Module 17 : Surfaces, Surface Area, Surface integrals, Divergence Theorem and
applications

Lecture 50 : Surface Integrals [Section 50.1]
Objectives
In this section you will learn the following :

¢ How to define the integrals of a scalar field over a surface.

50.1 Surface Integrals :

Similar to the integral of a scalar field over a curve, which we called the line integral, we can define the integral
of a vector-field over a surface.

Let 5 be a surface in space with finite surface area. Let j be a continuous scalar-field defined on the surface 5

.We can subdivide & into smaller portions, say 3,45, ...« having areas M5, 45, ... A, , and form the sum

n
ap = ; FUxp, Y2 JAS,,

(%% Do Zp)

Figure: Subdivision of the surface

where (x;,¥,2;) €4, is selected arbitrarily. By refining the patches into more smaller patches such that

maz(hS,) — 0, if &, approaches a limit, we call it the surface integral of # over ', and denote it by

[, .20




50.1.1 Definition :

Let 5 be a surface with parameterization
r: R IR* =IR? (u,v) > riu,v), v € R

If r(u,v) is continuous and g is closed and bounded, then for a continuous function ijJ;IEf, we can
define

[|of Gozrds =[], 7Gxt v),0,), 26, ) |5, *x, || dudv,

called the surface integral of f over the surface

50.1.2 Example :

Let us evaluate the surface integral

I, 4,
where 5is the sphere
{(x,y,z] eIR* | = +.}’2 +z* =1] )
We give 5 the spherical coordinate parameterization
r{8 i =cozfsingi+simn&an g+cosdl (8,8 [0, 2] [0, 7]

Then
r, =—sndsingi+cos & sin ¢,

and
T, = cosBcosditsinFoosdj—singl
Thus
1 i k
T, XIg = —sinfsin ¢ cosfsin g ]
cosfcosd  sinfoosgd —ain @
= (— sin’ dcos 5‘) i— (+ sin & sin E)j
+ {— sin” & sin Foos g— cos® & sin doos .E?)k.
Hence,
||Tg % T ||2: sint ¢ (cos® 8450 &) +sin® foos” @
=sin’ ¢ (sin’ $+cos’ i =sin’ &
Thus,

||t KT ||=s1n ¢

This gives, for & =[0, 27r]=[ 0, 71],
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50.1.3 Surface Integral for surfaces in explicit form :

For a smooth surface given explicitly as
S={(xy,2)|z =h(x,y) for (x,y) € D},
a parameterization is given by

riry)=xityithizyk, (xyjel

Since,

2 2
ey xxy || = 1+ 55 + &
we have

[lofrr2yds =[] £ Goyhx ) J1+# +5 dxdy
Similarly, if 5is given by

S={(zyz2)|x=glyz),(»v2) € R},
then

[[;fxrzras= [ fleb2)02) i+ g +gi dvaz-
Finally, if 5 is given by

S={(xy.2)|y=kixy , x,y)€R],
then

[[.rGr2ds= [[ Fxkx2),2) JI+ik + 12 dedz.

50.1.4 Example :

Let us evaluate the integral

s



2_ .32 2 _ _
where fix y zi= z®and &is the surface of the cone g"=x"+y" between the planesz=1and z=2.

We can give the surface the following parameterization:

r(x,y)=xi+yj +[1/x2 +f]k (xy)€R,

where £ is the projection of the surface on the X¥ -plane,
R={(xy|1=x+y* =2}

Figure: Surface 5 and its projection g

Since ||r, XT, I= ﬁ we have

[ .7 das= [[ G+ 2 dxay

:.l-2 J-[.M 2 r*r drd 8(Using polar coordinates)

r=1

:E\E?TLE rdr
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50.1.5 Note :

Recall that, for a surface 5 given explicitly by z =#(x, ¥), (x,¥) € [}, the surface integral of a scalar field j
over Sis given by

[lof ds= [ f oo lay) J1+85 +05 dxdy,

where [1is the projection of 5 onto the X¥ -plane. Thus,

1

JI;4 Gy o) [[f Gombtaypdray. e (6)
x Ty

Since X has parameterization

rixyl=xi+yi+th(zyik,(xy)el,



and
r,xn=-lki-kitk, e (65)
this gives,
2 2
S+ +Ezl]J =||rx:~»<r‘JJ 1 (66)
Using (£3), we have
1=1(r, ><:rlyj|.k:||1-Jr T, |cesy, - (67)
where Fis the acute angle between r, *r,, the normal to 5, and k . From (&&)and (&7}, we have
1
a 2
" Ih. + 4k + Ez},

Hence, (&4 gives us the relation

cos ¥ =

[|of cosvas="|[[f(xr,h(x) dxdy
Practice Exercises

1. Evaluate the surface integral

J[;0* +22)as,

where jis portion of the plane 2x + v+ 2z = fin the first octant

[~
oS
]

Answer:

2. Evaluate

” g (x+z)ds

where 5 is the portion of the cylinder _}rj +z% = Tin the first octant between the planes r=0and x=4.

Answer: l2m+36

3. Evaluate

st 4443,

where 5 is the portion of the cylinder yz + 4= = 1% cut by the planes x = [:I, xr=]land z=10.

56

Answer: 3



Recap:

In this section you have learnt the following
¢ How to define the integrals of a scalar field over a surface.

[Section 50.2]
Objectives

In this section you will learn the following :

¢ Some application of the surface integrals.

50.2 Applications of surface integrals :

50.2.1 Mass and center of mass of a surface.

Consider a surface f of density (mass per unit area) 2{x,¥,z) (x, ¥ z)€S. Then the mass of 5 can be
defined to be

M= [L o(x,y,2) ds,

The moments of j about the three axes planes is defined by

.”s xolx vz dy ”S;u ox v 2 dl ”Sz ox v 20 s

Further the point (X, Z)is called the center of mass of 5, where

_ .”s x olx, v, z)dy

* ”S o(x,v.2) dS
|y otz y,2 a8
J_.? =

”S o(x,y,2) dS
- ”.S‘Z Sx v 2 ds

[lep,2)as
50.2.2 Flux of a fluid across a surface

Let W(x, v, z) represent the velocity field of a fluid flow in space at a point {x,¥ z). Let @o{x ¥ zlibe its




density at (I,_}’,Z) . Then F(x,_}?,z) = ,G(x,y,zjl v(x:.}rzzj ]

n(x,y 2)

Figure: Flow across a surface

represents the flux-density (mass per unit area per unit time) of the flow. Consider a surface 5 in the flow. If
5ris smooth, then the flux-density across a small patch # 5 of the surface at a point (x, v, z) € 5 is given by the
normal component of F, i.e., F.n_Thus, the mass of the fluid flow across # 5 can be taken to be (F-m}AS,
where mis the unit normal at {x,3,z). Thus, the total mass of the fluid crossing across the surface 5 can be
defined to be

|| JEmas. e (68)

In order to be able to do so, it becomes necessary to ensure that the function
I:F 'n:”:x:l.y:lzj:l l:.:]f:l..:l"i‘:lz:I = S

is integrable over 5 For example, this will be so if (x,» z) = (F-n)(x » 2)is continuous. For this, we can
assume that F is continuous. Thus, to be able to define (68} , we should be able to say that our surface X'is
such that at every point (x, ¥, zJ€ &, three exist unit normal n{x,y,z) which varies continuously as (x, ¥,z
very over 5. This motivates our next definition:

50.2.3 Definition :

A surface f5is said to be orientable if there exists a continuous vector-field

(x, 0 z)nlx vy z),(x,yz)es

such that n{ x,y,z)is the unit normal vector to Sat (x, v, z)E .5 .

Orientability of a surface essentially means that there are two sides of the surface.
50.2.4 Examples :

1. Every simple closed surface is orientable, we can have a continuous inward or an outward normal to the
surface.
For example, surfaces like sphere, ellipsoid, etc, are all orientable, with a continuous normal pointing in
the region enclosed or pointing away from the region enclosed.



Figure: Sphere with inward and outward normal

2. If &is the boundary of an annulus region in space, it is orientable. For example, the surface enclosing
two concentric spheres is orientable (note, it is not connected).

Figure: Boundary of annulus region

3. Mobius strip: The surface as shown below is not orientable. It is not possible to define a continuous
normal along, say, the curve {7

Figure: Mobius strip
50.2.5 Definition :

Let 5 be an oriented surface with the continuous unit normal mi{x,y, 2}, (x,¥,z) €45 . Let Fbe a continuous
vector field on 5. Then the integral

”SF.@?S: ”S(F-n} ds
is called the flux-integral of F over the surface [ .

Physically, ks represents the flux of the fluid with flux density F across the surface /[ in the direction
hysicall SF he fl f the fluid with flux density F h f &in the di i

of the chosen normal.



50.2.6 Example:

Let

F=xzi+vzj+xk

and

S={{x»z)| x +_:u2 +z% = c;tj},

oriented with outward unit normal. We want to compute

_”S{F ‘n) ds.

We can write 5 = Sl L Sz: where Sl is the upper hemisphere and Sz is the lower hemisphere. The upper part Sl

parameterized as

r ()= xi+y i+ e - Nk () € R= [ 47 <a]

Thus, for 5,

= il i+ Y +k,
4 4 4 4 4 4
-\}‘a—x—y Nl'a: -x -y

and this is the outward normal for the upper hemisphere as the Jx component is positive. Similarly, the surface

&, has parameterization

r(xry)= xityi-(a' -7 -y )k, (myyeR {2+ =t}

and
rxxr}:—a—i[— .:;tj—xz—yg]i—%[—qf 2—J'::!—uj;:‘]j+lc

But, this is not the outward normal, as the ]z component is positive. In fact, the outward normal for Sj is given
by

X .
— T, I, =— i- 2 +k|.

F Jﬂ:_xz_yz Jﬂj—xj—f

Thus,

”SF-n.:fS

= ”SIF-n ds + ngF ndy (69)

The integrand of first integral in the right hard side of (£%)is



x[..,lfc:z—xj—yj]x _}f[ ﬂz—xj—.}’j]}"

1 2
\/2 —— \/2 — +xr =224y
@ —x -y @ —x -y

Similarly, the integrand of the second integral in {637 is

x[— aj—xj—yj]x y[—ﬂlag—xg—yg]y
i 2

a2 .2
_Jz 3 3 \/2 2 2 - =-2x -y
a —x -y @’ —x —y

Thus, from (6%}

_”SF-n.:fS=U.

An alternate way of analyzing the above problem is the following. First of all, the surface [ can also be
described by the implicit equation

Flayn=x+y+z2-a =0
Since
Vi=Z2xi+2yj+lzk,

a unit normal to J5is given by

T

A
2xi+2yi+2zk
2\’1’2+_}32+22
xi+yj+zk
=x{xi+yvj+zk

Il
H

H+

Clearly, n with the positive sign is the unit outward normal to 5 Thus

(xzi+yzj+x2k:]-{xi+_yj+zk]
.1 =
JI¥ nas- Il as
&

:i ”S(xgz+yzz+xgz)cf3
:é _I-_l-‘g,[x:4 +y° +22szﬂ'

2
=% .”.5' ds

=( ”312.:1'3— ”322.:1?3]

0.

50.2.7 Example:

Consider the surface 5 to be the boundary of the region

{(x,y,z]ﬂixj 4+ + 2 54].



Let us evaluate

”.S'F'“ a5,

for nto be the outward normal on % and

1

r., ¥y. £
Fix,y,z)=—-5i-5]1-=k
F F r

where

r =1|'x2 +y2 +z*

The surface .3 is the outer sphere of radius 1 and the inner sphere 5, of radius 2

Figure: The surface 5

As in previous example, the outward unit normal for 32 given by

0= VI  xityjtzk
| ¥ | r

Thus, for .5, we have

. - i j+zk
-II-II.S‘EF'ndS: ”32(—%1—%]——; k][%] a5
= .”.'5‘ —[xg +_}=‘2 +22] e
2

=—ljjgl as

F
=—4r

Similarly for .5, the outward unit normal is

0o VF  —xi-yi-zk
I r




Thus,

[ F s - (- - 2i- S itz
=+ ”31.;:?3

=4 7

Hence

_”S{F ) ds =0
50.2.8 Note:

1. Note that for an orientable surface, if nix,¥, z)is one choice of continuous unit normal vector to 5,

then —n(x, ¥,z is also another choice of continuous unit normal to 5. The flux integral changes sign if
we change

one selection to other. When we select positive sign, we call i as the positive unit normal, and —n will
be called the negative-unit normal. Thus, for an orientable surface 5 with parametrization

riu, v, (2, v) e D), we have

[[.®-mds=2 [[_F-(x, xx,) dudv,

depending upon one choice of the unit normal.
2. Special forms of flux-integral

Let us look at the special cases of & . Suppose 5 is given explictely by z = g(x vi,(x, v1 € ). Then, a
parametrization of 5 is given by

riz,yl=xityj+gix,yk

Thus,
rXr, =—g,i- g, itk
and hence for the positive orientation of 5
HS[F-n) ds = HDF-(— gyi—g,i+k)dxdy
Thus, if
F=Fi+Qj1+E&k,
then
”S(F n)ds = ”D[— Pg,—Qg,+R)drdy,
where m is the positive unit normal. If we write (Fi{x, z)=z—g(x, ¥), then
I, XT, =—g,i- £y j+k=VZ#

Hence, for the choice of positive oriented normal on 5, given by z = g(x, ¥ and

Glxyz)=z-gxny)



_”S(F-nj ds = ”S(F V&S

Similar formula holds if 5 is represented as y = A x,zlor x=k{y, z).

3. There is another representation possible for the flux-integral
F.nd¥
IIs

Let the continuous normal m have direction cosines cos &, cos S, cosy, i.e.,
n=cos&i+coes Jj+cosyk

Then, for F = Fi+ Jj+ Rk

”S(F.njdﬁ.’: ”‘S_Pcosﬁrds+ IISQEOS Hds + IISRCOS ¥ .

While evaluating, care must be taken the integrals on right hand side since 5 is oriented. Suppose, we
select the positive orientation for the normal. Then for

Siz=glxy,(xy)el

_”DR (xp glx, v dxdy if cosy=0
.”.S'R cos P =
- .”DR (xy, glxyndndy 1f cosp<0

(iv) If F and r are expressed in terms of their components:
F=FPi+0j+Rk

r (@, v)=x(z,vii+ y(uvij+z(uvi k, (u,v) el

then

ru=ﬂi B_y]._k%k
Ju Ju Ju

I, :Ei_l_ﬂ_y]._kkl(
dy &y &y

and hence

«r,=| 2292 923y,
Y Fu dv Fu dv

dzdx Jdxdz],
71
(Bu dv du BvJ

L[Bx8y_dyox)
du dv du Fv

LYY,

Thus, for positive orientation of the surface,



aﬂv Fu dv
dzdx Jdxd:z
+ _”DQ( - —Jdudv

mas= [[ 2|2222_ 2297 pav
Jlo@® mas=[f,

dudv dudv

dxdy dydx
+ Rl —/— — ——= — | dudv
'”D [Bu dv  Au Bv]

The three integrals on the right hand side are represented as follows

[[.pGyzyavngz= [[ Paaw| 222292 dud,

_”SQ (x,y,2) dz Adx:

and

HD Oirle V)| — — —— =22 dudv,

[[.2Gy2dendy= [[JRa@wy| 2222227 dudv,

Note that the order of the notation &x .4, etc, is important. Thus, in the above notations, the flux
integral of
F = Pi+(0j+ Rk,

is written as
_”S(F ) ds = ”S{P dy Adz + @ dz rdx + P dx ndy)
50.2.9 Examples :

1. Let us find the flux of Flx,y,z) = x+)j+zk,

Figure: Cone above the xy -plane

outward across S', the portion of the cone z =1- xg —ygjthat lies above the X¥ -plane. The surface J5'is

given by G(x,y, z) =+ xg +y3 —1=10. Thus, the normal vector is



TtV E=({2xi+2yj+k)

Note that for the outward normal, the z component is always positive. So, we choose
ViF=2xi+2yj+k

for 5 Hence,

flux across & is = ”R(xi+yj+zk}-(2 xi+2yi+k) dxdy

_ll_l-j;‘_(x2 + yz + 1} dxdy

E jﬂ” A+ r drdd

3w

2
2. Let us compute the flux of the vector field
F(x,y,z)=3"1+6]+6xzk
across parabolic cylinder 5 given by
y=x 0=x=2 0=z23
We parameterize the surface as

rix,Zi=xi+xtj4zk,(x,21e D=[0,2]%[0,3]

Figure: Parabolic cylinder
Then,

Ty XTIy = A+2x]xk)i=2x1i—-1]
Thus the positive oriented normal is
_Zxi-j

NS

The flux integral along this orientation is



”SEF-HII dS = ”D(Bz:‘ i+6j+6xz)-(2xi—j) dxdz
=_[D (6 xzi- 6) A=

£ o]

= [} (1222 -12)a =72
0
Let us evaluate the same flux integral using the formula
[[,®F nyas= [[(Peosa)ds+(Qcos 8)dS +(R cosy) as

In this case,

n= (2xi1—j)=cos @&i+cos J]+ces Yk

1
NG
Thus, cos & = I:I, while cos ,5’ < [J. Hence, the required flux integral along the positive orientation is

”S{F-n]l ds = ”D,P.:fydz - j P dzdx

— 2 _
= _”D,B 2% dydz HD,E dzdx
Since, the surface 5is \[_J_;i +yj+zk, (v, z) € D"J where
={(yz)|0=y=4, 0223},
we have

[l 32" iz =3[} ([, 2 ae)ar =3[} S-av=108

and

[ 6dzix=] [ 6dzax=6x3x2=36
D' o Jo '
Hence, the required flux is given by

”S(F-n) 45 =108-36="72

Practice Exercises

1. Evaluate the surface integral
F 48
JJF as.

where 5 is the surface given by
i@ =cos@pan@gi+an@gand] teospk 0=z 2m0=g=m,

and



Fixyvzi=x+3+zk

Answer: —dT

2. Compute the flux of the vector field
Fixyvzi=x+y+:zk
across the surface 5 that is the portion of the paraboloid
z=d4—x —y*

lying above the xy-plane, oriented by the upward unit normal.

Answer: 24}1—

3. Show that the flux of the universe square vector field

F(z,»,7) = —— ,r(x,y,2) = xi + )j + 2k,

(3l

across the sphere R
P ryi+zi=4

towards the outward unit normal is given by 41
4. Find the coordinates of the center of mass of the surface out from the cylinder
¥ 4+z% =9 z =0, by the planes y = and x=3,

F=25=07=4%

Answer:

5. Let F be a vector field such that F.r = 1for all {x,¥,z)on the unit sphere 5

Show that

”SF-.:fszznﬂ

Recap

In this section you have learnt the following

¢ Some application of the surface integrals.
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