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Differentiation: General SetupDifferentiation: General SetupDifferentiation: General SetupDifferentiation: General Setup

 Given a function y = f (x) or data (xi, yi)
Obtain: dy/dx

Differentiati n Sl  f th  t tDifferentiation:

Obtain slope of 

Slope of the tangent

tangent to the curve 

at any point x



Differentiation: General Setup (2)Differentiation: General Setup (2)Differentiation: General Setup (2)Differentiation: General Setup (2)

 Given a function y = f (x) or data (xi, yi)
Obtain: dy/dx

Differentiati n N i l A i tiDifferentiation: Numerical Approximation
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Integration: General Setup Integration: General Setup Integration: General Setup Integration: General Setup 

 Given a function y = f (x) or data (xi, yi)

Obtain: 
b

a
dxxf )(

Inte rati nIntegration:

Obtain area under 

the curve between 

two points a and b



Integration: General Setup (2) Integration: General Setup (2) Integration: General Setup (2) Integration: General Setup (2) 

 Given a function y = f (x) or data (xi, yi)

Obtain: 
b

a
dxxf )(

Inte rati nIntegration:

Obtain area under 

the curve between 

two points a and b



Applications of DifferentiationApplications of DifferentiationApplications of DifferentiationApplications of Differentiation

 Numerical Differentiation in Newton Raphson
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If derivative f ’(x) is not available

 f

 )(if  
   )()(

)(
)()1(

ii

i
ii

xfxf
xfxx










Applications of DifferentiationApplications of DifferentiationApplications of DifferentiationApplications of Differentiation

 Numerical Differentiation in Newton Raphson
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If derivative f ’(x) is not available
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 Sensitivity Analysis (RDS in multiple reactions)
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Applications of IntegrationApplications of IntegrationApplications of IntegrationApplications of Integration

 To calculate mean 
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 Mass flux calculation  
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 Net heat flux or heat loss  dsflux
s

n
Q

flux = Q.n



Applications of Integration (2)Applications of Integration (2)Applications of Integration (2)Applications of Integration (2)

 Design equation of a Plug Flow Reactor
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OverviewOverviewOverviewOverview

 Numerical Differentiation
◦ Forward and Backward Difference
◦ Central Difference
◦ Multi-Point methods
◦ Error analysis

 Numerical Integration
◦ Trapezoidal rule
◦ Simpson’s rules
◦ Richardson’s extrapolation

G  Q d t◦ Gauss Quadrature



Computational TechniquesComputational Techniques
Module 6: Module 6: Differentiation and IntegrationDifferentiation and IntegrationModule 6: Module 6: Differentiation and IntegrationDifferentiation and Integration

Summary of Numerical SchemesSummary of Numerical Schemes
Dr. Niket Kaisare
Department of Chemical EngineeringDepartment of Chemical Engineering
Indian Institute of Technology - Madras



Differentiation: General SetupDifferentiation: General SetupDifferentiation: General SetupDifferentiation: General Setup

 Given a function y = f (x) or data (xi, yi)
Obtain: dy/dx

Differentiati n Sl  f th  t tDifferentiation:

Obtain slope of 

Slope of the tangent

tangent to the curve 

at any point x



Differentiation: General SetupDifferentiation: General SetupDifferentiation: General SetupDifferentiation: General Setup

 Given a function y = f (x) or data (xi, yi)
Obtain: dy/dx

Differentiati nDifferentiation:

(Forward Difference)
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Differentiation: General SetupDifferentiation: General SetupDifferentiation: General SetupDifferentiation: General Setup

 Given a function y = f (x) or data (xi, yi)
Obtain: dy/dx

Differentiati nDifferentiation:

(Central Difference)
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Summary for Numerical Summary for Numerical f ’f ’((xx))Summary for Numerical Summary for Numerical ff ((xx))

 Method of characteristics: Using Taylor’s Series
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 The differential of interest is written as:
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 Substitute and find values of a1 a2 and a3.

dx



Summary for Numerical Summary for Numerical f ’f ’((xx))Summary for Numerical Summary for Numerical ff ((xx))
Type Differential Error
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Higher DerivativesHigher DerivativesHigher DerivativesHigher Derivatives

 Second derivative (central difference)

         2
2

11 2 hO
h

xfxfxfxf iii
i 


 

 Second derivative (forward difference)

         hO
h

xfxfxfxf iii
i 


 

2
12 2

 Third derivative (central difference)

h2

                  2
2

2112 22 hO
h

xfxfxfxfxf iiii
i 


 



RoundRound--off and Truncation Errorsoff and Truncation ErrorsRoundRound off and Truncation Errorsoff and Truncation Errors
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Integration: General Setup Integration: General Setup Integration: General Setup Integration: General Setup 

 Given a function y = f (x) or data (xi, yi)

Obtain: 
b

a
dxxf )(

Inte rati nIntegration:

Obtain area under 

the curve between 

two points a and b



Numerical IntegrationNumerical IntegrationNumerical IntegrationNumerical Integration

 Given a function y = f (x) or data (xi, yi)

Obtain: 
b

a
dxxf )(

Inte rati nIntegration:

Split the region into 

various intervals and 

add the areas for each



Integration FormulaeIntegration FormulaeIntegration FormulaeIntegration Formulae

Formula Error
Trapezoidal
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Integration: PFR ExampleIntegration: PFR ExampleIntegration: PFR ExampleIntegration: PFR Example

 Design Equation
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Results (comparison)Results (comparison)Results (comparison)Results (comparison)

Step Size (h) 0.15 0.075 0.015 0.0075

Trapezoidal
Volume 6.9271 6.4220 6.2345 6.2283

# application 6 12 60 120

1/3rd Rule
Volume 6.4167 6.2536 6.2263 6.2262

# application 3 6 30 60

3/8th Rule
Volume 6.4989 6.2711 6.2264 6.2262

# application 2 4 20 40



Gauss Gauss QuadratureQuadratureGauss Gauss QuadratureQuadrature

 The integral is approximated as
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General GuidelinesGeneral GuidelinesGeneral GuidelinesGeneral Guidelines

 Numerical differentiation
◦ Prefer central differences in general
◦ Choose appropriate step size h

 Numerical integration
◦ Prefer Simpson’s 1/3rd rule due to accuracyp y
◦ Multiple applications to improve accuracy
◦ Richardson’s extrapolation is effective, but requires 

more computation


