
Module 1 : Real Numbers, Functions and Sequences

Lecture 3 : Monotone Sequence and Limit theorem

                    [ Section 3.1 : Monotone Sequences ]

Objectives

In this section you will learn the following

The concept of a sequence to be monotonically increasing/ decreasing.
Convergence of monotone sequences.
Completeness axiom of real numbers.

3.1  Monotone Sequences

3.1.1  Definition:

1. A sequence  said to be monotonically increasing, if    

2. A sequence  said to be monotonically decreasing, if    

We can describe now the completeness property of the real numbers.

3.1.2 Completeness property

Every monotonically increasing sequence which is bounded above is convergent.

3.1.3 Theorem:

If  is monotonically decreasing and is bounded below, it is convergent.

                      

-------------

Follows from the following facts.

1.  is monotonically decreasing if and only if   monotonically increasing. 

2.  is bounded below if and only if  is bounded above. 
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3.  is convergent if and only if  is convergent .

3.1.4 Examples:

1. Sequence  is monotonically increasing and is not bounded above. 

2.  Sequence  is monotonically decreasing and is bounded below,say by  . 

3.  Sequence  is neither monotonically increasing nor decreasing. 

4. Let       As shown in problem 2.1(Lecture 1) ,    and 

 . Hence,   is convergent. Let     .  Then, 

                                         

Hence,    . This implies that   . Hence, 
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Practice Exercises 3.1: Monotone Sequences

1. Determine whether the sequences are increasing or decreasing: 

 

2. Show that the following sequences are convergent by showing that they are monotone and bounded. Find
their limits also: 

3. Let   and    . 

Show that  is a decreasing sequence,    is an increasing sequence and   

 for every  . .

 

Recap

In this section you have learnt the following

The concept of a sequence to be monotone sequence.
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Monotonically increasing/ decreasing sequences converse if they are bounded above/ below.

Objectives

In this section you will learn the following

Techniques of computing limits of sums, differences, products and quotients of sequences.
The Sandwich Theorem.

3.2 Limit Theorems on sequences :

Some more theorems which helps us in computing limits of sequences are as follows:

3.2.1 Theorems (Algebra of limits):

Let  ,   be sequences such that   and    .  Then the following hold:

1.  A sequence   is convergent and   .                                

2.  A sequence  is convergent and  .                                              

3.  If  is defined for all , for some  and the sequence is convergent with  

 .                                                  

1. Let   be given. Choose  such that 
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Let .Then 

                        

This proves (i).                        

2. To prove (ii), first note that  and   being convergent, are bounded sequences
by theorem 1.5.3.

Let  . 

Then,  by exercise (ii). Suppose both x, y  0. Let an   be given Choose  such 

that  and 

Note that  Then,  

                                    

Hence,  . This proves (ii) when   The case when   is easy and is

left as an exercise. 

3. To prove (iii), we have to show that given an   and such that 

Since   and  ,we have  such that

                                                     .
Now,

     

If we take , the above inequality will give us 



                     (1) 

Appearance of    in the denominator on the right hand side is to be removed. That we can do if we

can say   for some constant c and for all  large, i.e.,  for all large . This is true since 

 and we can   choose  such that       .         

Thus,  

                                                                                (2)

Thus, for    is defined and we will have from (1) and (2),

                            .
To bring this estimate to the required form, we make some changes. We choose  such that

 and if  we choose  such that      

Then for    we will have 

                    

In case  , clearly 

                      

 This proves (iii) .

3.2.2 Sandwich Theorem:

Let    for all   .  If and , then  .                       
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Let .  Using definition, find natural numbers   and  such that

Let   . Then, for   we have

i.e.,     . Thus,    

3.2.3 Examples (Some important limits):

1. Let  with  . Then,   as   . To see this, note that for  we can write

                                                   

   Hence,                                      .

   Using binomial theorem, we get   .

   Thus,      .

   Hence, by the Sandwich Theorem,  as  . 

2. For x > 0, the sequence is convergent and  . To see this, let us first suppose

that 

x > 1.Then,  for every  . Let  . 

Once again, for every . 

                              . 

Hence,  and by Sandwitch theorem,  , i.e.,  Next, suppose  . 

Then    for every n.  Let

                             .  

Once again, for every  , 

                            . 



Hence,  implying that  . 

Thus .  For x = 1,  clearly  for every  , and hence                
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Practice Exercises 3.2 : Limit Theorems

1. Show that the following limits exists and find them:

1.    .

2.   .

3.   . 

4.  . 

5.    .

6.  .

2.  If   find   .

3. If  show that there exists  such that 

4. If  and  show that 

5. For given sequences  and  , prove or disprove the following:

1.  is convergent, if  is convergent. 

2.  is convergent, if  is convergent and  is bounded. 

6. A sequence  is said to be Cauchy if for any  , there exists  such that

  In other words, the elements of a Cauchy sequence come arbitrarily close to

each other after some stage.

Show that every convergent sequence is also Cauchy. (In fact, the converse is also true, i.e., every
Cauchy sequence in  is also convergent. We shall assume this fact.)

7. Let  be a sequence such that  for every n. Show that  .
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8. Show that a sequence  is convergent if and only if the subsequence  and 

 are both convergent to the same limits. 

9. Is every Cauchy sequence bounded?    

Additional Remarks : 

1. In Practice exercise 2(i) of section 1.6, we defined    

The sequence  is a monotonically decreasing sequence of rational numbers which is bounded

below. However, it cannot converge to a rational (why?). This exhibits the need to enlarge the concept

of numbers beyond rational numbers. The sequence  converges to  and its elements 

are used to find rational approximation (in computing machines) of  .

2. To prove that a sequence is convergent to  , one needs to find a real number (not given

by the sequences) and  verify the required property. However, the concept of 'Cauchyness' of a
sequence is purely an 'intrinsic' property which can be verified purely by the given sequence. Still a
sequence is Cauchy if and only if it is convergent.

3. Using the completeness property we can say that the sequence  of the areas of  -sided

regular polygons inside the unit circle is an increasing sequence which is bounded above. Its limit is
denoted by ,
called pi. This gives a definition of . It is also an irrational number.

Optional Exercises : 

1. Let   be a sequence and let 

1. Show that  is convergent to  , whenever  is convergent to  . 

2. Given an example to show that the converse of (i) need not be true.

2. Prove that the sequence  is convergent as follows: 

1. Expand  by binomial theorem and use the fact  to

show that is bounded.

2. Using the fact that for all  

 , 



show that is monotonically increasing.

3. Use completeness property to deduce  exists.

The limit, denoted by , is called Euler's number. It is an irrational number and the above
sequence is used to find its approximate values.

Recap

In this section you have learnt the following

Limits of complicated sequences can be computed by expressing them as sums, differences, products
and quotients of convergent sequences.
A sequence becomes convergent if it can be sandwiched between two convergent sequences.

   Objectives
   In this section you will learn the following

The concept of a sequence being convergent to  or .

The concept of a subsequence of sequence.

 

3.3 Some Extensions of the Limit concept:

3.3.1Definition:

 Let    be a sequence of real numbers.                  

(i) We say    converges to   if for every     ,    is ultimately bigger than   , 

i.e., given    such that   . We write this as  .

(ii) We say    converges to    if for every  ,   is ultimately smaller than  ,

i.e., given    such that  .   We write this as   .

(iii)
We say a sequence  is divergent properly if either it converges to   or it converges to 

 .

3.3.2Examples:

(i)
Consider the sequence  . Given any , by the Archimedian property, we can find positive integer




N

 such that  .  Thus, for every  . Hence, .

(ii)  Let ,  .Consider the sequence . We shall show that  . To see this let

 

    , where .  Using Binomial theorem,

                                 

Once again, using the Archimedian property, we can find positive integer N  such that  . Then, by

the above inequality, we get   for every . Hence, .  Here are some

intuitively obvious results.

3.3.3 Theorem:

 Let  be a sequence of real numbers.

(i) If  converges to ,  then it is not bounded above.

(ii) If  converges to , then it is not bounded below.

(iii) If  is monotonically increasing and not bounded above then,  converges to  .

(iv)
If  is monotonically decreasing and not bounded below then, converges to 

.                            

 

3.3.4 Definition:

Let  be a sequence and let  be as strictly increasing sequence of natural numbers. Then 

 is called a subsequence of  . In some sense,  is a part of with

due regard to the order of the terms.

 3.3.5Theorem:                                                                                                                                             

Let be a sequence. Then is convergent to iff every subsequence of is

convergent to                                         

 

 

  Practice Exercises 3.3 : Extension of Limit Concept

(1)  Let  and   be two sequences of positive real numbers such that  exists

and  Show that if  is convergent to  , then   .

  

(2)  Give an example to show that conclusion of (1) need not hold for the cases when 

  

(3) If   , show that  .
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(4) Let  be an unbounded sequence. Show that there exists a subsequence of  which is

convergent to  or .

   Recap

   In this section you have learnt the following

How to extend the notion of a sequence to be convergent to  / .

The notion of a subsequence of a sequence.

A sequence is convergent if every subsequence is convergent to the same limit.
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