
Module 1 : Real Numbers, Functions and Sequences

Lecture 2 : Convergent & Bounded Sequences

                    [ Section 2.1 : Need to consider sequences ]

 

Objectives

In this section you will learn the following

The need to consider sequences.
The concept of a sequence.

2.1   Need to consider sequences :

The aim of this lecture is to introduce the concept of a sequence. Sequences arise naturally in various fields. Any iterative
process gives rise to a sequence of observations. A sequence can be thought of as a list of objects written in a definite order.

2.1.1 Example (Finding the area of the unit circle) :

 

Greek mathematicians (400 B.C.) analyzed this problem by inscribing regular polygons inside the circle. If denotes the area of the

-sided polygon inscribed in the circle, then we get the sequences of numbers , ,....., .

             Click here to View the Interactive animation : Applet 1.3 (avaliable on WebSite).

2.1.2 Example (Zeno's paradox) :

A man standing in a room can not walk to the wall. In order to do so, he would have to go half the distance, then half the
remaining distance, and then again half of what shall remains. This process can always be continued and can never be ended.
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Click here to View the Interactive animation : Applet 1.4 (avaliable on WebSite).

To understand this paradox, let us assume that the man walks with a constant speed. Suppose he takes  minutes to cover the
first half of the distance. The next half will be covered in  minutes, the half of the remaining half in  minutes, and so

on. The time consumed at the th stage will be 

                                    . 
This gives us the sequence  ,   , . . . . The paradox is that there are infinite stages and how they can covered in finite time?

The paradox is resolved by proper interpretation of 'infinite'. 

Let us observe that in both the examples, we are interested in finding out what happens to the sequence of observations for large
? To analyze this problem, let us make some definitions.

 

2.1.3 Definition :

A sequence of elements of a set  is an ordered collection : ,    , . . . .  ,  . . . of elements of  . The element  is

called its first term,  - its second term , and in general  as its  term. We also write this as . One can also

think of a sequence   in  as a function f defined on the set of natural numbers with values in  , i.e., : 

with  . Note that a sequence  is not the same as the set { , , . .  } .

2.1.4 Examples :

1. For the sequence 

2. For the sequence 

3. For the sequence 

4. For the sequence 
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Recap

In this section you have learnt the following

The need to consider sequences arises from practical problems.
The concept of a sequence. 

Objectives

In this section you will learn the following

Convergence of a sequence.

 

 

The aim of this lecture is to analyze various concepts about sequences: a sequence being bounded, monotone, and convergent.

2.2 Convergent Sequences

Given a sequence , one is interested to know: what happens to  as  becomes large. In the example of the area

of the unit circle, we expect that for n sufficiently large,  will be a 'good enough' representation of , the area of the unit

circle, that is, will  come close to the value  , the area of the unit circle when n becomes large? How close? Will it come

as close as we want? Using the concept of absolute value (which gives the notion of distance on ) we can express it
mathematically as follows:

2.2.1 Definition:

A sequence  is said to be convergent, if there exists  such that given any real number  , we can find a

natural number  such that 

The real number  is called a limit of  and we write it as  .  

If we consider the geometric visualization of the sequence  as a function,  then saying that the
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number   will be the limit of the sequence means that given any horizontal strip, of width  centered at , all but finitely many

of  lie in this strip. Intuitively, after some stage all the elements of the sequence are close to . Or a 'tail' of the

convergent sequence lies inside any small neighborhood of . A sequence which is not convergent is called a divergent
sequence.

2.2.2 Examples:

1. The sequence is convergent to   . To see this, let  be given. Then 

                               . 

Thus,  . Now, if we choose   (which is possible by the Archimedian property), 

then  , 

                               . 

Hence,     . 
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2. The sequence  is not convergent. 

Suppose,  . Then given , there exists   such that 

         , 

i.e.,          , 

which is not true (Archimedian property). In some sense  is not convergent as it outgrows every real number. 

In fact, if a sequence is convergent, it can not grow arbitrarily, as we shall see in the next section. 

3. Consider the sequence . Every odd term of the sequence is  and every even term of the sequence is .

Intuitively, the elements  do not come closer to a single value  . We expect to be divergent. We can

write it as follows. First suppose  . If  then given , there should exist some  such that

 , 

                                     i.e.,   , 
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                                     i.e.,   ,      

which is not true for every even  ,   . Hence,   is not true. Similarly, we can show that  is

not possible for any   . 

Though both sequence  and  are divergent, they are divergent for different reasons.

 

2.2.3 Examples:     

1. Consider the sequence .  We show that    Since 

     <   , 

  Given  > 0, we will have   <  , if   

  So, if we choose  such that   , then ,  .         

2. Consider the sequence .  Since,

                                    ,      

given any  > 0, if we choose a positive integer   such that  , then for every  , 

 .

Hence, .

 

At this stage it is natural to ask the question: Can a convergent sequence have two different limits? We show in the next
theorem that this is not possible.     

proof:

2.2.4 Theorem:

Limit a sequence is unique.                                                                                                                           
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Suppose  as well as  with , say   .

  Take  . Then by definition, there exists  such that             

       

and

Thus, for  ,

which is a contradiction.  Hence, .             

 

2.2.5 Note:

The technique used in the proof of the theorem is called the proof by contradiction.                                

 For Quiz reder the WebSite.

 

Practice Exercises 2.2: Convergent Sequences

1. Using definition prove the following: 

. 

. 

. 

. 

2.  Show that the following sequences are not convergent: 

 . 

 .
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Recap

In this section you have learnt the following

How to formulate and analyse the concept of convergence of a sequence.

 

Objectives

 In this section you will learn the following

The concept of a bounded sequence.

2.3 Bounded Sequences

We saw that sequence  is not convergent as its terms keep growing bigger and bigger. This motivates our next definition.

2.3.1 Definition:

1. Let  be a sequence. 

We say is bounded above if there is some real number  such that  . 

 

Sequence bounded above by 

2. We say  is bounded below if there exists a real number  such that  . 

Sequence bounded below by  

3. We say is bounded if it is both bounded above and below. 




Bounded Sequence

 

2.3.2 Examples:

1. Consider the sequence  . Since for every , , the sequence is bounded. 

2.  Consider the sequence   . It is easy to show, using induction that  for all   . 

 Hence,  for all large . Hence  is not bounded above. 

 Motivated by our remarks at the end of section 1.4, we have the following.

 

2.3.3 Theorem:

If  is convergent then it is bounded                           

Let  . Then given ,  say  = 1, there exists  such that 

                       
                                                                          

 

That means all 's, accept  lie in between   - 1 and  + 1. Thus, if we define

                            

Hence,   is bounded.

 

2.3.4 Example:

Consider the sequence  . We showed in example 2.2.2(iii) that this sequence in not convergent. Clearly, it is a

bounded sequence as  for every  n . 

However, it not always easy to guess whether a sequence is convergent or not and even if it is convergent, what is its limit. We
describe in next section in next section some theorems which helps us to compute limits of sequences.  

 For Quiz refer the WebSite.
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Practice Exercises 2.3: Bounded Sequences

1. Let   and   be bounded sequences. Prove that  and   are also bounded

sequences. What can you say about the sequence  

2. Give examples to show that if   and     are bounded sequences,   for every , 

then   need not be a bounded sequence. 

3. Let     be a bounded function and   be any sequence. Is    a bounded sequence?  Justify

your claim.

Recap

In this section you have learnt the following

A necessary condition for a sequence to be convergent is that it should be bounded.
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