# NOC: Aircraft Dynamic Stability & Design Stability Augmentation System - Video course

#### **COURSE DETAIL**

This course is designed to understand aspects of advance dynamic stability of an airplane. This course will also help in creating a background to design an airplane from stability and control aspects.

| control aspects. |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Week             | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1                | <ul> <li>Introduction to dynamic stability</li> <li>Introduction to dynamic stability</li> <li>First and second order system</li> <li>First and second order system</li> <li>Solution of second order system using Laplace transform.</li> </ul>                                                                                                                                                                                                    |  |
| 2                | <ul> <li>Physical interpretation of natural and damped frequencies damping ratio time to half and time to double</li> <li>Physical interpretation of natural and damped frequencies damping ratio time to half and time to double</li> <li>Physical interpretation of natural and damped frequencies damping ratio time to half and time to double</li> <li>6dof equations motion of aircraft</li> <li>6dof equations motion of aircraft</li> </ul> |  |
| 3                | <ul> <li>Euler angles</li> <li>Euler angles</li> <li>Development of longitudinal small perturbed equations of motion</li> <li>Development of longitudinal small perturbed equations of motion</li> <li>Development of longitudinal small perturbed equations of motion</li> </ul>                                                                                                                                                                   |  |



# NPTEL

http://nptel.ac.in

## Aerospace Engineering

### **Pre-requisites:**

Introduction to Aircraft Performance

#### **Coordinators:**

Dr. A.K. Ghosh
Department of Aerospace
EngineeringIIT Kanpur

| 4 | <ul> <li>Dimensional derivatives</li> <li>Dimensional derivatives</li> <li>Roots</li> <li>short period and long period mode</li> <li>short period and long period mode</li> </ul>                                                                                                  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 | <ul> <li>Design of SAS for longitudinal mode</li> <li>Design of SAS for longitudinal mode</li> <li>Transfer function and longitudinal mode shapes</li> <li>Lateral directional perturbed equations of motion</li> <li>Lateral directional perturbed equations of motion</li> </ul> |  |
| 6 | <ul> <li>Dimensional derivatives lateral</li> <li>Dimensional derivatives lateral</li> <li>Roots lateral</li> <li>Spiral roll and dutch roll mode</li> <li>Spiral roll and dutch roll mode</li> </ul>                                                                              |  |
| 7 | <ul> <li>Transfer function Lateral</li> <li>Transfer function Lateral</li> <li>Design of SAS For lateral</li> <li>Design of SAS For lateral</li> <li>Design of SAS For lateral</li> </ul>                                                                                          |  |
| 8 | <ul> <li>Mode shape</li> <li>Mode shape</li> <li>Mode shape</li> <li>Inertial Sensors</li> <li>Inertial Sensors</li> </ul>                                                                                                                                                         |  |

## References:

Flight Stability and Automatic Control Author: Robert Nelson

A joint venture by IISc and IITs, funded by MHRD, Govt of India

http://nptel.ac.in