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Module 4 : Local / Global Maximum / Minimum and  Curve Sketching

Lecture 10 : Sufficient conditions for increasing / decreasing [Section 10.1]

  Objectives
  In this section you will learn the following :

How the knowledge about the derivatives of a function helps us to draw conclusions regarding
the increasing / decreasing nature of the function.

 

 
The key result that helps us to deduce conclusions about nature of a function from the knowledge

about its derivative function is the following:

10.1.1Theorem:

 

Let  be differentiable. Then the following hold:

10.1.1Theorem:

 

Let be differentiable. Then the following hold:

Proof:

To prove (i), let for all . Let with . Then, by the mean value


file:///E|/HTML-PDF-conversion/122101003/Slide/Module-4/Lecture-10/Proof-10.1.html


 

theorem for , we have 

Since  for all , we get 

Thus, 

Hence, , for all implies that is increasing in proving the only if part of
(i). In fact, if  for all , then the above argument also tells us that is strictly
increasing in , proving (iii). To prove the converse statement in (i), suppose that is

increasing in .Then for all . Hence, 

.

This proves (i). Proof of (ii) is similar to that of (i) and of (iv) is similar to that of (iii), and are
left as exercises.

Click here to see a visualization: Applet 10.1

10.1.2Examples:

(i) Let . Thus

 

Thus is increasing in the interval and decreasing in .

(ii) Let .

 

Then 

                  .

Thus,

                  .

Thus is strictly increasing in and strictly decreasing in .

(iii) Let .

 

Then, is differentiable everywhere, except . Further,

                  .
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Since strictly decreasing in 

 and strictly increasing in .

10.1.3Remarks:

(i) 
In part (i) of the theorem the condition is necessary. For example for

some need not imply is strictly increasing in a neighborhood of . For this, consider the

function

 

                

Then, is differentiable at with . But, is neither strictly increasing nor decreasing

in any neighborhood of .

(ii) In theorem 10.1.2 we showed that for all , implies that is strictly increasing in 

. However, the converse of this need not hold, i.e., strictly increasing in need not

imply . For example is strictly increasing in every interval , but .

10.1.4Definitions:

 

Let . 

(i) We say is locally order preserving if there exists some such that 

               whenever . 

(ii) We say is locally order reversing if there exists some such that 

              whenever .

10.1.5Example:

 

Let

               

Then, for , we have

 

Thus, . Hence, is locally order preserving.

We state next a theorem which helps us to analyze local order preserving functions. Before that we
prove an important result.

Theorem (Sign of Limit):



10.1.6

 

Let be such that exists.

(i) If , then there exists some such that 

                          whenever  .

(ii) If , then there exists some such that 

                         whenever  .

10.1.6Theorem (Sign of Limit)

 

Let be such that exists.

(i) If , then there exists some such that 

 whenever  .

(ii) If , then there exists some such that 

 whenever  .

Proof:

 

We prove (i), proof of (ii) is similar.

Let . Then given there exists such that

whenever 

i.e., whenever .

 

10.1.7Theorem (Derivative test for local order preserving):

Let be such that is differentiable at .

(i) If , then is locally order preserving at .

(ii) If , then is locally order reversing at .

    

10.1.7Theorem (Derivative test for local order preserving):

Let be such that is differentiable at .

file:///E|/HTML-PDF-conversion/122101003/Slide/Module-4/Lecture-10/Proof-10.1.6.html
file:///E|/HTML-PDF-conversion/122101003/Slide/Module-4/Lecture-10/Proof-10.1.7.html


(i) If , then is locally order preserving at .

(ii) If , then is locally order reversing at .

Proof:

 

We prove (i), proof of (ii) is similar. Since 

exists, 

by theorem 10.1.6, there exists such that 

whenever . 

Thus 
whenever 

and 
whenever 

Thus 
for 

Hence is locally order preserving at .

  please refer web site for quiz

  

 PRACTICE EXCERCISES

 

1. For the following functions find the intervals in which the functions are increasing, decreasing:

(i) . 

(ii) 

(iii) 

(iv)  

(v)  

2. Show that

(i) 

(ii)  

3. Find a polynomial function which has all the following properties:

(i) Decreasing in .

(ii) Increasing in .

(iii) .

4. Show that  for every .
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  Objectives
  In this section you will learn the following :

How the knowledge about the derivatives of a function helps us to draw conclusions regarding
the points of local maximum / minimum for the function.

      

 5. In the following statements, prove if you think they are true, give examples if they are false: for
functions on :

(i) If are increasing, then is also increasing.

(ii) If are increasing, than so in .

6. Give examples of functions on with the following properties:

(i) are both increasing but is decreasing.

(ii) are both strictly increasing, but is a constant function.

(iii) are both increasing and is also increasing.

 

7. Let and .If is continuous, is increasing in and also increasing 

.

   Show that is increasing in . 

    Using this, prove the following:

    is increasing in .

8. State a result corresponding to exercise 7 for decreasing functions and use that to show that  

    is decreasing .

   Recap
   In this section you have learnt the following

How the knowledge about the derivatives of a function helps us to draw conclusions regarding
the increasing / decreasing nature of the function.

[Section 10.2]

 

 

 

 

 

 

 

 

 

 




 In this section we analyze the problem of locating point of local maximum/minimum for a function.

10.2.1Theorem (continuity test for local maximum/minimum):

 

Let 

(i) If is increasing in an interval and decreasing in an interval , for some 

, then has a local maximum at .

(ii) If is decreasing in an interval and increasing in an interval , for some ,

then has a local minimum at .

 

10.2.1Theorem (continuity test for local maximum/minimum):

 

Let 

(i) If is increasing in an interval and decreasing in an interval , for some 
, then 
has a local maximum at .

(ii) If is decreasing in an interval and increasing in an interval , for some 
, then 

has a local minimum at .

 

Proof:

We prove (i), proof of (ii) is similar. Let

                     

Then, by the given condition, . Letting and using the continuity of at . We
get

                    

Similarly,

                    

Hence, has a local maximum at .

 

10.2.2Examples:

 

Let

                      

We want to find such that has a local maximum at . Since is increasing in and

decreasing in , by theorem 10.2.1, it will have a local maximum at if it is continuous at 
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. That will be so if . 

10.2.3Remark:

 
In theorem 10.2.1 , the continuity for the function at the point is necessary. For example

consider the function:

 

Then, is not continuous at and has no local maximum/minimum.

 

 A sufficient condition for the existence of local maxima/minima in terms of the first derivative is given in
the next theorem.

10.2.4Theorem ( First derivative test for local maxima/minima):

Let and be such that is continuous at .

(i) If there exists some , such that exists in with

 
then,  has a local maximum at .

10.2.7Theorem (Second derivative test for local maximum/ minimum):

 

Let .

(i) If exists in for some with and exists with , then

    has a local maximum at .

(ii) If exists in for some with and exists with ,

then 

     has a local minimum at .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10.2.7 Theorem (Second derivative test for local Maximum):

 

Let .

(i) If exists in for some with and exists with ,
then
has a local maximum at .

(ii) If exists in for some with and exists with ,
then 
has a local minimum at .

 

Proof:

We give a proof of (i), proof of (ii) is similar. Consider . Since

                          

there exists such that

                         

Hence,

                         

Now by the first derivative test, has local maximum at .

 

10.2.8Local maximum/ minimum procedure:

In view of Lemma 9.1.5, the possible points in the domain of a function , where can

have local maximum/ minimum are the following:

(i) The end points of closed intervals, if any, contained in .

(ii) The points at which is not differentiable.

(iii) The interior points of such that .

These points of (ii) and (iii) are called critical points of . These points provide a complete list of

probable points for local maximum/minimum for . Now we can apply theorems 10.1.1, 10.2.4 and

10.2.7 to analyze for local maximum/ minimum at these points. Note that, need not have a local

maximum/minimum at a critical point.

10.2.9Examples:

 (i) Let .

(ii) Let  The function is differentiable everywhere and 
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Thus, the critical points are . However, none of these points is a point of local

maximum/ minimum since .

 

please refer web site for quiz

 PRACTICE EXCERCISES

1. In the following the derivative function of a function is given. Find the critical points, the intervals on

which is increasing / decreasing and the points of local maximum/minimum.

(i) .

(ii) .

(iii) .

(iv) .

2. For the following functions, find the critical points and points of local maximum / minimum.

(i) .

(ii) .

(iii) .

(iv) .

3. Find the intervals in which the function is increasing/ decreasing. Also find points of

local maximum / minimum of .

 

4. Consider the cubic , where are real numbers. If has three distinct real

roots, 
    then show that by proving the following:

(i) 

(ii) 

(iii) 

5. In each case, find a function which satisfies all the given conditions, or else show that no such function

exists:

(i) 

(ii) 

(iii) 
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(iv) 

6. Show that a cubic polynomial can have atmost three distinct real roots.

7. Let be such that exists and is continuous. If has three distinct zeros in , show

that

   will have at least one real zero in .

   Recap

   In this section you have learnt the following

How the knowledge about the derivatives of a function helps us to draw conclusions regarding
the points of local maximum / minimum for the function.
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