Module 16 : Line Integrals, Conservative fields Green's Theorem and applications
Lecture 46 : Line integrals [Section 46.1]
Objectives

In this section you will learn the following :

e How to define the integrals of a scalar field over a curve.

46.1 Line integrals

In this section we describe a natural generalization of the notion of definite integral, called the line integral. This notion finds
many applications.

46.1.1 Definition:
Let

fDcR*=IR

and {*be a curve in IR3with parameterization

ri[ab]—=IR*

wherer () Dfor fe(a,b]

1

Figure 177. Line Integral

Let r have the arc length parametrization r{s),a¢ = s =k . Then the function




g—= firis,a=s=h
is a scalar-valued continuous function on the interval [« & ]for both f and r are continuous. Thus, the integral

s=h

cis::_[ o r)(s) ds
[ fdsi= [ (for)e)
is well-defined. It and is called the line integral of f over (.

The line integral being a definite integral, has the following properties.

46.1.2 Theorem :

If
fDbcR*=1IR

is continuous and (is a simple, regular curve in Fjwith a parameterization rif) ¢ €[z, & ], then

[ do= [ 10x0,0,20) 17 l1de
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PROOF

Since

L Jds= I: Flx(s),p(s),z(s0ds, e (1)
and

eds
| 5 (2)
Z-lr ol

from (1) and (2) we have

b
[ fds= ] fx@,pE,26) 5@ d
46.1.3 Note:

In defining I £ =, implicitly we have assumed that the arc length increases as the variable increases. This is normally, called
c

the positive orientation on (. The opposite orientation will give a change of sign for I s
c

46.1.4 Examples:

1. Let us evaluate

J 1 ),

where C is the line segment from (0,0) to (1,2} in IR®.
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Figure: The line segment
To move from (0,0} to (1,2}, let us choose the parameterization
rif)=fi+2f], 0=¢6=1

Then,

e @ 5.

Hence,

[+ nAds= [ (+48)f5de =245

. Let us calculate

Icf ds for fix,y,21= xp+z°

where (is the circular helix

rifi=costi+anéj+ik, from (10,0 to (—1,0, 7).

Note that, to move from (1 0,0} to {—1 0 77) along r(f), ¢ varies our [0, 77].

Since

Figure: Circular helix

|7 @ 1+ =2, 02 =,

we have




Lf e = "‘E.I-.;T (Cosfsing +£7)dt
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46.1.5 Theorem (Properties of the line integral):

[[(f+eyde=] fdo+] gds

[ (aryds = a(jcfds)

L Fds = f; [L} f.:is].

3. If (7 consists of finite number of pieces ,",,... T, , where each ;is regular, then =1

Proof
We assume these properties.

46.1.6 Example:

Let us compute

Icf dewhere f{x,y2) = x+4y -z
and the path (T given by

y=x* from O(0,0,0) to A(11 0} and the line segment from A(11,0) to B(L1 1.

&
A

[(1,1.1)

(0,00 =y

ke,

x 2 (1,1,0)

Figure: The curve C'= 00,

We can think of {*as two pieces, Cl from iz Aalong ¥y= x2 with parameterization given by
rif)=fi+:4§,0=¢ =1,

and the piece C’z the path from A to B along the line segment joining them, with parameterization given by

r()=i+tj+ek, 0=z <1

Thus, the curve C consists of two pieces C’l and Cj, both of which arc regular, and hence
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46.1.7 Definition :
Let C be a smooth parametric curve with a parameterization r(z),f €[a,&] Consider the curve
Fif) =r(b—(t—a))ica,b]
Then, fis also a smooth curve. Geometrically,
{ri)|tele,d]} = {ri)|s €la, ]}

However, f traverses the path {*backwards, i.e., the initial-point of r is the final-point of f and vice-verse. The curve f is called
the reverse of C, and is denoted by —(*.

46.1.8 Theorem :

Let 7. D IRk* — IR be a scalar field. If Lfds exists, then I Cf s also exists and

_Lf@:{hf@)

el
£

PROOF
Follows from the fact that

di(e) __dr(®)
dt dt

, For every £ e[a,b]

46.1.9 Definition :
Let (*be a smooth curve in [} — IR3 with parameterization
riti=ztini+yij+zitik,:la, k]

1. For a continuous scalar field f D IR3 —}IRJdefine

= d
[ fan=[_ 7(x(0,50,2¢) (?ﬂ ,

—h .
[ dr=[_ 7ex®,y@,2) [j‘;] ,
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and
=h dz
J-Cf dz.= .I-:=a JixE), »ig), z(E)) (E] elE.

2. For a continuous vector field F: [ — IE{'_3 — TR , with

F=7i+74i+4k

define

[[Foar=[ fax+| frart| fdz,
Called the line integral of F over (.

46.1.10 Note :

The line integral I F d4r depends not both upon the orientation (positive or reverse ) of (', also upon the initial and the final
I

points of (.

46.1.11 Example :

Let (,and i, be smooth curves given by
it =fi+ij+ik,0=£=1

and

r(f) =ti+fj+5k 0= =1

Then, ] and ', both have initial point (0, 0,0} and final point (1,1,1). Further, for the vector field
F=yyi+xij+xivk,

we have

2 L 2 3
Icg,gdx+xzdy+yx ciz:ID (£ d +2% dt +£2 d)
L

{E‘f}l {:“T 1
3,4, 12
And

Iq yedx+zdy+ it dz = E (¢ de+2* (20 de) +¢* (3% de))
FT {211 {3:"‘}1 11

==+ = ] = ==

5, 15, L6, 10

auz For Quiz refer the WebSite

Practice Exercises

Evaluate the following line integrals :

1. L (xz -y +3z) ds, where (Yis the line segment going ((, 0,0} with {1 2 1}.
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Answer: 5'}.‘”‘{6

ds, where (7is the curve » (f,j:gi+%g3"2 j0=s=3.

> L’ 1+x°

Answer: 2

3. For the given vector field & and the curve ¢, compute I F dr:
o

F(z,y)=x"i+w],

(ris the circle x* +y* = 4.
Fix,yz)=x'yi+iz—2)j+nzk,
Ctisthe curve r () =zi+2* j+2k 0 =<1

Answer: u (]

.[c fdx’.l-c Sy

4. Let f(x,¥)=x—yand (rbethecurve r(t1=2¢1+ 252 j - Compute the following :

1

Answer: ' 2

5. Compute the following :
L Ic v dx+x° dy,
where (7is the arc of the parabola y = 4z — x*from (4,07 to (1,3).
) Ic v dx x5 dv + nds
where (Yisthecurve r(¢)=¢" i+¢ j+& kfrom =z <1

Answer: %

1-2°

Recap
In this section you have learnt the following
e How to define the integrals of a scalar field over a curve.

[Section 46.2]
Objectives

In this section you will learn the following :

¢ How to use line integral to compute areas of some surfaces.
e Physical applications of line integrals.



46.2 Applications of line integral

46.2.1 Surface area of a thin sheet :

Suppose we have a surfaces 5 whose base is a curve {fin the X¥-plane and its height at any point (x,y} £ in the value

z = fi{x,), where fissome function which domain includes (.

Figure 181. Surface with base (*and height z = f (x, ¥}

We can think of this surface as made up of small vertical strips with base #zand height §(x ). The area of this strip in

approximately given by {{x, ¥)is. Thus, the total area of this surface can be defined to be

(27 (x3)8s),

lim
hi—

whenever it exists. This limit is nothing but .[c = . Thus, the area of the surface ;can be defined to be




breaof 5= _[Cf ds.

46.2.2 Example:

Let us compute the area of the surface

5 with base the circle z° +3* = lin the zy—plane
extending upward to

the parabolic cylinder z=1—2" at the top.

The required area is given by

A= L« (1- x4 ds,

where [*is the circle with arc-length parameterization :

risi=cossitsingj, 0=s=2m

Figure: Surface with base the circle and height - —1— xf*

Thus,
fi:-I-jjfi'{l—c-::-s:g Sids = r Tansds=T
0 0

46.2.3 Mass and Center of gravity of a thin wise :

Consider a thin wire in the shape of a curve [*in space.

Figure: A piece of wire [*

If f{x, v, z)represents the mass per unit length of the wire, then the mass of a small portion # gz of the wire, is given by



&M= fx,  2ibhs

Thus, we can define the total mass of the wire to be

M::Icfds.

Similarly, we can define the moments of the wire *about the coordinate planes as follows
i’l.ffl:JJ = L zZfi(x,¥,2) ds, Myz = L i (xy,z)ds, M,, = L ¥z v zids.

Finally, the point (}JJ_;J E) , called the center of mass of the wire, in defined by

—_ M}'z o — sz - M’-}'
x= . o= g=—"
Af Af M

1

46.2.4 Work done along a curve:

Consider a force F being applied to a body to move it along a curve {*from a point 4to a point &

')
M ;
A t4
to
Figure: 177

If T(¢), 4 =¢=4),is a parameterization of ', then the amount of work done to move the body by a small distance /3 along the

curve is given by

r
rif
(F . LJ s
(2l
since, F . r'(Z) is the tangential component of force. Thus }¥, the total work done in moving the body along ', is given by

w=| [F-r—:]ds
2 Ara

= (F-d—r]ds
s

If Fhas components 7, F, and 7 ie.,

F=Fi+Fj+Ak andr(f)=xi+y()]j+2(0k,

then equation (37) can also be written as



i dx dy dz
W= B H =+ — |de
f#u( Ydr R dr 3.::5‘5]

£
=], AdrtRdy+Fde
o

46.2.5 Circulation of a fluid along a curve:

Let
v=FRi+FAj+Ak

be the velocity field of a fluid flowing through a region [1in space. Let {*be a curve inside the region [}.

Figure: Flux along g
Then the tangential component of wat a point an the curve is given by

v T, where T iz the unit — tangent vector to O
at that point. For a small portion pzof the curve, the quantity (v- T)ﬂs represents the flow of the fluid flow across the small
portion # . Thus, the total flow of the fluid along the curve (is given by

Total flow along = jc (v T)ds

If the curve {is a closed curve, then the above integral is called the circulation of the flow along the curve.
46.2.6 Flux across a plane curve:

Consider a fluid flowing in a region f1in the plane. Let wbe the velocity vector of the fluid and &(x, y)be its density at a point

(x,v1ell

Figure: Flux across hs

Then, the vector field

Fix,y)=plx,yivix,y), (x,y) €l

represents the rate of change of mass, per unit time across a unit length. Let be a curve in the domain . Then the rate of



& 0

change of mass of the fluid across a small portion # s of the curve is given by

(F nihs,

where mis the unit normal vector to the curve. Thus, the total mass flow across whole of (fis given by
Total flow across &= Ic (F n)ds,

called the flux of the fluid flow across (.

Practice Exercises

1. Compute the area of the surface with base on the curve (~in the X -plane and at the point {x,»)in (', the height being
z = f(x, ) for the following:

1. f(x,»)=xy. (7is the part of the unit circle x*+y* =1from (1,03 to (0, 1) .
2. f(x,))=3x, (isthe parabola y= »* 0= x=2.

3. Ffix,»= 2+%(3y— 4y3j , (7is the unit circle.

Answer:

M %

aiy 17 \T—l

(i) 4z
2. Find the work done by a force field F(x, y,z), moving along a curve (a given below:
1. F(x,y,z}=%i—%j +%, (risr(fil=cosi+anj+ike, 0=,

2. Fix,y,z)=xi+y]j. Cisrifi=3"i+tj+k,0=¢=1.:
Answer:
(D 3mid
@i 5
3. Find the circulation of v(;;z +y2]| (i+j)along the curve r (f)=coséi+sini]j, 0= 2w
Answer: 0

4. Find the flux of the vector field 7 (x,y) = »® i+ x jacross the boundary of the unit square [0),1]x[0,1]
Answer: 0
Recap
In this section you have learnt the following

¢ How to use line integral to compute areas of some surfaces.
e Physical applications of line integrals.
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