Module 16 : Line Integrals, Conservative fields Green's Theorem and applications
Lecture 48 : Green's Theorem [Section 48.1]

Objectives

In this section you will learn the following :

e Green's theorem which connects the line integral with the double integral.

48.1 Green's Theorem for simple domains :
We analyze next the relation between the line integral and the double integral.
48.1.1 Definition:

Consider a region & in the plane defined by

R={(xy)elR} lasx b, f(x)y = g(x)],

Figure: Caption text.

where f(x), g(x)are continuously differentiable functions. Such a region is called a vertically simple region or a type-

I region in E* Let i* denote the boundary of this domain, (*being traversed in the counter-clockwise direction (i.e., as

you move along the boundary, the domain g lies to the left). Then the boundary (*can be broken into parts

=00l lud,




where (7 and 7 are the vertical line segments, ', is the graph

{(x,f(x))|cx£x£b}

and C4 is the graph

{{x,g(x}ﬂbi = cx}.
48.1.2 Theorem (Green's theorem for simple domains):

Let P,{2: 7 —1IR. be continuously-differentiable scalar fields, where {7 —IE*. Let R be a vertically simple region in

IE.# which can be represented as

R={(x,y)|a:5x£b,f(xjEyig(x]}

where both the function F g are continuously differentiable. Further, let 7fbe such that g and its boundary (are
inside [7. Then

‘Pc Pdx+ Ody = ”R [g - %} dxdy.

where {7is given the counter-clockwise orientation.
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PROOF

Let us write
C=Clul i ul,

where the curves Cl, CE,C3 and I:f,"4 have, respectively, the following parameterizations

Ciisnly)=ait+y], gla) =y = fla),
Colsn(x) =xi+f(x)j,asx=h,
Ciisn(y)=bity], flb) =2y =gid),
Cytsr, (x) =xi+g(x)],f=x=a,

Then

cﬁcm: ]cl P.:fx+_|-C2de+_|-% de+]-c4 Pdx
=ﬂ+j:: P(xf () dx+ 0+j: Prg(x)) dx

=[P, £ (<) - P ()]

X=a

x=b| o flx) 3F
- -[x=a |:-[}'=g{x} 5 () ﬁfy}dx

=— ﬁ(x,y)dxdy —————————— 47)
Ry

A similar calculation will give us
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oQ
§od=[[ ey (48)
From {47)and (45} we have

cpcde +QOdy = Hﬂ{g - g} drxdy.

48.1.3 Note :

Arguments similar to the above theorem will tell us that conclusion of Green's theorem also holds for regions & of the
type :

R={(zy)eR*|C2y=d, f») 2x<g(y),

where f gz are continuously differentiable. Such regions are called horizontally simple regions or type-11 regions in
L
48.1.4 Example :

Let us verify Green's theorem for scalar field F = Pi+{2], where

P(x,y)=—x"y, O(x,») = n°,

and the region F is given by
R::[(x,yﬂxz +y° Ecz].

The boundary {¥of F is the unit circle.
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Figure 196. R with boundary circle
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A parameterization of {7is
rifi=acosfitasani], == 2w
Thus,



CPC_ Fefx 4 Odv = Lzﬂ(—cf cos sinf,) [—cx sin.ﬁ]

_l?f(—cf cost sinjr.){—a cos.ﬁ}
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+costs sin®f+costs sing.ﬁ:ldﬁ

And

e =X

HR[%(?WE) -2 (—xgy)}ixcfy -[ {I o 0P+ dy} a
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Hence

cpcde +QOdy = Hﬂ{g - g} drxdy.

48.1.5 Extending Green's theorem beyond simple regions :

(in polar coordinates)

In theorem 4% 1 ]1we proved green's theorem for simple domains (horizontally simple or vertically simple). Though a
complete and rigorous argument is beyond the scope of these notes, we show how Green's theorem extends to more

general regions as follows:

1. Let R be the region enclosed by a simple closed curve (. Then

Figure: Splitting a region into simple regions

The region  can be subdivided into finite number of simple regions by line segments parallel to the axes. As in



R

figure above, Fis divided into three non overlapping regions Rl, Rz,and R3' For each region R! Green's theorem
holds, and we have

a0 ar
CPRdex+Qdy:IIC%{BX @}}dxd i=123,

where C’i is the boundary of the region R! traversed counter clockwise direction. Since
Cy= U T4, B),

C, = (U C(B,CYuE,uC(D, 4

Gy = 5w 08,0,

where C'(A, DN, CT{EB,CY,C(0D, A), and (T, B) are the line segments joining the first point with the second point.
Thus, adding the above equations for i =1 2 3, we have

([ pes -0y =[[ (Pax+ar) ], (Pas-Q) ], (Pas+02)
42Tty [ -5 oo
g T Fonardy (35 Jore
-4 L2-Llasar

This says that Green's theorem holds for the region #& .

2. As a particular case of (i) we get that Green's theorems holds for regions as shown in the figure below :

¥
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Figure: Simple region

Joining any two or more such regions, we get Green's theorem for regions of the type:



Figure: Joining simple regions

For example, for the annular region & = {(x,y]l |.:;:2 < 52 +y2 < ,t.z] the Green's theorem states:

HR[BQ aP]a?,:f I {de+Qdy}+L‘ﬂ Fdr+{dy

Note that C"j is oriented counter-clockwise while C'l is clockwise. Thus, Green's theorem extends to domains with

finite number of holes also:

Figure: Splitting a region into simple regions

48.1.6 Example:

Consider the line integral of the vector field

—-¥ x .
Fixyvi= i+ Cix =000,
(x,p)= 215 x2+_y2] (x, 0 = (0,0

over any piecewise smoothly closed curve {*that does not include the origin. Let (*be oriented counter-clockwise.

Figure: Piecewise smooth curve not including origin

Then, by Green's theorem, if E is the region enclosed,



e -”f I R

=0.

Let us also compute the line integral of F over a piecewise smooth, simple closed curve (7 that includes origin, {7
oriented counter clockwise.

1
NI

Figure: Piecewise closed curve including origin
Since {fdoes not intersect the origins, we can find some # - [] such that the circle
= [(x,y) EIRH:{E + :rg]
lies completely inside (. We orient C?, clockwise, and consider the region & enclosed by {*and Cr . Thus, by Green's

theorem, we have

-t oo )
- B (w5

Hence

¥ x _ ¥ X
CPC( x2+y2]dx+[xz+y2de_cP—Cr[ x2+y2]dx+(xg+y:‘}dy

48.1.6 Some other forms of Green's Theorem:

1. Flux form of Green's theorem:

Consider a simple closed curve (7 oriented counter-clockwise. Let & be the region enclosed by it. Let the arc-



length parameterizations for (¥ be

rig) = x(z)i+y(&]

Then, the unit tangent vector to {*at a point is given by

T(s)=r"(a)= x"(5)i+)s)]

and the unit-normal, pointing outward to the region &, is given by

n(s)=y"(s)i- x"(s)].
Let
F=Fi+0j

be a continuously differentiable vector-field in a domain [iwhich includes both *and & . Then, by Green's
theorem

a2 ap _

”R[E—a]dxdy_ c]ﬁ GPdxtQdy. e (49)
If we write
G=(0i-Pj,
then,

div (G) = %— g --------- (50)
and
G n=(Ci-F) (v (&i-x (]

=Px(+@y (51)

From {49}, {50y and {51}, we have

HR div (3 drdy = CPC [Gn)ds.

Thus, the flux of G =i — B/ across a simple closed curve * is the double integral of the divergence of (Fover

&, the region enclosed by ( This is called the flux-form of Green's theorem .

. Work form of Green's Theorem

Consider a force field
F=ri+{]
and representing

% _ %: cudl (ke (52)
o i

Also on the other hand

. Pax+0dy = (A+0) (= (s)i+y(s)i)ds



=4 (FTyds e (53)

Thus, by Green's theorem, using (52), (53) we have

CPC{F-T )ds= ”R[curl (F k) |dxdy.

The integral on the left represents the work done in moving against a force field F along the curve (7 This is
called the work from of the Green's theorem . This is also called the Curl form of the Green's theorem

Practice Exercises

1. Verify Green's theorem in each of the following cases:

1. Plx,y)i=—n*00xy) =2y R[(x,y} |x=0,0=y=1 —xg}

2. Plx,y)1=2xv,0(x,y)=e” + x*, where, gis the region inside the triangle with vertices (0,07, (1, 0, (1,1).
2. Verify Green's theorem for

F(xy) = +y)i+ @ x-cos »i,

R the region that is inside the square with vertices (1,01 {5,071, (5 37 and ({0, 3) but is outside the rectangle with
vertices {1, 1),{3,1),(3, 2)and {1,2)and {7is the boundary of this region.
Answer: Both integral are equal to #%

o | M,

p
+ “}?_ = 1
3. Show that Green's theorem is applicable for the region £, the inside of the ellipse 4

and out side the circle xj +_}r2 =1, and hence compute

j 2 xvdx + (%0 +2) dy
< where (7'is the boundary of the region £ .

Answer: 107

4. Let [, g be differentiable function of a single variable and (7 is a piecewise smooth simple closed path. Show that

Jo F(dxrg(ay=0.

5. Verify the flux form and the curl form of the Green's theorem for the following:

- . = i ' i =i
1. Fix,»)I=(x—yi1i+ xj,and Fis the region bounded by the circle rf)=costitaintj,0=cs2m

2. Fix,¥i=i{x—y)i+{y—x)j.and g is the region bounded by the lines x=0,x=1,y=0,y=1

Answer:

() 7

@ 2
Recap:

In this section you have learnt the following



¢ Green's theorem which connects the line integral with the double integral.

[Section 48.2]
Objectives

In this section you will learn the following :
¢ Computations of line integrals and area enclosed by a curve.

o Sufficient condition for conservativeness of a vector field.
e Integral formulae for the laplacian.

48.2 Applications of Green's Theorem:
48.2.1 Evaluations of line-integrals :

Green's theorems help us to evaluate certain line integrals by evaluating the corresponding double integral. For example,
we want to compute the line integral

7 :Cpc[ﬁ—zy—yj) ci’x—(Exy— xg)dy

where 7is the boundary of the square

R={(x,y)|[]£x51,0£y51}.
Using Green's theorem, we can convert this to a double integrals. Let (¥, the boundary of the region & be given
anticlockwise orientation.

Figure: Design R,with oriented boundary

Then, by Green's theorem,




! :HRE o) -2 (5—xy—f:|}dxdy

:E ([ﬂl (=2y +2x+ 2+ Ey))c;t’m’y

3 3
(1 sraer=2 ] =2

48.2.2 Area enclosed by a curve :

Let {*be a simple closed curve in IE{EJ enclosing a region £ . Consider the vector field
F=Fi+{],

where F{x v)=yand ({x, vi=0in . Then, by Green's theorem,

—Cjﬁcycfx = ”Rcfxdy. ---------- (54)

Similarly, if P{x,y)=0and (}{x,yi=xin g, we have by Green's theorem,

CPC xdy = ”R.:I’x.:iy. __________ (55)
From {54} and (53], we have
2 {Ji'-.rea of region R]I = EHR.:z’xdy = Cpcxdy—ycix.

Thus, the area of the region £ is given by

1

A= E(ﬂgpcxdy—ydx) .
In case (*have parameterizations:
rii)=xn+yiE)],a=t =k,
Then, the area enclosed by {is given by
A L f &) 4.

=5 [ [70r©- oz
If 7 has polar representation
& =rcos 8,y =ran 8,8, =8=8,

we get
1ty

48.2.3 Sufficient condition for a vector-field to be conservative :

Suppose [lis a simply-connected open set in IR_:* and F: 0 —}IR:* is a vector field,

F = Pi+ (0]



such that

oF a0 .

—= % mb e (56)
v dx

In this case, we claim that there exists a function ¢: [} —IE such that

0 _ 9% _
= Pand >, 0.

In other words, a planer-vector field in a simply connected region is conservative if (56) is satisfied. In view of theorem
47 2 8, it is enough to show that the line integral

cjﬁc Bidx+Qdy=0.

for every simple closed curve {7in [j. This indeed happens: , first given a simle closed curve {*, as [} is simply
conected, we can find a region g — [1such that {7 is the boundary of £ . Then, by Green's theorem,

_[|2e_ _
cjﬁc Pudx+ Ody = ”R (E_ > xcly = 00,
Hence, F is conservative.

48.2.4 Change of Variable formula in IE.{2 :

As another application of the Green's theorem we can deduce the change of variables formula, as stated in theorem
42.1.2. Let

T UcR* = IR?
be a transformation defined on an open simply connected subset [f of IE{2 such that if
Tla,v) = (A (0, v), Flu, vl = (x5,

then X I have continuous partial derivatives, both X ¥ are one-one onto and

ay ar
EE
J(T (v = # 0, for any (1) .
Ay dr
EES

Let p* — 77 be simply connected, with T(R*] = & . Then, we claim that

(o7 o) drdy = [[ e f (X, 7w, 9) | T (T, e, v ) day
Let us first prove it in the particular case when
F=1and J(T, (v =0 forall (zv)elR"

Similar arguments can be given for general case. Let {7be the boundary of & and (*the boundary of R = T(R). We
observe that as J{7,{u,v)) = 0if (*is oriented anticlockwise, then T'{(" = **is also anticlockwise. Let ;- [, ] —IE"*

e = (u(e), i), ¢ €[a,b]



be a parameterizations of ;™ in the anticlockwise direction. Then
8lab] =R
Ay = al A (), v, F)),(v(4), £ €la,b]

Figure: Transframation T

is a parameterizations of {in the anticlockwise direction. Now by Green's theorem

-”R dxdy = CPC xdy

- I:X[u {:],v{z]}(%j—?+gg] dt

L[5 ()2
o r5 a5

- ”R*[i(ﬂ]_%[%]}m
=|[#7 Y dudlv.

48.2.5 Integral formulas for the Laplacian :

Recall that the operator ?2, called the Laplacian operator, in the plane is defined by

T3 (1) = ” 2;;

where _j' is any scalar field having second order partial derivatives. Let us consider one such function wt{ x, ¥jand define

the vector field

We apply Green's theorem to F to get



(0w = | 2-(22)-2 (22 s

& w c:fx & w dy
—CP — |d=
C E!y c;t’.'s Ax ds
oy A (‘f—""i—ﬁj]ds
< ax ds  ds
= CPC(?W}.ndS,

where mis the unit normal to {*for the given orientation. Recalling that for a differentiable function w,
(% W) mis the directional derivative of win the direction of m, let us write

& w
— =W n
- (W w)

Then, we have

& w
2 —
”R (v W) dxdy —I ¢ Fa ds. (57)
In the particular we have the following,
L O
if —=0onC then T owdrdy=0 58
- Il by (58)

Another such formula is obtained by considering a scalar field ¥ as above, and observing

&
wW— =WV w.n),
&

by Green's theorem we get

§owgmds = . w(Tnn) ds
= 5470 n)

= % [, div (7 () dxdy

=[], div o7 w) drdy

= [ [ w. 7w+ w) ] drdy

N R a1 — 59)

Equations (57), (58) and (59) are called Green's identities . Scalar fields w(x:,ijhich satisfy the relation T-f'jw: i

are called harmonic functions . For a harmonic function ¢, if ow =0 on (7, then equation (59) gives

e



0= [[ 17wl dxdy

Hence

wwP=0, ie, 22 3 0 iz
Ax Ay

In case f&is such that any two points can be connected by a path parallel to axes, this implies that ¥ is a constant
scalar field. Thus,

for a harmonic function w, if its rate of change along the unit tangent direction to {7in zero, then ris constant in the
region enclosed by .

Practice Exercises

1. Use Green's theorem to evaluate the integral Cpcyg dx + x dv where (is the boundary of the region J given by

1. Ris the square with vertices (0, 0% (2, 0%,(2, 23, (0, 2).
2. Ris the square with vertices {1 £1).
3. Ris the disc of radius 7 and center {0 3.

Answers:
@ —4.
(i) 4.,
(iii) 47

2. Find the area of the following regions using Green's theorem:

1. The area lying in the first quadrant of the cardioid » = a(1—cos&).

= — 51 3 — I e
2. The region under one arch of the cycloid r=alg—sint)i +a(l EOSﬁ)gJ’ U=¢=2m

3. The region bounded by the limagon » =1-2cos &, 0 =& = 72 and the two axes.

Answer:

2
(M L izr-my.
2 | )
(i) 24

(i) 35’2—‘8

3. Compute the area enclosed by

1. the cardioid: r=a(l- cos&) 0<8 =2,

2. the lemniscate: r *= g* cos 28, — 4 = 8 =774

Answer:



2
i) 4=
5

() A=g%2

4. Let (" be a simple closed curve in the X¥ -plane enclosing a region & . The polar moment of inertia of R is
defined to be

L= (50 drdy.

Show that
I -—lq’: dy— ydx

5. Consider @ = aix,y),b=&(x, y) having continuous partial derivatives on the unit disc [ ={(x,y)|x* +3* 1} If
ai(x,y)=14{x,y)=yoncircle ', the boundary of [ Let
o=+ vi=1(a, —ay]i+(bx —E;y)j,w =&, _by:':l+|:ﬂx —czyj_j i

”Du udxdy =10 and ”Du wdxdy = -7

Using Green's theorem show that

cpcv(f — ) nds =10,

6. Let {Fbe any closed curve in the plane. Show that

7. Using Green's identities , compute

i
CP —ds
Zdn
for the following:

. wixy)=e'+e’ R={(x,|02x=22,0= y=1}.

2. w{x,¥)=e¢" sin y,and g is the triangle with vertices (0,0, (4,23, (0, 2).
Answer:
() g% 4223
@ 0
Recap

In this section you have learnt the following

¢ Computations of line integrals and area enclosed by a curve.
e Sufficient condition for conservativeness of a vector field.
¢ Integral formulae for the laplacian.
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