
Module 6 : Definition of Integral

Lecture 16 : Integral from upper and lower sums [Section 16.1]

  Objectives

  In this section you will learn the following :

How to define the integral of a function.

      

16.1 Integral from upper and lower sums

 

We start by analyzing the following:

The Area Problem: The problem is to find the area of a region in the plane that is bounded by the
curve
   from and the . 

 

     

 This raises a natural question: What is the meaning of the word ‘area'? It is easy to answer this question
for region with straight sides, e.g., a rectangle, triangle, and a polygon. 

 

    




 
However, it is not as easy for general regions as is for the regions with straight side. But it is possible to
find an approximation to area using concept of area of the rectangles. The idea is to fill up (cover up) the
required area by rectangles with sides parallel to the axes. To do this, let us make some definitions.

16.1.1Definition:

 Let be a closed bounded interval.

(i) Let

 

                        

be points in the interval . Then,

                       

is called a partition of the interval .

(ii) A partition with points divides the interval into closed subintervals:

 

                       

A typical subintervals is called the th-subinterval of the partition.

 

(iii) For each , the number

                         

 is called the length of the subinterval .

(iv) For a partition , the number

 

                   

is called the norm of the partition .

Assumptions: 
In order to define the area bounded by the graph of a function , the and the lines 

, we assume that is a continuous function. As a consequence of this property not only 

is bounded on every closed subinterval of in fact it attains its bounds in that interval. 

16.1.2Definition:

 

Let be a continuous function and let 

                

be a partition of .         



(i)  Let

 

(ii)  Let

 
The sum is called upper sum of and the sum is called lower sum of for the

partition . 

16.1.3 Note:

 

For , each is the area of the rectangle with base and height 

. The number is the sum of the areas of all such rectangles. These rectangles cover of the

region . Similarly, each and is the area of the rectangle

with base and height . The number is the sum of all these rectangles which try to fill up

the region . The sum under estimates the ‘area' of and 

over estimates the area of , i.e., 

                               

 

Geometrically, the required area ‘Area(S)' of the region is captured between and i.e.,

for every partition of .

 

                            

The natural question that arises is the following:

 Can we improve the approximations in (1) so that upper and lower sums come closer to the actual
‘area(S)'?

To answer this, let us observe the following: 



16.1.4 Lemma:

 

Let be two partitions of such that

                           

and 

                                      

i.e., has all the points of and an extra point in the subinterval. Then

                         

 

16.1.4 Lemma:

 

Let be two partitions of such that

                              

and 

i.e., has all the points of and an extra point in the subinterval. Then

 Proof:

 

 

Since is greater than or equal to both 

and clearly,

                         

Thus, becomes smaller and becomes larger if we add more points to the
partition .

16.1.5 Definition:
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(i)
Let and be two partition of such that every point of is also a point of . Then we say is

a

 refinement of .

(ii)
A sequence of partitions of is called a sequence of refinement partitions if for all 

is a

 refinement of .

16.1.6Examples:

(i) For an interval , a natural sequence of refinement partitions is given by

 

(ii) For an interval , let,

 

Then is not a sequence of refinement partition of .

16.1.7Theorem:

Let be a sequence of refinement

partitions of . Then the following hold:

(i) The sequence is monotonically decreasing and is bounded below by .

(ii) The sequence is monotonically increasing and is bounded above by .

(iii) Both and are convergent sequences. In fact, for is continuous,

 
                     

and the limit is independent of the sequence of refinement partition of .

16.1.7 Theorem:

Let be
a sequence of refinement 
partitions of . Then the following hold:

(i) The sequence is monotonically decreasing and is bounded below by .
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(ii) The sequence is monotonically increasing and is bounded above by .

(iii) Both and are convergent sequences. In fact, for is continuous,

 
                   

and the limit is independent of the sequence of refinement partition of .

 Proof:

 

Proofs of (i) and (ii) follow directly from the lemma 16.1.6. Thus, by the completeness property
of , both exist. That for a continuous function, both these

sequences converge to a common limit, and that limit is independent of the sequence of

refinement partitions of is technical, and we assume this.

  

 

 This motivates for the following definition:
16.1.8Definition:

 
For a continuous function , the real number as given by theorem 

16.1.7 (ii) is called the definite integral or just the integral of over and is denoted by

  

16.1.9 Remarks:

(i) The notions of upper sums and lower sums, which we analyzed for continuous functions, can in fact be

 

defined for any bounded function . However, for such functions part (iii) of the above

theorem need not hold. One says a bounded is Riemann-integral or simply integral, if

there exists a sequence of refinement partitions of and a real number such that

                            .

In fact, if for a function , there exists some sequence of refinement partitions such that

 

                           

then for every sequences of refinement partitions, the upper and the lower sum sequences converge to
the same limit, namely, .Thus, theorem 16.1.7 (iii) says the following:

Every continuous function is integrable.

In fact, if is a bounded function such that has only finite number of discontinuities, say

at then it can be shown that is integrable on and

                           



 We shall assume this fact also.

(ii) Suppose is integrable. Then, by definition, there exists a sequence  of refinement

 

partitions and a number such that

                                

In particular,

                                

The converse of this statement also holds and we shall assume it. 

16.1.10Theorem:

 

A bounded function is integrable if and only if there exists a sequence of

refinement partitions of such that

                                

16.1.11Note:

In view of the above theorem, to check that a function is integrable, it is enough to

produce a sequence of refinement partitions of such that

                               

16.1.12Example:

(i) Let

 

                       

We show that is an integrable function. For , consider 

                        

be a partition of obtained by dividing into equal parts, i.e., 

                        

Then, is a sequence of refinement partitions and for all , we have 

                       

                       

Thus, 



Thus, 

 Hence, is integrable in . 

16.1.13Note:

 
Proceeding on the same lines as in the above example, one can show that every monotonically

increasing / decreasing (not necessarily continuous) function is integrable. 

16.1.14Example:

 

Let be defined by

                     

Let be any partition of . Since there is a rational and an irrational

number between any two real numbers, we have

                     

Thus, for every sequence of refinement partitions of 

                    

Hence, is a bounded function which is not integrable.

 PRACTICE EXERCISES

(1) For the following partitions of , compute  :

Let be any two partitions of . Let . Show that is also a partition of and



(2)
it is a

 

refinement of both . (It is called the common refinement of ). Further show that 

                         

(3) Let be a sequence of partitions of . Define

 
                        

Show that is a sequence of refinement partitions of .

(4) Verify the claims of lemma 16.1.4 for the following:

(5)
Using 16.1.5, show that every constant function is integrable. Using this and remark

16.1.9(i),

 

show that function

is Riemann integrable on . Compute also. 

(6) Show that every monotone function (not necessarily continuous) is integrable on every interval .

   Recap

   In this section you have learnt the following

How to define the integral of a function.

 

[Section 16.2]

  Objectives
  In this section you will learn the following :

How to define the integral of a function as a limit of Riemann sums.

  



16.2 Integral as a Limit of Riemann sums

 

Through theorem 16.1.7 allows us to check whether a function is integrable or not, it is not very

convenient to find . For this, we consider another way of approximating the required area. 

16.2.1Definition:

 

Consider a function . Given any partition 

                      

of , for , choose arbitrarily and define the sum 

                       

 

 

The product is the area of the rectangle over the interval with height 

. The sum is called a Reimann sum of with respect to the partition and the choice of

the points .

 

Note that for every partition , the sum depends not only on the partition , but also on the

choice of points . However, for every partition , the following holds:

                              .

We hope that as we make smaller and smaller, the Riemann sum will approximate the




required area better and better. This actually does happen for integrable functions. In fact, we have the
following: 

16.2.2Theorem (Riemann):

 

A function is integrable if and only if there exists such that for every sequence 

of partitions of with , and every sequence of Riemann sums 

                   . 

Further, in that case, 

                    

16.2.3Note:

(i)
In view of the above theorem, for a function , which we know is integrable, to compute  we

can use

 

any convenient sequence of partition of with and compute 

                  

(ii)
To define Riemann sums for a function , we do not require to be bounded. However, it

can be
proved that, if is integrable, then is also bounded.

16.2.4 Example:

 

Let 
              

We know that is a continuous function, and hence it is integrable. To compute its integral, for every 

, consider the partition obtained by dividing into  equal parts,

i.e., 

              .

Note that,

 

            

Let us choose 

Let . Then, 



 

Thus, 

Hence, 

             

Next, we describe some of the important properties of the integral.

16.2.5Theorem (Properties of Integral):

 

Let be bounded functions.

(i) If is integrable and , then 

          

(ii) If is integrable, then is integrable and

           

(iii) If is integrable and , then is integrable and 

           .

(iv) If and are integrable, then are integrable and 

                  

(v) If and are integrable and for all , then 



 

                  

(vi) If is integrable on , then is integrable over every interval and 

                  

      This is called the additive property of the integral. 

      (we define for every ).

(vii)If and are integrable, then is also integrable.

 

16.2.5Theorem (Properties of Integral):

 

Let be bounded functions. 
(i) If is integrable and , then 

(ii) If is integrable, then is integrable and

(iii) If is integrable and , then is integrable and 

.

(iv) If and are integrable, then are integrable and 

(v) If and are integrable and for all , then 

(vi) If is integrable on , then is integrable over every interval and

This is called the additive property of the integral. 
(we define for every ). 

(vii)If and are integrable, then is also integrable.

 Proof:

 
Proofs of all these properties follow from the properties of limits. Though not
difficult, the proofs are technical. We shall assume them. Interested reader can refer
a book on Real Analysis.                 

 

16.2.6 Theorem (Mean Value Property for Definite Integrals):

 

If is continuous, then there is at least one point such that 
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16.2.6Theorem (Mean Value Property for Definite Integrals):

 

If is continuous, then there is at least one point such that 

 Proof:

 

Since is continuous on , it is integrable. Let 

Then, 

i.e., 

.

Thus, 

the range of . Thus, by the intermediate value property for continuous functions, there exists a
point such that 

 

 

16.2.7 Note:

  (i) Average Value of a function:

 

For a integrable function , the number 

          

can be thought of as the average value of in the interval . Theorem 16.2.6 says that the average

value of a function is attained at some point if the function is continuous. 

(ii) Consider given by and .

 
The average value of equals . But for any . Thus, the continuity hypothesis

in theorem 16.2.6 can not be dropped. 

 PRACTICE EXERCISES

1.
Find an interval a function , and a partition , for which given below is

file:///E|/HTML-PDF-conversion/122101003/Slide/Module-6/Lec-16/Sec-16.1/Proof-16.2.6.html


the

 Riemann sum :

 

2. Assuming that is integrable on a suitable interval, express

 

          

as an integral for a suitable function . 

3. For the function

 

          

obtain a Riemann sum for a suitable sequence of partitions and compute 

          .

4. Let be a nonzero integrable function such that

 

          . 

Show that 

          

even though for any .

5. Let be an integrable function such that

 

          for all 

where Show that

           .



6. Prove that for all and 

 Hence, find  by computing the Riemann sums for a suitable sequence of

partitions and taking limits. 

7.
Let be a non-negative continuous function such that ,for some . Show

that there exist

 

, such that

         

Hence, deuce that

         

Hence,

if is non-negative continuous and , then for all . 

8. Give an example of a nonzero integrable function such that for all , but

          .

   Recap

   In this section you have learnt the following

How to define the integral of a function as a limit of Riemann sums.
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