
Module 3 : Differentiation and Mean Value  Theorems

Lecture 7 : Differentiation

   Objectives
   In this section you will learn the following :

The concept of derivative.

Various interpretations of the derivatives.

 

7.1 Differentiation

   
We saw in the previous module that the concept of continuity helps us to understand a function better: the
graph of a continuous function does not have any breaks. Next, we look at a property which helps us to
analyze 'smoothness' of the graph. Let us look at the graphs of the following functions  and :

 

 

Though both the functions are continuous functions, their graphs do not have any breaks, the graph of is

‘qualitatively' different from the graph of . We shall make this more precise. The graph of has an

‘edge' or a ‘corner' at a point , where as, the graph of is ‘smooth'. Geometrically, we can draw the

tangent line to the graph of at every point, where as this is not the case for the graph of the function 

at the point . Note that, to draw the tangent line at a point, we only need to know its slope. But

before we try to do so, we have to decide what we mean by the ‘tangent line'? This is not as simple to
answer as it seems. For nice graphs, like that of a circle, it is easy: it is a line that intersects the circle only
at one point. However, if we consider graph, like that of the trigonometric function cos , then the line

seems a tangent, is not acceptable by the above definition. 
The line will be an acceptable tangent if we modify our definition that the line should intersect the graph




only at the point under consideration in some neighborhood of it. Now in order to find the slop of the
tangent at a point , consider a nearby point on the graph and consider the secant line, the line

through and .

 

 

The tangent line at now can be thought as the line obtained as the point moves on the graph and

comes closer to the point , eventually merging with . If the graph is that of a function is 

and is , then

                              the slop of the line ,

and the slop of the tangent line at should be the limiting case of the above slop as x approaches c.

   
Click here to View the Interactive animation : Applet 7.1

This motivates our next definition.

7.1.1Definition:

 

Let and . 

(i) We say that is differentiable at the point if

                                

    exists, and in that case

                                

    is called the derivative of at the point .

(ii) We say that is differentiable on if exists for each . The function is called

the      derivative of .

 

(iii) The limit, 

                  

      is called the left-hand derivative of at 

(iv) The limit 

                  

      is called the right-hand derivative of at . 

      Note that exists iff both both and exist and are equal.
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7.1.2 Examples:

 

(i) Let be any constant function. Then, for any , since , we have 

                        for all . 

(ii) Consider the function . For any . To see this, note

that 

                       
     Hence, 

                      

(iii)  The function , is differentiable at every . To see this, observe that

                      

 

     Hence, using the formula 

                   
     Similarly, the function  is differentiable at every and its derivative at is . 

(iv) The function is not differentiable at since 

                  . 
(v) Consider the function . Then

                    .

    Thus, . 

    Hence, is not differentiable at . 

Click here to View the Interactive animation : Applet 7.2 

Another equivalent way of saying that  is differentiable at  is the following:

7.1.3Proposition

 

Proof
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7.1.3 Proposition

 

 

Proof:

Suppose is differentiable at . Let be such that . Define

                      

Then, being differentiable at implies that , and the required claim follows with 

   

 

Conversely, if (i) and (ii) are satisfied for , then clearly

                     

Hence, is differentiable at with 

  7.1.4 Note:

Note that, for a function differentiable at , the function as defined (in the proof of above

proposition):



Thus, 

 

where is such that is the error made in measuring the slop of the tangent to the

graph of at by the slop of the secant joining and . Further, if is

such that then for .

Thus, , the change in the values of from to , is approximately given by 

the error being . Hence, in a neighborhood of , the function can be approximated by a

linear function, . The quantity , is called the differential of 

at . This aspect of differentiation plays an important role in many applications.

We show next that the property of a function being differentiable is stronger than that of continuity.

7.1.6 Examples

 

(i)  Let

                            

    The function is not differentiable at , since it is not continuous at .

(ii) Let , where is a fixed positive integer. We saw, in example 2.3.2(iv), that is

a     continuous function. Let be a fixed point. Define for 

                           

    Then, is a continuous function, and being also continuous, is continuous with

                             

 



 

        

(iii) For the sake of giving example and illustrations, we shall assume the existence of the logrithmic
function
     (which we shall define later in lecture ):

                                

      is a bijective function with the following properties :

(i)   .

 

(ii)    .

(iii)   

(iv)  is differentiable everywhere with

        

7.1.7  Note:

 

(i) The converse of the theorem 7.1.5 is false. For example, consider the function

    . It is continuous everywhere, but it is not differentiable at . 

(ii) Saying that a function is not differentiable at means that either of the following happens: 

     Case (i) : The function is not continuous at .

     Case(ii): The function is continuous at , but

                   . 
    For example, both the left and the right hand limits

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                  
    may exist, but are not equal. In that case we say that has a corner at .

 

  
  

 

Another possibility is that

                                   

In that case, we say that has a vertical tangent at .

Some results that help us in computing the derivatives are given in the next theorem. 

7.1.8 Theorem:

 

Let . If are differentiable at  then the following hold:

(i) The functions  are differentiable at and 

                                  .

 

(ii) For every  , the function is differentiable at and 

                         .

(iii) The function is differentiable at  and 

                        . 

(iv) If , then the function is also differentiable at  and 

                         

.                                                                                  
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7.1.9 Examples:

 

(i) It follows as a consequence of the above theorem that every polynomial function 

                         
     is differentiable. Similarly, every rational function

                        ,

     is differentiable, whenever it is defined. Its derivatives can be computed using the examples and
theorem 7.1.8
     given above.

 

(ii) Let  , where is any negative integer. Then, using theorem 7.1.8(iii),  is

differentiable at     every  with

                      . 

7.1.10 Other notations for the derivative:

 

We have already used the notation  for the derivative of at the point . Some other notations

are as follows: 

                                                  .

Sometimes, the notation is used for the derivatives of at the point . In this notation the

use of the variable  is ambiguous , as it is used both for point where the derivative is being evaluated as

well as the variable of differentiation. Any case, the symbol , is just a notation

for the value , and it should not be regarded as a fraction of . 

7.1.11 Extension of the derivative concept:

 Let . We say is differentiable at the end point if exists. Similarly, we say is

differentiable at the end point as well as exist.

7.1.12 Example:

 

Let us find the tangent line to at a point, which passes through the point (3,5). The equation of

the tangent line to the graph of at the point  is

                                     .

To pass through (3,5), we must have

                                      .

Hence, the points on the graph of are the corresponding tangent lines are

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                     

7.1.13 Interpretation of  :  

(i)  Geometric interpretation:

 

That  is differentiable at means that the graph of  is ‘smooth' at , i.e., it is possible to

define analytically the notion of unique tangent line to   at as follows:

                          . 

If ,then                 

                         
is called the normal to is the equation of the normal when .

(ii)  Rate of change:

 

For a function can be thought of the

average change in the values of when its argument changes from to a near by point . Thus, if 

is differentiable at , then  

can be taken as the rate of change of at . 

(iii) Physical Interpretation of : 

 
Let denote the distance traveled up to time  by a body in linear motion. Then, represents

the rate of change of distance at time , is called the instantaneous velocity of the body at time . 

7.1.14 Examples: 

 

(i) Let

                   
   Then,  is differentiable at every point , but not at . 

(ii) Let . Then is differentiable on but not at . In fact has

vertical tangent
     at . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   

 Practice Excercises:  Derivative

 

1. Using the definition evaluate  for the following

(i)  .

(ii)  

(iii) .

(iv)  . 

2. Show that ?

3. Give example of a continuous function which is differentiable everywhere except at point .

4. Show that if is differentiable at . Hence, is differentiable at if and only if  

   .

5. Let be any polynomial of degree such that and . Show that 

     .

6. Find the equation of tangent to the curve at the point when its graph intersects the two axes.

 

7. Find the angle of intersection of the graphs of function

(i) .

(ii) .

8. Let where each is differentiable at . Show that if ,

    Then, 

9. Let . Find the points where is not differentiable. Can a tangent be defined

to the
   graph of at these points.

10. Find the values of such that for the line is a tangent to the graph of 

at 
     .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

\
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11.Give an example of a function such that exists but is

not 
     differentiable at .

     (Note that the converse holds)

 

12. Let be defined by, for an integer,

      

     Prove the following statements

     (i)  For , is not continuous at .

     (ii)  For , is continuous at .

     (iii)  For , is differentiable at , but is not continuous at .

     (iv)  For , is differentiable at , and is continuous everywhere.

13. Let

      

     Show that  is differentiable everywhere on  but is not bounded on

     , (hence is also not continuous on  ).

 Historical comments:

 

 The notion of derivative of a function at a point evolved out of the efforts of the mathematicians during the
seventeenth century to solve the following problems:

  

(i) The tangent line problem:

 
The problem is: how to define tangent line to curve at a point? This problem arose in the study of passage
of light through a lens. It was important to know the angle at which a ray of light strikes the surface of the
lens.

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

(ii) Problems in mechanics:

 How to represent intantaneous velocity and acceleration of a moving body?

  

(iii) Maxima / minima problems:

 

How to find the maximum and minimum of a function? For example, to find the angle at which a missile
should be fired so that it has maximum range. In astronomy, it is of interest to know when will a particular
planet be at a maximum/ minimum distance from earth.

Mathematicians who contributed partially to solve these problems were Pierre de Fermat (1601-1665),
Rene Descartes (1596-1650), Christian Huygens (1629-1695), and Issac Barrow (1630-1677). However it
was the work of Issac Newton (1642-1717) and Gottfried Wilhelm von Leibniz (1646-1716) which laid the
foundation for calculus. For detailed biographies of these mathematicians visit: http://www.gap.des.st-
and.ac.uk/history/mathematics.

   Recap
   In this section you have learnt the following :

The concept of derivative.

Various interpretations of the derivatives.
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