Chemical Reaction Engineering II - Video course

COURSE OUTLINE

This is a typical second course in the subject of chemical reaction engineering with an emphasis on heterogeneous reaction engineering and nonideal reactors. Catalysis, mechanistic treatment of rate forms and the practical issues of transport limitations, leading finally to design considerations, form the first part. Kinetics and design of reactors for noncatalytic gas-liquid and fluid-solid reactions follows, and the last part of the course deals with the subject of residence time distributions, and how they can be used to characterize and design non-ideal reactors. The course thus consists of the following modules:

- 1. Catalysis and Kinetics of heterogeneous catalytic reactions
- 2. Transport effects in catalytic reactors (External and pore diffusion)
- 3. Catalytic reactor design
- 4. Multiphase reactors (gas-liquid and fluid-solid reactions)
- 5. Residence time distributions and nonideal reactors

COURSE DETAIL

Lecture no.	Title	Keywords	Delivered by
1	Introduction to catalysts and catalysis	Catalysts and catalytic reactors, heterogeneous catalyst, activation energy, porous structure, types of catalysts, adsorption	Sanjay Mahajani
2	Steps in catalytic reaction: adsorption, desorption and reaction	Steps in catalysis, adsorption, desorption, surface reaction, types of catalytic reactors, adsorption	Sanjay Mahajani

Pre-requisites:

Chemical Reaction Engineering - I.

Additional Reading:

- Sharma, M.M. and Doraiswamy, L.K. Heterogeneous reactions: Analysis, Examples and Reactor Design. Vols. I & II, John Wiley and Sons, NY, 1984.
- 2. Froment, G.F. and Bischoff, K. B. Chemical Reactor Analysis and Design, II Ed., John Wiley and Sons, NY, 1990.

Coordinators:

Prof. Ganesh A. Viswanathan Department of Chemical EngineeringIIT Bombay

Prof. A.K. Suresh

3	Derivation of the rate equation	isotherm, single site, dual site mechanisms, Langmuir Hinshelwood, Eley Rideal, Rate controlling steps Rate controlling steps, Rate law for hetergeneous reaction, Derivation of rate equation, Catalytic sites, Equilibrium,	Sanjay Mahajani	Department of Chemical EngineeringIIT Bombay Prof. Sanjay M. Mahajani Department of Chemical EngineeringIIT Bombay
4	Heterogenous data analysis for	Site balance Deduce mechanism;	Ganesh Viswanathan	
5	reactor design - I Heterogenous data analysis for reactor design - II	Fluidized reactor; Case study:	Ganesh Viswanathan	
6		Deactivation; Rate law; Modes of deactivation	Ganesh Viswanathan	
7		Poisoning; Fluidized CSTR; Moving bed reactor	Ganesh Viswanathan	
8	Synthesize the rate equation	Experimental data, dehydrogenation of cyclohexane, validation, laboratory reactors for catalytic reactions, differential reactors, slurry reactor, least square method	Mahajani	
9	Introduction to intraparticle	Internal (intraparticle)	Sanjay Mahajani	

	diffusion	diffusion, wall effect, <u>tortuosity</u> , porosity, effective diffusivity, constriction, flux, differential balance, types of rate constants and their units, concentration profile inside the catalyst, Thiele modulus	
10	Intraparticle diffusion: Thiele modulus and effectiveness factor Part I	Concentration profile inside the catalyst, effectiveness factor, Derivation of effectiveness factor, Thiele modulus	Sanjay Mahajani
11	Intraparticle diffusion: Thiele modulus and effectiveness factor Part II	Diffusion limited reaction, reactor design, effectiveness factor, spinning basket reactor, apparent order, apparent activation energy, non-isothermal effectiveness factor	Sanjay Mahajani
12	Intraparticle diffusion: Thiele modulus and effectiveness factor Part III	Exothermic reaction, thermal conductivity of catalyst, multiple steady states, endothermic reaction, catalyst geometries, catalyst slab	Sanjay Mahajani
13	Effectiveness factor and Introduction to external mass transfer	Effect of catalyst particle diameter, external mass transfer, boundary layer, mass transfer coefficient, rate controlling	Sanjay Mahajani

		mechanism	
14		External mass transfer coefficient, Reynolds number, Schmidt number, Sherwood number, interfacial area, fixed bed reactor	Sanjay Mahajani
15	rate data interpretation and	Weisz-Prater criterion; Mears'criterion; Packed-bed reactor design	Ganesh Viswanathan
16	interpretation and design II	criterion; Network	Ganesh Viswanathan
17	reactor design	Different configurations; Packed-bed reactor design: First order reaction, Second order reaction	Ganesh Viswanathan
18	reactor design I	Kunii-Levenspiel model: Basic principles	Ganesh Viswanathan
19	reactor design II	J J i	Ganesh Viswanathan
20	reactions-1: Theories of mass	Mass transfer into agitated liquids; Film theory, Penetration theory	

21	GLR-2: Effect of chemical reaction on mass transfer: the slow reaction regime	pseudo-first order, Hatta number,	A K Suresh
22	and the Fast	Film theory, Enhancement factor; transition to fast reaction, Fast reaction regime	A K Suresh
23	reaction example; Instantaneous	, ,	A K Suresh
24	reaction; Reaction regimes in	Film theory, transition from fast to Instantaneous reaction; Surface renewal theories, slow reaction	A K Suresh
25	regimes in surface renewal	Surface renewal theories, transition to fast reaction, fast reaction regime, comparison of surface renewal and film theories, Danckwerts' plot, second order reaction with mass transfer	A K Suresh
26	GLR-7: Surface renewal theories: Instantaneous reaction and Summing up		A K Suresh

27	NOT USED		A K Suresh
28	Fluid-solid non- catalytic reactions I	Modes; Basic principles; Progressive- conversion model; Shrinking core model	Ganesh Viswanathan
29	Fluid-solid non- catalytic reactions II	Gas film diffusion control; Ash layer diffusion control; Surface reaction control	Ganesh Viswanathan
30	Fluid-solid non- catalytic reactions III	Other geometries, Combination of resistances; Case study: Dissolution of monodispersed and polydispersed particles	Ganesh Viswanathan
31	Distribution of residence time	Introduction; Non- ideal reactor examples: Gas- liquid CSTR, Packed-bed reactor, CSTR	Ganesh Viswanathan
32	Measurement of residence time distribution	Pulse input; Step input; RTD functions: E and F- curves	Ganesh Viswanathan
33	Residence time distribution function	Properties: Mean, variance, skewness; RTD of ideal reactors: PFR, CSTR.	Ganesh Viswanathan
34	Reactor diagnostics and troubleshooting	RTD of laminar flow reactors; RTD functions: Perfect operation, Bypassing, Dead volume	Ganesh Viswanathan
35	Modeling non-	Combination of	Ganesh

	ideal reactors	reactors: PFR- CSTR in Series; Mixing: Macro- and Micro-mixing	Viswanathan
36	Residence time distribution: Performance of non-ideal reactors	Segregation model; Maximum mixedness model; RTD with multiple reactions	Ganesh Viswanathan
37	Non-ideal Reactors: Tanks- in-series model	Non-ideal reactors, tank-in- series model, one parameter model, axial mixing, variance, E curve	Sanjay Mahajani
38	Non-ideal Reactors: Dispersion model	Dispersion model, closed-closed vessel, open-open vessel, Peclet number, E curve	Sanjay Mahajani
39	Non-ideal Reactors: Dispersion model and introduction to multiparameter models	conversion in non-	Sanjay Mahajani
40	Non-ideal Reactors: Multiparameter models	Tracer experiment, multiparameter model, ideal reactor network, E curve	Sanjay Mahajani

References:

- 1. H.S. Fogler, Elements of Chemical Reaction Engineering, Fourth Ed., Prentice-Hall, New Jersey (2005).
- 2. O. Levenspiel, Chemical Reaction Engineering, Third Ed., J. Wiley & Sons, NY (1999).

3. Danckwerts, P.V. Gas-Liquid Reactions, McGraw-Hill, NY (1970)

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in