
25.1 Series of numbers

Given any finite collection of numbers 
            

we know how to find their sum. For this, we take , add to it to get , add to this sum , to

get , and so on till we reach . In fact, the associative and the commutative properties

tell us that we can add them in any order. In many practical problems one would like to add an infinite
collection of numbers. Let us look at an example.

25.1.1Example

 

Consider two cyclists and , at a distance one kilometer apart, moving towards each other, at a
constant speed of 1km/hour. A man shuttles between and at a constant speed of 2km/hour till the
two cyclists meet each other. How far away from the starting point the man will stop shuttling and
what would be the total distance covered by the man?

 

 

The answer to the first part of the question is obvious (to some one who has the knowledge that and 

are moving towards each other at a constant speed, and hence they would meet at the point ,

midway between and ). To answer the second question, let the starting point for the man be and

let it move towards . Let denote the consecutive points of the man's turning back
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  Objectives
  In this section you will learn the following :

Convergence of a series of numbers.

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




from and . This gives us a sequence 

                

 

The distance covered up to turning is given by 

                 .

It is easy to show that 

                 .

Hence,

                  .

One is interested in knowing what happens as  becomes larger and larger.

We are given a sequence for real numbers. What should be a method of finding the sum of all

the terms of this sequence? An intuitively obvious method is to ‘carry on' the ideas of finite sums. For
every , we can find 

                 ,

 
and let this process continue, i.e, consider the convergence of the sequence . In view of this, let

us make the following definitions:

25.1.2Definition:

 Let be a sequence of real numbers.

(i) For every , define

The pair is called a series of real numbers and is called the -partial sum of the

series.

(ii) We say is a convergent series if the sequence is convergent. In that case,

the is called the sum of the series.

(iii) The series is said to be divergent series if it is not convergent.

25.1.3Note:

 

Note that a series is determined by a sequence of real numbers and the corresponding sequence

of partial sums . In fact determines the sequence uniquely since

                 .

In view of this, the series is often denoted by the symbol . And if it is

convergent with sum , we write 

                 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



A word of caution: the notation is just a convenient symbol for the more cumbersome notation 

for a series. It becomes a number only when the series is convergent.

25.1.4Example

(i) Consider the series

 

               .   

Since 

the sequence is not convergent. Hence the series is also not convergent.

(ii) Geometric series

 

Consider the series 

                 

This is called geometric series with common ratio . The convergence of this series depends upon the value

of the common ratio. For , the partial sum is . Since, 

                 ,

the series is divergent for . Similarly, for , the partial sum is

               if is odd, and if is even. 

Once again, does not exist, and hence the series is divergent for also. 

Finally, for , 

               

Since , we have 

              .

For , since as , we have 

              

Hence, the series is convergent whenever and its sum is .            

(iii) As in example 25.1.1. the series is convergent to 1, since

               

 

Hence, the man would have covered a total distance of one kilometer from start to finish. Let us also
compute the total distance the cyclist would covered till it meets . Clearly, if they meet at the point 

, then is the limit of the distances . To find , let us observe that for every . 

                .

If we write 

                ,

then is the partial sum of the series , and is given by 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

                

Since 

              
we have 

              .

Hence, the cyclists will meet exactly midway.

(iv) Consider the series . For this

 

 

For , we have 

             

This shows that is an unbounded, sequence. Thus, is also unbounded and hence not

convergent. Thus, the series is not convergent. The series is known as the harmonic

series.            

(v) Consider the series

 

            ,

It is called the alternating harmonic series. Let us look at the odd and the even terms of , the

sequence of partial sums of the series. For any ,

           .
Similarly, we can write 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Form these, it follows that is monotonically increasing while is monotonically

decreasing. Further 

.

Hence, by the completeness property of real numbers, both the sequences and are

convergent. In fact, the relation also tells us that they have the same limit. Hence, the sequence , is

also convergent convergent by exercise (8), section 1.7. Note that, we have not found its sum, we have
just proved that it is convergant. 

(vi) Consider the series . Since it is a series of positive terms, the sequence of partial sums

 

is a monotonically increasing sequence. Let 

Then, we claim that for every ,

                                                                                            ---------(16)

 

Clearly, and if (16) holds for , then 

 

Thus, by induction, (16) holds for every . Hence, 

Thus, the sequence , is bounded. Since, is a monotonically increasing sequence, and for

every we can find a positive integer such that , we have 

,

Hence, is a monotonically increasing sequence, bounded sequence. By the completeness property

of is convergent. Hence, the series is convergent.
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 PRACTICE EXERCISES

1. For the following series compute their -partial sum and show that the series is convergent:
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(i) .

(ii) .

(iii) .

(iv) .

(v) .

2. For the following series compute their -partial sum and show that the series is not convergent:

(i) .

(ii) .

(iii) .

(iv) .

3. For a series let be its -partial sum such that

 
.

Express in terms of and show that the series is convergent with sum equal to 1.

4. Let be a sequence of real numbers. Find necessary and sufficient conditions for the series

to be convergent.

5. Let be a convergent series. Let

 
.

Show that the sequence converges.

   Recap

   In this section you have learnt the following
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Convergence of a series of numbers.

  

25.2 Simple tests of convergence
 In view of the Cauchy completeness property of we have the following:

  
25.2.1Theorem (Cauchy criterion) :

 
                         

 

25.2.1Theorem (Cauchy criterion) :

 

 Proof:
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  Objectives
  In this section you will learn the following :

Various ways to analyze the convergence of a series of numbers.
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This is just a restatement of the fact that is convergent if and only if , the

sequence of partial sums is Cauchy.

  

 

25.2.2Corollary ( - term test) :

(i) If a series , is convergent, then

                         

(ii) If

                         

 then the series is divergent.

(iii) If

                          

 then the series , may either converge or diverge.

 The above corollary is most useful in proving that a series is not convergent.

 

25.2.2Corollary ( - term test) :

(i) If a series , is convergent, then

                         

(ii) If
                         

 then the series is divergent.

(iii) If
                          

 then the series , may either converge or diverge.

 Proof:

 

(i) Follows from theorem 25.2.1 since,

Statement (ii) is just a restatement of (i). Finally, consider the series

 and  .

For both the series, . However, the first is a convergent series, while the second is
a divergent series.

 

25.2.3Examples:

(i) Consider the geometric series , where . Since,

                          

 the series is not convergent.
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(ii) Consider the series

                          .

 Since,

                          

 the series is not convergent. 
The limit theorems on convergent sequences imply the following results:

25.2.4Theorem:

 Let and be series and . Then the following hold:

(i)  If and are convergent, then the series

                         

 are all convergent and

              

(ii) If is divergent and then is also divergent.

 

25.2.4Theorem:

 Let and be series and . Then the following hold:

(i)  If and are convergent, then

                         

 are all convergent and
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(ii) If is divergent and then is also divergent.

 Proof:

(i) Follow from application of the limit theorems to the partial sum of the series under
consideration.

 

The statement (ii) follows from the fact that if is convergent, then by (i)

will also be convergent.

 

25.2.5Example:
(i) Consider the series

                              

 Since it is a sum of two convergent series:

                       

 it is also convergent.

  
(ii) Consider the series

                       

 This is a divergent series, for if it were convergent, then

                       

 would also be convergent, which is not true.

 Here is another simple test that can be used for analyzing convergence of series with non-negative
terms.

  

25.2.6Theorem (Comparison test):

 
Let and be sequences of real numbers such that ultimately, i.e., there exists

some , such that

                        for every 

 then, the following hold:

(i) If the series is convergent, then so is the series .

(ii) If the series is divergent, then so is the series .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25.2.7Examples:

(i)  Consider the series

 

                          

For , since 

                            

and the series  is divergent, the series 

                           

For , since 

                           ,

and the series is convergent, the series is convergent for . We shall prove(in

the next section) that is convergent to .

(ii)  Consider the series

 
                            .

Since                   

 and the sum is convergent, the given series is also convergent.

(iii) Consider the series

 

                                   

For , it is easy to check (by induction) that

                                    

Since is convergent, the series is also convergent.

 PRACTICE EXERCISES
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1. Using comparison test, analyze the convergence/divergent of the following series:

(i) .

(ii) .

(iii) .

2. Let be series of non-negative reals. Prove the following

(i) If

                                           

  

and is convergent, then so is .

(ii) If

                                    

and is convergent, then both and are convergent.

(iii) If

                                   

and is convergent, then is also convergent.

(iv) If

 

                                  

and is divergent, then is also divergent.

   Recap

   In this section you have learnt the following

Various ways to analyze the convergence of a series of numbers.
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