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PrerequisitePrerequisitePrerequisitePrerequisite

 We will assume some familiarity with the 
concept of linear algebra, vectors and matrices

 Please review your +2 and
First Year Undergraduate syllabi for familiarity



A Quick RecapA Quick RecapA Quick RecapA Quick Recap

 ScalarScalar: A single real number 23.1a
 VectorVector: An ordered set of scalars

# of scalars is “dimension”
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A Quick RecapA Quick RecapA Quick RecapA Quick Recap

 Matrix: A rectangular array of numbers
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 Linear operations:
Addition, subtraction, scalar multiplication

 Matrix multiplication rules

Ei l d Ei Eigenvalues and Eigenvectors



A Linear EquationA Linear EquationA Linear EquationA Linear Equation

CoefficientsCoefficients
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Variables



A Simple ExampleA Simple ExampleA Simple ExampleA Simple Example

 Consider the following example
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+ 2 1x + 2y = 1

(3 1) Solution is the

x - y = 4

(3, -1) Solution is the
point of intersection 

of the two lines



Matrix Form of Linear EquationsMatrix Form of Linear EquationsMatrix Form of Linear EquationsMatrix Form of Linear Equations
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The Determinant MethodThe Determinant MethodThe Determinant MethodThe Determinant Method

 Cramer’s Rule
◦ D = determinant of matrix A
◦ Di = determinant of Ai, where
◦ Ai is obtained by replacing the ith column of A with b
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 A unique solution exists if D ≠ 0
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 A unique solution exists if D ≠ 0
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Parallel Lines: No SolutionParallel Lines: No SolutionParallel Lines: No SolutionParallel Lines: No Solution
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2x + 4y = 4

x + 2y = 1



CoCo--Incident Lines: Infinite SolutionsIncident Lines: Infinite SolutionsCoCo Incident Lines: Infinite SolutionsIncident Lines: Infinite Solutions
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2x + 4y = 2

x + 2y = 1



Condition NumberCondition NumberCondition NumberCondition Number
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Examples of Linear Examples of Linear ChEChE SystemsSystemsExamples of Linear Examples of Linear ChEChE SystemsSystems

 Reactor Network

 Heat Exchange Network Heat Exchange Network

S i  P Separation Processes

 Plug Flow Reactor



Extension to Larger DimensionsExtension to Larger DimensionsExtension to Larger DimensionsExtension to Larger Dimensions

Questions to think aboutQuestions to think about

 How to represent n equations in n unknowns?p q

 Does the system have unique solution?

 Does the system have no solution?



General General nn××nn SystemSystemGeneral General nn nn SystemSystem
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Outline of Linear Algebra MethodsOutline of Linear Algebra MethodsOutline of Linear Algebra MethodsOutline of Linear Algebra Methods

 Cramer’s Rule (and why it is not used)( y )

 Direct Methods
G  Eli i ti◦ Gauss Elimination
 Analysis
 Computational Effort Computational Effort
 Pivoting

◦ Gauss JordanGauss Jordan
◦ Matrix Inversion
◦ LU DecompositionLU Decomposition



Outline of Linear Algebra MethodsOutline of Linear Algebra MethodsOutline of Linear Algebra MethodsOutline of Linear Algebra Methods

 Sparse Matrices: Thomas Algorithmp g

 Iterative Methods
G Si d l◦ Gauss-Siedel
◦ Jacobi Iteration

R l i  M h d◦ Relaxation Methods

 Eigenvalues and Eigenvectorsg g


