
Module 2 : Limits and Continuity of  Functions

Lecture 4 : Limit at a point

   Objectives
   In this section you will learn the following

The sequential concept of limit of a function.

The  definition of the limit of a function.

       
4 Limit and Continuity of Functions

 Recall that, our aim is to understand a function  by analyzing various properties of . For

example, one would like to analyze: 

 Does the 'graph' of  have any 'breaks' ? 

In this lecture we shall analyze the most important and fundamental concept: limit of a function, and shall
see how it helps us to answer the above question.

4.1 Limit of a function concept :

 

Let us start with the following problem: 

How to predict a suitable value of a function at a point, which may or may not be in its domain, by
analyzing its values at points in the domain which are near the given point? 

Let  . Let  ,    may or may not be an element of . The question we want to

answer is the following : Can we predict some 'suitable' value  for  at  by looking at the values of 

at points close to  in ? To answer this, let us assume that  is defined at all points sufficiently near 

 (may be not at  ), for otherwise we have no data on the basis of which we can predict.

 

For example, this is true when A is an open interval or  where  is an open interval.

Next, we should clarify as to what do we mean by saying that a real number  is a 'suitable value' for 

at ?

One way of interpreting this is to demand that the values  comes closer to the number  as the point

 comes 'closer' to . This immediately raises the following question: How do we interpret this




mathematically ?  A natural way of doing this is to say that this closeness is achieved iteratively, i.e., we
can come close to any point  via sequences.

 

So if we approach  by any sequence of points in , say  with ,  then we would like

sequences of  values of  at  to converge to the same value, namely , i.e.,  . In that

case we can predict the value  for  at the point  . 

Let us look at some examples. 

4.1 .1Example :

 

i) Consider a function  defined as : 

                                        

 
                                              
Clearly,  is defined at all points near  . Though  is defined at   also, our aim is to predict

a suitable value for  at  by analyzing its values at points near . For example, let us

approach the point  by a sequence, i.e., consider any sequence   of points in the domain of 

 such that  for all  and . Then, . Since , it follows, from

the limit theorems of sequences (see section 3.2.1), that  . Hence, we can say

that the natural value that  should take at  is 3 .

Click here to see an interactive visualization: Applet 2.1

 

(ii) Let , the greatest integer function. Clearly, for  and 

 for      

     

                                                      

Thus, if we take a sequence  ,  then clearly,  and , as 

 . On other hand, if we take sequence , then again , but 

, as . Thus, we cannot predict a single value for  at .
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4.1 .3Theorem (Algebra of limits):

 

Suppose  and  exist. Then the following hold: 

  (i)   . 

  (ii)  .   

  (iii) For any real number  . 

  (iv) If                 

 

PROOF

4.1 .3  Theorem (Algebra of limits):

 

  Suppose  and  exist. Then the following hold: 

(i)   . 

(ii)  .  

(iii) For any real number  . 

(iv) If 

 Proof:

 Follows from the Limit Theorems for sequences. We leave the details as an exercise.

 

4.1
.4 Sandwich Theorem :

 

Suppose  are functions such that

 for some r > 0. 

If                                                                        

Proof

Click here to see an interactive visualization: Applet 2.2

This motivates the following definition.
4.1
.2 Definition :

 

Let  be an open interval of  . We say that   has limit at  if

there is a real number  with the property that ,  for every sequence   with  

. 

Such  is unique (see exercise 3), whenever it exists and is denoted by . 

In view of the algebra of limits for sequences (see section 3.2), we have the following theorems.
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4.1 .4  Sandwich Theorem :

 
Suppose      for some r > 0. 

If 

 Proof:

 

Follows from the Sandwich Theorem for sequences. 

Next we look at another way of describing the statement that a function has a limit at point. To
predict the value of

a function at a point  we have to analyze the values  of the function as  approaches . In
our
definition above, we used the concept of sequences  . One can directly use the notion of
distance for
this. Suppose we want to analyse whether a number  is the natural value expected of  at 
or not? 

At a point  near ,  is the error one will be making for being not equal to value
expected. If 
is the value expected, then one would like to make this error small, smaller than any given value.
Let us say that
this error is less than a given value  for all points sufficiently close to  . Let us look at an
example.  

 

 

Next, we look at another way of describing the statement that a function has a limit at point. To predict
the value of a function at a point  we have to analyze the values of the function as 

 approaches . In our defintion above, we used the concept of sequences . One can directly use

the notion of distance for this. Suppose we want to analyze whether a number  is the natural value

expected of  at or not? At a point  near , is the error one will be making for

being not equal to the value expected.
If is the value expected, then one would like to make this error small, smaller than any given value. Let

us say that this error is less than a given value  for all points sufficiently close to . Let us look at an

example.

4 Limit and Continuity of Functions
 Recall that, our aim is to understand a function  by analyzing various properties of . For

example, one would like to analyze: 

 Does the 'graph' of  have any 'breaks' ? 

In this lecture we shall analyze the most important and fundamental concept: limit of a function, and shall
see how it helps us to answer the above question.

  
4.1 Limit of a function concept :

 

Let us start with the following problem: 

How to predict a suitable value of a function at a point, which may or may not be in its domain, by
analyzing its values at points in the domain which are near the given point? 

Let  . Let  ,    may or may not be an element of . The question we want to

answer is the following : Can we predict some 'suitable' value  for  at  by looking at the values of 

at points close to  in ? To answer this, let us assume that  is defined at all points sufficiently near 

 (may be not at  ), for otherwise we have no data on the basis of which we can predict.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

For example, this is true when A is an open interval or  where  is an open interval.

Next, we should clarify as to what do we mean by saying that a real number  is a 'suitable value' for 

at ?

One way of interpreting this is to demand that the values  comes closer to the number  as the point

 comes 'closer' to . This immediately raises the following question: How do we interpret this
mathematically ?  A natural way of doing this is to say that this closeness is achieved iteratively, i.e., we
can come close to any point  via sequences.

4.1
.5  Example:

 

Consider the function  with 

Natural value expected of at 1, by looking at values near 1, is 3 

and not 5 .

 

For example, the error 

                                                 

whenever the point x is close to 1 by distance  . In other words,  , 

                                                 .

In fact, if we want  close to   by a distance (error) at most  (any positive real number),

then 

                                                 , 

i.e., given any  we can choose  such that   is close to 3 by distance 

 whenever x is close to 1 by distance  . 

This motivates our next definition.
4.1
.6  Definition :

 

Let  be an open interval of . A real number   is called an  

 limit of  as  x tends to  if the following hold: given any real number  , there exists some

 such that 

.

Such a , whenever it exists, is unique (see excercise 3 ) and is denoted by  .

Click here to see an interactive visualization: Applet 2.3
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Let us look at some examples.
4.1
.7 Examples :

 

(i) Let   if    and   . Then,   .  Indeed, 

                                     .

We find an upper bound for  when x is close to 2 , say , that is 

. Then, 

                                      . 

Thus, given any , we may take  and then, 

                                     . 

(ii) Let   . We claim that  does not exist.

 

                                     

 

Suppose,  exists and the limit is  . Then, for  such that 

 .

In particular, for ,

                                         .

That is,

                               for every  . 

This is not possible, for example, we can choose positive integer such that  ,  but 

.

Hence,   does not exist.

 

Click here to see an interactive visualization :  Applet 2.4 

Before proceeding further, we show that the existence of limit is equivalent to the existence of the 

limit. 

4.1 .8 Theorem :
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For a function , the  limit exists at a point   if and only if , i.e., for

every sequence  with  for all , we have 

. 

Proof:

 

Assume that and  for all   . Let  . Choose 

 such that  . Next, for this  choose   such that 

. Then, for implies . Hence, 

. 

Conversely, suppose that the  limit of  at  does not exist. Then, there exists an  such
that for every there is some  with 

In particular, for each  there is some   with 

Then  for all , , but   . This is a contradiction.

Hence the limit of  at  exists and is equal to  .                                                   

 

 

4.1
.9 Note :

(i)
 depends on the values of  at points near c . The function may or may not be defined at

c.

 
Even if is defined at c , may or may not exist. Even if exist, it need not be equal

to  .

(ii) To find , one has to make a guess and then prove it.

 

     Let us note that,  means that for a given , there exists  

     such that for all , 

                                                             implies  .

     Equivalently,  there exists  such that 

       implies        and       implies  . 

   
    This motivates our next definition.

4.1
.10 Definitions :

 Let  be an open interval, . Let .

(i) We say  has left-hand limit at a point , if there is a real number  with the property that for

 

every ,  there is some    such that 

                                                         .
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We write this as , and call to be the left-hand limit of at .

(ii)
We say a function has right-hand limit  at a point x =c if there is a real number  with the property

that

 

for every  there is some  such that 

                                             . 

     We write this as  , and call to be the right-hand limit of at .

     The above remarks tell us the following :
4.1
.11 Theorem :

 

Let  and  be such that   is contained in  for some .Then 

 exists and is equal to  if and only if  as well as  . That is the

limit of a function at a point exists and is equal to  if and only if both, the left- hand and the right hand
limits exist and are equal to .

4.1
.12 Examples :

(i) If , the greatest integer function, then

                                           

Thus,  does not exist.

(ii) Let 

 

Then,

              

Thus,  does not exist.

4.1 .13 Example :

 

Let . To analyze , consider 

                           .

Then,   and 

                          . 

However, if we consider 

                          and for every 

                          . 

Hence,   . Thus, though both  and  converge to  , but 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 and converge to different limits.

Hence, limit does not exist, by the previous theorem.

4.1 .14 Note :

 Theorems similar to that of theorem 2.1.3 hold for left-hand and right-hand limits.

4.1.15Examples :

 

Let  . 

(i)  Since   , we get . 

(ii) Since  .

(iii) Since  , we get .

      Using the above properties and changing  , it is easy to show that 

                           

  please refer website for quiz

 Practice Exercises : Limits of Functions

 

1. For the following functions  , given ,  find some  such that  ,

     whenever    , where 

(i)  . 

(ii)  . 

(iii)  . 

(iv)  

2.    Do the following limits exist? If so, find them. 

(i)           (ii)        (iii)         (iv)           (v) 

 . 

3.     Show that limit of a function is unique whenever it exists. 

4.      Let  be such that  . Prove or disprove the following statements: 

(i)       . 
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(ii)     , if g is bounded on  for some  .

(iii)     , if  exists. 

  

5. Let   be such that for some  . Does this imply that    

  exists? Analyze the converse. 

6.
 Let 

    

 

where   are real numbers with  . Show that 

  and that    if  and  while   if   and   .  

7. Let  for all  , where . If , show that .

  

8. Let and . Prove that if , then there is some  such that

      for all .

   Recap
   In this section you have learnt the following

The sequential definition of limit of a function at a point.

The  definition of limit of a function at a point.

The equivalence of the two definitions.
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