# **Principles and** Application of **Electron** Paramagnetic **Resonance** -Video course

# NP-TEL



# **Chemistry and Biochemistry**

### **COURSE OUTLINE**

In this course, it is proposed to give a good foundation to the underlvina principles and simple applications of Electron Paramagnetic Resonance (EPR) Spectroscopy, along with a detailed exposition of the EPR spectrometer and how to record and analyze simple EPR spectra. First a short historical development Additional Reading: will which be given encompasses the discoverv Zeeman effect. the the existence of electron spin and Zavoiskv's observation of electron spin resonance. The hurdles and hostilities that these pioneers faced will be mentioned. Then the phenomenon of magnetic resonance will be discussed in terms of classical mechanics Hyperlinks: and quantum mechanics. The necessary conditions for experimental observation of the resonance will be elucidated and the experimental techniques will be elaborated. Often the approach will be that of an experimentalist, so that the necessary theoretical concepts will be built from experimentally observed features, and not the other way round. A good part

## **Pre-requisites:**

Introductory Quantum mechanics as can be found in the NPTEL site. In particular, treatment of angular momentum is fundamental to the study by EPR.Perturbation theory both time-independent and time-dependent will be needed.

- C. P. Poole, Jr., Electron Spin Resonance: A Comprehensive Treatise on Experimental Techniques, 2nd edition, New York, John Wiley and Sons, 1983.
- J. R. Pilbrow, Transition Ion Electron Paramagnetic Resonance. Oxford, England:Clarendon Press, 1991.
- A. Abragam A and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions. Oxford, England: Oxford University Press, 1970.

- EPR resources from National Institute of Health, USA: http://www.niehs.nih.gov/research/resources/epresr/index.cfm
- Computer programs under MATLAB for simulating and fitting Electron Paramagnetic Resonance (EPR) spectra: http://www.easyspin.org/

#### **Coordinators:**

**Prof. Ranjan Das** School of Chemical SciencesTIFR

will be devoted to a detailed description of EPR instrumentations, so that one clearly understands how the principles of EPR spectroscopy implemented are in the spectrometers, and also the methods to enhance their sensitivity. A detailed guided tour will be conducted explaining how to record the best quality EPR spectra, and how to analyze first-order EPR EPR study of free spectra. especially organic, radicals. has vielded much valuable information, and these will be highlighted. Some emphasis will be placed on EPR studies photochemical related to reactions. This will include the means of recording EPR spectra of transient radicals through steady-state and timeresolved techniques and the spin trapping technique. The phenomenon of Electron Spin Polarisation (ESP), the more modern term of Chemically Dynamic Magnetic Induced Polarization, will be explained, d special EPR а n instrumentation to detect it will be described. Then a general outline of the importance of electron spin relaxation on the m a q n e t i c resonance spectroscopy will be given, the Bloch equations will be introduced and their significance in EPR the lineshapes will be highlighted. Throughout this course, the emphasis will be on building a physical picture, with minimum use of the mathematical rigour.

## COURSE DETAIL

| Module<br>No. | Topic/s                       |  |
|---------------|-------------------------------|--|
| 1             | Lecture 1:<br>Remembering the |  |

#### Masters: From Zeeman to Zavoisky

Zeeman's observation of splitting of spectral lines; the difficulty of explaining the origin of Zeeman effect; Bohr model of hydrogen atom; Pauli's exclusion principle; Stern-Gerlach experiment; Uhlenbeck and Goudsmit's idea of 'spinning motion' of electron and its initial dismissal by Pauli and Lorentz; magnetic Intrinsic moment and angular momentum of electron; Zavoisky's observation of electron paramagnetic resonance. Lecture 2: Introduction to EPR spectroscopy The Zeeman effect; Magnetic moment of an electron due its spin and orbital angular momenta; Combination of angular momenta and explanation of fine structures in atomic spectra; Magnetic moment in a magnetic field; Zeeman splitting of levels; energy Electron Zeeman vs nuclear Zeeman effect; Magnetic resonance spectroscopy; Resonance

2

|   | condition; Field-<br>swept vs<br>frequency-swept<br>EPR spectra;<br>Observation of<br>hyperfine lines in<br>several organic free<br>radicals and<br>t r a n s i t i o n metal<br>complexes and the<br>existence of<br>electron-nuclear<br>hyperfine<br>interaction.                                                                                                                                               |  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3 | Lecture 3:<br>Electron-Nuclear<br>Hyperfine<br>Interaction – I                                                                                                                                                                                                                                                                                                                                                    |  |
|   | Understanding the electron-nuclear hyperfine interaction;<br>Hydrogen atom;<br>Hydrogen molecule ion (H2+); Nuclear spin-degeneracy and relative intensity of hyperfine lines; EPR s p e c t r a of benzosemiquinone anion radical, methyl radical;<br>Pascal triangle for several equivalent s p i n - $\frac{1}{2}$ nuclei; Hyperfine lines due nuclear spin <i>I</i> = 1; EPR spectrum of TEMPOL free radical. |  |
|   | Lecture 4:<br>Electron-Nuclear<br>Hyperfine<br>Interaction – II                                                                                                                                                                                                                                                                                                                                                   |  |
|   | Hyperfine lines due<br>nuclear spin $I > \frac{1}{2}$ ;<br>E P R spectra of<br>copper diethyl<br>dithio-carbamate<br>complex containing<br>naturally abundant                                                                                                                                                                                                                                                     |  |

|   | and isotopically<br>pure 63Cu nucleus;<br>Linewidths and<br>intensities of<br>v a r i o u s hyperfine<br>lines; EPR spectrum<br>of di-vanadyl<br>complex; Pascal-<br>like triangle for<br>several equivalent<br>nuclei with $I > \frac{1}{2}$ ;<br>EPR vs ESR – EPR<br>spectrum of singlet<br>oxygen molecule;<br>splittings due to<br>coupling of orbital<br>angular momentum<br>with rotational<br>angular momentum. |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4 | Lecture 5:<br>Magnetic Moment<br>in Magnetic Field<br>– I                                                                                                                                                                                                                                                                                                                                                              |  |
|   | Review of<br>vector algebra:<br>Right-hand<br>Cartesian<br>coordinate system,<br>scalars and vectors,<br>vector addition and<br>multiplication;<br>Motion of a bar<br>magnetic field;<br>Oscillation; Relation<br>between the<br>magnetic moment<br>and orbital angular<br>momentum of an<br>electron; Bohr<br>magnetor; Lorentz<br>force; Tesla vs<br>Gauss.                                                          |  |
|   | Lecture 6:<br>Magnetic Moment<br>in Magnetic Field<br>– II                                                                                                                                                                                                                                                                                                                                                             |  |
|   | Motion of a<br>bar magnet in a<br>magnetic field,<br>contd.; Oscillation                                                                                                                                                                                                                                                                                                                                               |  |

vs precession; Time-dependence

|   | of the magnetic<br>moment in a<br>magnetic field;<br>Gyromagnetic ratio;<br>Larmor frequency;<br>Effect of a small<br>r o t a t i n g magnetic<br>field applied<br>perpendicular to the<br>Zeeman field;<br>Condition for<br>magnetic<br>resonance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 | Lecture 7: EPR<br>Instrumentation –<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|   | Recapitulation of<br>the requirements of<br>EPR transition;<br>Comparison<br>between a basic<br>EPR spectrometer<br>and an optical<br>spectrometer;<br>Microwave<br>components –<br>waveguides, bends,<br>t w i s t ; Different<br>microwave<br>frequencies and<br>EPR spectrometers;<br>Source of<br>microwave –<br>klystron and Gunn<br>oscillator; Klystron<br>mode; Microwave<br>cavity –<br>tr an s m is sion and<br>reflection type;<br>Modes in a<br>microwave cavity;<br>Microwave oven;<br>Perturbation of<br>modes due to a<br>sample; TE102<br>modes in a<br>rectangular cavity;<br>TE011 modes in a<br>cylindrical cavity;<br>Fixed frequency<br>EPR spectrometer;<br>Quality factor (Q) of<br>a cavity and its |  |

importance in sensitivity of the spectrometer.

Lecture 8: EPR Instrumentation – II

Magnetic field and electromagnet; Helmholtz coil; Requirements on homogeneity; the Measuring the magnetic field -Hall-effect Gaussmeter and NMR Gaussmeter; Microwave detector; Nonlinearity and biasing of the detector; Coupling of microwave from waveguide to the cavity - role of an iris and a tuning screw; Describing microwave power in relative unit (dB) and absolute unit (dBm). Lecture 9: EPR Instrumentation -Ш Α transmission-cavity EPR spectrometer; Microwave А circulator: reflection-cavity EPR spectrometer; Matching the microwave frequency to the resonance frequency of the

cavity; Coupling the microwave from the waveguide to the cavity – role of an iris and a tuning screw; Undercoupling,

overcoupling and

critically coupling of the cavity; Biasing the detector using a directional coupler; Use of attenuators and phase shifters in the spectrometer; Balancing the microwave bridge analogous to а Wheatstone bridge; Appearance of the EPR spectra positive or negative; **Direct-detection** EPR spectrometer; Q value and the response time of a direct-detection EPR spectrometer.

#### Lecture 10: EPR Instrumentation – IV

Improving the sensitivity of the E P R spectrometer; Signal-to-noise ratio: Signal averaging; Principle of lock-in or phasesensitive detection; Magnetic field modulation and phase-sensitive detection; EPR spectrum in firstderivative form: Second-derivative form of EPR spectrum; Factors deciding the sense of the derivative spectrum; Magnetic f i e I d modulation and side bands; Effect the on response time of the spectrometer; Automatic frequency control of microwave the source.

6

Mechanical Description of EPR – I

**Recapitulation of** the classical view of EPR transition; Basics of quantum mechanics - wave function, timedependent and time-independent Schrödinger equations; Angular momentum and its allowed values: Stationary states in quantum mechanics; Magnetic moment in Zeeman а magnetic field: Allowed states and energies; Rotating magnetic field in the xy plane; First-order time-dependent perturbation calculations. Lecture 12: Quantum Mechanical **Description of** EPR – II First-ordertimedependent perturbation calculations, contd; Time-dependent evolution of states: Transition probability; Resonance condition. Lecture 13: Introduction to **Spin Relaxation** 

Absorption, spontaneous emission and stimulated emission processes; Need

7

|   | for relaxation<br>processes in<br>magnetic<br>resonance<br>spectroscopy;<br>Phenomenological<br>derivation of spin-<br>lattice relaxation as<br>an exponential<br>process; Physical<br>meaning of the<br>spin-lattice and<br>spin-spin relaxation<br>processes; Role of<br>the relaxation                                                                                                                                                                                                                                                                                |  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|   | p r o c e s s in the<br>appearance of EPR<br>spectra.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 8 | Lecture 14:<br>Theory of First-<br>order EPR<br>Spectra – I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|   | H a m i l t o n i a n of<br>hydrogen atom;<br>Magnetic<br>interactions and<br>spin hamiltonian;<br>Hamiltonian for<br>Zeeman interaction;<br>Hamiltonian for<br>electron-nuclear<br>dipolar interaction<br>a n d its directional<br>dependence;<br>Hamiltonian for<br>electron-nuclear<br>is otropic hyperfine<br>interaction;<br>Importance of <i>s</i> -<br>t y p e of orbitals;<br>Separating the total<br>hamiltonian into a<br>main unperturbed<br>Hamiltonian and a<br>perturbation<br>hamiltonian.<br><b>Lecture 15:</b><br><b>Theory of First-<br/>order EPR</b> |  |
|   | Zeroth order<br>wavefunctions and<br>energies of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |

|    | hydrogen atom;<br>Splitting of energy<br>I e v e I s due to<br>electron Zeeman,<br>nuclear Zeeman<br>and electron-<br>nuclear hyperfine<br>interactions;<br>Selection rules and<br>allowed transitions;<br>Frequency-swept<br>a n d field-swept<br>EPR spectra; First-<br>order perturbation<br>calculations and<br>EPR spectra.                                                                                                                                 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9  | Lecture 16: How<br>to Analyse First-<br>order EPR<br>Spectra                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Recapitulation of<br>the characteristics<br>of first-order EPR<br>spectra; Measuring<br>is otropic hyperfine<br>splitting constants<br>of several free<br>radicals using a<br>ruler and a divider;<br>Identifying the<br>number of<br>equivalent nuclei<br>and their spins;<br>What to do when<br>the outer hyperfine<br>lines are buried in<br>the noise level; Use<br>o f computer<br>programs for<br>analysing and<br>simulating first-<br>order EPR spectra. |
| 10 | Lecture 17: How<br>to Record EPR<br>Spectra                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | Solid, liquid<br>or gaseous sample;<br>EPR sample tubes;<br>Sample<br>preparation;                                                                                                                                                                                                                                                                                                                                                                               |

Degassing and sealing of EPR samples; Choice of solvents; Polar solvents and use of capillary tubes and EPR flat cells: Sample placement inside the microwave cavity; Setting up the EPR spectrometer \_ tuning the microwave frequency, coupling, AFC: and Optimizing the field magnetic position, scan range, modulation amplitude, microwave power, time scan and output filter timeconstant, the phase the microwave of bias power and the reference phase of magnetic field modulation frequency. 11 Lecture 18: Second-order Effects on EPR Spectra Why second-order calculations; Spin hamiltonian of hydrogen atom; Separation of unperturbed and perturbation hamiltonians; Firstorder wavefunctions and energies; Secondorder calculation of energies; Transition energies; Fixedmagnetic field and fixed-frequency EPR spectra; Distinction between

|    | h y p e r f in e splitting<br>constant and<br>hyperfine coupling<br>constant; Second-<br>order correction for<br>calculating the <i>g</i> -<br>values; EPR<br>spectrum of CF-3<br>radical; Second-<br>order calculations<br>of R-CH-2 radical;<br>Second-order<br>effects on the EPR<br>spectrum of a tri-<br>nuclear Co<br>complex. |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 10 | 1                                                                                                                                                                                                                                                                                                                                    |  |
| 12 | Photochemistry                                                                                                                                                                                                                                                                                                                       |  |
|    | and EPR                                                                                                                                                                                                                                                                                                                              |  |
|    | Spectroscopy                                                                                                                                                                                                                                                                                                                         |  |
|    | Formation of<br>paramagnetic<br>species by<br>photoexcitation;<br>Means to record<br>EPR spectra of<br>transient radicals;<br>Modifications for <i>in</i><br><i>situ</i> photolysis;<br>Need for flowing the<br>reactants;<br>Temperature<br>control; Steady-<br>state EPR spectra                                                   |  |
|    | under continuous<br>photolysis;<br>Photolysis of <i>p</i> -<br>benzoquinone in<br>alcobol: Photolysis                                                                                                                                                                                                                                |  |
|    | of acetone in 2-<br>propanol;Spin-<br>trapping technique:                                                                                                                                                                                                                                                                            |  |
|    | PBN and DMPO as<br>the trapping agents;<br>Spin-trapping                                                                                                                                                                                                                                                                             |  |
|    | experiment on                                                                                                                                                                                                                                                                                                                        |  |
|    | benzoquinone in                                                                                                                                                                                                                                                                                                                      |  |
|    | alcohol; Problems                                                                                                                                                                                                                                                                                                                    |  |
|    | EPR studies: Time-                                                                                                                                                                                                                                                                                                                   |  |
|    | resolved EPR                                                                                                                                                                                                                                                                                                                         |  |
|    | spectroscopy;<br>Recording EPR                                                                                                                                                                                                                                                                                                       |  |

electron spin polarisation – the triplet mechanism (TM); Conditions for TM to operate; Characteristics of EPR spectra arising from TM.

#### Lecture 21: Electron Spin Polarisation – II

Mechanism f mix-phase 0 hyperfine dependent electron spin polarisation; Importance of a pair of radicals and their evolution: Radical pair mechanism (RPM); Overall spin states of the radical pair and interconversion of singlet and triplet pairs; radical Importance of the difference in the frequencies of precession; Conditions for RPM to operate; Characteristics of EPR spectra due to RPM; Dominance of TM or RPM in observed timeresolved EPR spectra; Insight into detailed the dynamics of photophysical and photochemical pathways from spin-polarised timeresolved EPR spectra. Lecture 22:

Anisotropic Interactions in EPR Spectroscopy

14

Common

|    | examples of                 |  |
|----|-----------------------------|--|
|    | anisotropic                 |  |
|    | properties,                 |  |
|    | anisotronic                 |  |
|    | proportios duo to           |  |
|    | ranid tumbling              |  |
|    | motions. Need for           |  |
|    | restricted motion:          |  |
|    | Origin of $a$ -             |  |
|    | anisotropy:a-               |  |
|    | matrix: $a^2$ -matrix:      |  |
|    | Principal axes and          |  |
|    | principal values of         |  |
|    | t h e g-matrix;             |  |
|    | Effective <i>g</i> -values; |  |
|    | Symmetry of                 |  |
|    | crystals; Examples          |  |
|    | of anisotropic EPR          |  |
|    | spectra of                  |  |
|    | vacancies in single         |  |
|    | crystals;EPR                |  |
|    | lineshapes from             |  |
|    | powder samples or           |  |
|    | Trozen solutions;           |  |
|    | Examples UI                 |  |
|    | spectra: Electron-          |  |
|    | nuclear dipolar             |  |
|    | interaction:                |  |
|    | Anisotropic                 |  |
|    | hyperfine coupling          |  |
|    | constants; Principal        |  |
|    | values of the               |  |
|    | hyperfine coupling          |  |
|    | constants; Powder           |  |
|    | patterns due to             |  |
|    | anisotropic                 |  |
|    | hyperfine coupling;         |  |
|    | Lineshapes due to           |  |
|    | combined effects of         |  |
|    | g-anisotropy and            |  |
|    | nypenine                    |  |
|    | ansouopy.                   |  |
|    |                             |  |
| 15 | Locturo 22:                 |  |
| 13 | Theoretical Basis           |  |
|    | of isotronic                |  |
|    | Hyperfine                   |  |
|    | Coupling                    |  |
|    | 1 5                         |  |
|    | Hamiltonian                 |  |
|    | of the isotropic            |  |
|    | nyperfine                   |  |
|    | Interaction, ROID OF        |  |
|    | the wavefunction in         |  |

|    | d e t e r m i n i n g the<br>isotropic hyperfine<br>coupling constant;<br>Concepts of<br>electron density,<br>s p i n density and<br>spin population;<br>Meaning of<br>negative spin<br>density;<br>Determinantal<br>wavefunction;<br>Atomic spin<br>population; Relation<br>between spin<br>population of C-<br>a t o m and the<br>hyperfine splitting<br>due to the H-atom<br>in >C·H radical;<br>Configuration<br>mixing. |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 16 | Lecture 24: Spin<br>Relaxation and<br>Bloch Equations –<br>I                                                                                                                                                                                                                                                                                                                                                                 |  |
|    | Boltzmann<br>distribution of spins<br>at thermal<br>equilibrium;<br>Magnetic<br>susceptibility and                                                                                                                                                                                                                                                                                                                           |  |
|    | Curie law; Non-<br>equilibrium<br>magnetisation and<br>electron spin<br>relaxation process;<br>Bloch's proposal of                                                                                                                                                                                                                                                                                                           |  |
|    | longitudinal (spin-<br>lattice) and<br>transverse(spin-<br>spin) relaxation<br>processes; Time<br>dependence of                                                                                                                                                                                                                                                                                                              |  |
|    | t h e presence of<br>relaxation – Bloch<br>equations.                                                                                                                                                                                                                                                                                                                                                                        |  |
|    | Lecture 25: Spin<br>Relaxation and<br>Bloch Equations –                                                                                                                                                                                                                                                                                                                                                                      |  |

Time

dependence of magnetization in the presence of relaxation - Bloch equations in the laboratory coordinate system. Rotating coordinates; Time dependence of a vector in a rotating coordinate system; Bloch equations in а rotating coordinate system; Physical meaning; Steady-state solutions of Bloch equations in the rotating coordinate system; EPR lineshapes absorption and dispersion EPR signals; Measuring the relaxation times from the EPR lineshapes, and problems associated with that; Bloch equations as а function of magnetic field.

#### **References:**

The list here is merely suggestive and possibly representative. There are many other good books and course materials as well.

> Principles of Electron Spin Resonance (Ellis Horwood Series in Physical Chemistry) N. M. Atherton Hardcover: 500 pages Publisher: Ellis Horwood Ltd; Revised edition (October 1993) Language: English ISBN-10: 0137217625

ISBN-13:978-0137217625

2. Electron Paramagnetic **Resonance: Elementary** Theory and Practical Applications, 2nd Edition John A. Weil, James R. Bolton ISBN: 978-0-471-75496-1 Hardcover 664 pages Publisher: Wiley (March 2007) 3. Electron Spin Resonance Spectroscopy of Organic Radicals Fabian Gerson and Walter Huber Edition - July 2003 XV, 464 Pages, Softcover ISBN-10: 3-527-30275-

1 ISBN-13:978-3-527-30275-8

Wiley-VCH, Weinheim 4. Electron Spin Resonance:Analysis and Interpretation Philip Rieger ISBN: 978-0-85404-355-2 Copyright: 2007

Format: Hardback Extent: 281 Royal Society of Chemistry

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in