Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables
Lecture 40 : Double integrals over rectangular domains [Section 40.1]

Objectives
In this section you will learn the following :

e The concept of double integral over rectangular domains.

40 .1Double integrals

In section 16.1 the concept of Riemann integral of a function was developed to define and compute the
‘area’ of a region bounded by the graph of a bounded function on an interval [a,%] the x-axis, the

ordinates & =&, and x =} Analogously, we attempt to find the ‘volume' of a region which lies above the
Z¥ -plane, and is bounded by the planes x =, x =%, ¥ =¢,¥ =4 and is under the surface defined by a
nonnegative bounded function z = #(x, 37} defined on the rectangle

Di=la,bl=c,d]=1(x,y1 e Ir? | xea,b],y e, 4]}

Figure: Volume below a surface

Let




f DR =IR
be a bounded function. To find the volume below the surface S,

z=f{xy), (xyl el

and above the ZX¥-plane, we can treat it as the volume of a cylinder with base [J and height
z = f(x,¥)at any point {x, ¥ [} To approximate this , we proceed as in the case of a single variable.

We partition the domain [Jinto smaller rectangles by lines parallel to the axes at distances p x and &y

apart. Let us number these smaller rectangles as A,.., 4 . Let A denote the area of 4. Choose a
point (x,y;1€ 4. Then
J iz, q0 A4

represents an approximation to the volume below the surface z = f{x,¥),(x, ¥ € A.

Figure: Volume above a small rectangle

Thus, the sum

S, 7= 20 7 (3, )
i=1

will represent an approximation to the required volume. If we make our partition of [jinto smaller
rectangles, we can expect that 5{F, 1 will give better and better approximations, and eventually give
the required volume in the limiting case. This motivates our next definition.

40.1.1Definition:

Let
D=la,bl=le,d]={({x, Ir? |xela, bl yele,d]}

For a partition Fof fiinto rectangles obtained by lines parallel to the axes, at distances 4y and Ay

apart,

let
[Pl =max{ix, &y},

The number || F || is called the norm of the partition.



(i) Let .2 —IE be a bounded function. We say f is double integrable over ?

if

lim S(F 15t5.
||p1ﬁ1_1;u (F, 1 exists

In this case, the above limit is called the double integral of # on f1and is denoted by
.y dix,
[l oy (6, a7 7@ d(x)

40.1.2Examples:
@ Let Di=[a,b]x[c,d]and

FD=IE, fix v =rtorevery (x,y)ie D),
where r is a constant. Then, for any partition 2 of [, &]into smaller rectangles,
SE fy=rib—a)d —c)

Hence, _f is double integrable and

[l s .y ) (3} == a)d —e).

Figure: Volume below a plane
Gi) Let D'=[a,&]x[c,d]and f [} —IE be defined by: for {x,¥) e [},

] if xor yisirrational,

Jixy)= {1

, if both xand yarerational

Consider any partition Fof [a,&]x[¢,4]into smaller rectangles. For every sub-rectangle 4 4in this
partition,

SUFP Fi=11F we choose(x, ) € A4 with both x, ¥ as rationales.

And

S0P, =0, 1f we choose (x,v) € Ad with both x, ¥ asirrationals.

Thus,



lim S{F t exist.
”P1IED {(F, ) cannotexis

Hence, the function # though bounded, is not double integrable over [J.
The double integral has properties similar to that of the Riemann integral, which we sate without proof.

40.1.3Theorem (Properties of double integrable):

®

Q)

iii)

(@iv)

Let f,g:.0 =[a,b]x[z,d]—IE be bounded functions. Then, the following hold:
If _f is continuous, then it is double integrable.

If f is double integrable over fand i} = Dl U Dg, where DIJDE are non- overlapping rectangles, then

[[,rndwn =[], frdan+[[, 7 dy)

If f is double integrable, then so are the functions ¢ f and | /|, @& € IE., with
[ entendy=al [[, 7@y dxn)

|1, 762y acen| <[] lrGmlacy

If f, g are double integrable, then so are '+ g, jfgwith

[l,u+axmdey=|[ fxyd@y+]] axdxy.

40.1.4Definition:

If #[a,&]=[c,d]—1IF is double integrable then

”f(x,y]d(x,y)zﬂ, if fixyi=0foerall (xy)ela,d]=e,&]

In this case, we define this double integral to be the volume of the region under the surface defined by
z = f{x,¥) and bounded by the planes x =, x=4, y=¢, ¥ =& as well as the Xy -plane.

The evaluation of a double integral can often be reduced to a repeated evaluation of Riemann integrals
by the following theorem:

40.1.5Fubini's Theorem:

O

Q)

Let f :[a,k]x[c,d] —IE. be double integrable.
If for each fixed x £[a,&], the function given by y 1= #{x, ¥)is Riemann integrable on [¢, 4], then the

function 4 :[a,&] — IE defined by

L)
AR =[" sy

is Riemann integrable on [«,&]and

L1 i Jir= [ aco =

[ﬂ. -E‘] » [cld‘]f(x’y)d(x:lyj

If for each fixed y & [c,d ], the function given by x 3 #(x, ¥)is Riemann integrable on [« & ], then the

function & :[c,d ] — IR defined by



B = [ £ (x.2)dx
is Riemann integrable on [¢,d]and
[]1L rwmas|a=[fs0ra=[[,, . Farde)

40.1.6Note:
The integrals

[o|[7 sy fan ana 7| [7 7o ypae |

are known as the iterated integrals of f Fubini's theorem says that if fis double integrable on
[@,&]=[e,d ], then the double integral of § equals either of the iterated integral of § Geometrically, this

means that when the volume of a region under the surface over a rectangle is well-defined, it can be
found either by calculating the areas

d
AR =] fxydy, asxsb,

of cross sections of the region perpendicular to the x -axis, or by calculating the areas

B(y)= Ef(x,yjdx, c£y=d,

of cross sections of the region perpendicular to the ¥ -axis, and adding them.

See Figures on next page

Figure: lterated integrals

40 .1.7 Example:

Let @ [a,4]—1IE and i [c,d] —IE be integrable functions. Let [}=[a,&]x[c,d]and
Sy = Jxw), (xy)e D

Then, by Fubini's theorem, 7 is integrable over [jand

”G Flxoyidinyi= (E $(x) cfx) “j W) dy)_



For example, for s =0 ¢z 10, let

#x) =z xelabland wiy) =y yele,d]

Then

Sy =2 for (x,)) ela,b]x[e,d],

and

I:_.!,1:"'+1 _CJ‘+1

s+1

+l S+
”'[a,b] e 5 ;v‘f d(x,y) = (E' e .:;u!’x) Uj yf ,:ff,) _ [bs a

40.1.8Example :

Consider
[, & +20d ),
where £3=[01]x[0,1]. Then, for every fixed x, 0= x=1,

a 1
AR =] 2 +2) dy=[x2 y+2%:| =241

0
and hence

[[, &*+2wd (x»
=], Atx)dx

1
=L. (7 +1dx
| X
| 3

Similarly, for every fixed y 0=y =<1,

(2]

+

-
L 1
(=] -

1
L % 1
B(y):lﬂ (x +2y:"fx=[§+21}’} =3t

0

Thus

[ +2dx =] (% + zy] dy

1

=

_+};2

[N ]

]

4
>

Practice Exercises
(1) Evaluate the following integrals where [} =[0 1]=[0 1]:

0 ”ﬂ x4y cos(x) dix, ).

I

r+1

|



a ], ﬁd(w}-

Answers

(2) Compute the following:
@ [, o7 exp(x®?) d(x,y) . where D=[1,3]x[1,2]

D) -”D :J,L-..||"1_;r;2 d{x,y} , where [} :[D,l]X[E, 3].

Answers

(3) Using suitable order of integration, evaluate

”ﬂx cost mxd (x,¥),

where

D=|:D,%:|><[D,;?T]

Answers
Recap
In this section you have learnt the following

e The concept of double integral over rectangular domains.

[Section 40.2]

Objectives
In this section you will learn the following :

The concept of double integral over general domains.

40.2.1Definition


javascript:popUp('Answer-1.html')
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javascript:popUp2('Answer-3.html')


Let [1be a bounded subset of TE.*and f: [} — IR be a bounded function. Define #*:IR* —IR by

Flxy), b ixyjel

f':x’y}:{ 0, if(xy)eD

Let

R=[a,b]x[c,d]
be any rectangle in IE 2 which includes 1. We say f is double integrable if f*is double integrable on
&,on fjand

[[ 7o dyy =[] 7 xydxy

Figure: Double integral of j

40.2.2Note:

By the domain additivity property, it follows that this definition does not depend on the choice of the
) rectangle

R =[a,b]x[c,d]containing [

(i) The extended notion of integral has properties similar to that of theorem 411 5.

40.2.3Example:

Let

D={{xy)elR*|x=20y=20x+y =1}

and

f:D IR begiven by f(xyi=x"+3* for (x,3) el
Then

Do B=[01]=[0,1]

and f being continuous on [ is double integrable over g . Thus,



[[,rGnaE) =[[q . 0nf ®@»aE)
= I: “:j'*(x, y)cfx:| v

Fix y e [0,1] Since

Figure: Caption text

4yt forall xel0,1-y],

I (x,y]'={ 0

we have

|- o 1 *
Jo s yar= [ S ayydn [ (xy)dx

for x e(1-3.1],

1

1—
= .[n 7 (x* + 3" Vdx

_ 3
=24 0-)
Hence
1-»7 1
[ 7xnacey =] [%ﬂf* (1—y)}cfy -

We describe next a method of computing the double integrals for special regions.

40.2.4Definition:

0]

Let D IR

Let
D={(x,)elR*|asx<h () =y <, (x)},
where

#, @, [a,b] = IR

are continuous functions. Then [}is called a type | elementary region in k=



Figure: Type I elementary region

(i) Let

D={(zxy)e R |c =y =d, ()],
where

Wiy [o,d] > TR

are continuous functions. Then [}is called a type-I11 elementary region in 2.
40.2.5 Example
The disk [ = {(x:}”:' = IE{2 | ;Jn;2 +_y2 = 1} is a type-1 elementary region in IE{2 since

D= [(x,y}e R 12 x2l—J1- 22 Eyiw.h—xg}

We can also visualize the disc as a type-1l elementary region as follows

D= [(x,y}emzi—liyil,—ﬂﬁ—yz Exiqh—yg}.

Figure: n as type-I and type-I1 region.
The double integral over elementary region is given by:

40.2.6Fubini's Theorem:

Let [ — IE.*be bounded closed and 7 : [t —IE. is bounded continuous function.



(i) If fiis atype-1 elementary region

D={(zy1eR* a2 x2b $ () =y =g, (x)},
where
¢, 8, [a,b] > IR

are continuous functions,then 7 is double integrable on [jand

1,7 oyatny = [pawax =[] [ 7 y)ay |an

Figure: Type - | region

(i) If [yis a type-1l elementary region

{x, ) elR? |c sy =d, () S22y, (0)),

then

T, sace = s0sav =} 2oray=[| [} 5,9



Figure: Type-II region

40.2.7Examples:
(i) Let
D={(xelR*|y=0,x+2y° =4}
and
Fix, 1=y for (x,y1el
If we express fias a type-1 domain
D={(xy)]|-22x=2, 0=y =[(4-x")/21"%,

then

Figure: [y as a type-1 and type-1lI domain

[i4- 27 ez 12

”Df(x,y) d(xy)= E[L ydy:|.:£x

-
=-|.21 4 X dx
-2 2 2

a8
3



D={(x,y)| 02y 22, - (4= 2 x= (@ -2y,

then the required integral is given by,

]

=Iﬂ“ﬁy[zm]dy

Hﬂf(x,y) dix, ) = Iﬁ “t:j;;; ¥ cfx:| dy

1

8
3

where to compute the last integral one has to make suitable substitutions making it a bit more difficult
than the one in the previous case.

40.2.8Note:
Computation of
I, fxaxy
may be easier with suitable choice of order of integration.
40.2.9Example
Find
[, x+2mdixp),

where [is the region bounded by the parabolas

Y=2x* andy=1+x"

To express the region analytically, we proceed as follows:

Step (i):
Sketch the region [:

Figure: p as a type-I region

Step (ii):

To find the limits of integration, consider vertical and horizontal lines through the origin. Since vertical
lines throughout the region go from y= 2;;2 to y= 1+x2, we should integrate first with respect to the

variable ¥, i.e., express [1as a type-I region as



D={(x»)|-1=2x=12x" 2y =1+x°}
and hence

”D o) < -l.::jl[].;:;:g (x+y)ciy]cfx_

1

Note that if one tries to express [j1as a type-ll region, one lands up in problem as the horizontal lines do
not remain inside the region throughout.

(i)  Let

D={{xy)|0=2x=], 0=y =2z} y

and

Fix, = e* for (x,»1 e D).

Then, j[iis a type-I region, and hence

o ) et il
Y
s

FE

”Df(x,y) dix, 1= I: |:.I-n E"gdy}dx = I: Exe"g.:fx =a-1

We could also describe [1as a type-Il region
D={{x,y)|0=y=2 yi=x =1}

Then

Il sy =[|[ o ax|a,

but the integral

_[1 exj dx

i

cannot be evaluated.

40.2.10Note:
A complicated region [jcan often be divided into elementary ones in order to evaluate
I, Fx»dix .
Here are some examples:

(i) Let [ybe the triangle in TR * with vertices {—2,3),(2,3)and (0,1} . As a type-11 region

D={(x,y)|15y£3,1—y5x5y—1},

however, as it is not a type-l region, but a union of two non-overlapping type-Il regions:
D=0, where

Dl:{(x,y)|—2£x5[],—x+15y53}



DE:{(x,yHDE xE—E,x+15y£3}.

Figure: o as type-1 and as union of type-Il regions

In general a domain [jcan be split into smaller regions of type-1/11 by drawing lines parallel to axes:

Figure: Caption text

the domain D can be expressed as
D=0y Do o oo D
where the domains

Ly iy D D are type— I domains
and domain

Lh 1z atype—1 domain.

Recap

In this section you have learnt the following

e The concept of double integral over general domains.
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