
   20.1 The Power function

 
In view of the property as in theorem 19.2.2 (iii), the function is also called the power function

with the natural base, i.e., Using the functions and , we define the power function for any

base .

20.1.1 Definition:

 

Let . For , define 

The function is called the exponential function with base 

20.1.2 Theorem:

 

For , the function 

has the following properties:

(i)

(ii)

(iii)

(iv) If , then

            

(v) For , the function is a strictly increasing and concave upward with

           

(vi) For , the function is strictly decreasing, concave upward with
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Lecture 20 : Definition of the power function and logarithmic function with positive base
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  Objectives
  In this section you will learn the following :

How to define the power (exponential) function for arbitrary positive base.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




           

(v) For is one-one and its range is . If is the inverse of , then

           

 

The function is denoted by . Thus, 

 

20.1.2Theorem:

 
For , the function 

has the following properties:

(i)
(ii)
(iii)
(iv) If , then

           
(v) For , the function is a strictly increasing and concave upward with

           

(vi) For , the function is strictly decreasing, concave upward with
            

(v) For is one-one and its range is . If is the inverse of , then

 

          

The function is denoted by . Thus, 

 Proof:

 
The statement (i) follows since,
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20.1.3Definition:

 The function is called the logarithmic function with base .

20.1.4 Note:

 
For , the power function , is given by 

20.1.5 Examples:

(i) Consider the function

  

 

Let us analyse if for regions of increasing / decreasing and concavity. Since, 

          

Thus is a strictly increasing function. 

Further 

          

it is a concave up function.

(ii) Let

 

             .

Then 

             .

Since, for and for , we have 

            is strictly increasing on ,

            is strictly decreasing on ,

            and has a global minimum on . 

Thus, if , then

             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Since is a monotonically increasing function, above implies that 

              

In particular, since , we get the following inequalities: 

             

 

 PRACTICE EXERCISES

1. Analyse the following functions for the region of increase/ decrease:

(i)

(ii)

2. Sketch a graph of the following functions:

(i)

(ii)

(iii)

3. Find equation of the tangent to the following at the indicated points

(i)

(ii)

   Recap
   In this section you have learnt the following

How to define the power (exponential) function for arbitrary positive base.

 
 

Section - 20.2

  Objectives

  In this section you will learn the following :

How derivative function is useful in computing limits of the form ,  and so on.
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   20.2 L'Hopital's Rule

 In this section we shall see how the derivative function is useful in computing limits of certain types of
functions.

20.2.1 Example:

 

Consider the function

We want to analyse . We note that simply putting in the above formula does not help,

as is not defined at , and

However, both are differentiable at . Thus, we may assume that near ,

.

Thus, we should expect that

In fact, the above does hold and is made precise in the next theorem.

   20.2.2 Theorem (L'Hopital Rule form)

 Let be functions such that the following hold:

(i) .

(ii) are differentiable in with 

(iii)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




 

Then, 

   20.2.4 Note:

(i)
Theorem 20.2.2 is applicable for functions defined in intervals of the type with 

replaced by

 

:

,

whenever the right hand side limit exists.

(ii) In theorem 20.2.2, since for , the limit

 

.

This is called indeterminate form .

(iii) The conclusion of theorem 20.2.2 is also true when , or .

20.2.5 Examples:

(i) Let , then the is of the form , and by theorem 20.2.2,

 

(ii) We want to compute . Let

 20.2.2 Theorem (L'Hopital Rule form)

 Let be functions such that the following hold:

(i) .

(ii) Both are differentiable in with 
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(iii)

 
Then, 

 Proof :

 

The proof is an application of Cauchy's Mean Value theorem. 

Let be arbitrary real numbers with 

We note that , for otherwise by Roll's theorem we will have 
for some , which is not possible by (ii). Thus,by Cauchy's mean value
theorem for , there exists a point such that 

By (iii), given , there exists such that 

Now from (1), for , we get 

Since, this holds for all , letting , we have  and
hence 

Hence, 

 

 

 

20.2.3 Examples:
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(i) Let

 

.

Then, both  satisfy the conditions of the theorem in the interval say . Thus,

 

Then, is of the form , and hence

(iii) Let us compute

              

 

The required limit is of the form . Thus 

          

  

 We give below (without proof) some other terms of the L'Hopital's rule:

20.2.6 Theorem (L'Hopital's rule, form):

 Let be differentiable functions such that for every and

(i)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



(ii)

 
Then

          

20.2.7 Note:

(i)
The conclusions of theorem 20.2.6 also holds when is replaced by , provided are

defined

 in some interval .

(ii)
The conclusion of theorem 20.2.6 also holds when are defined in some interval and 

 (or

 in some interval ).

(iii)
L'Hopital's rule also becomes applicable to indeterminate forms like and so on. In

most of

 these cases, we can bring the required limit to  form.

20.2.8Examples:

(i)

        

(ii)               

(iii)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



               

(iv)

 

(v)  To compute which is of the form , we write

 

.

using the fact that ln(x) in conditions,

Applying function to both sides, and taking limit,

   

 

 

 

 

 

 

 

 

 

 

 



 

Hence,

Since is a continuous function, we get

.

   

Hence,

              .

20.2.11Remark

(i) L'Hopital's rule should not be taken as a golden rule, applicable always. For example

 

 is of the form , since

L'Hopital's rule will yield no result.

(ii) Consider 

 

.

It is of the form ,and if we apply L'Hopital's rule twice, we get 



 

and the last limit does not exist. However, from this we cannot conclude that I does not exist.

In fact,

because

 

 PRACTICE EXERCISES

1. Evaluate the following limits:

(i)

(ii)

(iii)

  

2. Let be defined by

 

Show that , but Does this contradict L'Hopital's Rule? 

3. Evaluate the following:

(i)
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(ii)

(iii)

(iv)

4.
Using L'Hopital's Rule, analyze the convergence of the sequence whose term is given below. In case it
is

 convergent, find the limit.

(i) .

(ii) .

(iii) .

(iv) .

  

5. Suppose exists at , compute

 

   Recap

   In this section you have learnt the following

How derivative function is useful in computing limits of indeterminate the form ,  and so on.
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