Principles of Organic Synthesis - Web course

COURSE OUTLINE

The course has twelve modules starting from the formation of acid-catalyzed carbon-carbon bond formation to application of the modern transition metal catalysis. The principles and their application for the synthesis of some of the naturally occurring compounds will be described.

COURSE DETAIL

Module No.	Topic/s	Hours
1	Formation of Aliphatic Carbon-Carbon Bonds: Base Catalyzed Reactions	3
	1.1 Principles	
	1.2 Reactions of Enolates with Carbonyl Compounds	
	1.3 The Alkylation of Enolates	
	1.4 Addition of Enolates to Activated Alkenes	
	1.5 Reactions Involving Alkynes and Cyanides	
2	Formation of Aliphatic Carbon-Carbon Bonds: Acid Catalyzed Reactions	3
	2.1 Principles	
	2.2 The condensation of Alkenes	
	2.3 Reactions of Aldehdyes and Ketones	
	2.4 Friedel-Crafts Reactions	
	2.5 Prins and Mannich Reactions	
3	Organometallic Reagents	3
	3.1 Principles	
	3.2 Organomagnesium and -Lithium Reagents	
	3.3 Organozinc Compounds	
	3.4 Organocopper Compounds	
	3.5 Organomercury Compounds	
4	Formation of Aliphatic Carbon-Nitrogen Bonds	3
	4.1 Principles	
	4.2 Substitution of Nitrogen Nucleophile at Saturated Carbon	

NPTEL http://nptel.iitm.ac.in

Chemistry and Biochemistry

Pre-requisites:

Organic Chemistry Background

Coordinators:

Prof. T. Punniyamurthy Department of ChemistryIIT Guwahati

	1	
	4.3 Addition of Nitrogen Nucleophile at Unsaturated Carbon	
	4.4 Substitution of Nitrogen Nucleophile at Unsaturated Carbon	
	4.5 Reactions of Electrophilic Nitrogen	
	4.6 α -Amino acids, peptides and proteins	
5	Electrophilic Aromatic Substitution	3
	5.1 Principles	
	5.2 Formation of Carbon-Carbon Bonds	
	5.3 Formation of Carbon-Nitrogen Bonds	
	5.4 Formation of Carbon-Sulfur Bonds	
	5.5 Formation of Carbon-Halogen Bonds and Other Reactions	
6	Nucleophilic Aromatic Substitution	3
	6.1 Principles	
	6.2 Displacement of Hydride Ion	
	6.3 Displacement of Other Anions	
	6.4 Substitution via Benzynes	
	6.5 The S _{RN} 1 and Bucherer Reactions	
7	Aromatic Diazonium Salts	3
	7.1 The Formation and Reaction of Diazonium Salts	
	7.2 Reactions in which Nitrogen is Eliminated	
	7.3 Reaction in which Nitrogen is Retained	
	7.4 The synthetic Value of Diazo-coupling	
8	Molecular Rearrangements	3
	8.1 Types of Rearrangement	
	8.2 Rearrangement to Electron - Deficient Carbon	
	8.3 Rearrangement to Electron - Deficient Nitrogen	
	8.4 Rearrangement to Electron - Deficient Oxygen	
9	Free-Radical Reactions	3
	9.1 Principles	
	9.2 Formation of Carbon - Halogen Bonds	
	9.3 Formation of Carbon - Carbon Bonds	
	9.4 Formation of Carbon - Nitrogen Bonds	
	9.5 Formation of Carbon - Oxygen Bonds Module	

	9.6 Formation of Bonds to Other Elements			
10	Reagents Containing Phosphorus, Sulfur, Silicon, Boron or Tin	4		
	10.1 Phosphorus-Containing Compounds			
	10.2 Sulfur-Containing Compounds			
	10.3 Silicon-Containing Compounds			
	10.4 Boron-Containing Compounds			
	10.5 Tin-Containing Compounds			
11	Transition Metal Catalysis	5		
	11.1 Principles			
	11.2 Titanium			
	11.3 Chromium			
	11.4 Iron			
	11.5 Cobalt			
	11.6 Copper			
	11.7 Rhodium			
	11.8 Palladium			
	11.9 Nickel			
12	The Synthesis of Some Naturally Occurring Compounds	5		
	12.1 Reserpine			
	12.2 Penicillin			
	12.3 Prostaglandins E_2 and F_{2a}			
	12.4 Ibogamine			
	12.5 Adenosine Triphosphate			
Referenc	ces:			
1. W. 0 ed.,	1. W. Carruthers and I. Coldham, Modern Methods of Organic Synthesis, 4th ed., Cambridge University Press, UK, 2004.			
2. F. A 5th	2. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Part A & B, 5th ed., Springer, New York, 2007.			
3. J. N Car	3. J. March, Advanced Organic Chemistry, 4th ed., John Wiley & Sons, Inc., Canada, 1992.			
joint ventu	ure by IISc and IITs, funded by MHRD, Govt of India			