Jet Aircraft Propulsion - Video course

COURSE OUTLINE

Introduction to Aircraft Jet Propulsion. Jet Engine Cycles : Thermodynamic Analysis of real cycles. Compressors and Turbines. Combustion Systems. Intakes and Propelling Nozzles. Aircraft Engine Installed Performance, Sizing & Matching. Ramjets, Scramjets and Pulsejets.

COURSE DETAIL

S.No	Topics	Instructor	Lectures	
1	Introduction to Aircraft Propulsion.			Pre-r 1. Addi
1.1	The Gas Turbine Engine development for Aircraft Propulsion.	Bhaskar Roy	4 lectures	1. 2.
1.2	How the jet engines makes thrust : conceptual basis.			Нуре
1.3	Jet engine performance parameters ; Thrust, SFC, Efficiencies.			1. Coor
1.4	Simple Turbojet and Reheat engines: Low and High bypass Turbofan engines.			Prof. Depa Bomb
1.5	Single and Multi-spool Gas Turbine based propulsive devices.			Depa Bomb
2	Real Cycle Thermodynamic Analysis.			
2.1	Introduction to Real Cycles.	АМ	4	
2.1.1	Ideal and Real Bravton cvcles.	Pradeep	lectures and 2	

NPTEL http://nptel.iitm.ac.in

Aerospace Engineering

Pre-requisites:

1. Introduction to Aerospace Propulsion, or A course in Engineering Thermodynamics.

Additional Reading:

- 1. Oates Gordon C; *Aerothermodynamics of Aircraft Engine Components*, 1985, AIAA Education Series.
- 2. Mattingly J D; Heiser W H; Daley; *Aircraft Engine Design* AIAA Education series, 1987.

Hyperlinks:

1. http://mme.iitm.ac.in/gphani/transport/tplinks

Coordinators:

Prof. A M Pradeep Department of Aerospace EngineeringIIT Bombay

Prof. Bhaskar Roy Department of Aerospace EngineeringIIT Bombay

			tutorials
2.1.2	Jet engine cycles for aircraft propulsion.		
2.1.3	Cycle components and component performance: Intake, Compressors & Turbines , Combustion chamber, Afterburner, Nozzle.		
2.1.4	Analysis of engine real cycles: Turbojet cycle, Reheat engine cycle, Turbofan engine cycle, Turboprop Engines.		
2.1.5	Advanced jet engine cycles: Variable cycle engines.		
3	Fundamentals of Rotating components.	Bhaskar	2
3.1	Thermodynamics of Compressors and Turbines.	Roy	lectures
3.2	Development of parameters for compressor and Turbines.		
4	Compressors and Turbines.		
4.1	Axial and centrifugal Compressors:		
4.1.1	A simple two dimensional analytical model.		
4.1.2	2-D (cascade) analysis; Loss and Blade performance estimation.	A M Pradeep	4 lectures and 1 tutorial
4.1.3	Simple Free Vortex theory.		
4.1.4	Single and Multi-stage Axial compressor characteristics.		
4.1.5	Elements of centrifugal		

	compressor.			
4.1.5.1	Inlet Duct; Impeller; Slip factor and Concept of Rothalpy.			
4.1.6	Centrifugal Compressor Characteristics: Surging and Choking.			
4.2	Axial and Radial flow turbines.			
4.2.1	Introduction.			
4.2.2	Turbine stage : Turbine Blade 2- D (cascade) analysis; Work Done, Degree of Reaction, Losses and Efficiency.	Bhaskar Roy	3 lectures and 1 tutorial	
4.2.3	Multi-staging of Turbine.			
4.2.4	Turbine Cooling Technology.			
4.2.5	Radial Turbine Aerodynamics and Thermodynamics.			
4.2.6	Losses in radial turbine and efficiency.			
5	Combustion Systems.			
5.1	Introduction : Various types of combustion chambers in aircraft engines.	Bhaskar Roy	3 lectures	
5.2	Combustion Mechanism and Important Combustion parameters.			
5.3	Development of a practical combustion system and design parameters.			
5.4	Pressure losses ; Combustion efficiency; Combustion intensity.			
5.5	Combustion Stability limits and Instability.			

5.6	Fuels and their properties and Fuel injection systems.		
6	Intakes and Propelling Nozzles.		
6.1	Intakes.		
6.1.1	Requirements of an Intake for Powerplant: Transport, Military Aircraft.	A M Pradeep	4 lectures
6.1.2	Subsonic Intakes, Transonic and Supersonic Intakes.		and 1 tutorial
6.1.3	Axi-symmetric and Assymmetric Intakes.		
6.1.4	Aircraft Intake design considerations.		
6.2	Propelling Nozzles.		
6.2.1	Energy conversion in a Nozzle.		
6.2.2	Nozzle design considerations: fixed and variable geometry nozzles.		
6.2.3	C-D nozzle and their use.		
7	Engine Installed Performance, Sizing & Matching.		
7.1	Introduction to engine component sizing.		
7.2	Installed Performance of Engine.		
		1	1

7.4	Engine - Design Point Operations.		
7.5	Engine Off Design Operations.		
7.5.1	Single Shaft Engine.		
7.5.2	Two-Shaft : Turbojet & Turbo- prop, Turbo-shaft Engines.		
7.5.3	The Engine Operating Lines		
7.5.4	Operational details of multiple shaft engines.		
7.6	Aircraft Engine component matching:		
7.6.1	Intake-Compressor matching; Turbine-Nozzle matching.		
7.6.2	Compressor -Turbine matching : Single and Multi-spool.		
7.6.3	Free Turbine and Unducted Fan / Propeller matching.		
8	Ramjets, Pulsejets and Scramjets.		
8.1	Use of Ramjets and Pulsejets in Aircraft propulsion.	A M Pradeep and Bhaskar	4 lectures and 1 tutorial
8.2	Operating Principles.	Roy	lutonai
8.3	Thermodynamic Cycle.		
8.4	Performance Parameters.		
8.5	Design and Performance of a Ramjet.		
8.6	Flow in Diffusers, Combustors and Nozzles.		
		1	

	Principles of Scramjet Engines.		
9	Future of Aircraft Propulsion.	A M Pradeep and Bhaskar Roy	1 lecture
	Total No of I Tu	Lecture and torial (33+7)	40 hours
feren	ices:		
	oes Michael J; Wild Thomas W; Aircra 1) Tata-Mcgraw-Hill	aft Powerplan	ts; 2010(7
Ed 2. Hil	oes Michael J; Wild Thomas W; Aircra I), Tata-Mcgraw-Hill. Il Philip, Peterson Carl, <i>Mechanics a</i> <i>opulsion</i> , 1992, Addison Wesly,.		•
Ed 2. Hil <i>Pro</i>	I), Tata-Mcgraw-Hill. Il Philip, Peterson Carl, <i>Mechanics a</i>	nd Thermody	namics of
Ed 2. Hil <i>Pro</i> 3. Ro 4. Ma	I), Tata-Mcgraw-Hill. Il Philip, Peterson Carl, <i>Mechanics a</i> opulsion, 1992, Addison Wesly,.	nd Thermody , Elsevier (Inc	rnamics of lia),
Ed 2. Hil <i>Pro</i> 3. Ro 4. Ma <i>Ro</i> 5. El-	I), Tata-Mcgraw-Hill. Il Philip, Peterson Carl, <i>Mechanics a opulsion</i> , 1992, Addison Wesly,. by Bhaskar, <i>Aircraft Propulsion,</i> 2008 attingly J D , <i>Elements of Propulsion</i>	nd Thermody , Elsevier (Inc - Gas Turbine	vnamics of lia), es and
Ed 2. Hill <i>Pro</i> 3. Ro 4. Ma <i>Ro</i> 5. El- 20 6. Sa	I), Tata-Mcgraw-Hill. II Philip, Peterson Carl, <i>Mechanics a opulsion</i> , 1992, Addison Wesly,. by Bhaskar, <i>Aircraft Propulsion</i> , 2008 attingly J D, <i>Elements of Propulsion</i> bockets, 2006, AIAA Education series. -Sayed Ahmed, <i>Aircraft Propulsion ar</i>	nd Thermody , Elsevier (Inc - Gas Turbine nd gas Turbine	vnamics of lia), es and e Engines ,