Module 12 : Total differential, Tangent planes and normals

Lecture 35 : Tangent plane and normal [Section 35.1]

>
Objectives
In this section you will learn the following :

e The notion tangent plane to a surface.

e The notion of normal line to a surface.

35.1 Tangent Planes and Normals to Surfaces
In the case of function of a single variable, the derivative helped us to formalize the concept of tangent

and normal to the graph of the function. Similar results hold for functions of several variables, the role
of the derivative being played by the gradient.

35.1.1Theorem:

Let ) —IR*and 7 : ) —IF. be a differentiable function. Let Then S be the level surface given by F
S=1{(xy,z) e D] Fixyz)=0}

Let F=(x,,¥,,2,)be a point on Fand {rbe any smooth curve lying on Fand passing through P
Then,

VF(F)-£=0, where £ 1sthe vector tangent to O at F.

ik
/

PROOF

35.1.1Theorem:

Let »=Ir®*and &: o —Ir be a differentiable function. Let Then sbe the level surface given by
ra

S={{x,y,zy e D Fixp=z)=0}
Let == x,,29.2z,0 b€ a point on gand «be any smooth curve lying on sand passing through ~

]
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35.1.2

Then,
VE(F)-£=0, where £ iz the vector tangent to & at F.

Proof

Figure 1. ¥#{~) is normal to g
Let «have the parameterization

YiE)=(x(g),yiE),zi0), =t = 8 with Pif,)= (xg,0,2,).
Then,

(e, wiE), =it =0 for all £ e[, 5],

and F=¢ ey, gy, =g, for some ¢, = ¢, & Further

¥ (E)=(x' (60,2 ),2 (6 )

is the tangent vector to cat p, provided y rz;3 = ¢0,0,03 . Now
GHE) = Fixie),» (), z(£)1 =0 forall e[, 5]
and hence, by the chain rule , we have

0= G'lty) = Fy(P)x'lty) + Fy (P)y'(6) + F(Pz'(6,) = VF(P) .,
where ¢ = y'(z,),

In view of the above theorem, if the vector

VF(P) = (F.(P),F, (F), F,(P)) = 0,
is perpendicular to the tangent vector to every smooth curve (7on 5 through F Then, all these tangent
vectors will lie in the same plane which is perpendicular to .~ (. This motivates our next definition.

Definition:

Let a surface 5 be given by

S ={(xy,z) e L] Fixyz) =0},

where 7 D —IE? —IFE is a differentiable function. Let &= (%, ),2,) be a point on §such that
VHF (P = (0,0,0).Then, WF{F)is called the normal to j at the point P The plane through the point
Fwith normal V5 (F}is called the tangent plane to the surface Jat Fand is given by

B (P x—xg )+ By (P y =y + Fp(Fliz—z,) = 0.

The line, with parametric equation

% =% + By (Plt,. y =3y + Fy (P, 2= 2 + Fy (P,

is called the normal line to Sthrough P. In case FX(P),%(P],FZ(P) are all nonzero, these

equations can

be written as

A—% Y—M £

F.(P) F(P) F(F)

35.1.3Example:



Given [ — IEELgand a differentiable function f ) —}IR, consider the surface given by

S={lxyz)|z=Fxy)(xy) e D)

This is a special case of the earlier discussion, for if we let
Flxyz)=flxy—z,(x,ymelzelk ,

then

S={(xy,2)| #F(xy2)= 0}

Thus, for any point {z,, y,1 € L,if z, = F{x;,¥,),then for P = (x;,3,,2,)

VEE) = (s (00,0 Z0,- D =0,

and the tangent plane to 5 is given by

Fy (Fg, 0 Mx— xn:""f:y (o ¥ — Yo) =2 — Flxg, %)

The normal line to the surface at (x,, ¥, is given by
X=Xt %00l Y=, +fy (Zg, Mg ), 2= Fix, )¢

35.1.4Example:
(i) Consider the hyperboloid

2 =2x" + 2y 44,

We re-write this as

Fixyz)=2x+2y -z +4=0

Then

Fylny,z)=4z, 5 (nyz) =4y, F, (xy,z)=-2z
At the point (1,1 23

Bl =4, 5 (129 =4and 7, (1,2)=-4
Thus, the equation of the normal line to the hyperboloid at (1,1 2} is
=1 y-1 =z-2

4 4 —4
and the equation of the tangent plane to the hyperboloid at {1, 1, 27 is given by

1

d(x—1)+4 (p—1—di(z—-2) =0,

i.e.,

dx +dy—4z=10.
(ii) Consider the curve of intersection of the sphere ;;;2 +y2 +z2 = fand the plane x—y—z = (. The point

F=1{21,Tilies on this curve. We want to find tangent line to this curve (*at 7. Let

ra (:Jr:,;u:,:z)::x2 +.}’2 +zi -6
and



Flxyzi=x—¥y—2z2.

Then, the tangent line to (*at Z'is the line orthogonal to both %7 ({Fyand V{FF) . Thus, the required
line is parallel to the vector is W7 () = V(F{F). In our case

VR (x,y,z)=(2x, 2y, 22,

Vi&dxyz)i=(1-1-1).

Thus
i 3 k
(VAP <V G (=4 2 2
1 -1 -1

=2j-2k=2(-k).
Thus, the required tangent line is the line through (2, 1 1) parallel to the vector
(G-k). ie.

ri)=2i+j++:2j-2k)
=2i+(1+0j+(1-0k telR.

35.1.5Note ( Estimate of change of a given direction) :

The motion of directional derivative can be used to estimate the change in the values of a function f

near a point Fin a given direction. If Pis (x,,3,,2,)and the direction is given by the unit vector 1,

then the approximation to this change is given by

FP+eu) - f(F)=((V F)(F) u)¢]

35.1.6Example:

For the function

Fixyz)=x+zxcosz—ysinz+y,

v (x,y,z):{1+cosz,1—sinz,x—y) .
Thus, for F=(2-10,

(¥ F)(F)=(313).

The approximate change in the value of # in moving from F towards the point {2 = (0,1 2 by a distance
of [1 2 units is given by

F(3.02,1.02,3.02) - /(3,13 = ((V £ (P) u) (02),

where

1
u=—=—(301.
0

V10
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Thus, the approximate change is

0z 24

—[(31,3.(3,0,1)]= —=.
ﬂ[(,,ﬁi,,)] NG

CLICK HERE TO SEE AN INTERACTIVE VISUALIZATION - APPLET

Practice Exercises

Find the equation of the tangent plane and the normal line to the surface at the indicated point:

w—z=0,P=(-2,-38)
ot byt bzt =25 P =123
z=g cosx P00

Answer

Find the smallest positive angle between the normals to the surfaces

z=g"? —landz:ln1f]xz+y3

at the point (0,1,07 .
Answer

Compute ([}, #1(2 2 1), where
Filx v,z =3x+0v+2z
and

t isthe direction of the cutward nermal to spherex® +3° +2° =9,

Answer

Consider the cone
=4z + %)

Let P(xu,ymzuj be a point on the cone, other than the vertex. Show that the tangent plane to the cone
at Falways parses through the vertex.

Find the parametric equations of the tangent line to the curve of intersection of the surface
z=x4+y and 2 +4y 424 =9

at the point P= {4 3 5.

Answer

For the given functions, find the direction in which it has maximal directional derivative and find its value
also:
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) fxy)=x"edat P=(-2,0)

(D) fix,»z2)=(sn xy}e_3! at (1,7, 0).
Answer

Recap
In this section you have learnt the following

e The notion tangent plane to a surface.

e The notion of normal line to a surface.

[Section 35.2]

Objectives
In this section you will learn the following :

e The notion of higher order partial derivatives

e The conditions that ensure the equality of the mixed partial derivatives

35.2 Higher Order Partial Derivatives

35.2.1Definition:

Let (x,,3,)elR*and f: B, (x;,») —IRbe such that both f,and Jyexist at every point of

B, (xy,¥,) . This gives us functions

Sy B (%, p) > IR and F, 0B (%) IR

We can analyze the existence of the partial derivatives of the functions j; and fywith respect to the

variable xand ¥,namely
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& th
PO -1 - A Rt )
T e ) Y T ;mdy &l

These functions, whenever exist, are called the second order partial derivatives of f Higher order
partial derivatives for functions of three variables can be defined similarly.

35.2.2Remark:

Higher order partial derivatives are useful in studying physical phenomenon. For example, if u(x,ﬁ]

represents the temperature (of a uniform rod) at position xand time £,then it satisfies the (one-
dimensional) heat equation

Py 1 B
R

1

where ris a constant (determined by the rod). Also, if v(x, ¥)represents the (electrostatic or

gravitational) potential at a point (x,y) on a thin plate, then it satisfies the (two-dimensional) Laplace
equation :

Aty + Fv 3
A Byg

Lastly, if wix, £ represents the height of the wave at distance x and time £, then it satisfies the (one-
dimensional) wave equation :

0.

Fw _ Fw
A’ A

where ¢ is the velocity with which the wave is propagated.

35.2.3Examples:

Let
i E* =R Flxyi=e" cosy, (x, 3 € B
All higher order partial derivatives of j exist at every point (xu:-ﬂf’u:' eIR?. Since
X .
Fi (3,05 =g cos ), and j:;u':xu:yu] =—g"sn ),

we have, for example,

X X
Sex(Zp, 0} =e" cos Vg, Sy (X, ) =2 Y cos

and

X .
Jry (g, ) =—2 Y sin )y = Jyx (g 0.

We prove next an important theorem for mixed partial derivatives .fy, and ), .

35.2.4Theorem (Equality of mixed Derivatives:

Let (x,,y,)€IR*and f: B,(x,,»,) — IR be such that f,f}, fpand fy,exist on B, (x,y,)and are



continuous at {x,, ¥,]. Then

f;g- (%, Yp) = fyx'i%:)"u)-

ol
i

PROOF

35.2.4Theorem (Equality of mixed Derivatives):

Let i,y =sR*and r: B,ix,,»,) — & be such that r..7,./nand ,,exist on

B, (x,, vo» @nd are continuous at ¢x,,»,». Then
J{gl(xh:)h} = j}x(xh:)h}-

Proof

Let --obe given. By the continuity of s, and s.at x>, we can find s -osuch

that s=-and for any ¢x,,3 e 3, (x4, We have
| Fop (xl,ylzl—fx_;.,(xu,ym-:g, and |fyx(xl,yu—f_yxcxn,yu)l-:g
FOr ¢a, iy e 5 ¢o,m, 2 =0,& =0, fixed, define
F o (xy — &8, 5 + 51——=TFE and F: (y, — &, 3, + F—— 1K
as follows
F(x) = Fx, 00 +&) — Flx,0) and G = Flxg +5,00— F %, )
Then, rand =are differentiable, and
Fxg +2)— F(x) = Gl + &) — Gl ).
--------- (29)
Applying Lagrange's mean value theorem to the function », we can find some -,
between .and x,+# such that
Fxg +54) — F(xg) = 85 () = & [ Fy (51, Yo +5) — Frle1,]]
Also, by Lagrange's mean value theorem applied to the function » s ,i=,,>2,gives
us some « between ,,and », +xsuch that
Frle. g + &) — FHlo, ) = -‘:5'0;9- oy, dql

35.2.5Example:

Consider 7 : IE*— IR given by F(0 M =0and

2

Flx, ) = % For(x,y) = (0,0,

We have

and

50,0 =—y, forany y, €IR,

Sy (x5, 0) =5 for any x, € IR.
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Thus,
Fp(0,0)==T=1=7,,(0,0)

This shows that the continuity hypothesis in the above theorem cannot be dropped. Indeed, for
(%, ¥ = (0,0, we have
2 4 5 4
(2 —>n) (5 +1025 35 + )
2 243
(xy +¥5)

f;}- (%, Yp) = =_f:yx':xn=.}’n:'-

PRACTICE EXERCISES
(1) Let

| .
Jixy= {xgﬂujJ i (xy)=(0,0)
0 i (x,»)=1(0,0).
'S flﬂ‘ (0,0) =f19, (0,07 Justify your claim.

Answer

(2) Consider the function

+ il
z= .
£ y2+1

(3) Show that Z:/3rand #z/dy satisfy the conditions of theorem 35 2 4 Hence, compute azzfaxay by
computing azzf@;ax.

(4) Show that the following functions satisfy the Laplace equation :

7 f PSP,
A ayz a?

() Fix,yz1=2(x+y" -4z

() fix,y,z)=+x"+3* +2*.

(i) Flx,y,z)=¢e" siny+e’ sinx

(5) Let

Tz :xzyj - 2x2y+x.
Show that

.j:;u szfyy-

(6) Let
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flayzi=xyz + ' +yz

Show that
Z fop =0 fn}lz-
Recap

In this section you have learnt the following

e The notion of higher order partial derivatives

e The conditions that ensure the equality of the mixed partial derivatives
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