
Module 3 : Differentiation and Mean Value  Theorems

Lecture 8 : Chain Rule [Section 8.1]

   Objectives
   In this section you will learn the following :

Differentiability of composite of functions, the chain rule .

Applications of the chain rule.

Successive differentiability of a function.

       

 

8.1  Chain Rule

 In the previous section we analysed the differentiability of algebraic combinations of differentiable
functions. In this section we analyse the differentiability of the composition of differentiable functions.

8.1.1 Theorem (Chain Rule):

 

Let and be functions such that  is defined. If is differentiable at  and is differentiable at 

, then is differentiable at and

Alternatively, if

then,

.                                                                                                          

 Click here to View the Interactive animation : Applet 8.1
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 8.1.2 Example:

 

Consider the function Then 

where 

 

Since, both and are differentiable everywhere, by chain rule and theorem 7.1.8, is also is

differentiable at every  in and 

 8.1.3 Example (Differentiation of rational powers) :

 

Let , be any positive differentiable function and , Then the function is

differentiable with 

                  

To see this, let us consider the case when . Let , where are both positive integers . 

Let . Then

                  

where Note that Thus, by chain rule

                  

 8.1.4  Example (Derivative of the exponential function):

 

In example 3.1.6 (iii) we observed that the function is a bijective function which is

differentiable at every point . Its inverse function is called the exponential function and is denoted by 

                  . 

Since has derivative for every , the exponential function is differentiable. If 

, then



                  

Hence, is its own derivative for every .

 8.1.5  Example (Derivative of general power function):

 

Let and for every define 

Note that where By chain rule,  is differentiable at

every point and 

                 
We give below some applications of the chain rule.

 8.1.6  Parametric Differentiation:

 

Consider a curve in the plane which is the graph of a function . Suppose that both the

variables and are functions of another variable , say, and Then, the

function is called a parametric representation of the curve . 

     

Further, suppose that is differentiable as a function of and is differentiable as a function of .

Then by the chain rule, the function is differentiable as a function of and 

                                                    
In case, , we can write 

                                                   
This is called parametric differentiation.

 8.1.7  Example :



 

Let and  Then, 

                

Since for , we get 

                 , for . 

In this case, in fact as a function of  is given by , and hence 

 8.1.8  Note :

 

In general, the graph of a curve, may not arise as the graph of a function. For

example

               

defines a curve in the plane, called prolete cycloid. Even though at the point , 

               
and we have 

              , 

however, this is not the derivative of any function . 

We saw in the lecture 6 that the inverse of a one-one continuous function is also continuous. It is
natural to ask the question: When is the inverse of a one one differentiable function also differentiable?
The answer is the next theorem.

 8.1.9  Theorem (Derivative of the inverse function):

 

Let be an open interval and be a one-one differentiable function. Let be the range of 

and be the inverse function. Then, is differentiable at a point for , such

that,  and in that case

                                                                                                                   

8.1.9 Theorem (Derivative of the inverse function):

 

Let be an open interval and be a one-one differentiable function. Let  be the range of

and be the inverse function. Then, is differentiable at a point for , such
that and in that case
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 Proof:

 

Since is one-one and continuous on is either strictly increasing or strictly decreasing. Let 
. Then, and since is one-one, for Let and 

. Note that since both and are continuous, if and only if . Thus,

 

 8.1.10  Example (differentiation of the n-th root function):

 

For , the function defined by is a one-one differentiable function

with for . Thus, the inverse function is differentiable for every 

and its derivative at is given by

                      

Consequently (by the Chain Rule), if is any rational number, then defines a differentiable

function on and

                       for 

Click here to see an interactive visualization (Java) : Derivative of the inverse function :  Applet 8.2

 8.1.11Implicit Differentiation :

 

Sometimes, the relation between the independent variable and the dependent variable is not

explicitly given a function , but is given as a relation . For example, the relation 

, can be written implicitly as . However, the relation , does not allow

us to represent explicitly as a function of . In fact, it represents more than one function. The

representation is called implicit representation of the function . The question one

wants to answer is the following: When can we compute from the implicit relation ,

without requiring to compute in terms of explicitly? To provide a complete answer to this we need a
theorem from advanced calculus called “Implicit Function Theorem”, which gives conditions under which
an implicit equation represents an explicit function , and is differentiable. Further,

it ensures that to find one can differentiate using the rules of differentiation and solve

it for . This theorem is stronger than the theorem on the derivatives of inverse function. 

 8.1.12 Example:

Consider the relation which can be written as . By the implicit
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function theorem and using chain the rule, we get

                   , thus  i.e,  . 

Of course, the question arises: ‘which is the right derivative?'. For that, we observe that 

 represents 2-different functions :  and .

 

  

 8.1.13Example :

 

Consider 

          

Assuming that the conditions for the implicit differentiation are satisfied, we get

          

Thus, , which gives

          

This allows us to compute the derivative at any point which satisfies the relation .

For example at .

 8.1.14Note

 It may not be always possible to represent explicitly as a function of . 

 

 Practice Exercise 8.2 : Chain rule and applications

1. Compute for the following functions wherever they are defined:

(i) .

(ii) .
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(iii) .

2. Let be differentiable functions such that . Given that, ,

compute. .

3. Let be expressible in terms of by the relation . Find the largest interval of the form 

such that will be differentiable as a function of .

 Practice Exercise 8.2 : Chain rule and applications

 Continued . .

4. Let be a differentiable function of the variable such that . Find the sum of intercepts

of the tangent line  to at every point is equal to .

  

5. Let . Show that is a one-one differentiable function. Find .

  

6. . Show that is one-one and 3 belongs to range of . Let and 

. Compute .

   Recap
   In this section you have learnt the following :

Differentiability of composite of functions, the chain rule.

Applications of the chain rule.

Successive differentiability of a function.

  [Section 8.2]

   Objectives

   In this section you will learn the following :

The notion of successive differentiation.

The Leibnitz's formula.

The notion of related rates.




8.2  Successive Differentiation

8.2.1  Definition:

 

Let be an interval and . We say is twice differentiable at if is differentiable

on for some and the derivative function is differentiable at . In that case we define

the second order derivative of at to be 

                                         , 

the derivative of the derivative function. It is also denoted by 

                                       

The concept of differentiability and the derivative of at , denoted by , can be

defined similarly: 

                                        

If exists for every , we say  is infinitely differentiable at .

8.2.2 Examples:

 

(i) Consider 

    Then is differentiable for every and and

                           

 

(ii) Let . Then is also differentiable for every . It is easy to show that

                                        

(iii) Let

                                      

     Then is differentiable at every with

                                      



      For does not exist. In fact, is not even continuous at .

        Click here to see a visualization(Java) : Applet 8.3

      The product rule for differentiation: for differentiable functions and , 

                                                   

       can be extended to higher derivatives as follows.

8.2.3 Theorem (Leibnitz's Rule):

 

Then and is differentiable at a point and both have all derivatives of orders up to 

in a neighborhood of . Then, is differentiable at with 

      
Proof:

It is easy to prove the required statement by induction on . We leave the details to the reader.

8.2.4 Example:

 

Let us use Leibnitz's rule to find the thired derivative of the function 

Let 

              
Then

             
and 

         .

Thus

We saw that the derivative of a function also represents the rate of change of the function. This
interpretation along with the chain rule is useful in solving problems which involve various rates of
change.

8.2.5  Example:

 

If the length of a rectangle decreases at the rate of 3 cm/sec and its width increases at the rate of 2
cm/sec, find the rate of change of the area of the rectangle when its length is 10 cms and its width is
4cms. Let denote length, denote width and denote the area of the rectangle. Then by implicit
differentiation
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In particular, that is, the area of the rectangle increases at the rate of 

.

8.2.6  Example:

 

An airplane is flying in a straight path at a height of 6 Km from the ground which passes directly above
a man standing on the ground. The distance of the man from the plane is decreasing at the rate of
400 km per hour when . We want to find the speed of the plane. To find this, let denote

the horizontal distance of the plane from the man. We note that for . We

are given that 

 

                                 , 

and we have to find . The variables are related by 

. 

Thus, 

                        
Hence 

                         

 

    Thus, when , 

     we set 

                       
    Hence the plane is approaching the man with a speed of 500 km/hour.

 

Practice Exercises: Successive differentiation   

1. Let , where and is differentiable and .Show that 

.

2. Show that for every ,

(i) 

(ii) 

3. Use Leibnitz theorem to find the third derivative of the functions

(i) 

(ii) 



 

Practice Exercises: Successive differentiation   (Continued)

4. Using induction on , show that

(i)  For 

(ii) For 

5. The radius of the circular disc is increasing with time (think of oil pouring from a tanker in sec). Find
the rate of     change of the area of the disc to the radius of the disc. How fast is the area increasing
when radius is 4km, if the     rate of change of the radius is 5 cm/sec.

 

   Recap

   In this section you have learnt the following :

The notion of successive differentiation.

The Leibnitz's formula.

The notion of related rates.
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