
Module 17 : Surfaces, Surface Area, Surface integrals, Divergence  Theorem and
applications

Lecture 51 :  Divergence theorem [Section 51.1]

Objectives

In this section you will learn the following :

Divergence theorem, which relates line integral with a double integral. 

 

51.1 Divergence theorem

We saw in lecture 48 (module 16) that the Green's theorem relates the line integral to double integral:

An extension of this result holds in for surface integrals, which helps to represent flux across a closed surface

as a triple integral.

51.1.1 Theorem (Divergence theorem):

Let be a closed bounded region in whose boundary is an orientable surface . Let

be a continuously differentiable vector-field in an open set containing the region . Then

where is the outward normal to the surface . 

(For Simple regions )

We shall assume that the region has the property that any straight line parallel to any one of the coordinate

axes intersects at most in one line segment or a single point. For such a region , we have to show that
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                                       ----------(70)

Let the outward normal at any point on have direction cosines and i.e., let

than is same as proving:

To prove this, we shall prove the following:

                                           ----------(71) 

                                         ----------(72) 

                                            ----------(73)

Because of the special assumption on ,it can be written as

In the above is the projection of onto the -plane. Note that, for any , a point 

provided lies between the surfaces and . Thus the boundary of consists of an upper

part the surface a lower part the surface , and possible the lateral part: a

cylinder with base and axis parallel to -axis. Thus 

 
Figure 222. Caption text.

Note that on the surface the and that the outward normal makes with is acute, on it is obtuse and



on it is . Hence, above becomes 

This proves . Similarly, using the special nature of and projecting it on -plane and -plane,

respectively, equations and can be proved. This proves the divergence theorem for special regions.

51.1.2 Note :

Divergence theorem can be extended to regions which can be divided into finite number of simple regions.
Essentially, the idea is to add the corresponding results over such regions, observing that the surface integrals
over common-surface will cancel other (normals being outward).

51.1.3 Example:

Consider the solid enclosed by two concentric spheres, say 

Figure

Let

Then has boundary , which is orientable, but is not simple solid. However, we can write 

where



Then and are both simple solids, is bounded by piecewise smooth surfaces upper hemisphere of 

the surface upper hemisphere of and the annulus surface in the -plane given by 

Similarly, is bounded by , the lower hemisphere of , the surface , the lower hemisphere of and 

. Note that the outward normal on as boundary of is negative of the outward normal of as boundary of 

. The divergence theorem is applicable to both and , and we set

where, the normal to is directed towards origin, while the normal to is directed outward, away from origin.

51.1.4 Example :

Similarly, consider the region bounded by the surface obtained by revolving a circle of redius with center at

about -axis , . 

Figure: Torus

with axis being the -axis. Then it is a simple - solid, its projection on -plane being the annulus region, as
shown in figure. However, it is not a simple -solid or a simple -solid. We can divide into four region by 

and by planes parsing through -axis and parallel to and planes.



Figure 4. Forms as a unioin of simple surfaces

51.1.5 Example :

Let us verify Divergence theorem for the solid bounded by the paraboloid and the -plane,

the vector field . The surface binding the region is , the paraboloid 

and the surface , the -plane. For , the outward unit normal is . For , the

outward unit normal is 

Figure 226. The Paraboloid

Thus

where . Hence



On the other hand, it is easy to check that Thus

This verifies divergence theorem.

Practice Exercises

1. Verify divergence theorem for the following: 

is the solid bounded by the three coordinate planes and the plane 

Answer: 

2. Let be the solid bounded by the cylinder  the plane and the plane Verify

divergence theorem for this solid where

Answer: 

3. Verify divergence theorem for the region enclosed by the cylinder  the planes 

and 

Answer: 

Recap

In this section you have learnt the following

Divergence theorem, which relates line integral with a double integral.

[Section 51.2]



Objectives

In this section you will learn the following :

Some applications of the divergence theorem.

 

51.2.1 Example (Computation of surface integrals):

Consider the solid bounded by the there coordinate planes and the plane   Let  be the

surface bounding this region.   is a peicewise smoth surface being the union of simple surfaces.

Figure: The surface 

For a given vector field , computing the surface integral

is complex as the surface is made up of four subsurface. However, this can be easily computed by computing a
single triple integral. For example, if

then by divergence theorem




51.2.2 Example:

Let be a region in enclosed between two non intersecting surfaces and . Suppose both and are

orientable (for example and are concentric spheres). Let be the inner-surface of and be the outer-

surface of . Then

If is such that on , then we have

where is the unit outward normal to . This helps us to compute either of the above flux integrals in

terms of the other. For example, let

and , where is a sphere of radius and is a closed surface including the region 

. Then, as by divergence theorem

where is the sphere centered at origin and of radius Note that in the first integral is the outward normal,

while in is the normal pointing towards origin. Thus,

where, in both integrals, is the outward pointing normal.



Figure:The region 

For 

the normalized position vector. Hence,

and we have

51.2.3 Green's Identity and properties of Harmonic functions:

Let be two scalar-fields which are twice continuously differentiable in a region which includes a solid and

its boundary surface . Let . Then,

where

called the Laplacian operator . Thus, by the divergence theorem applied to over we get 

i.e.,



                                                                           ----------(74)

where is the directional derivative of in the direction of . The equation (74) is called Green's first

identity . Interchanging and in the above equation, we get

                             ----------(75)

Subtracting (75) from (74), we get

                  ----------(76)

This is called Green's second identity . Some of the particular cases of these identities give us the following
consequences:

51.2.4 Special cases of Green's Identity :

1. Let in . Then, as we have 

Thus, if , (in which case the scalar field is called harmonic ), we have

The integral is the average of the rate of change of along the normal on . Thus, for a harmonic

function on , average of its rate of change on is zero. This is called the Laplace theorem .

2. Let in (75). Then, 

Suppose, either or on Then,

Further, if is harmonic, i.e., , we have 

which implies that in and hence in . Thus, for a harmonic function in , if either



In particular, if as is continuous, then

                                                                        ----------(77)

then, in also. As a particular case, if are two harmonic function in such that on 

, then satisfies equations (77), and hence in i.e., in 

Thus, a harmonic function in uniquely determined by its values on the boundary of We close this
section by giving some examples of harmonic functions.

51.2.5 Examples of harmonic functions:

1. The flow of heat in a body : The equation governing the heat flow is 

when is a constant and represents the temperature of the body at a point at time 

. If the flow of heat is 'steady', i.e.,  does not depend upon temperature, then i.e.,

the temperature of steady heat flow is a harmonic function. 

2. Consider the gravitational force on a particle of mass at any point due to a mass at a

fixed point The gravitation force is

 Figure: Force of gravitation between point masses

where



We also saw that, Further, if

and such a scalar field is called the 'potential' of the force field Then, in this case,

If a mass is distributed in a region in space with density then the

corresponding potential of the force field at a point not occupied by the mass will be given by

Hence,

Thus, the potential of the gravitational force field is a harmonic function at every point which is not
occupied by matter.

51.2.6 Independence of divergence of the coordinate system:

By the mean value theorem for triple integrals,

for some point in the closed bounded region , where is a smooth vector field in a domain that includes 

along with its boundary and is the volume of the region Then, by the divergence theorem, if is the

surface bounding the region and is orientable , then

Let be a fixed point in the region and we apply the above discussion to the region a small sphere

centered at the point of radius Then, there exists a point such that 

Figure: Sphere at  inside 



where is the volume of the sphere If we let in the above equation, as , we

have

(79)

Note that, since and are independent of the coordinate system, and the surface integral is a limit of

approximating sums, is independent of the coordinate system.

51.2.7 Physical interpretation of divergence:

Recall that, the integral

gives the total mass of the fluid that flows across a surface per unit time, where being the

density and the velocity of the fluid. We can also interpret it as the total mass of the fluid that flows from
inside of to outside if is the outward unit normal. Thus

is the average flow out of per unit time. Thus, equation (79) tells us that if we want to find the flow of the
mass per unit volume, per unit time at a point, then this is given by the right hand side of (79), i.e., by 

. Further, if the fluid flow is steady, the fluid is incompressible, and there are no source or sink, then

clearly the rate of fluid flow across a point must be zero, i.e., . Conversely, if , then

the rate of flow across a is not zero, hence either fluid is being produced at or is being absorbed at .

Hence, for a steady flow of an incompressible fluid flow through , there are no sources or sinks iff 

=0. Note that incompressible is same as saying the density is constant. Thus, iff ,

where is the velocity vector field.

Practice Exercise

Let be harmonic functions in such that on , the boundary of . Show that on .

1. Using divergence theorem compute the integral 

where is the surface of the unit cube in bounded by the there coordinate planes and the planes 

and

.

Answer: 

2. Find the flux of the field 

,



across the surface consisting of the hemisphere 

with base 

Answer: 

3. Use divergence theorem to verify that the volume of a solid bounced by a closed surface is given by
either of

the following:

.

Recap

In this section you have learnt the following

Some applications of the divergence theorem.
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