Catalytic Asymmetric Synthesis - Web course

COURSE OUTLINE

Catalytic asymmetric synthesis provides an effective method for the construction of optically active compounds. This course contains eleven modules covering the recent developments in asymmetric catalytic synthesis. The Synthetic and mechanistic aspects will be described.

Detailed Course Plan

Module No	Module Topic	No. of Classes
Module 1	Reactions using Chiral Lewis Acids and Bronsted Acids	4
Module 2	Carbon-Carbon Bond-Forming Reactions	5
Module 3	Synthesis via C-H Activation	3
Module 4	Carbon-Heteroatom Bond-Forming Reactions	3
Module 5	Oxidation Reactions	6
Module 6	Hydrogenation Reactions	3
Module 7	Reactions in Nonconventional Conditions	3
Module 8	Hydrosilyation of Carbon-Carbon Double bonds and Related Reactions	3
Module 9	Carbonylation Reactions	3
Module 10	Organocatalysis	3
Module 11	Enzyme Catalyzed Reactions	4
	Total	40

Course material

SI. No.	Торіс	Lecture hours
	Module 1	

http://nptel.iitm.ac.in

Chemistry and Biochemistry

Pre-requisites:

1. Organic Chemistry Background

Coordinators:

Prof. T. Punniyamurthy Department of ChemistryIIT Guwahati

1.1	Bronsted Acid-Assisted Lewis Acid		
1.2	Lewis Acid-Assisted Lewis Acid	4	
1.3	Lewis Acid-Assisted Bronsted Acid		
1.4	Bronsted Acid-Assisted Bronsted Acid		
	Module 2		
2.1	Ene and Cycloadditions		
2.2	Alkene Metathesis	5	
2.3	Carbometallations and Carbocylizations		
2.4	Conjugate Addition		
2.5	Allylic Substitutions with Carbon Nucleophiles		
	Module 3		
3.1	Metal Carbenoid Insertion		
3.2	Metal Nitrenoid-Mediated Reactions	3	
3.3	Direct C-H Oxidation		
	Module 4		
4.1	Allylic Substitution		
4.2	Addition to Alkenes and Allenes	3	
4.3	Aziridination of Alkenes and other Reactions		
	Module 5		
5.1	Oxidation of Alcohols		
5.2	Epoxidation	6	
5.3	Sulphoxidation		
5.4	Baeyer-Villger Oxidation		
5.5	Dihydroxylation		
5.6	Aziridination		
	1		

	Module 6	
6.1	Reactions of Alkenes	3
6.2	Reactions of Ketones	
6.3	Reactions of Imines	
	Module 7	
7.1	Reactions in Water	3
7.2	Microwave-Assisted Reactions	
7.3	Synthesis in Alternative Reaction Media	
	Module 8	
8.1	Hydrosilyation of Alkenes and Related Compounds	
8.2	Hydroboration of Alkenes	3
8.3	Hydroalumination and Hydrostanntion of Alkenes	
	Module 9	
9.1	Hydroformylation	3
9.2	Alkoxycarbonylation and Related Reactions	
9.3	Co- and Terpolymerization of Alkenes with CO	
	Module 10	
10.1	Reactions Involving Enamine, Iminium and Photoredox Activation	
10.2	Asymmetric Acid-Base Bifunctional Catalysis	3
10.3	Asymmetric Phase-Transfer and Ion Pair Catalysis	
	Module 11	
11.1	Acylation of Alcohols and Amines	
11.2	C-C Bond-Forming Reactions	4
11.3	Hydrolytic Reactions	
11.4	Reduction and Oxidation	

References:

- Catalytic Asymmetric Synthesis, 3rd ed, Ed: I. Ojima, John Wiley & Sons, New Jersey, 2010.
 Transition Metal Catalysis for Fine Chemicals, Eds: C. Bolm, M. Beller, Wiley, Weinheim, 1998.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in