Module 17 : Surfaces, Surface Area, Surface integrals, Divergence Theorem and
applications

Lecture 51 : Divergence theorem [Section 51.1]
Objectives

In this section you will learn the following :

® Divergence theorem, which relates line integral with a double integral.

51.1 Divergence theorem

We saw in lecture 48 (module 16) that the Green's theorem relates the line integral to double integral:
HRdw{F}dxdy - CPC[F-n}:r‘s

An extension of this result holds in IE{3for surface integrals, which helps to represent flux across a closed surface

as a triple integral.

51.1.1 Theorem (Divergence theorem):
Let ¥ be a closed bounded region in IE.*whose boundary is an orientable surface 5. Let
F=Pi+Qj+Rk

be a continuously differentiable vector-field in an open set containing the region [). Then

I] LF ) as= IHG( div T dxdyds,

where m is the outward normal to the surface 5.
e

FROOF

(For Simple regions (})

We shall assume that the region {Fhas the property that any straight line parallel to any one of the coordinate
axes intersects (¥ at most in one line segment or a single point. For such a region ¥, we have to show that
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[[(Fmds= [[[1VF)ardyaz e (70
Let the outward normal mat any point on 5 have direction cosines cos &,cos dand cos Vie., let

n=cos&i+cos 8j+cosyrk

than {2f)is same as proving:

.”.S'(P cos&+Joos S+ Rroos ;V] s = _I-”G(E;f + zﬁ + zf + J dxchds.
To prove this, we shall prove the following:
| ”L}g - —— (71)
ljoces gas= [[[j32 iz e 2
”SR cospds=|[f Gg dxdvdz. e (73)

Because of the special assumption on (#,it can be written as
2
G={(xy,2)|(x)y)e DCR? glxy) Sz <h(xy)],

In the above [}is the projection of  onto the X¥-plane. Note that, for any (x,y) e IR*, a point (x,y,z) € (&
provided Z lies between the surfaces z = gix, ¥)and z =4(x, ¥) . Thus the boundary 5 of (¥ consists of an upper
part .5, the surface z = A{x, ¥);a lower part 5, the surface z = gix, ¥);, and possible the lateral part: .5, a
cylinder with base [jand axis parallel to z -axis. Thus

Figure 222. Caption text.

”SRc:os}’dS: ”SRcos;V.:fS+”& Reoosydd+ ”SRc:os}’ciS.

Note that on the surface Sl the and Fthat the outward normal m makes with J¢ is acute, on Sz it is obtuse and



on & itis 2. Hence, above becomes
.”.S'R cos ¥y = .”DR (x,_:u, }z(x,y]} ey — .”DR (x,_:u; g(x,_:u)) cfxedfy

= [[JR &y b)) = R (x5, glx.y))] drdy
E=hixyp) A8

= .[-[R[Iz=g(xj} Edz} dxcdy

= ”_IIC_,% dnelyelx.

This proves ({/1i. Similarly, using the special nature of (Fand projecting it on JZ-plane and zx -plane,
respectively, equations (T"E) and (73} can be proved. This proves the divergence theorem for special regions.
51.1.2 Note :

Divergence theorem can be extended to regions {Fwhich can be divided into finite number of simple regions.

Essentially, the idea is to add the corresponding results over such regions, observing that the surface integrals
over common-surface will cancel other (normals being outward).

51.1.3 Example:

Consider the solid (7 enclosed by two concentric spheres, say

G:[(x:,y,z]||4£x:4 +y° + 2 59]

Figure

Let

&) ::{(x,y,z] | x +.}’2 +z¢= 4]-

R ::[(x,y,z]l | Py = 9]

Then Fhas boundary .&'=.11&,, which is orientable, but 3is not simple solid. However, we can write
F=0F UG,

where

G ={(xyz)d4=x+)y* +2" =9, z20]

7, :{(J'::,y:,zjl|-4£:Jr:4 +3* +22£9,250}



Then (5 and {¥,are both simple solids, (Jjis bounded by piecewise smooth surfaces S5 upper hemisphere of .5,

the surface S‘l" upper hemisphere of Sl and the annulus surface 33 in the X¥ -plane given by
[{J'::,;u:,ll)}|-’-’15;{2 + 3 Ec:]-.

Similarly, (¥, is bounded by 5", the lower hemisphere of .7, , the surface .|, the lower hemisphere of 5 and &,

. Note that the outward normal on 5"3 as boundary of Ggis negative of the outward normal of 5"3 as boundary of

{ . The divergence theorem is applicable to both % and &, and we set

[Mlg o myar= [ ¢ aw Byars [[f, v Fyar
= [[p@mas+ [[o@nyas+ [[ @ nas
+ ”,S;(F'HMSJF ”.S'f(F'n)dS_ ”HKFIHMS
- [y @ mass [, wmas

=[], Fn)as,
5
where, the normal to Sl is directed towards origin, while the normal to Sz is directed outward, away from origin.

51.1.4 Example :

Similarly, consider the region {Fbounded by the surface S5 obtained by revolving a circle of redius } with center at
{0 ¢, 0)about z-axis, g =t .

-
L

Figure: Torus

with axis being the z -axis. Then it is a simple X¥ - solid, its projection on ¥ -plane being the annulus region, as
shown in figure. However, it is not a simple 2 -solid or a simple xz -solid. We can divide (7into four region by

i#, %, (% and (F, by planes parsing through z -axis and parallel to xz and }Z planes.



Figure 4. Forms as a unioin of simple surfaces

51.1.5 Example :

Let us verify Divergence theorem for the solid (3 bounded by the paraboloid z =4 — x —yj and the X¥ -plane,
the vector field F(x,y,z) =27 +xj +y2k- The surface binding the region (}is . , the paraboloid

z=4—x —yg and the surface ., , the X¥-plane. For .4, the outward unit normal is n, =—k. For &, the
outward unit normal is

Figure 226. The Paraboloid
_ 2d+2f+k
= 2 2
AR+ y 1

Thus
Jl;@mas= [[ Enyas+ [[ @ n)as
= ”D(F' (2x+ 2y + k) dxdy + -”D{F (= k) dxdy,

where [)= [(x,y] e IR | #* +)° 54] . Hence



” (F-m) d5 = j jj:( y).:fx.:fy+j _l-jI(4m+2xy+y)dxdy
IJ—Z (dxz + 23) dxdy

_.|-+2.I-ﬂ [4x(4—x - 2)+2;{;}f:|cixcfy
= —?I{EZ [16;{—4;{3—4:@;2 +21y:|.:1’x.:£y

= J.j [sz -zt - 2x2y2 + xzu}f]i:—f—? dy
- j; 0dy=0.

On the other hand, it is easy to check that gy (Fy = (), Thus

[ll.cavmyav=[[[0av=0

This verifies divergence theorem.

Practice Exercises

1. verify divergence theorem for the following:

Fix,yv,z)=n+)+zk,
i #is the solid bounded by the three coordinate planes and the plane
2x+2yv+2z =6

63

Answer: 2
2. Let (}be the solid bounded by the cylinder x* +.}’2 =4 the plane x4z = §and the plane z =) Verify
divergence theorem for this solid where

F(x,y,z)=(x* +sinz)i + (xy+cos 2)j + 2’k

127

Answer:
3. Verify divergence theorem for the region (Fenclosed by the cylinder x +y2 =9 the planes z = 0z=2

and F(x y z)= i +y3j + k.

279

Answer:

Recap

In this section you have learnt the following
e Divergence theorem, which relates line integral with a double integral.

[Section 51.2]



Objectives

In this section you will learn the following :

¢ Some applications of the divergence theorem.

51.2.1 Example (Computation of surface integrals):

Consider the solid {¥bounded by the there coordinate planes and the plane 2x +2y+z=6 Let 5 be the
surface bounding this region. [5 is a peicewise smoth surface being the union of simple surfaces.

Figure: The surface 5

For a given vector field F , computing the surface integral

J[;® mas

is complex as the surface [5is made up of four subsurface. However, this can be easily computed by computing a
single triple integral. For example, if

F(x,y,2)= si+y'j+k,

then by divergence theorem




.”,5‘ (F-n)dlt= I_”G( div F) dxedvdz
= ]'3 “’3 “-;’—21—2-}' {2+ 2}-’)) cfx) v

{1} 1o vn Y ) oy
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51.2.2 Example:

Let (Fbe a region in IR3enclosed between two non intersecting surfaces Sl and .S'j . Suppose both Sl and 5"2 are

orientable (for example Sl and Sz are concentric spheres). Let Sl be the inner-surface of {Fand Sz be the outer-

surface of (F. Then

_”SI(F-n) 45+ ”SE(F-n) 45 = ”-SI:F-II:I 45 = ”jG div (F) V.
If Fis such that (Fy=(pon ¢, then we have

”31 (F-n) ds + ”32 (F.m)ds =0,

where m is the unit outward normal to 5 = .E."l L 32. This helps us to compute either of the above flux integrals in

terms of the other. For example, let
xi+yj+:zk
2 R

[x + ¥

Fixyz)=- ; 2]
+=

and S=S’1US’2, where Sl is a sphere of radius g = [and Sg is a closed surface including the region

[{x, w22yt + 2 Eaz] . Then, as  diy (7} = (), by divergence theorem

.”.s"iF m)ds+ ”.5;2 (F-n"dS=0,

where Sa is the sphere centered at origin and of radius ¢. Note that min the first integral is the outward normal,

while in Sa,n" is the normal pointing towards origin. Thus,

HS(F-njdeSa F - n)dS=0

where, in both integrals, nis the outward pointing normal.



Figure:The region 5.1 5,

For

={(xy.2)|¢xy.2) =2 +y +28-a* =0},

2x1+2y]+22k 1

{x1+y]+zk}

2t 0t 2 o
the normalized position vector. Hence,
Fon- x* +J”2 +z* 3 1
n= .53 !

a(x+y +z%) cz\fxg 4y 42

and we have
[, @ mas-[f, @ was

Il 22
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_4.??‘.:;:2
==

=4
51.2.3 Green's ldentity and properties of Harmonic functions:
Let _f,g be two scalar-fields which are twice continuously differentiable in a region which includes a solid Fand
its boundary surface j . Let F = f(¥g). Then,
div(F1=V. F=V (f Vg
2
=V ) (Va+ 5V g),

where

F oF #F
?2 = [? —+—2]
3 &

called the Laplacian operator . Thus, by the divergence theorem applied to F = (g} over (&, we get

II[., d1v ) drdyaiz = ] L (F m) ds,

i.e.,



(v 7 va+sve)ar=[[ 77 mas

= [|,.s @—i} S/ (74)

where dg/fnis the directional derivative of £ in the direction of m. The equation (74) is called Green's first

identity . Interchanging f and g in the above equation, we get

Mdevsrvsvear= g 2]es
Subtracting (75) from (74), we get
Il fr 7 e-evr)ar= [, [f % —g g] A — 76)

This is called Green's second identity . Some of the particular cases of these identities give us the following
conseguences:

51.2.4 Special cases of Green's ldentity :

1. Let f=1in (76). Then, as ¥f =1, we have

[, s ar= [[,2% as

Thus, if ‘Fzg =101, (in which case the scalar field Z is called harmonic ), we have

3
Hﬁ,ﬁ.ﬁ.&o.

The integral is the average of the rate of change of g along the normal on 5. Thus, for a harmonic
function on F, average of its rate of change on [5is zero. This is called the Laplace theorem .

2. Let f = gin (75). Then,

[I[or 727 +17 7 1) ar = Hﬁ{f %} s

Suppose, either f =0 or df/fn= 0on & Then,

HIG[;’ ViV S F)av=0

Further, if f is harmonic, i.e., ‘Fgf =11, we have

f[7 P ar=o

which implies that ¥ = (in (Fand hence § = ('in (3. Thus, for a harmonic function in 3, if either



gzﬂonﬂ'orf:DonS,thenjoinG.

In particular, if as { is continuous, then

F=0  on &,
or
ﬂ:D o N b
7n

atid
ViF=0 in (3

o (77)
then, 7 =0in (Falso. As a particular case, if f, #,are two harmonic function in (Fsuch that f, = #on 3

, then { f — ;) satisfies equations (77), and hence f—g=~0in G,i.e., f=gin (3

Thus, a harmonic function in {Funiquely determined by its values on the boundary of ([} We close this
section by giving some examples of harmonic functions.

51.2.5 Examples of harmonic functions:

1. The flow of heat in a body : The equation governing the heat flow is

U

= Vi,
3¢

when (is a constant and L/(x, ¥, z firepresents the temperature of the body at a point {x,1 z)at time £

. If the flow of heat is 'steady’, i.e., I/(x,¥,z,¢) does not depend upon temperature, then V7] = 0 i.e.,
the temperature of steady heat flow is a harmonic function.

2. Consider the gravitational force on a particle 5 of mass pz at any point (x,_y, z] due to a mass J4f ata

fixed point Al x,, v, ;). The gravitation force is

Bix.y.z)
m
m
Alxg ¥y )
Figure: Force of gravitation between point masses
—-'r -Cr
F I:x:l .J"r:l Z:I = k3 = E] 1
2 2 2 r
JoE-mlP + -y +(z-z)
where

r={x—x)l+{y—y)i+iz+z)k,

C'= G Mm,andr=J(x—m) +(y-y) +z-2)".



We also saw that,  diy(F) = () Further, if
C

f(x:l.y:lz} =, then ?f :F:l
r

and such a scalar field j is called the 'potential’ of the force field F Then, in this case,

v2f=—cvf‘[l]=0.

r

If a mass is distributed in a region Rin space with density o(x,¥,,2,), (%,,¥,2,) € &,then the

corresponding potential of the force field at a point {x, ¥, =) not occupied by the mass will be given by

£ oy =mG HJG[M] b,

r

Hence,

Vifi=mG

.I-.”G"G I:x':'ﬂyﬂ’z':') v [%] d-’fuﬂfyuffﬂ'] =0.

Thus, the potential of the gravitational force field is a harmonic function at every point which is not
occupied by matter.

51.2.6 Independence of divergence of the coordinate system:

By the mean value theorem for triple integrals,
I[,.¢ div @y av=v (&) Cdiv )R,

for some point El':lin the closed bounded region &, where uis a smooth vector field in a domain that includes &

along with its boundary and V{Rj is the volume of the region & Then, by the divergence theorem, if %is the
surface bounding the region R,and is orientable , then

_ 1 . 1
div (u)(P) = ) IHR div (u) &V = E ”S= 2 p Bn A5

Let I'be a fixed point in the region F and we apply the above discussion to the region B(P, r},a small sphere

centered at the point P of radius » Then, there exists a point 5, € B{F, r},such that

Figure: Sphere at £ inside ®



div (m)(5) = m .”,5'“” i,

where ["{B{F, r}}is the volume of the sphere B{F, r}. If we let » —(1in the above equation, as {F — F}), we
have

. _ 1
div I(u:ll(P:l = %‘li% [W '|--|.S=E|I:BI:P, il 1, cfSJ 79

Note that, since Zand /jfare independent of the coordinate system, and the surface integral is a limit of

approximating sums, iy [u] is independent of the coordinate system.

51.2.7 Physical interpretation of divergence:

Recall that, the integral

”3““‘113

gives the total mass of the fluid that flows across a surface 5 per unit time, where u = F{x, ¥, z)¥, Fbeing the
density and wthe velocity of the fluid. We can also interpret it as the total mass of the fluid that flows from
inside of # to outside &, if mis the outward unit normal. Thus

1
TR ”,5'=a|:.re}“” as

is the average flow out of & per unit time. Thus, equation (79) tells us that if we want to find the flow of the
mass per unit volume, per unit time at a point, then this is given by the right hand side of (79), i.e., by

diw {u}(P} . Further, if the fluid flow is steady, the fluid is incompressible, and there are no source or sink, then

clearly the rate of fluid flow across a point must be zero, i.e., diy(n)= (. Conversely, if diy ) F) =0, then
the rate of flow across a F'is not zero, hence either fluid is being produced at [For is being absorbed at F.

Hence, for a steady flow of an incompressible fluid flow through &, there are no sources or sinks iff i (w2

=0. Note that incompressible is same as saying the density Zis constant. Thus, diy(y)=01ff div (v) =0,

where wis the velocity vector field.

Practice Exercise

Let # g be harmonic functions in ¥ such that % = % on 5, the boundary of ¥. Show that # =z 4+ on (3.

1. Using divergence theorem compute the integral

” Fonds,

where [5is the surface of the unit cube in IR3bounded by the there coordinate planes and the planes
x=lLy=1z=1and

Fixyzi=2xi+3yj+z k.

Answer: &

2. Find the flux of the field

F(x v z)=2xi+2yj+2zk,



across the surface f consisting of the hemisphere x* 4 3* 4+z* =1 z20F(x,y,z)=2xi+2yj+2zk
with base ;;;2 +y2 = 1Jz =10

Answer: 4

3. Use divergence theorem to verify that the volume of a solid {3bounced by a closed surface [ is given by
either of

the following:
([ xavaz, [[ v azaz, [ 2 dxdy

Recap

In this section you have learnt the following

¢ Some applications of the divergence theorem.
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