Partial Differential Equations - Web course

COURSE OUTLINE

First order linear and quasi-linear PDEs, The Cauchy problem, Second order PDEs, Classification of PDEs, Characteristics, Well-posed problems, Fourier Series, Solutions of hyperbolic, parabolic and elliptic equations, Dirichlet and Neumann problems, Maximum principles, Fourier Transform methods for PDEs, The method of Green's functions for Laplace, Heat and wave equations.

COURSE DETAIL

SI. No.	Module/ Lecture Topics	No. of (Total) Hours	Pre-requisites:
1	Mathematical Preliminaries: A Review of Multivariable Calculus, Essential Ordinary Differential Equations, Integral Curves and Surfaces of Vector Fields, Solving Equations of the form: dx/P=dy/Q=dz/R.	4	Basic Multivariable Calculus and ODEs Coordinators: Dr. Rajen Kumar Si Department of MathematicsIIT Guw
2	First-Order Partial Differential Equations(PDEs) – Formation and classification of first-order PDEs, Linear and Quasi- linear first-order PDEs, Cauchy's problem for first order PDEs, The Cauchy Kowalevski Theorem, Integral surfaces passing through a given curve, Nonlinear first-order PDEs, The method of characteristics, Compatible systems, Charpit's method, Jacobi's method for nonlinear PDEs.	7	
3	Second-Order PDEs - Classification, Canonical forms, Well-posed problems, Superposition principle.	3	
4	Fourier Series (FS) – Introduction to FS, Convergence of FS for continuous and piecewise continuous functions, Differentiation and integration of FS, Fourier cosine and sine series.	3	
5	The Heat Equation - Derivation of the heat equation, The maximum and minimum principles, Uniqueness, Continuous dependence, Method of separation of variables, Time-independent boundary conditions, Time-dependent boundary conditions, Duhamel's principle.	5	
6	The Wave Equation - Derivation of the wave equation, The infinite string problem, The D'Alembert solution of the wave equation, The semi-infinite string problem, The finite vibrating string problem, The method of separation variables, The inhomogeneous wave equation.	5	

http://nptel.iitm.ac.in

Mathematics

r. Rajen Kumar Sinha epartment of lathematicsIIT Guwahati

7 Laplace's Equation – Basic concepts, Typ value problems, The maximum and minimu identity and fundamental solution, The Pois The method of separation of variables, The the rectangle, The Dirichlet problem for A The exterior Dirichlet problem.	bes of boundary m principle, Green's son integral formula, Dirichlet problem for annuli and Disk,	6			
8 The Fourier Transform Methods for PDE transform, Fourier sine and cosine transfor problem in an infinite and semi-infinite rod problem, Laplace equation in a half-plane.	:s –Fourier orm, Heat flow I, Infinite string	5			
9 The Method of Green's Functions – Inter The method of Green's functions for the La Wave equations.	egral formulation, aplace, Heat and	3			
	Total	41			
eferences:					
1 D Bloosker and C Coordee Basis Bartial Differen	D. Discolar and O. Oscarda a Davis Davis Differential Encodiants May New Newtoned				
Reinhold. New York. 1992.	iliai Equalions, van i	NOSLIAITU			
2. C. Constanda, Solution Techniques for Elemental	C. Constanda, Solution Techniques for Elementary Partial Differential Equations,				
Chapman & Hall/CRC, New York, 2002.					
3. L. J. Crowin and R. H. Szczarba, <i>Multivariable Call</i> York 1982	culus, Marcel Dekker,	Inc, New			
4. S. J. Farlow, Partial Differential Equations for Scie	ntists and Engineers	, Birkh auser,			
New York, 1993.	5	, ,			
5. F. John, Partial Differential Equations, Springer-Ve	erlag, New York, 1982) 			
E. Kreyszig, Advanced Engineering Mathematics, Wiley, 2011.					
 J. Marsden and A. Weinstein, Calculus III, Springe T. Myint-Li and L. Debnath Linear Partial Different 	arsden and A. Weinstein, Calculus III, Springer-Verlag, New York, 1985.				
Engineers, Birkh auser, Boston, 2007.					
R. K. Nagle and E. B. Saff, Fundamentals of Differential Equations and Boundary					
Value Problems, Addison-Wesley, New York, 1996.					
I.N. Sneddon, <i>Elements of Partial Differential Equations</i> , Dover Publications, New					
11 F.C. Zachmanodou and D.W. Thoe Introduction	F C Zachmanoglou and D W Thoe Introduction to Partial Differential Equations				
with Applications, Dover Publication, Inc., New Yor	rk, 1986.	Lyuuions			

12. E. Zauderer, *Partial Differential Equations of Applied Mathematics*, Second Edition, John Wiley & Sons, New York, 1989.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in