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Module 12 : Total differential, Tangent planes and normals

Lecture 34 : Gradient of a scaler field [Section 34.1]

Objectives
In this section you will learn the following :

e The notions gradient vector

e The relation of gradient with the directional derivative

34 .1 Gradient of a scalar field

We have seen that for a function f(x,y,z) the partial derivatives fy, f,,f;,whenever they exist, play

an important role. This motivates the following definition.

34.1.1Definition:

Let (x,¥,,2,) € DcIR*and f: D —TIR.If each of Jy.Jyand f;exist ata point (x,1;,2,), then the

vector (fx@r,:,,yu,znj,f},(xu,yu,zﬂ,fz(?CD,JF.;.,Z.;J] is called the gradient vector of f at {x,3,,z,],and
is denoted by

(VI Xy, Y. 2) = Uy ':xn:-}"n:-zu:',f:y (%.0.20), J2 (%, 20,70 )
For a function of 2-variables, it is given by

VA, ) = ':xn:-J"u:':-f:y (%p:Y0:Z0))-

34.1.2Theorem:
Let (%, ¥y, 2,0 € D;IE{'_3 and f .0 —IR be differentiable at {x,,,2,).

(i) For every unit vector y € IR*, (D, (%, ¥,,2,) exist and

(D (0, 20 ) = (VI3 v, 20) .




Q)

Suppose [is such that any two points in it can be joined by line segments parallel to axes and

(Viix,y,z)=0forall (x,y,2z)€ L), then fis constantin [J.
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34.1.2Theorem:

0}

(i)

Let iz, 3,20 € 2 IR*and #: 2 — IR be differentiable at (x,, .20

For every unit vector « = IR?, (12,3 %, ¥y, =0 exist and

(Dufj(xl:l:yﬂ:zﬂj = (vf}(%:yu,zuj -l

Suppose nis such that any two points in it can be joined by line segments parallel to axes and
VA x, .20 = Ofer all (x, v, =0 = 22, then fis constant in o.
Proof

The proof of (i) follows from theorem 33.2.4. To prove (ii) first note that the given condition
(VA x .z = 0for all (x, 00,20 € D,
implies that

each of fx,j_},,fz =0 in 11

Let 4,8« Dbe such that gand pcan be joined by a path as shown in figure below, where
AC, BC are parallel to axes.

Figure 1

Then, by one variable case,
S = FC = F (5

Thus, if any two points in ncan be joined by a piecewise linear path, moving parallel to axes only,
then

(Vi x,0=10 forall x, ye Dimplies that sis constant in p.
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34.1.3example:
Let
flyzi=xy-yz+z

Then

Jy (x,2)=2xy

7, iy 2y =x =2,

fz I(:"-:l.:]"?:lz:l:_ 3.}?22 +]‘

Obviously, each of fx,fy,fz is a continuous function everywhere. Then, fis differentiable and for

every unit vector 1

(D FI(x,20,2) =0V F)x,0,5) 10

For 2i+j— 2k example, if we want to find the directional derivative of j at the point (1,—2 0}, in the
direction of the vector , than we take

u:M:EH_l]‘_Ek
Ja 337 3

and
Sy (L2000 =-4,7, ,-20=1,7 (1-20=1
Thus

21 2
(Dy £)(1,-1,0) = (—4,1,1).(5, 5,—_]?3_

34.1.4Remark:

The formula
(Dy £, 200 = (V7 (%), 0,2,)) wmay not hold if f,,7, either of fyis discontinuous at

(xu:}"u:zu:'-

For example, consider f : ]RE —[F given by

x
JO,0=0and fix,y)=—— for (x= 0,00
r+y

We have

V0,00 = (1,00,
and for any unit vector & = {1, 1,),
(D) (0,00 =15,
Thus,

':Da_e 0 0 2 {‘Ff{ﬂ, D]} -4, whenever 2 = 0,11



34.1.

O}
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iii)

Note that for {x;, ;) = (0,0}, we have

Xy +37% v -2 ¥

Felxg, ) = and  fy (%0 = ——7.
PRI gy PR R 4y

It is easy to see that both f, and f} are discontinuous at (0, 0.
We describe next some geometric properties of the gradient.
5Theorem:

Let f: D IR* — IR be differentiable at (x,, v,,2,) € [} so that that

T (Ea 0,200 = (0,0,0),

Let & = (1,1, ) be a unit vector. Then the following holds:

Near the point {z, ¥,,2,], the direction in which f increases most rapidly is that of V7 (x,,1,,2,].

Near the point {x,, ¥,,2,), the direction in which 7 decreases most rapidly is the one opposite to that of
T (%o, Y0, Z0).

Near the point (x,¥,,Z,),the directions perpendicular to that of ¥ (x,,),)are the directions of no
change

in f.
ik

rd

PROOF
34.1.5Theorem:

Let 7: D < IR3 — IR be differentiable at ¢=x,,,,=z,2> = 2 so that that
W (g, M, Zp ) = (0,0, 00
Let & = (z,,%,,1; )be a unit vector. Then the following holds:

(i) Near the point ¢=x,,4,2,2, the direction in which fincreases most rapidly is that of 7 (x, 37, 242

Near the point (x,, »,.=z,J, the direction in which fdecreases most rapidly is the one opposite to
that of

WXy, Yas Zald

Q)

Near the point ¢=x,,4,,2,3, the directions perpendicular to that of ri=x,,1are the directions of no
change

(iii)
in .
Proof

By definition, we have

(L P x>0, 20) = (VI (%, 00,2 )-8 =| VA (5%, 0,2, ) | cos &,
where &<=[0,7]is the angle between ¥ (x,.»,.z,7and l¥.Since —1=cos & =1, we have
(0, %y, V0,200 1s mastimum when cos & =1, &= 0.

Thus, near (x,,3q.2.2,

g — ?f(xn:.}’u:-znj
| ¥ (x, V0,200 |

The value of (&, #i(xy, 30,2021 Minimum when ceos&=—1,that is, when &= = Thus, near

1z the direction in which fincreases most rapidly.
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(%5, Y. 2o,

W : . : :
u=- (3,00, 70) 15 the direction in which § decreases most rapidly.

|‘Ff|:xn,y,:,,z,:,)|

Finally, ¢/, #icx,, 0,200 = 0 When coz & =0,that is, when 2= =2 Thus, near (=, »,,z,0,
I f:y 'ixu:}"u:zu:'i _fx(xu:fuazu:'j
| VA (7%, 00,200 |

are the directions of no changein §

34.1.6 Note:

In case 7 (x;,),2,)=(0,0,00,we have (I}, #1(x,,¥,,2,) =0 for every &, and hence near (x,, ¥,,2,),
, the _f has no rate of change in all directions.
34.1.7Example:

Consider §: E* =1k given by Suppose
Fix, W =4-z" =y for (x,y)eIR*

We have

Sy = —EJr:,j::ll = =2
At (3, 3) = (1L,1)

V(L) =(-2,-2).

Thus, on the surface z = f(x, ¥) near (11},

YLD = (=5—2) = [_—1,_—1] 1z the direction of steepest ascent
VAL w2 A2

while in the reverse direction, namely,

(L,L] 15 direction of steepest descent.
V2 2

The directions of no change are

+(L __1]
s \EJ -JE :
Since W (0,00 = (0,0, rate of change of j is zero in every direction at {0, ().

34.1.8Example:

Let
F(xy)=20—4x" =y

represent the temperature of a metallic sheet. Starting at the point (2,1} let us find the continuous path
rig) =x @i+ y )],

that will give the direction of maximum increase in temperature. Since, the direction to this path at any
time point {is

r'ig=2"1+y (8],

and that has to be of maximum increase of f , we should have
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ar'fi=V f for some scalar &

That is,
ax@i+ay Oj=—-8xi--2y]

ax'(fi=—8x ay'i)i=—2y
This gives us the differential equation

@_y_r

dr  8x 4z

A solution to which is
x=ky'  k some scalar.

Since, this passes through (1,2}, we have

2=k

Thus, the required path is x = 2};4.

Practice Exercises

Find the gradient for the following functions at the indicated point P and its directional derivative at Zin
the

direction of the indicated point [J':

Fx ) =qfoe? , P=(1D,0=(0,-1.
Flxvz)=xy'e’ = 2rz4yz+3x, P=(-1,-2,1), 0= (0,0,—-13.

Answers

For the following functions, find the direction of maximum increase at the indicated point:
Filx vzl =sinxv+cosye, P=(-30"7T.

Flayz)=2nz+y"+2°, P=(2,11)

Answers

The temperature at a point {x,y,z) on the surface of a body is given by

Tix,yz1=2x —v* +42°
Find the rate of change of temperature at the point 7 =1 -2 Tin the direction of the vector ¢i —j+ 2k .
In what direction at P, the temperature is decreasing most rapidly?

Answers

If z=jF(x »)is a differentiable function, where x = x(fjand y = y({)are also differentiable with respect
to

dz .
£, compute .::E_ in terms of V=
£

Answers

Let f{x,y)be a differentiable function such that
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(D f)ix,y) = 0= (L) (x, ), for all (x,y)
for any two fixed vectors u v < IR.% such that u # g for any constant ¢ . Show that (Do ) 2,370 = Ofor
all w e IR*.

(6) Let fix,y)be such that
() fylx y)and fy(x,¥)exist for all (x,y) € 5,(1,2] for some » = (and are continuous at (1, 2),

(i) The directional derivative of # at (1,2}in the direction toward 2 3}is 2@_

(iiy The directional derivative of # at (1,2)in the direction toward (1,0} is —3_ Find f, (1,2}, 7, (1,2) and the

directional derivative of { at (1,2} in the direction toward (4, &].

Answers

(7) Let f: D IR* — IR be such that all Jr2dy  FeiBry8pand gy existin B, ((x), ), for some p = ()

Prove the following:
0 (VO Tg)=(V)ti{¥Vg)
(i) Vifg)=7Vag)+ig(Vy)
(i) Ve =alVi), forevery @e IR,

Recap
In this section you have learnt the following

e The notions gradient vector

e The relation of gradient with the directional derivative
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