces	10
	9. Normed Spaces with examples	
	10. Banach Spaces & Schauder Basis	
	11. Finite Dimensional Normed Spaces & Subspaces	
	12. Compactness of Metric/Normed spaces	
	13. Linear Operators-definition & examples	
	14. Bounded linear operators in a Normed Space	
	15. Bounded linear Functionals in a Normed space	
	16. Concept of Algebraic Dual & Reflexive space	
	17. Dual Basis & Algebraic Reflexive Space	

Mathematics

Pre-requisites:

Calculus & Linear Algebra

Additional Reading:

- 1. Yosida, K.- Functional analysis, Springer
- 2. Wilansky, A.-Functional Analysis,Blaisdell Pub. Co.,London

Coordinators:

Prof. P.D. Srivastava Department of MathematicsIIT Kharagpur

	18. Dual spaces with examples	
	19. Tutorial	
	20. Tutorial	
3	Inner-Product Space & Hilbert Space	15
	21. Inner Product & Hilbert space	
	22. Further properties of Inner product spaces	
	23. Projection Theorem & Orthonormal Sets & Sequences	
	24. Representation of functionals on a Hilbert Spaces	
	25. Hilbert Adjoint Operator	
	26. Self Adjoint, Unitary & normal Operators	
	27. Tutorial	
	28. Annihilator in an IPS	
	29. Total Orthonormal Sets & Sequences	
4	Fundamental Theorems for Normed & Banach Spaces	5
	30. Partially Ordered Set & Zorn's Lemma	
	31. Hahn Banach Theorem for Real Vector Spaces	
	32. Hahn Banach Theorem for Complex V.S. & Normed Spaces	
	33. Baire's Category & Uniform Boundedness Theorems	
	34. Open Mapping Theorem	
	35. Closed Graph Theorem	
	36. Adjoint Operator	
	37. Strong & Weak Convergence	
	38. Convergence of Sequence of Operators & Functionals	
	39. Tutorial	
	40. Banach Fixed Point Theorem	
5	Questions & Worked out answers	8
	41. Problems on Metric Spaces	
	42. Problems on Normed & Banach Spaces	
	43. Problems on IPS & Hilbert Spaces	
	** Assignment Sheet & Cumulative Question Papers	

References:

1. Erwin Kreyszig : - Introdutory Functional Analysis with Applications , John Wiley& Sons, New York

- 2. W.Rudin :- Functional Analysis , Tata McGraw-Hill Pub.Co.
- 3. I.J.Maddox :- Elements of Functional Analysis, Cambridge university Press
- 4. B.Limaye :- Functional Analysis , New age international Ltd,pub.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in