Module 13 : Maxima, Minima and Saddle Points, Constrained maxima and minima
Lecture 39 : Absolute maxima / minima [Section 39.1]

Objectives
In this section you will learn the following :

e The notion of absolute maxima/minima for functions of several variables.

e Method of finding absolute maxima/minima.

39 .1 Absolute maxima/minima

39.1.1Definition:
Let /D IE* — IE. If there exists a point g = /7 such that

Filx, = fla) forall (x el

then the number f{a)is called the absolute maxima of #in 1 Similarly, if there exists a point &= [
such that

iz, vz figforall (x5l

then the number (&) is called the absolute minima of fin [

39.1.2Note:
Recall that If [jis closed and bounded, and f is continuous, then by theorem 30.2.4, both absolute

maxima and absolute minimum exist.

39.1.3 Theorem:

Let /' DcIR* = IR,




Let 7 assume its absolute maximum at a point g = /) Then, either at & is a boundary point of [} oris a

® -
critical
point of fin .
(i) Let assume f its absolute minimum at a point 4 = /) Then, either %is a boundary point of [} or is a
critical
point of fin .
39.1.3Theorem:
Let - D IR® = IR
10) Let fassume its absolute maximum at a point g = /1 Then, either at ¢ is a boundary point of 2,
or is a critical
point of fin o.
(ii) Let assume fits absolute minimum at a point 4 = /7 Then, either &is a boundary point of 2,or is
a critical
point of fin &.
Proof
Suppose g is not a boundary point of n. Then, fmust assume its maximum at some interior
point of pThus, g £ [ is an interior point of o If both f, (&) and j}, () exist, then ¥f (&) =0by
theorem 37.1.3. In any case, g is a critical point of s. Similar arguments hold for & .
39.1.4Note:

To find the absolute maximum j4f and the absolute minimum #: of a function _f; Dc IRE —JE on 1,
we compare the values of f at the critical points of fin [1and the absolute maximum and the absolute

minimum of the restriction of f to the boundary of [. The latter can often be found by reducing it to a
one variable problem.

39.1.5Examples:

(i) Suppose

D={(xy)eR*[|x|22,| <2

and f: ) —1IE. is given by

S, =4x-2x" - y*.

Since [1is a closed bounded set and f is a continuous function, it has both, absolute maximum and

absolute minimum in 73 For § both the partial derivatives exist everywhere and

Jrixg, ) =4y, — 4%, .f:y (%, 0] =47, _4}%-

Further,
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Q)

W (g, 00 = O for (7,090 = (0,00, (L, and(-1,-T).
Also, (x,,3,) € Llis a boundary point if

Ip=2 of Xy=—20f ¥y=2 of ¥, =—2.

Due to symmetry of the domain, fi{—x —)= f{x,¥).Thus, we need only determine the absolute
maximum and minimum of the functions

F2yvi=8y—8—y' for —2=y=2
and
Flx, N =8x—2x"-16, for—2=x=2.
It is easy to check that the function
F(2,%) has absolute mamimum at y= EJ"E
and
absolute minimum at ¥y = —2.
Also,

Flx,2), absolute maximum at x = 2 and absolute minimum at x=—2.

Finally, we compare these values of F

FO,00=0, 7L =1, 7(23/2) = 632 -8, F(2,-2) =40, f(2,2)=-8,
here we have ignored the points (-1 —1jand (—Z, 2} due to symmetry. Thus,

the abzolute maxzimum of Fis 1,

which is attained at the points (1, 1j as well as at {—1, —1j, and

the absclute minimum of F1s—40,

which is attained at (2,—2}) as well as at (-2, 2] .

Let us find the triangle for which the product of the sines of the three angles is the largest. If we denote
two

angles by x and ¥,then the required function to be maximized is

Filx,vi=sinxsin ysn(x+y), where 0=Zx ¥y x+y=m

It is obvious from the nature of the problem that the function will have absolute maximum. Note that
Filz,wi=0if v or x+3y=0 orm

Thus, j vanishes at each boundary point. At other points, i.e., for 0 < x ¥ x4 ) <JT, the equations

Fr(x,¥)= 0= f, (x,¥)are given by



cosxsin ysin(x+ ) +sin xstn ycos{x+y) =10,
sinx cosysin(x 4y +sin xsin v cos(x ) =10

Since
sinx# Dand siny= 0for 0 <x,pv, <,
above equations give us

sin(2x+yi=0=zan{Z2y+x).

As D= x+y <, wehave 0 < 2x+y, 2y +x <27, and hence, the critical points of j are given by

. i
2x+y:[]:2y+x,1.e.,x:y:§.

Since 7’3, 7r3) = 0, follows that

F hasan abselute maximum at (773,573

Thus, the desired triangle is equilateral.

Practice Exercises
(1) Find the absolute minimum and the absolute maximum of the function

Flxy =22 —dx+y* —dy+1
on the closed triangular plate bounded by the lines
x=0,v=2 and y=2x
Answer

(2) Find the absolute maximum and the absolute minimum of
Flxyi=(x —4x)cosy
over the region

R={(x,y)elR?|l=x =3, —m/4<y=mid).

Answer

Recap
In this section you have learnt the following

e The notion of absolute maxima/minima for functions of several variables.

e Method of finding absolute maxima/minima.

[Section 39.2]

Objectives


javascript:popUp('Answer-1.html')
javascript:popUp1('Answer-2.html')

In this section you will learn the following :

e The notion of constrained maxima/minima for functions of several variables.

e Lagrange's Method of finding constrained maxima/minima.

39.2 Constrained maxima/minima
In many practical problems, one has to find extreme values of a function whose domain is constrained
to lie on a particular region in space. Let us look at some examples.

39.2.1Examples:

(i) Find the point F(x,y,ziclosest to the origin on the plane 2x+ y—3z=15.

2x+3y-3z =5

0(0,0,0)
Here we want to find {x,, z)in the plane 2x+ 3 — 3z = 5such that the value

Filx, vz = 1||'x2 +_}a‘2 +z*

is the smallest.

(ii) A space satellite in the shape of an ellipsoid 457 +y2 +4-* — 1§ enters earth's atmosphere and its




surface begins to heat. After an hour, the temperature at the point {x, ¥, z1on the surface of the probe
is

T(x,y,2)=8x + myz — 1624+ 600,

One would like to find the hottest point on the surface of the probe. That leads to the problem of finding
absolute maximum T for {x, ¥,z on the ellipsoid.

Mathematically, the problem is to find the absolute maximum/minimum of a function

F D —=IE, where (x,)) 1sconstrained to satisty gix, 3 =0,

In case we can solve g(x, )= for one of the variables in terms of the other, the problem can be

reduced to a problem of one variable. But, often this is difficult. A method to handle such problems,
without having to solve the constraint equation and giving preference to one of the variables. This
method is based on the following theorem:

39.2.2Theorem ( Lagrange multiplier theorem):

0}
Q)

iii)

Let (x;, 0] € IF.*and

F.og B, (x, ) — IR

be such that the the following holds:

Both the partial derivatives of 7 and g exist in 5, (x,,),)and are continuous at (z,, ¥,.

g2(xy, ) ="0and Vg(x,,v,) = (0,0).

The function j has a local extremum at (x,,, ), when restricted to (', the level curve

C={(x,y) R | g(x,») =0}

Then,

Vi (xg, ¥ ) = AVgix,, ) for some A el

ik
/

FROOF
39.2.2Theorem ( Lagrange multiplier theorem):

Let (x,,»,1TR*and

gl Baixg, vy — IR
be such that the the following holds:

(i) Both the partial derivatives of fand zexist in &, (x,,,)and are continuous at (x,, ;).

(ll) glxg, ¥ =10 and Vg ix,, a0 = (0,00

(iii) The function fhas a local extremum at (=x,,»,3, when restricted to ¢, the level curve
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C={(x, 31 eTR? | g{x,) =0}
Then,
NMEKG, V) = AV g(x,, 30 for soeme A TR

Proof

Since Yz iz, ) = (0,0, we have

Ex (%00 = (0,00 or g, (x,0p0 = (0,00

Suppose, g, (%, = (0,03, Then, using implicit function theorem, we can find a function
[ — &, 73 + &] — IR such that

glx, 3 x1) =0 forall xe[x,— J, x5+ F]

Hence, by chain rule,

Ex (%, o)+ Ey (g, ) y'(xnjl L (32)
Also, since fhas a local extremum at the point (x,,»,3when restricted to ¢, if we define
Fixg — T, 5+ J] = IR, ¢lx)i= _Fix, »x,

then ¢has a local extremum at x,. Therefore,

'?Ef'.':xn:':fx (xu,yu}+ﬂ(xu,yu}y'(xnII:U- “““““ (33)
It follows from the equations (32) and (33),

f_y (xn:yu:' gx(xu:yn:' = f_x (xu:yu:' 8): (xu:yu:':

and hence

W (A, e ) = AVE (XL 00,

where

A= J:v ':XO:yo:'fg_y (x5 2%

39.2.3Note( Lagrange's multiplier method):

In view of the above theorem, , to determine the absolute maximum/ minimum of a function f(x, v}

subject to the constraint g(x,¥) =0, we follow the following steps:

Step (i): Solve the equations

Vi(x,0)=AVg(x,») and glxy=0. oo (34)
Let

a1 = 1{0x, ) | equation (34) 15 satisfied}

Step (ii): Let

oy = {0 | glx, ) =0 fylx, y) or fy(x,p) dees not exist, or Vg(z, »,y) = (0,00}

Step (iii): Evaluate f at each of the points in SIL_JSE_ Find M, the largest of these values and #,the
smallest of these values.

Step (iv): Ensure that jf and @z are the required absolute maximum and absolute minimum of f
respectively for the given constraints.

39.2.4Examples:

) Let us find the maximum and the minimum of #{x, ¥} = xyon the unit circle, that is, subject the the
constraint

g(x,y) = xj +_y2 —1=10 Since the conditions of the theorem 39.2.1 are satisfied, we consider the
equations

Vi(x,pi=AVg(x,») and glxy)=0,



i.e.,
y=24x, x=21y and x4y -1=0

It is easy to check that the points (x,y} that satisfy these equations are

(142, £14J20.

Since the unit circle is closed and bounded and fis continuous on it, fattains its absolute
maximum/minimum on it, and are the largest/smallest of the values

FONZUND) = F 1N - 133 = &

2

and

FOUNZ-12) = £ 12, 142) =‘31.
Thus, j has absolute maximum 12, absolute minimum —1/%2 .

(ii)) Let us find the minimum of the function

Flx,v1= x4+ subject to the constraint g(x,y)=(x-1"—3* =0,
The equations
Vi(x,y)=AVgixy) and gixy)=0,

we have

2x=3A(x—1%, 2y = 24y, (x- 1~ y* =00
have no solutions for y = 0. For ¥ =10, g(x,¥) =0, gives have x =1 But then

Ve(l0i=0 and VF(1l0=(2,0
Thus, the equation

V(L0 = AVe (1, Dis not satisfied for any Ae IR

Hence, the condition ¥gix,, ;) # (0, Jjcan not be dropped in theorem 39.2.1. However, f(x,3}is the
distance between origin and a point on the surface {x—1}3 :_y:‘,Geometrically it is obvious that the

minimum of f is ]and this is attained at {1,007 .

39.2.5Constrained extremum for three Variables:

There is a result analogous to the two variable, to solve the problem of constrained maxima / minima
for functions of three variables. We solve the equations

Vi(x,»z)=AVglx, y,z),g(x, »,2) =10,

in the unknowns X, ¥,Zand jat which ¥g(x,y,z)# (0,0 0)and compare the values of f at these

points to locate the constrained maxima/minima of f.



39.2.6Examples:

Let us find the points on the surface 2;2 = @-+4 closest to the origin. This is same as minimizing the
function

Flx,y,2)=x" +y° +2° with constraint g(x, y,z) = xy+4—2°,

Note that although the set
S={(xy,2) eIR?| g(x,,z) =0}
is not bounded, the set
s={(x,yz e X! Pal e Ty

is closed and bounded, where » = xg +_J,r§ +z|:|2 for some (x;, ¥,;,2,1 € & . Further, the minimum of 7 on

»3 equals the minimum of # on .5, which exists as f is continuous. To find this, we solve the equations
Vi=AVg e, 2x=Ay 2yv=Ax 2z=-21z

Since

A=01mplies (x,»,2z)=(000) and g(0, 0 01 =0,

we may assume that ] = (1. Then, it is easy to see that the only common solutions of

Vi=AVg and g=10

are the points

(0,0,2), (0,0,=2), (2,-2,0) and (=2,2 0).

Further,

F0,0+2) =4 and F(£2,72,0)=8,

Thus, (0,0,£2) are the points on the surface z* = x2+4 closest to the origin.

39.2.7Remark:

The method of Lagrange's multipliers extents when we have more than one constraint. Suppose we
want to find extremum a function f{x, y, z) with constraints

glx,y,zp0 and A(x,y,z)=0,

where g and j; have continuous partial derivatives in a neighborhood of {x,,3;,z;). These can be found

by comparing the values of f at points which satisfy the simultaneous equations



Vi(x,p,z) = AVg (x,»,2) + (ki x, y,2),

glx,y,z)=0=hx, yz),

and for which

Vg (x,p0,2) = (0,0,00, Vh(x, »,z) #(0,0,0)
and

Ve (x, v, z) 18 not parallel to Vh(x, v, 2).

39.2.8Example:

Let us analyze the problem of finding find the points on the intersection of the planes

x+y+z=land 2x+dy+z=06
that are closest to the origin. This is same as finding the minimum value of

Flxy,z)=x"+y" +27,

with constraints,
gixyzi=x+y+z-1=0and kix vy zi=3x+2y+z-6=0
The equations to be solved are

. ,%-I;,HJZA+2,H Z:,?H,u

1 1

2 2

x+y+z-1=03x+2y4+z-6=10

Substituting the values of X }, Z from the first three in the last two equations gives
3A+6u=2 and 3A+Tu=6

This gives

s =4 and A =-22/3 and hence (xy, 3,2, = (773,13, -5/3)

That this is the required point, can be justified as in the previous example.

Practice Exercises

(@D The temperature at a point (x,y, z} in 3-space is given by T(x, ¥, zj = 4(](];;}?3_ Find the highest
temperature on the unit sphere x* +.}’2 +z0 =1
Answer

2 Find the point nearest to the origin on the surface defined by the equation z = xy+1

Answer

Using the Lagrange's method of multiplier, show that the minimum value of f is [1and is attained at

3
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(0,01

and the maximum value of #{x y z)= xgyzzj subject to the constraint that {x,y,z)lies on the unit
sphere is /27 and it is attained at (M\E, 1_,-’4'11_;,\,@). Using these, deduce the A.M.-G.M. inequality: for

three nonnegative real numbers x, v,z € IE_,

- S
[xjyzzz] E(X }; Z:'_

(4) A space probe in the shape of the ellipsoid

4z  4y% + 425 =16
enters the earth's atmosphere and its surface begins to heat. After one hour, the temperature at the point
{x,¥,z)on the surface of the probe is given by

T(x,y,z) = 8x +4yz — 162+ 600.
Find the hottest point on the surface of the probe.

Answer
(5) Maximize the function

Jix,»,z)= e

subject to the constraints
z+y+z=40and x+y==z
Answer

(6) Minimize the quantity
Flx,yz)i=x +y* +2°
subject to the constraints

X+2y+3z=6 and x+3y+592z=9

Answer
Recap

In this section you have learnt the following

e The notion of constrained maxima/minima for functions of several variables.

e Lagrange's Method of finding constrained maxima/minima.
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