
 Module 5 : MODERN PHYSICS
 Lecture 26 : Wave Nature of Particle - the de Broglie Hypothesis
  

 Objectives

 In this course you will learn the following

Matter at very small length scale behave like waves.

de Broglie hypothesis associates a wavelength  with matter waves.

Electron diffraction from crystals which confirm wave nature of electrons.

Bohr's model of hydrogen atom and its relationship with matter waves.

Double slit experiments performed with electrons give results similar to Young's experiment for light.

Heisenberg uncertainty principle.

 Wave Nature of Particle - the de Broglie Hypothesis

 

In experiments like photoelectric effect and Compton effect, radiation behaves like particles. de Broglie, a
french physicist asked whether in some situations, the reverse could be true, i.e., would objects which are
generally regarded as particles (e.g. electrons) behave like waves ? In 1924 de Broglie postulated that we
can associate a wave with every material object. In analogy with photons, he proposed that the wavelength

 associated with such a matter wave is related to the particle momentum  through the relationship

 

 where  is the Planck's constant

 Example 13

 Calculate the wavelength associated with a cricket ball of mass 0.2 kg moving with a speed of 30 m/s.

 Solution :

 

 

 Exercise 1

 

Neutrons produced in a reactor are used for chain reaction after they are ``thermalized", i.e., their kinetic
energies are reduced to that of the energy of air molecules at room temperature. Taking the room
temperature as 300 K, estimate the de Broglie wavelength of such thermal neutrons. (mass of neutron = 

 kg.)

(Ans. 0.145 nm)



 Exercise 2

 
Calculate de Broglie wavelength of a proton moving with a velocity of  m/s.

(Ans.  m/s)

 Example 14

 What is the speed of an electron if its de Broglie wavelength equals its Compton wavelength ?

 Solution :

 We need to use relativistic formula for momentum

 

 where  is the rest mass of the electron. We have

 

 Solving, .

 Exercise 3

 

The resolving power of a microscope is approximately equal to the wavelength of light used to illuminate
the object. In an electron microscope , instead of light, the object is irradiated with a beam of electron. If
the resolving power of an electron microscope is 0.01 nm, find the kinetic energy of the electrons used.

(Ans. 15 keV)

 Wavelike behaviour of a macroscopic object is difficult to detect as the wavelength is very small.

 However, wave nature of particles may be detected in diffraction experiments where the dimensions of the
obstacles are comparable with the wavelength of matter wave incident on the obstacle.

 Electron Diffraction from a Crystal

 

Consider a beam of electron with a speed  m/s corresponding to a wavelength 

 nm. Such a wave may be diffracted by gratings with separation of similar order as

that of the wavelength. Crystals provide such natural gratings.

 
Davisson - Germer Experiment : 
Experimental confirmation of de Broglie hypothesis was provided in 1926 by Davisson and Germer, who
studied diffraction of a beam of electrons from the surface of a nickel crystal.

 



 

 

A beam of electrons from a heated filament, accelerated through a potential difference  is made to strike
the surface of a crystal of Ni. Electrons are scattered in all directions and may be detected by an array of
detectors located at various angles of scattering. It is found that the intensity of scattered beam is
maximum at some particular angles of incidence, in the same manner as the case when a beam of x-rays
strikes the crystal

 
In Davisson - Germer experiment, the electron beam was accelerated through a potential difference of 

 volts. The kinetic energy  of the electron is thus 54 eV. The de Broglie wavelength associated
with an electron accelerated through a potential difference  may be expressed as

 

 Using numerical values of  and , we get a relationship of the form

 

 The wavelength of the electrons in Davisson - Germer experiment can be calculated from the above to be
0.167 nm.

 Exercise 4

 
Through what potential difference should an electron be accelerated to have a de Broglie wavelength of 1Å?

(Ans. 150 volts)

 Exercise 5

An electron is released at a large distance from a proton. What will be the wavelength of the electron when
it is at a distance of (i) 1 m (ii) 0.1 nm from the proton ? [Hint : The potential through which the electron



 
moves is .]

(Ans. (i)  m (ii)  m)

 
Bragg condition is satisfied when the path difference between beams scattered from two adjacent planes is
a multiple of the wavelength. The path difference is . For constructive interference of order  we
have

 

 Electron Diffraction from a Crystal

 In case of Ni crystals, the interplane separation  nm, so that one expects Bragg condition to be
satisfied for first order ( ) for

 

 i.e. for . Thus we expect a strong interference effect for scattering angle .

 

 Example 15

 
One of the diffraction peaks observed by Davisson and Germer for a 65 keV electron beam was at a

direction such that the angle between the incident beam and the scattered beam is 60 . For what value of
crystal spacing is this peak seen in the first order ?

 Solution :

 

For , the angle . A kinetic energy of 65 keV corresponds to 

J. Equating this to , the momentum 

 kg-m/s. The wavelength corresponding to this momentum is 

 m. The crystal spacing is given by

 

 Exercise 6



 
Thermal neutrons having a wavelength of 0.145 nm are diffracted by a crystal of lattice spacing 0.29 nm.
Find the angle at which the first order diffraction maximum occurs.

(Ans. 14 )

 Bohr Model :

 Bohr's model of an atom, which was very successful in explaining the spectra of hydrogen like atoms is
based on the following postulates :

 Electrons move in stationary orbits around the nucleus. As long as an electron is in such an orbit, it does
not y

 
radiate. However, it emits ( absorbs) radiation when it makes a discontinuous transition form an orbit with
energy  to an orbit of lower (higher) energy . The frequency of emitted (absorbed) radiation is given
b

 

 The angular momentum of an electron in a stationary orbit is an integral multiple of  :

 

 where  is an integer.

 
Using Bohr model, one can show that the wavelength of the radiation emitted when an electron makes a
transition from an orbit with quantum number  to an orbit with , is given by

 

 where  is called the Rydberg constant, which has a numerical value  m  .

 

The de Broglie hypothesis may be used to derive Bohr's formula by considering the electron to be a wave
spread over the entire orbit, rather than as a particle which at any instant is located at a point in its orbit.
The satble orbits in an atom are those which are standing waves. Formation of standing waves
require that the circumference of the orbit is equal in length to an intergral multiple of the wavelegth. Thus,
if  is the radius of the orbit

 

 which gives the angular momentum quantization

 



 

                                            

 Exercise 7

 
Calculate the wavelength of an electron the ground state of hydrogen atom. (First Bohr radius of hydrogen
atom is 0.053 nm)

(0.33 nm)

 Example 16

 If an electron makes a transition from  to , determine (i) the wavelength of emitted
radiation and (ii) the recoil speed of the electron.

 Solution :

 The wavelength of emitted radiation is

 

 The wavelength is  nm. The momentum associated with this radiation is

 

 By conservation of momentum, this is also the magnitude of the momentum imparted to the atom as a
whole. The recoil speed of the electron is

 



 Double Slit Interference with electrons

 

We know that when a coherent source of light is incident on a Young's Double slit, an interference pattern is
observed. The intensity when only the slit  is open is , while the intensity with  open is .

When both slits are open, the expression for the intensity at any position  on the screen is given by

 

 
where  is the phase difference between the waves arriving at  from  and . Points where the

phase difference , the intensity is a maximum

 

 If the phase difference is an odd integral multiple of ,

 

 Note that at the minima less energy is received with both slits open than is received with any one slit open,
which is strange.

 

Let us repeat the experiment with beams of particles, such as electrons, traditionally considered localized
objects. The screen consists of an array of detectors which can record arrival of an electron. Experiment is
done with a beam of electrons and the number of times a detector records the arrival of electron is noted.
This is plotted as a histogram. The distribution of the electrons in the detectors at various points on the
screen is what corresponds to the intensity pattern stated above. The plot can be looked upon as a
probability distribution curve.

 

Let us focus our attention on a detector located at some position . We close one of the slits and
determine the probability of an electron arriving at . This is done by simply finding out the fraction of the
total number of electrons that are emitted by the source  are detected by the detector at . When 

is open, let this fraction be . Similarly, with  closed but with  open, we determine the

corresponding fraction at the same position. If we open both the slits, we would expect the fraction to be 
, as every electron must pass either through  or through . However, what one finds

experimentally is that .

 



         

 

Clearly, the result is absurd in the sense that it says that when both slits are open, there are particles which
neither goes through the slit  nor goes through the slit . Let us try to look at the actual situation. To

keep track of which electron came through which slit is easy enough. We put a source of light near each of
the slits, so that when an electron passes through one of the slits, it scatters light and we can see a flash.
If we do the experiment this way, keeping track of the particle, we find that  and there is no

contradiction. However, if we do not keep track of which slit each electron goes through, we get the
distribution pattern shown in curve C. What is even more funny is that in curve C there are some points
(minima) where the number of particles is even less than that which reach these points when only one slit is
kept open.

 
We define a probability amplitude  such that . In terms of probability amplitude, it turns out

that if we keep track of electrons by watching them,

 

 However, if we do not observe the electrons the probability distribution is given by

 

 
The reason behind this paradox is that when we observed the electron, the electron has to interact with
whatever probe we use for observing, in this case, with the light source. This interaction can alter the
chance of arrival of the electron at the point P.

 
Can we use a weaker source of light to reduce the effect ? The answer clearly is no because a weaker
source does not mean photon energy is different, it simply means that there are less number of photons. If
there are less number of photons, some of the electrons will escape without being detected by them. Those
which are detected are distributed according to

(1) while those which escape being detected are distributed according to



(2) and the net result that we get is a weighted mean of the two distributions.

Principle of Complementarity : 
The above behaviour illustates an important principle of physics called the principle of complementarity.
When we tried to determine which slit the electron went through, we were investigating the particle nature
of an electron. However, only a wave can simultaneously go through both the slits and the interference
effect was a manifestation of the wave nature. According to the principle of complementarity, an object has
both the particle property and wave property. However, in a given experiment either one or the other
property can be determined. It is not possible to siumultaneously get information on both the
particle nature and the wave nature of an object in the same experiment.

 

What the photons do to the electron is to transfer momentum so that the electrons are scattered in
different directions from their original directions. Can we then reduce the effect by using light of longer
wavelength which can impart less momentum causing less disturbance ? The answer once again is no
because if the wavelength is too long we will not be in a position to say whether the scattered electron
came from the slit  or from  as the position cannot be determined with a precision better than the

wavelength.

 Heisenberg Uncertainty Principle

 

The clue to this apparent paradox is in Heisenberg's uncertainty principle, according to which, there are
limitations on the accuracy with which experiments aimed at determining which hole a particular electron
goes through, may be performed, while still not disturbing the interference effect. 
Classically, one can simultaneously measure the position and momentum of a particle to infinite precision.
In the quantum mechanical world, there is an uncertainty associated with every measurement. Whenever
we attempt to measure the position of an object with a precision , there is some uncertainty  in

the momentum measurement, which we cannot get rid of, because, in order to make a measurement we
must disturb the system.

 Thought Experiment

 

In the thought experiment gedanken shown in the figure, the electron is assumed to be at restly below the
objective of the microscope. The electron is illuminated by gamma rays, which have a short wavelength.
Using a short wavelength yields high resolution. According to principles of optics, a microscope can resolve

objects to within , which is related to the wavelength  through

 

 

See the animation

However, gamma rays behaves like a particle with momentum  and is Compton scattered. In
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 order to be observed by the microscope,  ray must be scattered within an angle  of the cone. Since

the electron is initially at rest, the total moment of the electron- photon system is the momentum of the
photon.

 

Consider two extreme limits when the gamma ray photon is scattered by an angle  to the left extreme
wall of the microscope. The x-component of the total momentum is the sum of the x component of the

momentum of the scattered electron,  and the x component of the momentum of the scattered photon,

which is  , i.e.  ,where  is the wavelength of the scattered photon.

 

Similarly, when the photon is scattered to the extreme right, the total momentum is 

,where  is the wavelength of the scattered photon. As the angle  is small, the Compton shift 

 is small, and we may take . The total x-component of the

momentum incases must be the same, each being equal to momentum of the incident photon.

 Thus

 

 so that the momemntum uncertainty of the electron is

 

 giving

 

 It may be noted that one can always determine the momentum along the y-direction with any desired
degree of accuracy when there is position uncertainty along the x-direction.

 Exercise 8

 
The position of an electron is determined with an accuracy of 0.01 nm. Find the uncertainty in its

momentum.(Ans.  kg m/s)

 Example 17

 A beam of electrons with a de Broglie wavelength of  m passes through a slit  m wide.
Calculate the angular spread of the beam by diffraction.

 Solution :

 Initial momentum of the electron is along the x-direction.

 

 Due to the uncertainty in the position of the electron along the slit direction (y-direction), there is a
momentum spread along the y-direction, given by



 

 See the animation

 

 The angular spread of the beam is given by

 

 so that the spread .

 
Similar uncertainty relationship exists for other pairs of observables. For instance, if we wish to measure the
energy  of a particle with an accuracy . According to uncertainty principle, we may determine the
time at which the particle has such an energy only with an uncertainty  where

 

 Example 18

 Find the wavelength spread of a 1 nano-second pulse from a ruby laser with a wavelength of 630 nm.

 Solution :

 Since , and , we have . Thus  Hz.

 Using , we get

 

 so that

 

 Recap

 In this course you have learnt the following

The dual nature not only is exhibited by radiation but is also associated with matter. In some experiments
matter shows wave character.
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de Broglie hypothesis poastulates a wavelength of  with a particle having a momentum  .

Experimental confirmation of wave nature of matter comes from experiments such as Davisson Germer
experiments on electron diffraction from crystals. It is seen that the intensity of scattered beam is
maximum at those points where one would expect Laue spots in x-ray diffraction assuming the electronsare
waves with de Broglie wavelength.

Bohr model can be understood by postulating that stable orbits in atoms are those which are standing
waves of electrons.

One can perform double slit experiment with electrons, similar to the way Young's double slit experiment is
performed with light waves. The intensity pattern obtained on a screen is very similar in both cases.

According to the principle of complementarity one cannot obtain information on both the wave nature and
particle nature of matter or radiation in the same experiment.

Heisenberg uncertainty principle states that one cannot precisely measure both position and momentum of
a particle in the same experiment.
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