Advanced Mathematical Techniques in Chemical Engineering - Video course

COURSE OUTLINE

- 1. Introduction of vector space;Metric, Norm, Inner Product space;Examples
- 2. Onto, into, one to one function, completeness of space
- Vectors: Linear combination of vectors, dependent/independent vectors; Orthogonal and orthonormal vectors; Gram-Schmidt orthogonalization; Examples
- 4. Contraction Mapping: Definition; Applications in Chemical Engineering; Examples
- 5. Matrix, determinants and properties
- Eigenvalue Problem:Various theorems; Solution of a set of algebraic equations; Solution of a set of ordinary differential equations; Solution of a set of nonhomogeneous first order ordinary differential equations (IVPs)
- 7. Applications of eigenvalue problems: Stability analysis; Bifurcation theory; Examples
- 8. Partial Differential equations:Classification of equations; Boundary conditions;Principle of Linear superposition
- 9. Special ODEs and Adjoint operators:Properties of adjoint operator; Theorem for eigenvalues and eigenfunctions;
- Solution of linear, homogeneous PDEs by separation of variables: Cartesian coordinate system & different classes of PDEs; Cylindrical coordinate system; Spherical Coordinate system
- 11. Solution of non-homogeneous PDEs by Green's theorem
- 12. Solution of PDEs by Similarity solution method
- 13. Solution of PDEs by Integral method
- 14. Solution of PDEs by Laplace transformation
- 15. Solution of PDEs by Fourier transformation

COURSE DETAIL

S.No	Topics	Lectures

Chemical Engineering

Pre-requisites:

- Chemical Process
 Calculation
- Reaction Engineering

Coordinators:

Prof. S. De

Department of Chemical EngineeringIIT Kharagpur

1	Introduction of vector space Metric, Norm, Inner Product space Examples	7
2	Onto, into, one to one function, completeness of space	1
3	 Vectors Linear combination of vectors, dependent/independent vectors Orthogonal and orthonormal vectors Gram-Schmidt orthogonalization Examples 	3
4	 Contraction Mapping Definition Applications in Chemical Engineering Gram-Schmidt orthogonalization Examples 	3
5	Matrix, determinants and properties	2
6	 Eigenvalue Problem Various theorems Solution of a set of algebraic equations Solution of a set of ordinary differential equations Solution of a set of non-homogeneous first order ordinary differential equations (IVPs) 	4
7	 Applications of eigenvalue problems Stability analysis Bifurcation theory Examples 	3
8	 Partial Differential equations Classification of equations Boundary conditions Principle of Linear superposition 	2
9	 Special ODEs and Adjoint operators Properties of adjoint operator Theorem for eigenvalues and 	3

	eigenfunctions	
10	Solution of linear, homogeneous PDEs by separation of variables	8
	 Cartesian coordinate system & different classes of PDEs Cylindrical coordinate system Spherical Coordinate system 	
11	Solution of non-homogeneous PDEs by Green's theorem	5
12	Solution of PDEs by Similarity solution method	2
13	Solution of PDEs by Integral method	1
14	Solution of PDEs by Laplace transformation	2
15	Solution of PDEs by Fourier transformation	2

References:

- 1. Mathematical Methods in Chemical Engineering by S. Pushpavanam, Prentice Hall of India.
- 2. Applied Mathematics and Modeling for Chemical Engineers by R. G. Rice & D. D. Do, Wiley.
- 3. Mathematical Method in Chemical Engineering by A. Varma & M. Morbidelli, Oxford University Press.
- 4. Applied Mathematical Methods for Chemical Engineers by N. W. Loney, CRC Press.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in