Six Sigma - Video course

COURSE OUTLINE

This course will teach a focused managerial strategy of process improvement and variation reduction called Six Sigma, a measure of quality that strives for near perfection.

It is a disciplined, data-driven approach for eliminating defects (driving towards six standard deviations between the mean and the nearest specification limit) in any process-from manufacturing to transactional and from product to service.

A Six Sigma defect is anything outside of customer specifications. To be tagged Six Sigma, a process must not produce more than 3.4 defects per million opportunities.

To this end this course will span established methods of quality assurance and management, and advanced statistical methods including design of experiments.

Positioned at the frontier of modern quality strategies, Six Sigma comprises two frameworks-DMAIC (define, measure, analyze, improve, control) and DMADV (define, measure, analyze, design, verify). This course will cover both.

Contents:

Basic concepts in quality management, TQM, Cost of quality, quality engineering and Six Sigma, review of Probability and Statistics, Test of Hypothesis.

DMAIC process for process and design improvement, Acceptance Sampling, SPC (Statistical Process Control), Process Capability, Gage Reproducibility and Repeatability, Quality Function Deployment.

Design of Experiments, ANOVA, EVOP; Fractional, Full and Orthogonal Experiments, Regression model building, Taguchi methods for robust design, Six Sigma sustainability; Case studies.

COURSE DETAIL

A video course shall consist of 40 or more lectures with 1 hour duration per lecture.

Contents	Chapter Reference
Basic concepts in Quality Engineering and Management: definitions, approaches and relevance to organizational excellence.	1, 2 Mitra 1, 3 Pyzdek
Probability and Statistics-a review.	4 Mitra 2 Montgomery
	Basic concepts in Quality Engineering and Management: definitions, approaches and relevance to organizational excellence. Probability and Statistics-a

NPTEL

http://nptel.iitm.ac.in

Management

Pre-requisites:

Engineering and Math courses in undergraduate (B Tech) program.

Preferred Background.

- 1. Engineering graduate.
- 2. Some probability and statistics.
- 3. 2 years Work experience in Service or Manufacturing or Projects is recommended.

Additional Reading:

- 1. DMADV.
- books.google.com/books? id=06276jidG3IC&printsec=frontcover#PPA25,M1

Hyperlinks:

- 1. en.wikipedia.org/wiki/Six Sigma
- 2. <u>www.motorola.com/content.jsp?</u> <u>globalObjectId=3088</u>

Coordinators:

Prof. Tapan P. Bagchi

Vinod Gupta School of ManagementIIT Kharagpur

l	Total Quality Manager	1 1 2 2 4 2 2
5,6	Total Quality Management perspective, methodologies and	1, 2, 3 Mitra
	procedures; Roadmap to TQM ,	
	ISO 9000, KAIZEN, Quality Circles, Quality Models for	
	organizational excellence.	
7	Cost of Quality concepts; finding	1 Mitra
'	incentives for improving quality.	4 Pyzdek
8,9	Overview of Project	
0,9	Management.	
10	Measurements, Accuracy,	6 Pyzdek
	precision, Gage R & R .	0 i yzuek
11,12	Product quality control:	10 Mitra
++,+	Acceptance sampling methods-	TOWNER
	single, multiple and sequential sampling plans; Recent	
	developments in inspection	
	methods.	
	-	
13,14	SPC: Process evaluation and	4 Mitra
10,14	control by control charts: p, c, u,	
	CUSUM and multivariate charts.	
15	Process capability studies:	9 Mitra
	Various indices and approaches; Discussions on capabilities of	
	Process, Machine and Gauge.	
16,17,18	Six Sigma Concepts, Steps and	1,3 Pyzdek
10,11,10	Tools.	I,J F YZUEK
19	Quality Function Deployment,	3 Mitra
1 19	QFD example.	3 Miltra 3 Pyzdek
		-
20 21 22	Process avaluation and imp	1 O Mi+
20,21,22	Process evaluation and imp- Improvement by Design of	12 Mitra 9 Pyzdek
	Experiments: Various basic	5, 6 10
	designs; Special methods such as EVOP and ROBUST design	Montgomery
	(Taguchi Methods).	
23,24	Case Study of Orthogonal	Ranchi
23,24	Case Study of Orthogonal Array application.	Bagchi
25.00	Debugt decime by Tarrich:	Dogobi Mitus
25,26	Robust design by Taguchi Methods.	Bagchi, Mitra
27	Case Study of product design by Taguchi Philosophy.	Bagchi

28,29,30	DMAIC-Define, measure, analyze, improve and control-the methodology of Six Sigma implementation.	11 Mitra 8 Pyzdek
31,32	DMADV-Define, Measure, Analyze, Design and verify-the methodology for creating high performance designs.	8 Pyzdek
33,34	Justifying Six Sigma: a Manufacturing Case.	Bagchi
35,36,37	Readiness for Six Sigma- assessing the Organization.	CII Questionnaire
38,39	Case Study of initiating Six Sigma DMAIC in Manufacturing.	Bagchi
40	TQM vs. Six Sigma-The contrast.	Pyzdek

References:

- 1. Evans, J R and W M Lindsay (2005). An Introduction to Six Sigma and Process Improvement, CENGAGE.
- 2. Evans, J R and W M Lindsay (2005). Total Quality: Management, Organization and Strategy, 4th ed, CENGAGE.
- 3. Pyzdek, Thomas (2005). The Six Sigma Handbook-Revised and Expanded, Quality America Incorporated.
- 4. Montgomery, D C (2007). Design and Analysis of Experiments, 5th ed., Wiley.
- 5. Mitra, Amitava (2005). Fundamentals of Quality Control and Improvement, Pearson.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in