Module 2 : Limits and Continuity of Functions
Lecture 4 : Limit at a point

Objectives
In this section you will learn the following

e The sequential concept of limit of a function.

e The £ — A definition of the limit of a function.

4 Limit and Continuity of Functions
Recall that, our aim is to understand a function f: A IE —IE by analyzing various properties of f . For
example, one would like to analyze:
Does the 'graph’ of _f have any 'breaks' ?
In this lecture we shall analyze the most important and fundamental concept: limit of a function, and shall
see how it helps us to answer the above question.

4.1 Limit of a function concept :
Let us start with the following problem:

How to predict a suitable value of a function at a point, which may or may not be in its domain, by
analyzing its values at points in the domain which are near the given point?

let f ACR —R.Letc <R , ¢ mayor may not be an element of 4 . The question we want to
answer is the following : Can we predict some ‘suitable’ value ; for ; at ¢ by looking at the values of 7

at points close to ¢ in 4 ? To answer this, let us assume that f is defined at all points sufficiently near
i (may be not at ¢ ), for otherwise we have no data on the basis of which we can predict.

For example, this is true when A is an open interval or ¢ ={ — 4 where | is an open interval.

Next, we should clarify as to what do we mean by saying that a real number | =g is a 'suitable value' for
Ffatc?

One way of interpreting this is to demand that the values # (x] comes closer to the number } as the point

x comes ‘closer' to . This immediately raises the following question: How do we interpret this




mathematically ? A natural way of doing this is to say that this closeness is achieved iteratively, i.e., we
can come close to any point p via sequences.

So if we approach ¢ by any sequence of points in 4 , say {':.'r:! }.'r:?l with Ty —FC then we would like

sequences of values of 7 at x =g, to converge to the same value, namely 7, i.e., Floy)—i - Inthat

case we can predict the value ; for 7 at the point ¢ .
Let us look at some examples.

4.1 .1Example :

i) Consider a function " [[], 3] —4 [ defined as :

cx+1if0ex<3 x21
flx)= |
5 i x=1

=X

i 4 4
] T T

123 4 5
Clearly, f is defined at all points near x =1 . Though f is defined at x =1 also, our aim is to predict

a suitable value for F at x=1 by analyzing its values at points near x=1. For example, let us

approach the point x =1 by a sequence, i.e., consider any sequence {Cn }.'rzi_'l of points in the domain of
S suchthat ¢, #1 forall #21 and ¢, —1. Then, f{c,)=2c, +1. Since ¢, —1, it follows, from
the limit theorems of sequences (see section 3.2.1), that f{cn} = {Ecn +1} — 3 . Hence, we can say
that the natural value that § should take at x =1 is 3.

Click here to see an interactive visualization: Applet 2.1

(i) Let f{xj=[z], xR, the greatest integer function. Clearly, f{x)=0for 1/2 «<x <1 and

f{x}zl for
lox <302

Thus, if we take a sequence {Cn=1—1f3?3} then clearly, ¢, —1 and f{cn}—}[:l, as

n:l

f{cn} =0'% =1 . On other hand, if we take sequence {C‘H = 1+1f3.?3}?221, then again ¢z, —1, but

F {cn] —1,as f {cn] =1% »=1. Thus, we cannot predict a single value for #at x=1.
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Click here to see an interactive visualization: Applet 2.2

This motivates the following definition.
4.1
2

Let [/ be anopen interval of [R ande e f Let A=\ {z}. Let /: A— R . We say that # has limit at . if

Definition :
there is a real number } with the property that j' (Cn} — ], for every sequence '[r:n }n>1 with ¢, —»c

Such } is unique (see exercise 3), whenever it exists and is denoted by xlﬂlc f [-’f} .
In view of the algebra of limits for sequences (see section 3.2), we have the following theorems.

4.1 .3Theorem (Algebra of limits):

lim x lin g{x) exi i :
Suppose x%c‘f( }I and yo E( } exist. Then the following hold:

0 fm (F+e)(x)=lim F(x)+lim g(x) .

X =

@ Jim ()(m) = lim /(=) fim £ ()

X = X =
(iii) For any real number ¢, ;1216 {a‘f}{x} = &}111}1:: f{x} .

(iv) If }ri_r}Irls g(x) =0, then £1_I>II1? {f ! g} (x)= %{1_133? Fixd %{1_1}1} g(x).
PROOF

4.1 .3 Theorem (Algebra of limits):

lin  #f{x} lirn g{x}

Suppose *—*¢ and *—#c exist. Then the following hold:
o R S b s ()
iy P GBI = Jim () Jim s ()

o, 1 o = i
(iii) For any real number xlglct =) # 5 S .

(V) If £1_r}ré gix)1 =0, then £1_r;r}: I:f ! g} [z = £1_r}ré Fix f £1_r}ré gix).

Proof:

Follows from the Limit Theorems for sequences. We leave the details as an exercise.

4.1
A4

Sandwich Theorem :

Suppose { ,g.h:(c—r,c+r)—IR are functions such that
Fixmyzglxy2hix forallx € {r: -r, c]U {r:,r: +r}. for some r > 0.

If Li_t}é fixi=i= }E} A(x), then }&_t::}T gix) = 1

Proof
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4.1

4.1 .4 Sandwich Theorem :

Suppose Fixn = g(x) =k(x) for all = E{c—r, C}U{C,C—F.?"). for some r > O.

lim fixy=7= Ll_r;% A(x), then Ll_r;% zix) = I

If x—=<

Proof:

Follows from the Sandwich Theorem for sequences.

Next we look at another way of describing the statement that a function has a limit at point. To
predict the value of

a function ‘ at a point - we have to analyze the values 7 (=) of the function as = approaches . In
our

definition above, we used the concept of sequences <= —><. One can directly use the notion of
distance for

this. Suppose we want to analyse whether a number ! is the natural value expected of / at ===
or not?

At a point = near ¢, " ' b (=)~
expected. If !

is the value expected, then one would like to make this error small, smaller than any given value.
Let us say that

this error is less than a given value =% for all points sufficiently close to - . Let us look at an

example.

is the error one will be making for being not equal to value

Next, we look at another way of describing the statement that a function has a limit at point. To predict
the value of a function jat a point » we have to analyze the values f(x) of the function as x

approaches ¢ . In our defintion above, we used the concept of sequences «,, — <. One can directly use
the notion of distance for this. Suppose we want to analyze whether a number ] is the natural value
expected ofj' at x =cor not? At a point ¥ near ¢, x & c:|f[x) —.E|is the error one will be making for

being not equal to the value expected.
If }is the value expected, then one would like to make this error small, smaller than any given value. Let

us say that this error is less than a given value £ > [1 for all points sufficiently close to ¢ . Let us look at an
example.

Limit and Continuity of Functions

Recall that, our aim is to understand a function f: A IE —IE by analyzing various properties of f . For

example, one would like to analyze:

Does the 'graph’ of _f have any 'breaks' ?

In this lecture we shall analyze the most important and fundamental concept: limit of a function, and shall
see how it helps us to answer the above question.

Limit of a function concept :
Let us start with the following problem:

How to predict a suitable value of a function at a point, which may or may not be in its domain, by
analyzing its values at points in the domain which are near the given point?

let - ACR—R.Letc =R, ¢ mayor may not be an element of 4 . The question we want to
answer is the following : Can we predict some 'suitable’ value } for § at ¢ by looking at the values of #
at points close to ¢ in 4 ? To answer this, let us assume that F is defined at all points sufficiently near
2 (may be not at ¢ ), for otherwise we have no data on the basis of which we can predict.



4.1
1)

For example, this is true when A is an open interval or ¢ ={ — 4 where | is an open interval.

Next, we should clarify as to what do we mean by saying that a real number | =g is a 'suitable value' for
Ffatc?

One way of interpreting this is to demand that the values # (x] comes closer to the number } as the point

x comes ‘closer' to . This immediately raises the following question: How do we interpret this
mathematically ? A natural way of doing this is to say that this closeness is achieved iteratively, i.e., we
can come close to any point p via sequences.

Example:

Consider the functionj’ : [I:I, 3] —E with
2xr+1 ifl=x=35x=21

=1 if =1

Natural value expected of f at 1, by looking at values near 1, is 3
and not 5 .

For example, the error
1
-3 =2x—-2|«—
whenever the point x is close to 1 by distance —— . In other words, ¥ x £ [[],3] ,
20
1 1
D |zx-1|x — = |
|x | 20 |f{x] | 10
In fact, if we want f (x} close to / =3 by a distance (error) at most & (any positive real number),
then ¥ x £[0,3]
O<lx-1<ei2 = |/(x)-F<¢.

i.e., given any £ we can choose &= £/2 = such that f{x} is close to 3 by distance &

whenever X is close to 1 by distance /5 .
This motivates our next definition.

Definition :
Let 7 be an open interval of [ ande /. Let A=7'{z} Let /: 4—IR. A real number / is called an

£ — & limit of F as xtends to . if the following hold: given any real number & [ , there exists some
& =0 such that

xed0clx-cl<d = |f{z)-{|<e
Such a ', whenever it exists, is unigue (see excercise 3 ) and is denoted by }if}lcf {x} .

Click here to see an interactive visualization: Applet 2.3
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4.1
e

(i)

4.1

Let us look at some examples.

Examples :
Mlet f{zx)=x" if x=2 and #(2)=1.Then, lim f{x)=8  indeed,

| -8 = [x-2||x + 22+ 4.

We find an upper bound for ‘xj + 2x+ 4‘ when x is close to 2 , say |;{— 2| <], that is 1<x <3

. Then,
\x3+ O+ 4\ CO+6+4=19 .

Thus, given any g (1, we may take & :min{l, EHQ} and then,
O<lx- 2/ =4 = [f(x)-8<19x- Z<¢.

Let fix)= i if x= 0. . We claim that }iglnf [-’f} does not exist.

Suppose, ;iglnf (-’f) exists and the limit is / . Then, for £=1, 34 = (] such that

1
— -/
x
In particular, for 1 < x < &,

0 <z <d= ce=1.

f—l-:l <f +1.
x
That is,

l;:f+1 forevery < xa<d.
x

o : L 1
This is not possible, for example, we can choose positive integer #xsuch that— - & ,

1
5 [_] =nsi+1.
#
Hence, |j ! does not exist
, x1§}h; .

Click here to see an interactive visualization : Applet 2.4

bl

but

Before proceeding further, we show that the existence of limit is equivalent to the existence of the & — 7

limit.

.8 Theorem :
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Q)

4.1
.10

0}

For a function f A =R, the & — & limit exists at a point < if and only if ;if}lc f{-’f}=f , i.e., for

every sequence {xﬂ}nb*lil with ?l,liﬂc}nxn:c;':xn #zoandx, =4 for all €M, we have
= —

litn r, =1
n—)mf{ n} '
[l
rd
PROOF

Proof:

lim Ff{xY=/{ lim x, =c¢. x,=c and x,= .4
Assume that *—=¢ (=) and #se= " " forall ==M™ _|et £ >0 . Choose

O<lx—c| = & =|F(x) - <e Next, for this ¢ choose ** =™ such that

|f{xn]|—£|-::£

& =0 such that

2R :>|xn—r::| < & 2 o=y 0 -:lxn—cl < &

. Then, for implies . Hence,
lim, £ () =1
E—-4 . . r . . £

Conversely, suppose that the limit of ¥ at - does not exist. Then, there exists an such
that for every ¢ =2 there is some *=-1 with
D<|x—c|<d, but |Fix)—i|ze.
In particular, for each * =™ there is some "= < 4 with

1
0 -::lxn —r:l =<—, but |f{xn)—f|2t£.

Fed

lim x, =< lim Flx,)={

Then *» =cand x; €4 g5 gl 2 €™ a=5w " , but »—== () . This is a contradiction.

E—=a.. . . .
Hence the g limit of /" at - exists and is equal to /.

lim f {-’f} depends on the values of § at points near c . The function # may or may not be defined at

Even if f is defined at ¢, Pi'f}'lcf [-’f} may or may not exist. Even if }ii;.n,:f [-’f} exist, it need not be equal

to f(c:l

To find Pglcf [-’f} , one has to make a guess and then prove it.

Let us note that, Pgl.;f [Pf} =/ means that for a given £ =[], there exists ¢ =[]
such that for all x £ 4,
0<lx—c|<d implies |f{x,)~4|<e.
Equivalently, % & = there exists (7 = (] such that
xe{c—4d,c) implies |f{x}—f|-¢i€ and xefc,c+8) implies |f{x}—j|-: .

This motivates our next definition.
Definitions :

Let ; be an open interval, c € fand A=7\{g} . Let f - ACIE—=IR.
We say f has left-hand limit at a point » =~ = 4, if there is a real number ; with the property that for
every £ =0, thereis some 5 - such that

sede-dexrce= |f{x}—f|-ir5'.
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4.1
A1

4.1
A2

@

Q)

We write this as xlfé_f {-’f} =] , and call /to be the left-hand limit off atx=r.

We say a functionj' has right-hand limit ; at a point x =c if there is a real number 7 with the property
that

for every & = [J there is some & = such that

xedeccxce +d= |f(:{]—f|-::€.

We write this as xlﬁb_f (X} =i and call ;to be the right-hand limit of fatx=¢.
The above remarks tell us the following :

Theorem :

et . and & e such that o—Fr.c o, o+ #] IS contained In or some p > . en
Let /:4d—=R and cER b h that { oYU e, )i ined in 4 f 0.Th

i i i i if lim xl={ litm x)1=1i i
ilglcf{x} exists and is equal to ;7 if and only if xa-:‘f{ } as well as x—>c+‘f{ } . That is the

limit of a function at a point exists and is equal to ; if and only if both, the left- hand and the right hand
limits exist and are equal to ;.
Examples :
If 7 (;{} = [;n;], x £ B . the greatest integer function, then
lim 7(x)=0 and lim f(x)=1
Thus, Jl:ii'f}llf{x} does not exist.

+1if zz0

et A= i xeo

Then,
xli_}tnmf{x]=+1 and xli_}mu_f{x] =-1

lim #{x i
Thus, x_:.l.f{ } does not exist.

4.1 .13 Example :

Let # {x] = gin l _x#(. To analyze Pglnf [I} , consider
x

1
Ipy=—o,n=1.
M

Then, =z, — 0 and
f{xn]:sin(mjzﬂﬁﬂ .

However, if we consider

2
@n+1)

Fiv ]:sinwzl
" 2

Vi . then ¥, —0 and for every # = 1

Hence,  f{,1—1 . Thus, though both{xn]'n:zl and'[_;un]'n:21 converge to () , but



{f(?.:l,ij}ml, and {f(yn]}ml and converge to different limits.

Hence, limit does not exist, by the previous theorem.
4.1 .14 Note :

Theorems similar to that of theorem 2.1.3 hold for left-hand and right-hand limits.

4.1.15Examples :

LetD-::é?-::E.
2
(i) Since —f#<anf <8, we get éiﬂa+sin5=0.

(i) Since —@<1<—-cosl, lim cozfd=1.
& —=0*

(iii) Since Grosf<sinf < &, we get lim sinf _
F=0r g

1.
Using the above properties and changing gi; — g ., it is easy to show that

sin

Iéll’[}lu an & =10, éll_’[}ln cosf =1, éiglﬂ 7 1

please refer website for quiz
auiz

Practice Exercises : Limits of Functions

1. For the following functions # I:x} , given £ =101, find some & = such that |f (x} —j| -

whenever [ = |;r;— ,:-| <A , where

O f{x)=x'+le=11=2"

(i f{x]zxsinl,czﬂ,fzﬂ .
x

2xt + Bx 45
(iii) =2t TR a5 l=—4
f[x} x+5 ¢
™ Fx) d-2x x <], 7o
v = = =
S - R

2. Do the following limits exist? If so, find them.
4

M lim il Gy lm (|x]-x) Gy lim ———— v lm x[x] V)
x=0 41 x—l PR A PR x—=0

i 3N X

XIED |x|

3. Show that limit of a function is unique whenever it exists.

4. Let f, g R — I be such that :}if}lcf{-’f]' =0 prove or disprove the following statements:
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lim [/ (x)g(x)] =0
(i) }iglc[f{x:'g{x}] =0 if g is bounded on [:-':ER 0 -::|x—.:| < 5} for some 4 =0 .

(iii) ;iglﬂ[f(ﬂg'iﬂkﬂ it lim g(7) exists.

5. Let j:IE —IR be such that for some }JI_I’}HD [ Jla+h) - fla- i) ] = | Does this imply that

}ina f':-’f:' exists? Analyze the converse.

n n-1 m m-1
6 et fix)=ax"+a, X7+ ta Xty and glxn)=h,x" +h X +...+E:-1x+bﬂ,

where @,, . .. 2 %5 bm: C ey ﬁh are real numbers with g, =0 and E;um = [1. Show that
0 if #2 > n
L
1 O . _
X = g(xj b—lfm_:’?,
m
X X
and that { }—)r-::o if 72 =»n and Zn = 0, while f{ }—}—-:0 if g¢ « »n and ﬂ:—H>|:l.
g{x) by g{x) By

7. Let fix)z & for all xe[i.:;,a+,§‘),where a8 »0.0f IIL;H;P’;(I) =-':1,showthat P72 e

8. Let f:{a,b)— R and c& (z,b). Prove that if %iglcf':x:' > &, then there is some & > (J such that

Fle+hk) > a forall [j{|;g|<5_

Recap
In this section you have learnt the following

e The sequential definition of limit of a function at a point.

e The &— & definition of limit of a function at a point.

e The equivalence of the two definitions.
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