NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

Introduction to information theory, Coding and cryptography Electrical Engineering

Instructor Name: Prof. Ranjan Bose Institute: IIT Delhi Department: Electrical Engineering

Course Intro: : Information theory, coding and cryptography are the three $loada \in bearing$ pillars of any digital communication system. In this introductory course, we will start with the basics of information theory and source coding. Subsequently, we will discuss the theory of linear block codes (including cyclic codes, BCH codes, RS codes and LDPC codes), convolutional codes, Turbo codes, TCM and space time codes. Finally, we will introduce the basics of secure communications by focusing on cyptography and physical layer security. Wherever possible, applications of the theory in real world scenarios have been provided. The underlying aim of this course is to arouse the curiosity of the students.

Pre Requisites: : Basic exposure to linear algebra and probability theory, as well as, a course in digital communications.

Core/Elective: : Core UG/PG: : Both Industry Support : Telecommunication companies, Internet companies, Information security companies

Reference : Basic text book R. Bose, Information theory, coding and cryptography, McGraw―Hill, 3 rd Edition, 2016.

About Instructor: Ranjan Bose received his B.Tech. degree in electrical engineering from the Indian Institute of Technology (IIT), Kanpur, India in 1992 and the M.S. and Ph.D. degrees in electrical engineering from the University of Pennsylvania, Philadelphia, USA in 1993 and 1995, respectively. He worked at Alliance Semiconductor Inc., San Jose, CA, as a Senior Design Engineer from 1996 to 1997. Since November 1997 he has been with the Department of Electrical Engineering at Indian Institute of Technology, Delhi, where currently he is the Microsoft Chair Professor. His research interests lie in the areas of secure communications, coding theory, ultra―wideband (UWB) communications, broadband wireless access and wireless security. He currently heads the Wireless Research Lab in IIT Delhi. His lectures on wireless communications form a part of the video courses offered by the National Program on Technology Enhanced Learning (NPTEL).

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

SL.NO	Week	Module Name
1	1	Lecture 1: Introduction to Information
-	-	Theory Lecture 2: Entropy, Mutual
		Information, Conditional and Joint
		Entropy Lecture 3: Measures for
		Continuous Random Variable, Relative
		Entropy
2	2	Lecture 4: Variable Length Codes,
2		Prefix Codes Lecture 5: Source Coding
		C C
		Theorem Lecture 6: Various source
		coding techniques: Huffman,
		Arithmetic, Lempel Ziv, Run Length
3	3	Lecture 7: Optimum Quantizer,
		Practical Application of Source Coding:
		JPEG Compression Lecture 8:
		Introduction to Super Information
		Lecture 9: Channel Models and
		Channel Capacity
4	4	Lecture 10: Noisy Channel Coding
		Theorem Lecture 11: Gaussian
		Channel and Information Capacity
		Theorem Lecture 12: Capacity of
		MIMO channels
5	5	Lecture 13: Introduction to Error
		Control Coding Lecture 14:
		Introduction to Galois Field Lecture 15:
		Equivalent Codes, Generator Matrix
		and Parity Check Matrix
6	6	Lecture 16: Systematic Codes, Error
		Detections and Correction Lecture 17:
		Erasure and Errors, Standard Array and
		Syndrome Decoding Lecture 18:
		Probability of Error, Coding Gain and
		Hamming Bound
7	7	Lecture 19: Hamming Codes, LDPC
· · ·	, ,	Codes and MDS Codes Lecture 20:
		Introduction to Cyclic Codes Lecture
		21: Generator Polynomial, Syndrome
8	8	Polynomial and Matrix Representation
8	8	Lecture 22: Fire Code, Golay Code,
		CRC Codes and Circuit Implementation
		of Cyclic Codes Lecture 23:
		Introduction to BCH Codes: Generator
		Polynomials Lecture 24: Multiple Error
		Correcting BCH Codes, Decoding of
		BCH Codes

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

9	9	Lecture 25: Introduction to Reed
		Solomon (RS) Codes Lecture 26:
		Introduction to Convolutional Codes
		Lecture 27: Trellis Codes: Generator
		Polynomial Matrix and Encoding using
		Trellis
10	10	Lecture 28: Vitrebi Decoding and
		Known good convolutional Codes
		Lecture 29: Introduction to Turbo
		Codes ,Lecture 30: Introduction to
		Trellis Coded Modulation (TCM)
11	11	Lecture 31: Ungerboekâ€~s design rules
		and Performance Evaluation of TCM
		schemes Lecture 32: TCM for fading
		channels and Space Time Trellis Codes
		(STTC) Lecture 33: Introduction to
		Space Time Block Codes (STBC)
12	12	Lecture 34: Real Orthogonal Design
		and Complex Orthogonal Design
		Lecture 35: Generalized Real
		Orthogonal Design and Generalized
		Complex Orthogonal Design Lecture
		36: Introduction to Cryptography:
		Symmetric Key and Asymmetric Key
		Cryptography, Lecture 37: Some
		well―known Algorithms: DES, IDEA,
		PGP, RSA, DH Protocol Lecture 38:
		Introduction to Physical Layer Security:
		Notion of Secrecy Capacity Lecture 39:
		Secrecy Outage capacity, Secrecy
		Outage probability, Cooperative
		jamming