Acoustic Instabilities in Aerospace Propulsion - Video course

COURSE OUTLINE

- Introduction to acoustics and combustion driven oscillations.
- Derivation of the wave equation.
- Traveling wave solutions.
- Standing wave solutions.
- Effect of inhomogeneous media on sound propagation.
- Multi-dimensional acoustics.
- Fundamentals of combustion instability.
- Basic principles.
- Rayleigh criteria.
- Instability in solid and liquid rockets, ramjets, gas turbines.
- Pulse combustors.
- Passive and active control of combustion instability.
- Theoretical analysis of combustion instability.
- Modal stablility analysis.
- Nonmodal stability analysis.

COURSE DETAIL

S.No	Topics and contents	Number of Lectures
1	Introduction to acoustics and combustion driven oscillations.	2
2	Derivation of the wave equation.	3
3	Traveling wave solutions.	2
4	Acoustic energy corollary.	1
5	Impedance & admittance.	1

NPTEL http://nptel.iitm.ac.in

Aerospace Engineering

Additional Reading:

- CULICK, F. E. C. (2006) Unsteady motions in combustion chambers for propulsion systems. RTO AGARDograph AG-AVT-039.
- 2. Morse, P. M., and K. U. Ingard (1965) Theoretical Acoustics, New York, McGraw-Hill.

Coordinators:

Prof. R.I. Sujith Department of Aerospace EngineeringIIT Madras

6	Standing wave solutions.	2
7	Reflection and transmission.	2
8	Impedance tube technique.	2
9	Effect of area and temperature variation on wave propagation.	2
10	Wave equation in cylindrical co-ordinates and its applications.	3
11	Basic principles of combustion driven oscillations.	1
12	Rayleigh criteria.	1
13	Mechanisms for instability in solid and liquid rockets, ramjets, gas turbines.	5
14	Pulse combustors and their analysis using Galerkin technique.	3
15	Modal analysis.	4
16	Nonmodal stability analysis.	4
17	Passive and active control of combustion instability.	2
	Total Number of Lectures	40

References:

L. E. Kinsler, A. R. Frey, A. B. Coppens and J. V. Sanders (2000) Fundamentals of Acoustics, 4th Edition, Wiley.

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.iitm.ac.in