Combustion - Video course

COURSE OUTLINE

- Review of thermodynamics.
- · Chemical kinetics.
- Mass transfer definitions: Fick's law.
- Equations of conservation of species mass, momentum, and energy; multicomponent diffusion equation.
- Schvab-Zel'dovich formulation.
- Rankine-Hugoniot relations.
- Laminar premixed flames: Flame speed, flammability limits, flame stabilization, ignition and quenching.
- Laminar diffusion flames: Burke-Schumann problem and droplet burning.
- Partially premixed flames.
- Introduction to turbulent flames: premixed and diffusion flames.
- · Solid Propellant Combustion.
- · Spray combustion.
- · Detonations: ZND model.
- · Combustion instabilities.

COURSE DETAIL

A video course shall consist of 40 or more lectures with 1 hour duration per lecture.

S.No	Topics	No.of Hours
1	Review of Thermodynamics.	3
2	Chemical kinetics.	3
3	Mass transfer definitions: Fick's law.	2
4	Equations of conservation of species mass, momentum and energy. Multi-component diffusion equation.	3
5	Schvab-Zel'dovich formulation.	3
6	Rankine-Hugoniot relations.	4

NPTEL

http://nptel.iitm.ac.in

Aerospace Engineering

Pre-requisites:

1. Fluid Mechanics.

Additional Reading:

- 1. W. C. Strahle, Introduction to Combustion.
- 2. H. S. Mukunda, Understanding Combustion.

Coordinators:

Prof. S.R. Chakravarthy
Department of Aerospace
EngineeringIIT Madras

7	Laminar premixed flames:	
	Flame speed.	4
	Flammability limits.	1
	Flame stabilization.	1
	Ignition and quenching.	2
8	Laminar diffusion flames:	
	Burke-Schumann problem.	3
	Droplet Burning.	3
9	Partially premixed flames.	1
10	Introduction to turbulent premixed and diffusion flames.	2
11	Solid propellant combustion.	2
12	Spray combustion.	2
13	Detonation: ZND model.	2
14	Combustion instabilities.	1
	·	

References:

1. K. K. Kuo, Principles of Combustion, Second Edition.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in