Advanced Control System Design for Aerospace Vehicles - Video course

COURSE OUTLINE

In this course concepts and techniques of linear and nonlinear control system analysis and synthesis will be studied in the modern control (state space) framework.

It will have preferential bias towards aerospace applications, especially towards guidance and control of aircrafts and missiles.

However, the theory as well as many demonstrative examples will be quite generic and hence this course is expected to be useful to the students from many other engineering disciplines as well.

COURSE DETAIL

S.No	Topics		
1	1.Introduction and Motivation 1. Introduction and Motivation for Advanced Control Design		
2	2. Classical Control Overview – I 3. Classical Control Overview – II 4. Classical Control Overview – III 5. Classical Control Overview – IV		
3	3.Flight Dynamics 6. Basic Principles of Atmospheric Flight Mechanics 7. Overview of Flight Dynamics – I 8. Overview of Flight Dynamics – II		

NPTEL

http://nptel.iitm.ac.in

Aerospace Engineering

Pre-requisites:

1. Some exposure to Classical Control Theory, Matrix Theory and Differential Equations.

Coordinators:

Dr. Radhakant Padhi Department of Aerospace EngineeringIISc Bangalore

4	 <u>4.Representation of Linear Systems</u> 9. Representation of Dynamical Systems – I 10. Representation of Dynamical Systems – II 11. Representation of Dynamical Systems – III 	
5	5. Review of the Matrix Theory 12. Review of Matrix Theory – I 13. Review of Matrix Theory – II 14. Review of Matrix Theory – III	
6	<u>6. Review of Numerical Methods</u> 15. Review of Numerical Methods	
7	7. Linearization of Nonlinear Systems 16. Linearization of Nonlinear Systems	
8	 8. Time Response, Stability, Controllability and Observability of Linear Systems 17. First and Second Order Linear Differential Equations 18. Time Response of Linear Dynamical Systems 19. Stability of Linear Time Invariant Systems 20. Controllability and Observability of Linear Time Invariant Systems 	
9	 <u>9. Pole Placement, Controller and Observer</u> <u>Design of Linear Systems</u> 21. Pole Placement Control Design 22. Pole Placement Observer Design 	
10	<u>10. Static Optimization</u> 23. Static Optimization: An Overview	
11	<u>11. Optimal Control Design</u> 24. Calculus of Variations: An Overview 25. Optimal Control Formulation using Calculus of Variations 26. Classical Numerical Methods for Optimal Control	

	27. Linear Quadratic Regulator (LQR) Design – I 28. Linear Quadratic Regulator (LQR) Design – II	
12	12. Linear Control Applications in Flight Control Design29. Linear Control Design Techniques in Aircraft Control – I 30. Linear Control Design Techniques in Aircraft 	
13	13. Nonlinear System Analysis Using LyapunovTheory31. Lyapunov Theory – I32. Lyapunov Theory – II33. Constructions of Lyapunov Functions	
14	14. Nonlinear Control Synthesis34. Dynamic Inversion – I35. Dynamic Inversion – II36. Neuro-Adaptive Design – I37. Neuro-Adaptive Design – II38. Neuro-Adaptive Design for Flight Control	
15	15. Nonlinear Observer and Kalman Filter Design 39. Integrator Back-Stepping; Linear Quadratic (LQ) Observer 40. An Overview of Kalman Filter Theory	
Refere	nces:	
	I. S. Nise: Control Systems Engineering, 4th Ed., Wiley, 004.	
	. Ogata: Modern Control Engineering, 3rd Ed., Prentice Iall, 1999.	
3. B	. Friedland: Control System Design, McGraw Hill, 1986.	
	. Bryson and Y-C Ho: Applied Optimal Control, Taylor nd Francis, 1975	

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in