
 Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES
 Lecture 31 : Electron in a Potential Well
  

 Objectives

  In this course you will learn the following

Motion of electrons in a potential well.

Electron in a periodic potential - Kronig Penny model.

Concept of Brillouin zone.

Origin of gap in the energy spectrum at the zone boundary.

  

 Electron in a Potential Well

 A simplified model of an electron inside a crystal is to consider the electron to move in a periodic potential
well structure.

 
The essential features of the problem is brought out by considering the crystal lattice to be a regular
arrangement of atoms along a straight line with inter-atomic separation . The variation of potential energy
with distance on a line along the centre of the atoms is as shown in the figure.

 

 See the animation

 Before discussing this problem, let us consider the motion of an electron in a single square well potential .

 The potential is given by
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Having a finite total energy the electron cannot be in the region  or . Thus the electron

wavefunction in these regions vanishes. For the region , the one dimensional Schrödinger

equation is

 

 which has a solution

 

 where  and  are constants and the wave number  is given by

 

 By continuity of wavefunction at the boundaries

  at  which gives , and

  at  which gives

 

 

where  is an integer . (  is not possible because it would make the wavefunction

inside the well vanish; negative values of  does not give new solution as it amounts to multiplying the
whole wavefunction by .) Thus the electron energy in the potential well are

 

 The energy levels corresponding wave functions are shown in the figure.



 

 See the animation

 The figure below shows the probability densities corresponding to various states.

 

  

 Exercise 1

 Verify that the normalization factor  for the wavefunction for a particle in a potential well is .

 Electron in a Periodic Potential

 
Inside a lattice the electron is subjected to a periodic potential, i.e., the form potential repeats itself in
space. Thus if  is the inter-atomic distance in a one dimensional lattice, we have
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 For potentials that are periodic, the wavefunction satisfies Bloch theorem which states that the form of the
wavefunction is

 

 where  is a periodic function with the same periodicity as that of the lattice, i.e.,

 

 
Substituting this in Schrödinger equation for , we would obtain an equation for  which must be

solved.

 A simple model often used to mimic the periodic potential is known as the Krönig-Penny model , the form
of which is shown in the figure.

 

 

The potential is periodic with a period . In this case the electrons diffract from the periodic lattice

resulting in some values of  for which no solution exists. The reason can be traced to formation of standing
waves for such values of . For a crystal with periodicity , as shown above, standing waves would

form if the electron wavelength  is an integral multiple of . Thus the condition for formation of

standing waves is

 

 so that

 

 

For each region of k-space in which the energy is continuous is said to be a Brillouin Zone . Thus the First

Brillouin Zone is for  values running from  to , the second Brillouin zone

from  to  and from  to  and so on. The 

diagram where the values of  extends from  to  is called an extended zone scheme .



 

 
One can present  diagram in a scheme known as the reduced zone scheme in which  values are

restricted to their values in the first Brillouin zone. The energy band structure in such a scheme is
discontinuous as the bands in the picture are folded back to the first zone using periodicity.

 

 

The parameter  in these diagram does not have the interpretation of momentum; however, in analogy with
the case of free particle  is known as crystal momentum" . When an electron in a crystal is subjected
to an external force , it is this crystal momentum which satisfies the Newton's laws



 

 Origin of Gap in Energy Spectrum

 
From the energy diagram shown, it can be seen that there are discontinuities that arise at certain values of 

. Such gaps occur when the wavelength of electron is such that the condition for Bragg diffration by the
periodic lattice structure is satisfied.

 We know that an electron wave incident on such a lattice undergoes reflection if Bragg condition

 

 is satisfied. For waves travelling along the line of atoms in the crystal, the angle of incidence is , so that
the wave vector of the electron for which Bragg condition is satisfied is

 

 

             

 
Thus energy is continuous in the region . At  there is a discontinuity.

The region between  and  is the first Brillouin zone.

 

We have seen that the solution of the Schrödinger equation for an arbitrary value of  is a plane wave 

. This, however, is not true at the zone boundary where Bragg reflection takes place. At such a

boundary the wave function has two components, viz.,  and . One can form two standing waves

using these two wavefunctions, viz.,  and . The corresponding

electron densities are proportional to  and . These two densities have their

maxima respectively at the locations of the atoms and midway between atoms, as shown.



 

 

For wave vectors other than at the zone boundaries, the wavefunction being a travelling wave, the
probability density has uniform value. When we calculate the average of the potential energy for the three

probability densities, i.e. , the potential energy is the largest for the cosine wave and the

smallest for the sine wave, the case of uniform density falling in between. The difference between the two
energies is the energy gap at the zone boundary.

 Reciprocal Lattice

 

We have seen that Bragg diffraction occurs for values of  vectors which are multiples of . Bragg

diffraction is a consequence of periodicity of the lattice and diffraction pattern forms a geometric image
which bears an inverse relationship with lattice periodicity. Because the scale associated with the points at
which Bragg condition is satisfied has the dimensions of inverse length (as seen in the one dimensional

relation ), the geometrical structure defined by diffraction peaks is called the reciprocal lattice

corresponding to the real space lattice which is also referred to as the direct lattice .

 An equivalent way of describing diffraction in crystal is known as von-Laue formulation, according to which
the condition of constructive interference is satisfied if

 

 where  is a direct lattice vector,  is the wave vector of the incoming wave,  that of outgoing wave
and  is any integer.

 One can define reciprocal lattice vector 

 

 where  is an integer.

 Another way of stating Laue condition is



 

 Squaring both sides and using , we get

 

 Since  is also a reciprocal lattice vector, one can rewrite the above equation as

 

 Geometrically, this implies that Laue condition is satisfied if  lies in a plane that bisects  perpendicularly.

 

 Example-1

 
The density of free electrons in silver is  per cubic meter. Calculate the Fermi energy of silver in

eV.

 Solution

 The Fermi momentum is given by

 

 The Fermi energy

 

 Dividing by electronic charge, the Fermi energy is 5.65 eV.

 Exercise 2

 

Taking the density of state of silver to be of the free electron form, calculate the number of free electrons
per unit volume in silver having energy between 4 eV and 4.1 eV.

 

(Ans.  )

 Exercise 3

Obtain an expression for the free electron density of states in (i) one dimension and in (ii) two dimensions.



 (Ans. (i)  (ii)  )

 Fermi Function

 At a finite temperature, the electron states are filled by a probability density function  given by

 

 
where  is the probability of a particular energy state  being occupied. Electrons and other particles

which follow the above distribution function are called fermions . At ,  is a step function

 

 

 
At all non-zero temperatures, the value of  at  is 1/2. Thus one of the ways in which Fermi

energy can be defined is the energy level where half of the available energy states are filled.

 Exercise 4

 Show that .

 Recap

 In this course you have learnt the following

Motion of an electron in a one dimensional potential well was studied. The energy levels are discrete and the
wavefunctions are standing waves with nodes at the wall boundaries.



Motion of an electron in a periodic potential was discussed. The wavefunction satisfies Bloch theorem
accoding to which the solution is a product of a free electron function and another function having the
periodicity of the lattice.

An electron wave moving in a periodic lattice undergoes Bragg diffraction at points in  spacewhere

Braggcondition is satisfied. This leads to creation of a forbidden gap in the energy spectrum inside which no
physical state exists.
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