Module 9 : Infinite Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor
and Maclaurin Series

Lecture 26 : Absolute convergence [Section 26.1]

Objectives
In this section you will learn the following :

e More tests that help in analyzing convergence of series of numbers.

26.1 More tests of convergence:

We describe next a generalization of the comparison test. For that, we need the following result which
allows one to compare terms of two sequences.

26.1.1Lemma ( Limit Comparison):

Let {.:;tn } iy G0 {E:ln } o 02 Segquences af posifive real numbers such that

!:=lim [ﬂ—”J exisis .
n—e | b

n

() if 1 # 0, then there exists posifive scalars, &, § and ny € M such that
Gby Say = Gby, forall nzay,
(Fi) If i =0, then

0 <a, <b, forall nZn,.

ik
i

PROOF

26.1.1Lemma:

Let {.:;tn } i R {.E:ln } o b sequences af positive real numbers such that

!:=lim [a—”J exists .
n—seo |

n
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(1) if 1 # 0, then there exisis positive scalars, &, 8§ and vy € W such that
a b, Za, = Gk, forall nz .

F)VIF1=0, then
0 <ay, <by, jforall nza.

Proof:

If ;1 =0, we can find »=; = M such that
i = Zn EE for = Zay.
2 &y
The required claim follows with
i 3
&=—and =—.
2 s 2
This proves (i).

In case =0, given 1= <=0, there exists =;such that

b
2 == forx=ag.

»
Thus,

O <y, = S8y, < &y, for = 0

26.1.2Examples:

w1
i)C ider th i — ,wh =1.Th
(i) Consider the series Zn=1 " where g1 en

0 l = iforevery ne M.
# n¥

: . w1, . . w1 .
Since the series z: | —is divergent (example 25.1.4 (iv)), the series E 1 7 is also divergent for
n= n=

r=1.

(ii) Consider the series

i 745
=1 ?zj —2n+5
Apparently, the t term of the series behaves like l . Let us consider
b
m+5 1
., = and E;ln =,
n T on+ 5 M
Then
]
1+=
@y w+5 3 .
b onl- N
By a'-2n45 |_2 el
# b

Thus



: . oo . .
Since the series Z L @ is also divergent.
:I']:

H

(iii)  Consider the series

i 3% — 2n+4
po | PRI
i o 33 _
The » - term of the series will behave like nj_ — ;2_ . In fact, if we take
Tt —2n+4 =L then
g, = . = )
"o —mE+2 " ;‘I
@y 3 — 2n° + 4 . n?
- e
by, Ho—awt+2 1
B 3n4—2m3+4m2
?24—?23+2
2 4
R
__ 8 A
12
noou
Hence
i 3
lim {—”] =— =10
n—»0 ‘-E:'n

o

Since, th ies 3 L. t, the gi i zm is al t
Ince, e series _ IS convergent, e glven series _ .. IS also convergent.
n=1 ?32 n=1

¥

In comparison test, or the limit comparison test, one needs to guess the convergent / divergence and
then select an appropriate series to compare. Some convergence test which are more intrinsic are given
next.

26.1.3Theorem (The ratio Test):

[ru)
Let Zn—l a, be a series of positive terms such that

I= lim (“”—“J
n—¥oo a:n

Then the following hold:

() If j =1, then the series is convergent.

(i) If ] =1or | = +4co, then the series is divergent.

(iii) If j =1, the series may converge or diverge.



e
/

PROOF

26.1.3Theorem (The ratio Test):
Let % _ @, be a series of positive terms such that

[
I= lim [”—“J
n—oo an

Then the following hold:

(i) If 7 =1, then the series is convergent.

(i) If ; =10r : =400, then the series is divergent.

(iii) If ; =1,the series may converge or diverge.

Proof
(i) For i <1, select =0 such that o <7+ =<1, and choose 5= rsuch that

En 41

== farnz= &,

ty

Then

S|

f—e = <i+< farae= M.

a?’!
Thus
@y -::I[.E+E} a, foraz= A .
Hence, for &= ar+1
k-i¥
ap <{i+e)a <{+el ™ ay
Since 374, @+ e Mayis a convergent geometric series, as 0 <{ i +<) <1,by comparison

test, 37 _, a; is convergent.

26.1.4 Theorem (Root test):

[n}
Let Zn—la” be a series of positive terms and suppose that

1
{= nh_IFm {.:zn )n

Then the following hold:
() If} <1, then the series is convergent.
@iy If J=1or, { =400 the series is divergent.

(iii) If } =1, the series may converge or diverge.

el
/

PROOF

26.1.4Theorem (Root test):

Let Zilan be a series of positive terms and suppose that

1
I= nh_I}nm {an }n ,

Then the following hold:
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(i) If : =1, then the series is convergent.
(i) If ; =10r, 7= +oo ,the series is divergent.

(iii) If ; =1, the series may converge or diverge.

Proof:
By definition, for ==0o given, we can choose = rsuch that

- e<la, ) < l+eforallnzN

In case ; =1, we start with ~=osuch that 0 <= =7+ = <=1. Then
1

(g, )? = aforalaz= A

i.e.,

@y, < " for allse = A7

Since, o <« <1, the series >, ,..;<" is a convergent series. Thus by comparison test, Z.—ilan is

also convergent. In case, oo =¢ =1, we can start with ==osuch that 1 <({i—¢=}. Then
1
(@, )" =(I—&)foralln= N

26.1.5Examples:

(i) Consider the series

[+u] [u] ."3”
—and —
n:]_.’?! é.’?l
Since
1
2 +1l 1
litn = lim | — |=0<],
n—ruo n—=ol g4
nl

n
} #l _ n+1
lim | ———% — | = lim u =g
n=e 41l 7 n = #

the series Zm 1'}2_ is divergent by ration test.
h=
zl

(i) Consider the series

4n+5]”

nz=1[ 2n—1

For this series, the convergence/ divergence is difficult to analyze using, ratio test. However,



=2=1.

Thus, the series is divergent by the root test.

We close this section by another test.

26.1.6Theorem (Integral Test):

Let _f : [1,03:] — [ be a positive continuous decreasing function with

I [x] =y, =l
Then either both

g:iczn and Ilmf(x)cfx

converge or diverge.

ik
/

FROOF
26.1.6Theorem (Integral Test):

Let #:[l.eay — IR be a positive continuous decreasing function with

i (x} =y L=
Then either both

Ean and _[1 Flxidx

converge or diverge.

Proof

For » = m1, consider the interval [1,z]with the partition

=12 .
Then, since E is decreasing,

n n-1 Module 9
L(Pn,_f:lz%f{i)andU(Pn,fjl:Z;lfﬁ] - Infinite
Thus, if B B
Sy=2na,nzl,

=1
then
n _ n n-1 _
S-a=2 O=LB N[ fRdr SUE, =3 f0=5 -~ *)

(v u] .
In case J' Fix dxis convergent, we have for » =1
1

o
&ELuﬁﬂdr+q
Since fis positive, is monotonically increasing and hence it is convergent. Conversely, if
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R
lim 5, exists, then by the Sandwich theorem, (*) implies that J'Dmf(x) dx IS

convergent.

26.1.7 Examples:
(i) p-Series:

Consider the series

[}

1
Z—F,pl_*l:l.

paL#

Obviously, the series is divergent for z =101, as , =1for even . If we consider the function
Fi[Le) >R,

1
f(x}—x—p,x:_*l,

then j is a continuous, positive, decreasing, function. Further, see example . . .

[ u]
L ip #x is convergent for p =1 and divergent for [} < p =1.
x
Thus,

[em]

E — is divergent for = p =1.
= w?

n=1

(ii) Consider the series

To analyze the convergence/ divergence of this series, we can proceed as follows: Since

! }ifnreverymzl,
an—=1 Zm

1

. w1 . . oo .
and the series z: 1_|s divergent (p=1 for the p-series), by comparison test, E el is also
n= =

b

divergent. We could directly apply the integral test with #(x) = Lx=1.As

X—-

@ _ P 1
Il Zx-1 kl—iz»%fl = ggnm[gfn (2k — 1;.} .
we can conclude that the series

[en) 1 [en)

= is divergent.
;2?2—1 Ef{mjl iv
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26.1.8Note (Basic strategy for testing convergence):

N A neral rule, check litn d, . If
0) s a general rule, check 1ML dy,

litn a, =0, the series is divergent.
n—yio

If lim a, =0try convergent tests as suggested next.
n—oo

If {an}n:*l is a decreasing sequence of positive terms, such that jf(x)=ua,for some function
(i) B
SiL0) =R

try Integral test.

(iiy If a,is a rational function, or is some root of », try limit comparison test.

(iv) Some of the standard series for comparison test are: Geometric series, p-series.

(v) Ratio test is useful if &, has factorial/ powers of ,

(vi) Root test is useful, if it is series to find ,*root of «,

Practice Exercises
1. Using limit comparison test, determine the convergence/ divergence of the following series:

=1
® -

LT
) = M [n +1]
(i) Z% ] T -

= +2)° (2+3)

= in [22]

(iii) —=5 (Hint 1n(#) glows more slowly than . for every gy = (1)
n= ol
b

Answers

2. Analyze the convergence of the following series using the ratio test:

O X
s
o 2?‘!
(i) -
nz=1 #l
[Fu} 2?‘!
(iii) Z.T
n=] #
Answers

3. Analyze the convergence of the following using the root test:

(i) §[2H+1]-

w1t 72— 1
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[

=
1l
—
I=
=

Q)

| %

iii)

M=
-2
=

=
1l
—

Answers

4. Prove the following:
(i) For the p-series, both the ratio test and the root test tail, however the series is convergent.

(i) For the series, for p =10,

for p =0,
= 1

nZ=‘ﬂ[1r1(;r}]FI ’

both the ratio test and the root test tail, but the series is divergent (by comparison test).

5. Canchy's Condensation Test

Let {cxn}n}l be a decreasing sequence of positive terms. Let

Sy=atagtota, andt, =g +2a 4+ + 2 ay,,
Prove the following:
(i) Forevery =1,
S S8, 25,

i educe that the series - is convergent if and i e series &2 1S convergent.
i) Deduce that th ol t if and if th oy 2ty t

6. Using exercise (5), deduce that the series
oo ]
1 1
ZF and Z nin(m)¥
=1 n=l
are convergent for g =1 and divergent for = p =1.
Recap

e In this section you have learnt the following

More tests that help in analyzing convergence of series of numbers.

Series, Tests of Convergence, Absolute and Conditional Convergence, Taylor and Maclaurin
Series

Lecture 26 : Conditional convergence [Section 26.2]

Objectives
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In this section you will learn the following :

e Absolute convergence of series.

e Conditional Convergence of series.

26.2 Absolute and Conditional Convergence

In the previous section we saw that most of the convergence tests were applicable for series with
positive terms. When, this is not the case, series can behave differently. In example 25.1.4(V) we saw
that the alternating harmonic series

nH
= (-0
n=l %
is convergent, while the harmonic series
=1
n=l%

is not convergent. To analyze such occurrences in detail , we make the following definition.

26.2.1Definition:
Let = be a series of real members
Zn=1 @y i .

. o0 . . . o i
(i) We say Z‘m=1 i, 1S absolutely convergent if the series Z‘m=1 |ﬂn| is convergent.

.. . o . . . o0 L
(ii) We say the series Zn=1 a,, is absolutely divergent if Z‘m=1 ||51'n| is divergent.

(iii) We say the series E la”
n=

.. [u) [+u)
is conditionally convergent if is convergent, but is not
y 9 Zn:l dy 9 ’ Z n=1 |a'-'1|
convergent.

(iv) We say the series Zm @ is an alternating series if either
n=

H
iy =0 forx even

iy, <0 for z odd
or




iy, <0 fora even

ity =0 for 2 odd.

26.2.2Note (Tests for absolute convergence):

The tests of section 26.2.1 namely, the comparison test, limit comparison test, ratio test, and root test,
all are tests for absolute convergence.

26.2.3 Examples:

n+l
(i) The alternating harmonic series Zm (_1) is conditionally convergent.
n=l

(ii) The series
= cos (1)

—
n=l

is absolutely convergent, since
cosia 1
()| .

w | e

w1
and ZJ‘FIFIS convergent.

(iii) Consider the series

2. n
= (-1 2
Z
Let
]
a, =(-1}”2_|
2l
Then
: “nH : 2
litn = lim =01

n—rou| Oy n—=wm| o 41

Then by ratio test, the series Z‘Im 1ﬂn is absolutely convergent.
n=

The relation between convergence and absolute convergence of a series is described in the next theorem.
26.2.4Theorem:

. el . -
If a series Z: | & is absolutely convergent, then it is also convergent.
Hn=

ol
/
PROOF

26.2.4Theorem:
If a series Z:';lan is absolutely convergent, then it is also convergent.
Proof
Let
By = ay +a, | 221

Then
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0 if cpy =0
by = _
2 || if @y = 0.

Thus,

by, = 2a,, | for every x

Since Zn=1 |an|i5 convergent, by comparison test, Zn=1bﬂ is also convergent. Hence, by theorem
25.2.4, since

Zan = an _Z|an|’

26.2.5 Examples:

Let
1 if =1
(-
y =9 7 if  amisaprime
1 :
a otherwise.

Note that, Z la: IS not a geometric series. However, Z ]_|':J'."!| is a geometric series with common-
n= n=

n

1 P . .
ratio — . Hence, Z: 1':1” is absolutely convergent, and thus is itself convergent.
n=

2

Finally, we give a test which helps us to analyze convergence of an alternating series.

26.2.6Theorem (Alternating series test):
Let 3" 4. b lternati i h that
e Zn=1a” e an alternating series suc a
O |oy|z]a; |z |as] 2. 2 lay| 2.

. [en)
(i) IE}H |.:In | = []- Then ZFlﬂn is convergent.
n o0

ik
/

PROOF

26.2.7Examples:

(i) Consider the alternating harmonic series

{_ 1}n+1

n=l #
Clearly, for
n+
-1
L

the sequence {|c:tn |}n:_>1 is decreasing and
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|czn| — 0 as »—00
Hence, the above series is convergent.

(ii) Consider the series

« 1 nH 2"
ARG
n=1 H

This is an alternating series with

n 2"
ﬂ:n = {_1] E—

the series is divergent.
(iii) Consider alternating series
[=-n)
n 1
zx—n1n@+_}

n=1 %
Let

Fix) =1n[1+1] for x =0, and @, = [—1]” In (14_1]
x

P
Then
OB A ES
Since
1
fxil=—— < 0forx =0,
J(x) 1+ x)

f is a monotonically decreasing function. Thus

[t |= S 2 +1) < £ () = |ay | o all .

Further
lim |a,|= lim In [1+l]
n—roo n—Foo M
=1In (1)
=0,

Hence, by alternating series test, the above series is convergent.

26.2.8Note:

(i) The alternating series test not only gives the convergence of the series, in fact, if

[u)
S:Zcxn ,
n=l
then
|5 5| = a,q ToOr allz



@i =
If Z‘In is an absolutely convergent series, and any rearrangement of the series does not affect its
n=l
convergence or its sum. However, this is not the case with an alternating series. In fact, if a alternating
series is convergent, then by a suitable rearrangement, it can be made to converge to any given real
numbers. For more elaboration reader may consult any book on Real Analysis.

PRACTICE EXCERCISES

1. Show that the following alternating series are convergent.

[_1]n+1
@ Zn=1T'
1

e (1)
@ L (1)
n+H

w (1)

@ ¥

2. Show that the following alternating series are absolutely convergent

{_1]n+1
® Zn=1T'

I
sin—(zﬂ_l}
(i) ZW_I 2 .
n= ?323
n
o g
- »nl
1
. w (1) a
(iv) Zn=1 - .

3. Show that the following series are conditionally convergent:

1
" I[—l}n+ |
o

Ol

ooae (1)
W Xmnis,
o cosynA

(i) Zn=lT'
@iv) Z:il(—l]n [f—ﬁ)

4. Prove the following statements:



[rm)
i If a series is absolutely convergent, then
(I) z n:]. lﬂn y g
(-] [ u]

aan = a|.:zn|.
n= n=

. @ o .
If the series Z‘I 1% and Z lf;-n are both absolutely convergent, then so are the series
n= n=

(i) -

o . -
5. Let Zn—la“ series. Define for all 3 =1,

iy if a,=0

oo if oa, <0

)
Il

_ {0 if a2 0

—it, if <0

. == + . L. . . == .
The series Zn—la , is called the positive part of the series and the series Zn—lﬂ” is called the

negative part of the series. Prove the following:

— Tt _
(0] thy =ty 2y

S
|‘1n|_an — iy
If = is convergent, then both = oot and = are convergent series (of non negative

iy " Lt | gent. 2t n 2t 9 9

terms).

Recap

In this section you have learnt the following

e Absolute convergence of series.

e Conditional Convergence of series.
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