Discrete Mathematics - Web course

COURSE OUTLINE

- Module 1: Natural Numbers & Principle of Mathematical Induction,
- Module 2: Set Theory
- Module 3: Functions
- Module 4: Basic Counting Principles
- Module 5: Advanced Counting.
- Module 6: Group Theory
- Module 7: Group Action, Orbit Stabilizer Theorem and its applications
- Module 8: Recurrence Relations, Generating Functions
- Module 9: Basic Graph Theory

COURSE DETAIL

Module No.	Topic/s	Lectures
1	Natural Numbers: Well Ordering Principle, Principle of Mathematical Induction	2
2	Set Theory: Ordered Sets, Relations, Equivalence Relations and Partitions, Modular Arithmetic.	3
3	Functions: Functions, Composition of Functions, one-one, onto and Inverse of a function.	3
4	Basic Counting Principles: Number of	5

NPTEL http://nptel.iitm.ac.in

Mathematics

Coordinators:

Prof. A.K. Lal Department of MathematicsIIT Kanpur

	one-one, Permutation, Combinations, Number of onto functions, Partitions and Stirling Numbers of Second kind.		
5	Advanced Counting: Pigeon-hole Principle, Inclusion-Exclusion Principle, Putting Balls into boxes, Round Table Configurations, Counting using Lattice Paths, Catalan Numbers.	6	
6	Group Theory: Groups, Subgroups, Cyclic Groups, Characterisation of Cyclic Groups, Lagrange's Theorem, Normal Subgroups, Homomorphism and the first Isomorphism theorem of groups, Symmetric Group till definition of Alternating Group.	8	
7	Group Action, Orbit Stabilizer Theorem and its applications to Polya's Counting Principle and Polya's Inventory Problems.	7	
8	Recurrence Relations, Generating Functions, Using generating functions to prove results related to certain binomial coefficients.	4	
9	Basic Graph Theory: Graphs, Trees, Characterisation of Trees, Rooted Trees.	5	
	·		

References:

- 1. D. I.A. Cohen, Basic Techniques of Combinatorial Theory, John Wiley and Sons, New York, 1978.
- 2. G. E. Martin, Counting: The Art of Enumerative Combinatorics, UTM, Springer, 2001.
- 3. R. Merris, Combinatorics, 2th edition, Wiley-Interscience, 2003.
- 4. H. S. Wilf, Generatingfunctionology, Academic Press, 1990.
- 5. Ronald L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics: A Foundation for Computer Science (2nd ed.), 1994.

6. J.A. Gallian, Contemporary Abstract Algebra (4th ed.), Narosa Publication, New Delhi, 1998.
7. R.A. Brualdi, Introductory Combinatorics (5th ed.), Prentice Hall, 2009.

A joint venture by IISc and IITs, funded by MHRD, Govt of India