Digital Control System - Web course

COURSE OUTLINE

The core course in electrical engineering introduces the fundamental concepts, principles and application of digital control system analysis and design to the postgraduate students. The course material are prepared in such a manner so that it will be very useful not only for students of postgraduate program in control systems but also for final year undergraduate students, post-graduate students, teachers and practitioners.

This course goes deeper into the various aspects of digital control engineering. Each topic http://nptel.iitm.ac.in is developed in logical progression with up-to-date information.

The topics cover classical control design methods as well as the modern control design techniques. A number of chosen problems are solved to illustrate the concepts clearly. A suite of exercises is also provided in the appendix after each module.

Electrical Engineering

Pre-requisites:

1. Control Systems Engineering - I.

Coordinators:

Dr. Indrani Kar

Department of Electronics and Communication EngineeringIIT Guwahati

Prof. S. Majhi

Department of Electronics and Communication EngineeringIIT Guwahati

COURSE DETAIL

Module No.	SI. No.	Module/ Lecture Topics	No. of (Total) Hours
		Introduction to digital control	
1	Lecture 1	Introduction	
	Lecture 2	Discrete time system representation	04
	Lecture 3	Mathematical modeling of sampling process	
	Lecture 4	Data reconstruction	
		Modeling discrete-time systems by pulse transfer function	
2	Lecture 1	Revisiting Z-transform	
	Lecture 2	Mapping of s-plane to z-plane	05
	Lecture 3	Pulse transfer function	
	Lecture 4	Pulse transfer function of closed loop system	
	Lecture 5	Sampled signal flow graph	

		~		
		Stability analysis of discrete time systems		
3	Lecture 1	Jury stability test	02	
	Lecture 2	Stability analysis using bi-linear transformation		
		Time response of discrete systems		
4	Lecture 1	Transient and steady state responses		
	Lecture 2	Time response parameters of a prototype second order system	02	
		Design of sampled data control systems		
	Lecture 1	Root locus method		
	Lecture 2	Controller design using root locus		
5	Lecture 3	Root locus based controller design using MATLAB		
	Lecture 4	Nyquist stability criteria	08	
	Lecture 5	Bode plot		
	Lecture 6	Lead compensator design using Bode plot		
	Lecture 7	Lag compensator design using Bode plot		
	Lecture 8	Lag-lead compensator design in frequency domain		
		Deadbeat response design		
6	Lecture 1	Design of digital control systems with deadbeat response		
			03	

	Lecture 2	Practical issues with deadbeat response design		
	Lecture 3	Sampled data control systems with deadbeat response		
		Discrete state space model		
	Lecture 1	Introduction to state variable model		
7	Lecture 2	Various canonical forms	04	
	Lecture 3	Characteristic equation, state transition matrix		
	Lecture 4	Solution to discrete state equation		
		Controllability, observability and stability of discrete state space models		
8	Lecture 1	Controllability and observability	03	
	Lecture 2	Stability		
	Lecture 3	Lyapunov stability theorem		
		State feedback design		
9	Lecture 1	Pole placement by state feedback		
	Lecture 2	Set point tracking controller	04	
	Lecture 3	Full order observer		
	Lecture 4	Reduced order observer		
		Output feedback design		
10	Lecture 1	Output feedback design: Theory	02	
	Lecture 2	Output feedback design: Examples		

		Introduction to optimal control		
11	Lecture 1	Basics of optimal control	03	
	Lecture 2	Performance indices	03	
	Lecture 3	Linear Quadratic Regulator (LQR) design		

References:

- 1. B. C. Kuo, Digital Control Systems, Oxford University Press, 2/e, Indian Edition, 2007.
- 2. K. Ogata, Discrete Time Control Systems, Prentice Hall, 2/e, 1995.
- 3. M. Gopal, Digital Control and State Variable Methods, Tata Mcgraw Hill, 2/e, 2003.
- 4. G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems,
- 5. Addison Wesley, 1998, Pearson Education, Asia, 3/e, 2000. K. J. Astroms and B. Wittenmark, Computer Controlled Systems Theory and Design, Prentice Hall, 3/e, 1997.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in