NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

Embedded Systems-- Design Verification and Test Computer Science and Engineering

Instructor Name: Arnab Sarkar Institute: IIT Gowahati Department: Computer Science and Engineering

Course Intro: : An embedded system (ES) can be described as a computing system which is part of a larger physical system. Examples of ESs range from a simple elevator controller to a complex avionics control system. Unlike a general purpose computer system, ESs are typically designed for specific functionalities, often with stringent performance objectives and constraints related to real-time accuracy, area, power, cost etc. Their implementations may include both software and hardware components and may necessitate integration with sensors and actuators. The increase in complexity of modern ESs mandates automation in their design. Given a system which we intend to implement, the design process majorly evolves through distinct but often overlapping and iterative phases which include,i. modeling of the intended system behavior, ii. design of appropriate structural representations and implementation methodologies, corresponding to the specified behavior, iii. verification and validation of the correctness and performance related properties that the designed system should satisfy, and iv. testing whether the prototyped / manufactured implementation actually performs the required behaviour. The proposed course will systematically cover all these topics so that the student gains an end-to-end understanding of the overall ES design process.

Pre Requisites: : Digital Design and Computer Architecture Core/Elective: : Elective UG/PG: : Both Industry Support : All Embedded System design/application industries like Intel, Samsung etc. and CAD industries like Cadence, Synopsys, Agilent etc.

Reference : 1. Peter Marwedel, P. Marwedel, $\hat{a} \in \hat{c}$ Embedded System Design $\hat{a} \in \hat{c}$, Springer, 2011 2. Wayne Wolf, Components, 2 nd Kaufmann Computers as Edition, Morgan 3. Abhik Roychoudhury, Embedded Systems and Software Validation, 1 st Edition, Morgan Kaufmann 4. M. Huth and M. Ryan, Logic in Computer Science modeling and reasoning about systems, Cambridge University Press, 2nd Edition, 2004 5. Bushnell and Agrawal, Essentials of Electronic Testing for Digital, Memory & Mixed-Signal Circuits, Kluwer Academic Publishers, 2000

About Instructor: Dr. Arnab Sarkar is an Asst. Professor in the Dept. of CSE IIT Guwahati. He has an experience of 3 years in teaching and about 2 years in industry. His research interests Real-Time and Embedded Systems, Computer Architecture, Algorithms.

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

SL.NO	Week	Module Name
1	1	Module 1: Introduction and Modeling
		Lec 1: Introduction to Embedded
		Systems Design Flow Lec 2: Formal
		specification and Modeling Strategies -
		I Lec 3: Formal specification and
		Modeling Strategies - II
2	2	Hardware-Software Co-Design
_	_	principles and details of hardware
		design Lec 1: Hardware Software
		Co-Design Lec 2: Architectural Design
		of Hardware - I Lec 3: Architectural
		Design of Hardware - II
3	3	Introduction to Scheduling in embedded
5	5	systems Lec 1: System and Task level
4	4	Timing Analysis
4	4	Lec 2,3: Uni-processor Real-time
		Scheduling Lec 4,5: Multiprocessor
	~	Real-time Scheduling
5	5	Lec 2,3: Resource Allocation Strategies
		in Automotive Systems Lec 4:
		Energy-aware and Fault-tolerant
		Real-time Scheduling
6	6	Introduction to Formal Verification Lec
		1 Introduction and Basic Operations on
		Temporal Logic Lec 2 Syntax and
		Semantics of CTL
7	7	Lec 3 Equivalence between CTL
		Formulas Lec 4,5,6 Model Checking
		Algorithm (3 lectures)
8	8	Embedded SystemVerification for
		Embedded Systems Lec 1,2: Software
		Verification Lec 3: Verification of real
		time systems hardware Testing
9	9	Test: Introduction to Digital Testing
		Lec 1. Introduction to Digital VLSI
		Testing Lec 2 Automatic Test Pattern
		Generation (ATPG) Lec 3. Scan Chain
		based Sequential Circuit Testing
10	10	Embedded System hardware Testing
		Lec 1. Software-Hardware
		Co-validation Fault Models and High
		Level Testing for Complex Embedded
		Systems Lec 2. Testing for embedded
		cores Lec 3. Bus and Memory Testing
L	1	cores Lee 5. Dus und Memory Testing

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

11	Advances in Embedded System
	hardware Testing Lec 1. Testing for
	advanced faults in Real time Embedded
	Systems Lect 3. BIST for Embedded
	Systems
12	Lec 3,4 Concurrent Testing for Fault
	tolerant Embedded Systems ,Testing for
	Embedded Software Systems Lect 1
	Interaction Testing between Hardware
	and Software Lect 2. Software testing
	for Reprogrammable hardware
	11 12