
27.1 Power Series

27.1.1Definition:
(i) A series of the form

 
is called a power series in the variable centered at , where  for all . 

(ii) A power series is said to converge for a particular value  if

 the series is convergent

(iii)
The set of all such that is convergent, is called the domain of convergence of

the

 power series.
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Lecture 27 :  Series of functions [Section 27.1]

  Objectives

  In this section you will learn the following :

Definition of power series.

Radius of Convergence of power series.

Differentiating and integrating power series.

      

 

 

 

 

 

 

 

 

 

 

 

 

 




  

27.1.2Examples:

(i) Consider the power series

 
centered at . For a fixed value of , this is a geometric series, and hence will be convergent for 

, with sum . Thus, we can write 

(ii)

The power series is a power series centered at . For every fixed value of , this

can be treated as a geometric series with common ratio 

 

Thus, for a particular , it will be convergent if ,and its sum is

Hence,

(iii) Consider the series

 

 

This is a power series centered at . For its convergence, let us apply the limit ratio test. Since

 

the series is convergent absolutely for ,and is divergent for other values of 

For , the series is ,

which is a divergent series. Also for , it is the alternating harmonic series. Thus, the given power

series is convergent with domain of convergence being the interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



The domain of convergence if a power series is given by the following theorem.

27.1.3Theorem :

 

For a power series

 precisely one of the following is true.

(i) The series converges only for .

(ii) There exists a real member such that the series converges absolutely for with , and

diverges for with 

(iii) The series converges absolutely for all .

 

27.1.4Definition :

 The radius of convergence of a power series    is defined to be number

(i) if the series is divergent for all .

(ii) if, the series is absolutely convergent for all .

(iii)
, the positive member such that the series diverges a for all such that and the series

converges

 
absolutely for all such that . The interval such that the series converges is

convergent for all is called the interval of convergence .

27.1.5Remark :

 
Note that the interval of convergence is either a singleton set, or a finite interval or the whole real line. In
case it is a finite interval, the series may or may not converge at the and points of this interval. At all
interior points of this interval, the series is absolutely convergent.

27.1.6Example :

 Consider the power series

 

To find the value of for which the series will be convergent, we apply the ratio test. Since

the series is absolutely convergent for with ,

i.e.,
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absolutely convergent for 

And the series is divergent if 

For , the series is 

which is absolutely convergent. Also for , the series is convergent. Hence, the series has radius of

convergence , with interval of convergence .

 

For a power series

if is the interval of convergence, then for every , let

.

Then

is a function on the interval . The properties of this function are given by in the next theorems, which
we assume without proof.

27.1.7Theorem (Differentiation of power series) :

 

Let a power series

have non-zero radius of convergence and

Then, the following holds:

 

The function is differentiable on the interval . Further the series 

also has radius of convergence , and .

The function has derivatives of all orders and .   

27.1.8Theorem (Integration of power series):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Let

be a power series with non-zero radius of convergence and let

.

 Then

(i) The function has an anti derivative given by

 

where is an arbitrary constant, and the series on the right hand side has radius of convergence .

(ii) For ,

 

where the series on the right hand side is absolutely convergent.

27.1.9Example :

(i) Consider the power series

 

By the ratio test, for every 

Hence, the series is absolutely convergent for every . Let 

 

Then, is differentiable by theorem 27.1.7, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(ii) Consider the power series

 

The power series is absolutely convergent (by ratio test) for 

It is divergent for and convergent for . Thus 

is defined. Since the serie

is convergent for and divergent for , we have

.

 

The series is convergent, by the ratio test, for and divergent for 

.. It is also convergent for . Hence, it is convergent for and 

  

 

 Practice Exercises:

1. Find the radius of convergence of the power series:

(i)

(ii)

(iii)

(iv)

(v)

 Answers

2. Find the interval of convergence of the following power series:

(i)

(ii)

(iii)
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(iv)

 Answers

3.
For the following power series, find the interval of convergence. If is the function represented by it

in the

 

respective interval of convergence, find and 

 Answer

4. Consider the power series

 
Show that both the series have same interval of convergence. Find the relation between the functions
represented by these series.

 Answer

5. Bessel Function of order zero:

 
Prove the following:

(i) The series converges for all (use ratio test)

(ii) Let denote the sum of this series. Show that satisfies the differential equation 

 

6. Bessel functions of order one:

 

Consider the power series

.

(i) Show that the series convergence for all .

(ii) If denote the sum of this series, show that

(iii) Show that
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   Recap

   In this section you have learnt the following

Definition of power series.

Radius of Convergence of power series.

Differentiating and integrating power series.

  Objectives
  In this section you will learn the following :

Taylor series expansion for functions.

Maclaurin series expansion functions.

27.2 Taylor Series and Maclaurin series

 
In section we saw that a function can be approximated by a polynomial of degree  depending upon its
order of smoothness. If the error terms converge to zero, we set a special power series expansion for 

.
  

27.2.1Definition:

 

Let be a function which has derivative of all order in . Then the power

series

Series, Tests of Convergence,  Absolute and Conditional Convergence, Taylor and Maclaurin
Series

Lecture 27 :  Taylor and Maclaurin series [Section 27.2]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




is called the Taylor series for at . We say  has Taylor series expansion at , if its

Taylor series is convergent for and its sum is . For , the Taylor series for  is called

the Maaculurin Series for  at .

  

27.2.2Examples:

(i) For the function  its derivatives of all order exist in domain

 

                  . 

For a = 1, since 

                 ,

we have 

                .

Thus 

                

 

is its Taylor series at . Since it is a geometric series, it will be convergent if 

          .

Further, its sum is 

          .

Hence, has Taylor series expansion 

           

(ii) Consider the function since

 

         , 
The Taylor (Maclaurin) Series of f at , is given by 

         
By the ratio test, series converges for all , but we do not know its sum.

  

27.2.3Theorem (Convergence of Taylor Series):

 

Let  be an open interval and be a function having derivatives of all order in . For 

, there exists a point between  and  such that 

       .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Further, the Taylor series of f at  converges to  if   

  .

27.2.3Theorem (Convergence of Taylor Series):

 

Let  be an open interval and  be a function having derivatives of all order in . For 
there exists a point between a and  such that 

.

Further, the Taylor series of f at  converges to  if   

.

 Proof

 Follows from theorem 14.1.1 we have already seen some examples of Taylor series expansion in
section 14.1 we give some more examples.

 

27.2.4Examples:

(i) As in example 27.2.2( ii ), for with ,

 

, for some  between  and .

For as  is between  and . For is monotonically 

increasing, . They 

Since, 

For every x fixed, we have 

.

 

Hence, the Taylor series of indeed converges to the function , i.e., 
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(ii) For the function

 

since

and for all x, we have

Hence, Taylor series of = cos  is convergent to , and 

.

 

Similarly, one can show 

.

27.2.5Note:

(i) Suppose, a power series

 

is convergent is an open interval I around a point a , and 

                                                                                     ----------(*)

A natural question arises, in the power series above the Taylor series expansion of  The answer is

yes. In fact if (*) holds, then the power series has nonzero radius of convergence and hence by theorem
27.1.7, series can be differentiated term by term, giving 

....

Thus 

(ii)
In view of (i) above, if  is expressed as sum of a power series, then it must be Taylor series of 

.

 Thus, technique of previous section can be used to find Taylor series expansions.

27.2.6Examples :

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(i) From the convergence of geometric series, we know 

 

 

Thus, this is the Maclaurin series for . If we change the variable from  to  we get 

the Maclaurin Series expansion for . (Note that to find Maclaurin Series directly requires

some tedious derivative computations). Now for using theorem 27.1.8, we have 

.

Since for , , we have . Hence 

In fact, using the alternative series test, it is easy to see that the above holds for also.

27.2.7Algebraic operations on power series:

 

Suppose power series 

are both absolutely convergent to  and  respectively Then it can be shown that the

following series are absolutely convergent to 

(i) .

(ii) .

(iii) .

(iv) .

 

where 

.

This can be used to write Taylor series expansions from known expression.

27.2.8Examples:

(i) Let us find Maclaurin series of the function

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Since 

and 

,

 

We have 

.

Thus 

,

is the Maclaurin series of .

(ii) Let

 

         .

Since 

         ,

we have 

        .

Also 

        .

We have 

       

 CLICK HERE TO SEE AN INTERACTIVE VISUALIZATION - APPLET
 Practice Exercises:

(1) Using definition, find the Taylor series of  around the point :

(i) .
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(ii) .

 Answer

(2) Making appropriate substitutions in a known Maclaurin series, find the Maclaurin series of the following
along

 with its radius of convergence:

 (i) 

 (ii) 

 (iii) 

 Answer

(3) Maclaurin series for the following.

(i)

(ii)

(iii)

(iv)

 Answer

(4) Using Maclaurin series for standard functions and suitable operations, write Maclaurin series for the
following :

(i)

(ii)

(iii)

(iv)

Answer

(5) Binomial series:

Write Maclaurine series for the function

Where m is a real member. Using ratio test, show that the Maclaurin series for  is convergent for 

. This series is also called Binomial series for . Using this series, find the Maclaurin series for 

 Answer
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   Recap

   In this section you have learnt the following

Taylor series expansion for functions.

Maclaurin series expansion functions.
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