NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

Rheology of Complex Materials Chemical Engineering

Instructor Name: Prof. Abhijit P. Deshpande **Institute:** IIT Madras **Department:** Chemical Engineering

About Instructor: Abhijit P. Deshpande is a Professor of Chemical Engineering at IIT Madras. His focus is on obtaining the understanding of polymeric systems, more specifically their aggregation and gelation behaviour. Rheology is used as a probing tool to investigate polymer blends, sulfonated polymers, crosslinked hydrogels, supramolecular / living polymers and polymeric composites in his group. He teaching interests include specialized courses in fluid mechanics, rheology and continuum mechanics; and core chemical engineering courses such as mass transfer and thermodynamics.

Pre Requisites: : Fluid Mechanics or solid mechanics course at the undergraduate level Core/Elective: : Elective UG/PG: : PG Industry Support : Food products, Personal care products, Plastic processing industries, Paints and emulsions, Adhesives, Inks, Biomaterials, crude oil recovery and transport

Course Intro: : Non-Newtonian fluids are encountered in various engineering applications. This course introduces concepts required to analyze the behaviour of such fluids. Since micro-structural features of materials are responsible for non-Newtonian nature, this course describes the most commonly used classes of material systems and their rheological behaviour.

SL.NO	Week	Module Name
1	1	Flow phenomena in complex materials
		and microstructure; Complex materials;
		Applications of rheology, with some
		example material systems
2	2	Stress, strain rate, velocity gradient;
		Kinematics for simple flows
3	3	Rheometric flows; Rheometers –
		general review
4	4	Tensors and index notation; Viscous
		fluids; Stress relaxation
5	5	Maxwell model; Oscillatory shear
6	6	Relaxation time spectrum; Generalized
		Maxwell model; Time temperature
		superposition; Solidlike materials
7	7	General linear viscoelastic material –
		linear response; Review of material
		functions
8	8	Survey – polymers; Survey –
		glass-rubber transition
9	9	Survey – multiphase systems;
		Experimental artifacts – fluid
		mechanics of coneplate geometry

COURSE PLAN

NPTEL SYLLABUS

NATIONAL PROGRAMME ON TECHNOLOGY ENCHANCED LEARNING

10	10	Strain and convected rate; Normal
		stress, stress growth
11	11	Yield stress fluids – Hershel Belkley
		model, thixotropic fluids – Structural
		MODEL
12	12	Terms in nonlinear models;
		Microscopic origin of stress