Module 6 : Definition of Integral

Lecture 16 : Integral from upper and lower sums [Section 16.1]

Objectives

In this section you will learn the following :

How to define the integral of a function.

16.1 Integral from upper and lower sums

We start by analyzing the following:
The Area Problem: The problem is to find the area of a region 5in the plane that is bounded by the

curve
y=jFi(x)from x=gto x=Ahand the ,_ .-

This raises a natural question: What is the meaning of the word ‘area'? It is easy to answer this question
for region with straight sides, e.g., a rectangle, triangle, and a polygon.





However, it is not as easy for general regions as is for the regions with straight side. But it is possible to
find an approximation to area using concept of area of the rectangles. The idea is to fill up (cover up) the
required area by rectangles with sides parallel to the axes. To do this, let us make some definitions.

16.1.1Definition:
Let [«, &]be a closed bounded interval.
() Let

=Xy <x <. <xy =k
be points in the interval [@,&]. Then,
P:{xn =, X, k=& }

is called a partition of the interval [z, &].
(i) A partition Fwith j; +1points divides the interval [«,&]into # closed subintervals:

[@=xg.x L%, x ). (7. % ]

A typical subintervals II: = [xk—lrxk] is called the j th-subinterval of the partition.

(iii) For each 1=} = » , the number

A= = %y
is called the length of the subinterval [xk_l . xk:l .

(iv) For a partition 7, the number

|Pll=maz{ 4, |12k <},
is called the norm of the partition F'.

Assumptions:
In order to define the area bounded by the graph of a function f :[a,b] —IR, the x— axizand the lines

x=aandx=25%, we assume that { is a continuous function. As a consequence of this property not only

f is bounded on every closed subinterval of [, &]in fact it attains its bounds in that interval.

16.1.2Definition:

Let f :[a,&]— IR be a continuous function and let
P={xn =G, K.k =0 }
be a partition of [a,&].



®

(i)

Let
mo=min{ f(x)| x€[a,&]},
M =max{ f(x)| xe[a,&]},

Mo =max{ f(x): x €[z, 5]}

and
py =mun{ f(x): ez x ]}
forl=k =n
Let
n n
DR, fy=32 MyApand L(P, )= 2 my sy
k=1 k=1

The sum L/(F, fis called upper sum of #and the sum JLi{F, f)is called lower sum of j for the
partition .

16.1.3 Note:

For Fix)=0,x¢ [cx,b] , each M, =0and M A is the area of the rectangle with base /i, and height
M . The number L{F, f}is the sum of the areas of all such rectangles. These rectangles cover of the
region 5 :{[x,yﬂ = x=h y= f(x)} . Similarly, each #z, =0 and by is the area of the rectangle
with base A and height #2; . The number L(F, {}is the sum of all these rectangles which try to fill up
the region S:{[x’y)laf_:xf_:f},yzf(xj}. The sum L(F, fiunder estimates the ‘area’ of ;5 and

{7{F, {7 over estimates the area of 5, i.e.,
Mib—a)=UF, fi= LiP, f1= mib—a), for every partition F of [a, &]

Geometrically, the required area ‘Area(S)' of the region 5 is captured between T/(F, f1and L{F, fli.e.,
for every partition Fof [a,&].

TP, f) zarea ()= L(P, f). (1)

The natural question that arises is the following:

= Can we improve the approximations in (1) so that upper and lower sums come closer to the actual
‘area(S)'?

To answer this, let us observe the following:



16.1.4 Lemma:

Let P and (' be two partitions of [, &#]such that

P:{a: Xgs Xpaeon Py :.E:'}

and

+
o= [a = R B X K Ry =E:-} )
i.e., {Jhas all the points of ©and an extra point x* in the i # subinterval. Then

UiE,f) 2 U, f), and LIP. F)= LR 7).

FROOF
16.1.4 Lemma:
Let Fand £ be two partitions of [«,&]such that

P:{a = Xg. X.-a A =E:}
and

Qz{az;qj ..... A S xnzb},
i.e., ¢has all the points of rand an extra point ;"in the : z: subinterval. Then

LIP, #£) = D02, £, and L2, £)= L2, F).

Proof:

Since max[_f{xj: re [7':'—1- x!.:l } is greater than or equal to both
ma}{[[f{x} X e [x!._ll X }] and ma}{[f(x): xe [x*,x!-:l } clearly,

LRy = D2 M, and LIS, Fr = L0, 5

Thus, /(7 fi1becomes smaller and ZiF, fybecomes larger if we add more points to the
partition £.

16.1.5 Definition:


file:///E|/HTML-PDF-conversion/122101003/Slide/Module-6/Lec-16/Sec-16.1/Proof-16.1.4.html

Q)

Let Fand Qbe two partition of [g,b]such that every point of I'is also a point of Q Then we say Qis

a

refinement of .

A sequence {Pn}n:qu partitions of [a,b]is called a sequence of refinement partitions if for all
nel, P;H_l is a

refinement of P;! .

16.1.6Examples:

O}

Q)

For an interval [a,f;.], a natural sequence {E’!}n}lc’f refinement partitions is given by

ﬁq::[a:xn,xl,...,xzn :b],wherex!-—xz-_l = ——foreveryi

For an interval [a,f;-], let,

£ :=[a = XQs Apoeos Kom =E:'], where

n

XK= foreveryi.

Then {‘E;i}n}l is not a sequence of refinement partition of [a,f;-].

16.1.7Theorem:

Q)

i)

Letw, M = [ be such that s = F(2) = M forall x€[a, &) and let {Fﬁ}nabe a sequence of refinement

partitions of [Q:,f;.]. Then the following hold:
The sequence {U(Pn,f)}n}l is monotonically decreasing and is bounded below by [E:-— a:l )

The sequence {L(Eﬂ’f}}nzl is monotonically increasing and is bounded above by M[f;. —g_:].
Both {U(ow:'}na and {L(E!’fj}nzl are convergent sequences. In fact, for f is continuous,

lin DR, /)= lim L(B, /)= 4

and the limit is independent of the sequence {Pn}n}lof refinement partition of [a,f;-].

ik
/
PROOF

16.1.7 Theorem:
Let #2, A = IR be such that s = F(x) = A for all x € [a, &]land let { Z},,., be

a sequence of refinement
partitions of [«.%]. Then the following hold:

0] The sequence [T 5, 1}, :, is monotonically decreasing and is bounded below by #:(&— a3 .
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(i) The sequence { L%, ..77},,=1is monotonically increasing and is bounded above by Af{&—a).
(i) Both {Z7(F,. i}, - and {L(5,. 7}, 2, are convergent sequences. In fact, for fis continuous,

lim U5, /)= lim L5, )= 4,

and the limit is independent of the sequence { &},,., of refinement partition of [a,&].

Proof:

Proofs of (i) and (ii) follow directly from the lemma 16.1.6. Thus, by the completeness property
of m, both lim I7(5.7) = lim L(F. )exist. That for a continuous function, both these

sequences converge to a common limit, and that limit is independent of the sequence { &} ..., of
refinement partitions of [a,f;]is technical, and we assume this.

This motivates for the following definition:
16.1.8Definition:

For a continuous function f : [ﬂ,fp] — [/, the real number 4 as given by theorem

16.1.7 (ii) is called the definite integral or just the integral of f over [a,b]and is denoted by

b
[, /(xax
16.1.9 Remarks:

(i) The notions of upper sums and lower sums, which we analyzed for continuous functions, can in fact be

defined for any bounded function f;[a,f;-] — [R . However, for such functions part (iii) of the above
theorem need not hold. One says a bounded f;[a:,f;.]J,Mis Riemann-integral or simply integral, if

there exists a sequence {E’!}n}lc’f refinement partitions of [a,f;.]and a real number 4 such that
im (A, f1=lm L(F,
lim U(R, /)= lim (5. f).

In fact, if for a function § , there exists some sequence {P;ﬂ}n}lOf refinement partitions such that

lim U(F,, /) = lim L(5, /)= 4

then for every sequences of refinement partitions, the upper and the lower sum sequences converge to
the same limit, namely, 4 .Thus, theorem 16.1.7 (iii) says the following:

Every continuous function f : [a,b] — [} is integrable.

In fact, if f : [cz,f:'] — R is a bounded function such that f has only finite number of discontinuities, say

at ¢;, 121 £k, with ¢ <¢5 <... <, then it can be shown that f is integrable on [a,f;.]and



[ #eax = i“jlf(x}cﬁ)

We shall assume this fact also.
(i) Suppose f§: [,g:,f;.] —s [R is integrable. Then, by definition, there exists a sequence {P;ﬂ}nzl of refinement
partitions and a number 4 such that
lim OH(E, fi=A4=lim L(E, 1)
lim U5, f)= 4= lim L(5,.f)
In particular,
HIE}HGD[U(E’!’J{)_L(Pnsf)] =

The converse of this statement also holds and we shall assume it.

16.1.10Theorem:

A bounded function f;[a,b]—}mis integrable if and only if there exists a sequence {‘E;!}nHOf

refinement partitions of [a,f;.]such that

lim [U(B, )= LB )] =0

16.1.11Note:

In view of the above theorem, to check that a function j;[a,b]—}Mis integrable, it is enough to

produce a sequence {Pn}nHOf refinement partitions of [a,f;-]such that

lim [U(5, /)= L(&B,.0)] =0

16.1.12Example:
(i) Let

Fixy= xz,a Zx=h
We show that j is an integrable function. For ; =1, consider

£ :{cz:xn,xl,...,xzn :b]

be a partition of [a,b]obtained by dividing [a,f;.]into 2" equal parts, i.e.,
X~ Xy =bz_—nafnr£:=1, L

Then, {Eﬁ}na is a sequence of refinement partitions and for all ;, we have
w1y :Mi?z[j(x): x | % Exixk} = xzk_l .
M, = Max[f(x) =z |xpy 2x% xk} = xgk.

Thus,



2?‘1
U, - L(BF) = 3 (M, —m,)

k=1

> () (25

k=1
i
bzn [kz [‘7‘211: _xf:—l )]

boah2a?)

2?‘1

Thus, nli_r}nm[U(Eq - L{Pn,f}] =10

Hence, #(x)= =< is integrable in [g,b].

16.1.13Note:
Proceeding on the same lines as in the above example, one can show that every monotonically
increasing / decreasing (not necessarily continuous) function §: [.g,f;.] — [} is integrable.

16.1.14Example:

Let 7 [D,l] —}{U,l} be defined by

1, if xe[0,1]is a rational,
JlEi=q_ o
0, if xe[0,1]is airrational
Let P:{U:xn, b =1} be any partition of [[:],1_]. Since there is a rational and an irrational

number between any two real numbers, we have

(P, =1 and L(P. F1=0,
Thus, for every sequence {P;g}nzlof refinement partitions of [a,b]
lim U(E,1=10=lim L(E,k6 /).
lim U5, ) lim L(5,.f)
Hence, f is a bounded function which is not integrable.

PRACTICE EXERCISES

(1) For the following partitions of [D,l], compute "P" :

11
1E=40,- .1
4 { 73 }

11 3
nE=io.~ L 24l
45 {"?44 }
iB=RU B

Let be any two partitions of . Let . Show that is also a partition of and



R.B [a.2] F=RUPA P [a.2]

&)

itisa

refinement of both Pl and E’? . (It is called the common refinement of ff and P"? ). Further show that

|7]l = min { |Z]. |E]}-

(3) Let {Eﬂ}nﬂ be a sequence of partitions of [g,b] . Define

=5, G,=FUg, . nz2
Show that {Qn}nzﬂs a sequence of refinement partitions of [a,f;.] .

(4) Verify the claims of lemma 16.1.4 for the following:

Fix)=x", 0=x=l,
11 2
,_,_,_,1}'
653

2
P:{D, ,5,1},9:{[},

Using 16.1.5, show that every constant function f;[a,f;-]ﬁmis integrable. Using this and remark
16.1.9(0),

—1] =
Lh| —
~1] —

5)

show that function

F=1 1 xe[0,1]and Fix)=2 if x €[L2],

2
is Riemann integrable on [[], 2] . Compute IIII F(x)efx also.

(6) Show that every monotone function (not necessarily continuous) is integrable on every interval [g,b] .

Recap

In this section you have learnt the following

How to define the integral of a function.

[Section 16.2]

Objectives
In this section you will learn the following :

How to define the integral of a function as a limit of Riemann sums.



16.2

Integral as a Limit of Riemann sums

Through theorem 16.1.7 allows us to check whether a function is integrable or not, it is not very

convenient to find I Fix)dx- For this, we consider another way of approximating the required area.
)

16.2.1Definition:

Consider a function j :[a,5] — I} . Given any partition
P:{a: A R S :E:'}

of [a,b], for 1=k =#, choose ¢, € [x.i:—l ,xk:larbitrarily and define the sum

SUF = — .
(.1 ;f(c;c:'(xk x;,;_lj'

The product f{ck]l(xk _xk—lj' is the area of the rectangle over the interval [ ]with height

e-1-"g
g (Ck ) The sum S[P,f) is called a Reimann sum of { with respect to the partition Fand the choice of
the points (ST P

L}

-
Note that for every partition &, the sum S[P,f)depends not only on the partition =, but also on the

choice of points £ E|:

Xp_q> ;;k:| . However, for every partition &, the following holds:
Ry

(P, #128(P 12 L{P. 7).

We hope that as we make ||P||sma|ler and smaller, the Riemann sum S[P,fjwill approximate the




required area better and better. This actually does happen for integrable functions. In fact, we have the
following:

16.2.2Theorem (Riemann):

A function f:[a,b]—IRis integrable if and only if there exists = [ such that for every sequence
{Pn }nleOf partitions of [a,b]with "Pn " — 1, and every sequence {S(P”’f)}n?zl of Riemann sums
lin S{5,f)=4.

Hn—roo
Further, in that case,

A:ﬁfumx

16.2.3Note:

o) In view of the above theorem, for a function f , which we know is integrable, to compute .I-bf(x)dx we
)

can use

any convenient sequence {P,'q }nleOf partition of [,g,f;-]with "Pn " — [1and compute
b )
[ f @z = lim S(5.f)

(ii) To define Riemann sums for a function f:[&,&]—+IK, we do not require j to be bounded. However, it
can be
proved that, if f is integrable, then f is also bounded.

16.2.4 Example:

Let
Fflxi=x* asx=h

We know that f is a continuous function, and hence it is integrable. To compute its integral, for every

-

# =1, consider the partition E;q ={a: =X .7%.. Xy =E;.} obtained by dividing [a,b]into » equal parts,

i.e.,

xk_xk_1=[ a],liki?ﬂ-

Note that,

M

b—ua

Il

Let us choose c, =X, € [xk_l,xk}fnrall k=12,

Letﬂ =|:b—a_:|l|"';3 Then,

]—}U a5k —roo.



S(B,, £ =U(F;J)=Z_‘,ﬁﬁ (%= %)

k=1
- 2
—4| 3 (a+kd) }
Lk=1
N n n
=A Za2+22ak&+2k2&2}
L=1 k=l k=1

=A|ata+ Eaﬁ[@] 142 [H[?ﬂﬂ]ﬁ(znﬂjﬂ

=a’(b-a)+alp-a)’ (”+1J+ (b-ay (Hﬂ][znﬂ]_
M

& % P

Thus,

3
lim 3(B,,f)=a" B-a)+al-a)’ +[(b _;) }

- ‘5;“ (3::3 +3a(b—a)+(b—a)2)

:[*53;“3}

R

Hence,

[} smax=

Next, we describe some of the important properties of the integral.
16.2.5Theorem (Properties of Integral):
Let f = [a,f;.] — [/ be bounded functions.
() If fisintegrable and f{x)= 0% x, then
jj F(x)dx =0,
(ii) If # is integrable, then |f|is integrable and

‘j:’ F(x)dx gj: |7 (%)

(i) If fis integrable and j =R , then i is integrable and

[} G an=k ([ rean)

(iv) If Fand g are integrable, then f ig are integrable and
[[temar=] sdant] glxan
a ™ a Tl '

(V) If fand g are integrable and f (x)2 g(x)for all x&[a,&], then



h . b r
[ fRarz] gxyax
(vi) If fis integrable on [a,f;.], then f is integrable over every interval [.g,,;f].; [a,f;.]and

ij'iﬂ dt =I:f(f) +Ef(z).:£z ascsh

This is called the additive property of the integral.
(we define J-:: F i) di = 0 for every i)
il

(vii)If Fand g are integrable, then fgzis also integrable.

ik
¥

PROOF

16.2.5Theorem (Properties of Integral):

Let r. gz [«.2] —m= be bounded functions.
(i) If sis integrable and r¢xy=0w =, then

jjf(x)dxzo_

(i) If sis integrable, then [y|is integrable and

I, 7 x| = [ 1ol

(iii) If sis integrable and & <m, then & is integrable and
J; o wan= ([ rimrax).

(iv) If rand care integrable, then 7+ g are integrable and

jj (Ff+g)x)dx= I:f(x) dx + j: g(x) dx
(v) If rand =are integrable and s =g for all xe[«.2], then

j:f(x) dx zj:g(xj dx.
(vi) If sis integrable on [«,z], then sis integrable over every interval [-,2]<[«. »]and

_[:j(zj dt = _[:j(zj +jfj(:).:—.sz a<c=h
This is called the additive property of the integral.
(we define I“ﬂﬁ)dﬁ: ofor every r).

(vi)If rand =are integrable, then sis also integrable.
Proof:
Proofs of all these properties follow from the properties of limits. Though not

difficult, the proofs are technical. We shall assume them. Interested reader can refer
a book on Real Analysis.

16.2.6 Theorem (Mean Value Property for Definite Integrals):

If f : [a:,f;.] — [/ is continuous, then there is at least one point ¢ & [a,f;.] such that
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[ 7@ dn= FG-a)

e
/

PROQOF
16.2.6Theorem (Mean Value Property for Definite Integrals):
If #:[a.2]—> Ris continuous, then there is at least one point = e [«, ] such that

[[ s dx= ree-a

Proof:

Since fis continuous on [x,&], it is integrable. Let

m:=min{f{x}|xe[a,b]}and M::max{f{x} | xE[cx,b]}.

Then,
b —a) = I:j(xj dx = M{b—a),
i.e.,
moe L Ibf(x}dx <M.
b—a 2

Thus,

1 L]
— [I S cfx]e R(F),
b—u 2

the range of /. Thus, by the intermediate value property for continuous functions, there exists a
point ¢ e [a, ] such that

1 b
HOE EEL f(z)a‘z].

16.2.7 Note:

(i) Average Value of a function:

Q)

For a integrable function f : [a:,f;.] — [}, the number

1 b
p L F(x)dx.

can be thought of as the average value of f in the interval [a,f;.]. Theorem 16.2.6 says that the average

value of a function is attained at some point if the function is continuous.

Consider f;[—l,l]—}m'_given by Fix)=0if-1£x=0and fi{x)=1f0<x=1.

The average value of fequals 1/2. But Fiz) =1/ 2forany ¢ e [—1,1]. Thus, the continuity hypothesis

in theorem 16.2.6 can not be dropped.

PRACTICE EXERCISES

Find an interval [a,b]a function - [,Q:,E;I]J;R, and a partition 5, » =1, for which .35, given below is
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the
Riemann sum S'[P;q:f:' :

1 n
|:|:| S?‘! = ﬁ(ZIEIE
# 1=l
N
#
(ins, =
" 1:1 32 +.?22
" 1
(iii) Sy =2 =
I=1 Wfin+2xn
fi) &, = lznlcos(z ]
& iz b

m o in L In - 2
BT A
"o z; RO j=n+ln® z'=;+1 b

2. Assuming that f is integrable on a suitable interval, express

i 2 (Lo s(2)es(2)]

as an integral for a suitable function ¥ : [a,f;-] —~R.

3. For the function

=%, 055k

obtain a Riemann sum S[E!f) for a suitable sequence {EQ }nHOf partitions and compute

I; xidx -

4. Let f:[—a,+a]—IE be a nonzero integrable function such that

Fi=xi=—F(x) forevery x E[—a,+a] .
Show that

A
ID S(x)dx=0
even though f(x)# (Iforany xe [—cz,+a:] .
5. Let #: [g,b] — [/ be an integrable function such that
Fixy=0forall x e [a,c}U{d,b],

where @ = ¢ <d £ & Show that

o rax =[ 00 ax-



6. Provethatforall j=gand =12, .,

& & 1
25in[§] [sin E4zin2k+. +an [:m.iz:l): cos (E]_ Cos (m+§]}'z.

T

Hence, find .I'? by computing the Riemann sums S[E!f) for a suitable sequence {Pn}n}lof
! z

qn x ofx

partitions and taking limits.

Let 7 [a,f;-] — TR be a non-negative continuous function such that iz} = for some ¢ [a,f;-]. Show

that there exist

g, =, such that

Ffix)ze, fDraIIxE[c—c'i‘,c+5].

Hence, deuce that
b
[ Fimdx=0
[
Hence,

if #is non-negative continuous and J'Ejf(xj drx=10,then f(x)=0forall xe[a,b].
i

8. Give an example of a nonzero integrable function [a,f;.] — B such that f{x)=0forall xe [.:;;,E;.], but
b
L Flx) dx=0-

Recap

In this section you have learnt the following

How to define the integral of a function as a limit of Riemann sums.
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