
  Objectives
  In this section you will learn the following :

Fundamental theorem of calculus, which relates integration with differentiation.

17.1.1Proposition:

 

Let be an integral function. If is such that 

for every partition of , then is integrable and 

.

 Proof:

17.1 Fundamental Theorem of Calculus

 
In this lecture, we describe an important theorem which connects integration with differentiation. We first
make a simple observation: 

17.1.1Proposition:

 

Let be an integral function. If is such that 

             

for every partition of , then is integrable and 

            .
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Since is integrable, there exists a sequence of refinement partitions of such that

          .

By the given hypothesis,

         .

Hence,

        

Thus, by definition

        .

17.1.2Fundamental Theorem of Calculus – I (FTC-I):

 

Let be functions with the following properties: 

(i) is integrable on . 

(ii) is continuous on . 

(iii) is differentiable on with for all 

Then,    

 Proof:

 

Let be any partition of . Then 

By the mean value theorem for on , there exists such that

        . 

Since, , for all , we have 

. 

From equations (2) and (3), we get 

. 

Thus, for every partition of . 

.

 

17.1.2Fundamental Theorem of Calculus - I (FTC-I):

 

Let be functions with the following properties: 

(i) is integrable on . 

(ii) is continuous on . 

(iii) is differentiable on with for all 

     Then, 
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Hence, .                                                                                         

Back

  
 

17.1.3 Examples:

(i) Since, for every ,

 

         , 

for every interval , 

       ,

i.e.,

       .

(ii) Since

 

   , 

for with , 

     .

 

(iii) For the function 

 

     . 

Hence, for with , 

     .

17.1.4 Definition :

 

Let be functions such that is differentiable and 

                           . 

Then, is called an antiderivative of on . 

17.1.5 Examples :

(i)
Let . Since , which is a continuous function, an antiderivative of 

is

. Infact, for any , since 
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                           , 

we deduce that the function has antiderivative 

                          

(ii) For , implies that  has an antiderivative, namely

                          . 

17.1.6 Remark:

 

If is an antiderivative of , then clearly

, a fixed constant, is also an antiderivative of . Thus antiderivative of a function 

is not unique. Any two antiderivatives differ by a constant.

17.1.7 Definition:

 

Let . The set of all the antiderivatives of is denoted by 

           , 

and is called the indefinite integral or just integral of . Since any of two elements of this set differ only

by a constant, we also write 

           , 

where is some antiderivative of .

17.1.8 Examples:

 

In view of examples 17.2.5, we can write 

        

and 

       .

In view of theorem 17.1.1, since the knowledge about the antiderivative of a function is useful in
calculating the integral of the function, it is natural to ask the question: 

Given a function , can we always find an antiderivative of ? 

The answer to this is given by the following: 

17.1.9 Fundamental Theorem of Calculus - II (FTC - II):

 

Let be continuous. Then 

      , 

is differentiable with , i.e., has an anti-derivative, namely .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17.1.10Remark:

 
Though the above theorem tells us that every continuous function has an anti-derivative, it may not be
always possible to find it explicitly. Some methods that help us to do this, are discussed in the next
section.

 PRACTICE EXERCISES

1.
Let have an antiderivative and have an antiderivative . Find an antiderivative of the following

in terms

 

of and :

(i) .

(ii) . 

2.
Show that if is continuous and is given, then there is a unique antiderivative of 

such that for a given .

3. For the following , find unique antiderivative with the specified values at a specified point:

(i) .

(ii) .

(iii) .

  

4. Find the average values of the following functions over the indicated intervals:

(i)

(ii)

(iii)

   Recap

   In this section you have learnt the following

Fundamental theorem of calculus,which relates integration with differentiation.

( Section 17.2)
  Objectives
  In this section you will learn the following :

Integration by parts formula

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Integration by substitution

Leibnitz's formula for differentiating integral with variable limits

17.2 Applications of fundamental theorem of calculus

17.2.1Theorem (Integration by Parts):

 

Let be differentiable functions such that both are Riemann integrable on .

Then 

                   .

 

17.2.1Theorem (Integration by Parts):

 

Let be differentiable functions such that both are Riemann integrable on 

. Then 

. 

 Proof:

 

Note that, by the product rate for differentiation

                             .

Since both and are integrable, by FTC-I, we have
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17.2.2Theorem (Integration by direct Substitution):

 Let be functions such that

(i) is continuous on .

(ii) is differentiable on with 

(iii) Riemann integrable on .

 
Then

                    .

 

17.2.2 Theorem (Integration by direct Substitution):

 Proof:

 

Since is continuous, by FTC-I, has an antiderivative, say . Then 

Also by the chain rule, 

Thus, by FTC-I 

   ------------------------------------(4)
Also, again by FTC-I, 

----------------------------------(5)

Proof is complete from (4) and (5).

 

 Theorems 17.2.1 and 17.2.2 give us techniques to evaluate definite integrals.

17.2.3Examples: 

(i) To evaluate

 

     ,

we write 
     .

Then 
    

Thus, by theorem 17.2.1,
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(ii) To compute , let us write

                    

Then by theorem 17.2.2,

 

                    

where and 

Hence 

           

17.2.4Theorem (Leibnitz Rule):

 

Let be continuous and be differentiable. Then 

 

 

17.2.4Theorem (Leibnitz Rule):

 

Let be continuous and be differentiable. Then 

                 

 Proof:

Since for 
is differentiable with , 

by chain rule, for all , we have 

,          (6) 
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and 

             (7) 

Also by FTC-I, 
.                (8)

Hence, by (6), (7) and (8), we have 

                                                                                                    

 

17.2.5Example:

 

Let 

      . 

Then, by theorem 17.2.4, exists and for x > 0, 

     

  
 PRACTICE EXERCISES

1.  Using Leibnitz's Rule, compute the following:

 

2. Let be continuous and . For , let

 

Show that

                             

and satisfies the following:

                              



3. Let be a real number and let be a continuous function such that

 

         

Let 

         . 

Show that is a constant function, independent of . 

4. Let a continuous function. For any , let denote the area bounded by the x-

 

axis, the lines and the curve . If, is given by 

        

determine the function . 

5. Let be a continuous function. Show that for every ,

         

6. Integration by inverse substitution:

 Let and be such that the following are satisfied:

(i) is continuous.

(ii)  is onto.

(iii) exists, is continuous on .

 

Show that is one-one, and hence exists. Using direct substitution for , show that 

                          

where 

7. Using direct/indirect substitution, compute the following:

(i) ,

  (use ).

(ii) ,

 (use inverse substitution ).



   Recap
   In this section you have learnt the following

Integration by parts formula

Integration by substitution

Leibnitz's formula for differentiating integral with variable limits
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