High Performance Computer Architecture - Video course

COURSE OUTLINE

Review of Basic Organization and Architectural Techniques

- RISC processors
- Characteristics of RISC processors
- RISC Vs CISC
- Classification of Instruction Set Architectures
- Review of performance measurements
- Basic parallel processing techniques: instruction level, thread level and process level
- Classification of parallel architectures

Instruction Level Parallelism

- Basic concepts of pipelining
- Arithmetic pipelines
- Instruction pipelines
- Hazards in a pipeline: structural, data, and control hazards
- Overview of hazard resolution techniques
- Dynamic instruction scheduling
- Branch prediction techniques
- Instruction-level parallelism using software approaches
- Superscalar techniques
- Speculative execution
- Review of modern processors /*The objective is to explain how ILP

NPTEL

http://nptel.iitm.ac.in

Computer Science and Engineering

Pre-requisites:

Programming and Data Structures Operating Systems Computer Architecture and Organization.

Additional Reading:

SIMA, "Advanced Computer Architectures", Addison-Wesley.

Coordinator:

Prof. Ajit Pal Department of Computer Science and EngineeringIIT Kharagpur techniques have been deployed in modern processors*/

- a. Pentium Processor: IA 32 and P6 microarchitectures
- b. ARM Processor

Memory Hierarchies

- Basic concept of hierarchical memory organization
- Main memories
- Cache memory design and implementation
- Virtual memory design and implementation
- Secondary memory technology
- RAID

Peripheral Devices

- Bus structures and standards
- Synchronous and asynchronous buses
- Types and uses of storage devices
- Interfacing I/O to the rest of the system
- Reliability and availability
- I/O system design
- Platform architecture

Thread Level Parallelism

- Centralized vs. distributed shared memory
- Interconnection topologies
- Multiprocessor architecture
- Symmetric multiprocessors
- Cache coherence problem
- Synchronization
- Memory consistency
- Multicore architecture
- Review of modern multiprocessors

Process Level Parallelism

Distributed computers

- Clusters
- Grid
- Mainframe computers

COURSE DETAIL

Module	Topics	No.of Hours	
Review of Basic	RISC processors	6	
Organization and Architectural Techniques	Characteristics of RISC processors		
	RISC Vs CISC		
	Classification of Instruction Set Architectures		
	Review of performance measurements		
	Basic parallel processing techniques: instruction level, thread level and process level		
	Classification of parallel architectures		
	Basic concepts of pipelining		
	Instruction pipelines versus functional pipelines		
Instruction Level Parallelism	Basic concepts of pipelining	8	

	Arithmetic pipelines		
	Instruction pipelines		
	Hazards in a pipeline: structural, data, and control hazards		
	Overview of hazard resolution techniques		
	Dynamic instruction scheduling		
	Branch prediction techniques		
	Instruction-level parallelism using software approaches		
	Superscalar techniques		
	Speculative execution		
	Review of modern processors /*The objective is to explain how ILP techniques have been deployed in modern processors*/		
	i. Pentium Processor: IA 32 and P6 microarchitectures ii. ARM Processor		
Memory Hierarchies	Basic concept of hierarchical memory organization	8	
	Main memories		
	Cache design and optimization		
	Virtual memory design and		

	implementation	
	Memory protection	
	Evaluating memory hierarchy performance	
	RAID	
Thread Level Parallelism		
	Interconnection topologies	
	Synchronization	
	Memory consistency	
	Review of modern multiprocessors	
Process Level	Distributed computers	6
Parallelism	Clusters	
	Grid	
	Mainframe computers	
Peripheral Devices	Bus structures and standards	4
	Types and uses of storage devices	
	Interfacing I/O to the rest of the	

	system		
	Reliability and availability		
	I∕O system design		
·			
1			
References:			
1. Hennessey and Patterson, "Computer Architecture: A quantitative Approach", Morgan Kaufman.			
A joint venture by IS	Sc and IITs, funded by MHRD, Govt of In	<u>http://nptel.iitm.ac.in</u>	