
26.1 More tests of convergence:

 We describe next a generalization of the comparison test. For that, we need the following result which
allows one to compare terms of two sequences.

26.1.1Lemma ( Limit Comparison):

 

26.1.1Lemma:

Module 9 :  Infinite Series, Tests of Convergence,  Absolute and Conditional Convergence, Taylor
and Maclaurin Series

Lecture 26 :  Absolute convergence [Section 26.1]

  Objectives
  In this section you will learn the following :

More tests that help in analyzing convergence of series of numbers.
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 Proof:

 

If , we can find such that 

The required claim follows with 

This proves (i).

In case , given , there exists such that 

. 

Thus, 

 

26.1.2Examples:

 

(i) Consider the series , where . Then

for every .

Since the series is divergent (example 25.1.4 (iv)), the series is also divergent for 

.

(ii) Consider the series

 

Apparently, the  th term of the series behaves like . Let us consider

and ,

Then 

.

Thus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Since the series is also divergent.

(iii) Consider the series

 

.

The - term of the series will behave like . In fact, if we take

, then

 
Hence

.

Since, the series is convergent, the given series is also convergent. 

In comparison test, or the limit comparison test, one needs to guess the convergent / divergence and
then select an appropriate series to compare. Some convergence test which are more intrinsic are given
next.

26.1.3Theorem (The ratio Test):

 

Let be a series of positive terms such that

.

Then the following hold:

(i) If , then the series is convergent.

(ii) If or , then the series is divergent.

(iii) If , the series may converge or diverge.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

26.1.3Theorem (The ratio Test):

 

Let be a series of positive terms such that 

.

Then the following hold:

(i) If , then the series is convergent.

(ii) If or , then the series is divergent.

(iii) If ,the series may converge or diverge.

 Proof
(i) For , select  such that , and choose such that

 

       .

Then 

.

Thus 

.

Hence, for 

Since is a convergent geometric series, as ,by comparison

test, is convergent.

 

26.1.4 Theorem (Root test):

 

Let be a series of positive terms and suppose that 

                
Then the following hold:

(i) If , then the series is convergent.

(ii) If or,  the series is divergent.

(iii) If , the series may converge or diverge.

26.1.4Theorem (Root test):

 

Let be a series of positive terms and suppose that 

,

Then the following hold:
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(i) If , then the series is convergent.

(ii) If or, ,the series is divergent.

(iii) If , the series may converge or diverge.

 Proof:

 

By definition, for  given, we can choose such that 

In case , we start with such that . Then 

,
i.e., 

.

Since, , the series is a convergent series. Thus by comparison test, is

also convergent. In case, , we can start with such that . Then 

.

 

26.1.5Examples:

(i) Consider the series

 .

 

Since

the series is convergent by ratio test. Also

the series is divergent by ration test.

(ii) Consider the series

.

For this series, the convergence/ divergence is difficult to analyze using, ratio test. However, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Thus, the series is divergent by the root test.

We close this section by another test.

26.1.6Theorem (Integral Test):

 

Let be a positive continuous decreasing function with 

            
Then either both

            
converge or diverge.

 

26.1.6Theorem (Integral Test):

 

Let be a positive continuous decreasing function with 

Then either both

converge or diverge.

 Proof

 

For , consider the interval with the partition 
.

Then, since is decreasing,

Thus, if 

then 

              ---------(*) 

In case is convergent, we have for 

Since is positive, is monotonically increasing and hence it is convergent. Conversely, if 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Module 9
:  Infinite
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exists, then by the Sandwich theorem, (*) implies that  is

convergent.                          

 

 

26.1.7 Examples:

(i) p-Series:

 

Consider the series

Obviously, the series is divergent for , as for even . If we consider the function

,

 

then is a continuous, positive, decreasing, function. Further, see example . . . ,

is convergent for  and divergent for . 

Thus,

is divergent for .

(ii) Consider the series

 

.

To analyze the convergence/ divergence of this series, we can proceed as follows: Since 

,

 

and the series is divergent (p=1 for the p-series), by comparison test, is also

divergent. We could directly apply the integral test with . As

we can conclude that the series

is divergent.
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26.1.8Note (Basic strategy for testing convergence):

(i) As a general rule, check . If

 

, the series is divergent. 

If try convergent tests as suggested next.

(ii)
If is a decreasing sequence of positive terms, such that for some function 

try Integral test.

(iii) If is a rational function, or is some root of , try limit comparison test.

(iv) Some of the standard series for comparison test are: Geometric series, p-series.

(v) Ratio test is useful if has factorial/ powers of 

(vi) Root test is useful, if it is series to find root of 

  

 Practice Exercises

1. Using limit comparison test, determine the convergence/ divergence of the following series:

(i) .

(ii) .

(iii)  (Hint glows more slowly than for every )

 Answers

2. Analyze the convergence of the following series using the ratio test:

(i) .

(ii) .

(iii) .

 Answers
3. Analyze the convergence of the following using the root test:

(i) .
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(ii) .

(iii) .

 Answers
4. Prove the following:

(i) For the p-series, both the ratio test and the root test tail, however the series is convergent.

(ii) For the series, for ,

 

for ,

,

both the ratio test and the root test tail, but the series is divergent (by comparison test).

5. Canchy's Condensation Test

 

Let  be a decreasing sequence of positive terms. Let

               

Prove the following:

(i) For every , 

              

(ii) Deduce that the series    is convergent if and if the series  is convergent.

 

6. Using exercise (5), deduce that the series

 
              

are convergent for  and divergent for .

   Recap

   In this section you have learnt the following

More tests that help in analyzing convergence of series of numbers.

Series, Tests of Convergence,  Absolute and Conditional Convergence, Taylor and Maclaurin
Series

Lecture 26 :  Conditional convergence [Section 26.2]

  Objectives
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26.2 Absolute and Conditional Convergence

 

In the previous section we saw that most of the convergence tests were applicable for series with
positive terms. When, this is not the case, series can behave differently. In example 25.1.4(V) we saw
that the alternating harmonic series 

                
is convergent, while the harmonic series 

                
is not convergent. To analyze such occurrences in detail , we make the following definition.

26.2.1Definition:

 

Let be a series of real members.

(i) We say is absolutely convergent if the series is convergent. 

(ii) We say the series is absolutely divergent if is divergent. 

(iii) We say the series is conditionally convergent if is convergent, but is not

     convergent. 

(iv) We say the series is an alternating series if either 

          

or

  In this section you will learn the following :

Absolute convergence of series.

Conditional Convergence of series.

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




          

26.2.2Note (Tests for absolute convergence):

 The tests of section 26.2.1 namely, the comparison test, limit comparison test, ratio test, and root test,
all are tests for absolute convergence.

26.2.3 Examples:

 

(i) The alternating harmonic series  is conditionally convergent. 

(ii) The series 

            
    is absolutely convergent, since 

           

    and is convergent.

(iii) Consider the series 

              .

     Let

               .

   Then 

               

 
Then by ratio test, the series is absolutely convergent. 

The relation between convergence and absolute convergence of a series is described in the next theorem.

26.2.4 Theorem:

 If a series is absolutely convergent, then it is also convergent.

26.2.4Theorem:

 If a series is absolutely convergent, then it is also convergent.

 Proof

Let

Then
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 Thus,

Since is convergent, by comparison test, is also convergent. Hence, by theorem

25.2.4, since

 

 

26.2.5 Examples:

 

Let 

Note that, is not a geometric series. However, is a geometric series with common-

ratio . Hence, is absolutely convergent, and thus is itself convergent.

Finally, we give a test which helps us to analyze convergence of an alternating series.

26.2.6Theorem (Alternating series test):

 

Let be an alternating series such that 

(i) 

(ii) Then  is convergent.

 

26.2.7Examples:

(i) Consider the alternating harmonic series

 

               

Clearly, for 

              

the sequence is decreasing and 
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Hence, the above series is convergent.

(ii) Consider the series

 

            
This is an alternating series with 

           
Since 

the series is divergent.

(iii) Consider alternating series

 

      
Let 

      
Then 

      
Since 

     ,

is a monotonically decreasing function. Thus 

    
Further 

   
Hence, by alternating series test, the above series is convergent.

26.2.8Note:

(i) The alternating series test not only gives the convergence of the series, in fact, if

 
,

then 

.
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(ii)
If is an absolutely convergent series, and any rearrangement of the series does not affect its

convergence or its sum. However, this is not the case with an alternating series. In fact, if a alternating
series is convergent, then by a suitable rearrangement, it can be made to converge to any given real
numbers. For more elaboration reader may consult any book on Real Analysis.

  

 PRACTICE EXCERCISES

1.  Show that the following alternating series are convergent.

(i) .

(ii) .

(iii) .

(iv) .

2. Show that the following alternating series are absolutely convergent

(i) .

(ii) .

(iii) .

(iv) .

3. Show that the following series are conditionally convergent:

(i) .

(ii) .

(iii) .

(iv) .

4. Prove the following statements:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(i) If a series is absolutely convergent, then

.

(ii)
If the series and are both absolutely convergent, then so are the series 

and .

5. Let series. Define for all ,

 

 
The series is called the positive part of the series and the series is called the

negative part of the series. Prove the following:

(i)

(ii)
If is convergent, then both and are convergent series (of non negative

terms).

   Recap

   In this section you have learnt the following

Absolute convergence of series.

Conditional Convergence of series.
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