Flight dynamics I - Airplane performance - Web course

COURSE OUTLINE

FLIGHT DYNAMICS - I - AIRPLANE PERFORMANCE

1. Introduction.

Definition and subdivisions of flight dynamics.

Forces and moments acting on vehicles in flight. .

Equations of motion and simplification for performance analysis.

- 2. Earth's atmosphere and International Standard Atmosphere.
- 3. Drag polar.

Various types of drags.

Methods of estimating drag polar.

Drag polar of vehicles from low speed to hypersonic speeds.

High lift devices.

- 4. Review of the variations of thrust or power output and SFC with altitude and velocity for various air breathing engines.
- 5. Performance analysis.

Steady level flight - Maximum speed, minimum speed and their variations with altitude.

Steady climb - Maximum rate of climb, angle of climb and their variations with altitude; absolute ceiling and service ceiling.

Range and endurance - Breguet formulae; range in constant velocity flight; effect of wind on the range.

Accelerated level flight.

Accelerated climb.

NPTEL

http://nptel.iitm.ac.in

Aerospace Engineering

Pre-requisites:

The student is expected to have undergone courses on:

- 1. Vectors.
- 2. Rigid body dynamics.
- 3. Aerodynamics
- 4. Aircraft engines.

Additional Reading:

- 1. Miele, A. "Flight mechanics Vol I" Addison Wesley (1962).
- Hale, F.J., "Introduction to aircraft performance, selection and design", John Wiley (1984).
- 3. Anderson, Jr. J.D "Introduction to flight" Fifth edition, McGrawHill, (2005).

Manoeuvres - flight in vertical plane (loop); turn(minimum radius of turn and maximum rate of turn and their variations with the altitude).

V - n diagram.

Flight limitations.

Estimations of take-off distance and landing distance.

6. Examples of estimation of the drag polar and performance of a piston engined and a jet engined airplane.

COURSE DETAIL

A Web course shall contain 40 or more 1 hour lecture equivalents.

S.No	Topics	No.of Hours
1	Chapter 1: Introduction	3
2	Chapter 2 : Earth's atmosphere	2
3	Chapter 3 : Drag polar	7
4	Chapter 4 : Engine characteristics	4
5	Chapter 5 : Performance analysis I – Steady level flight	4
6	Chapter 6 : Performance analysis II – Steady climb,descent and glide	3
7	Chapter 7: Performance analysis III – Range and endurance	3
8	Chapter 8 : Performance analysis IV– Accelerated level flight and climb	1

4. Roskam, J. "Methods for estimating drag polars of subsonic airplanes" published by author 1973.

Coordinators:

Prof. E.G. Tulapurkara
Department of Aerospace
EngineeringIIT Madras

9	Chapter 9 : Performance analysis V – Manoeuvres	4
10	Chapter 10 : Performance analysis VI – Take-off and landing	3
11	Performance analysis of a piston- engined airplane	3
12	Performance analysis of a subsonic jet transport	3
	Total	40

References:

- 1. Houghton and Carruthers, "Aerodynamics for engineering students", Edward Arnold (1982).
- 2. McCormick B.W, "Aerodynamics, aeronautics and flight mechanics", John Wiley (1995).
- 3. Anderson, Jr. J.D "Aircraft performance and design" McGraw Hill International edition (1999).
- 4. Eshelby, M.E."Aircraft performancetheory and practice", Butterworth-Heinemann, Oxford, U.K., (2001).
- 5. Pamadi, B., "Performance, stability, dynamics and control of an airplane", AIAA (2004).
- 6. Phillips, W.F. "Mechanics of flight" 2nd Edition, John Wiley (2010).

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in