
 Module 6 : PHYSICS OF SEMICONDUCTOR DEVICES
 Lecture 30 : Energy Band Diagram
  

 Objectives

 In this course you will learn the following

Difference between electrical properties of metals, semiconductor and insulators.

Band theory of metals and semiconductors.

Free electron theory of metals and concept of Fermi energy.

Calculation of density of state for free electrons.

 

Modern electronics, which has revolutionized our way of life, is based on interesting properties of a class of material
known as semiconductors. 
Semiconductors have resistivity values intermediate between those of metals and insulators. While typical metallic

resistivity is between  to  ohm-m, that of silicon, which is a representative semiconductor is 

ohm-m. Materials with resistivities higher than  ohm-m are considered to be insulators. Glass, rubber and many
plastics are typical insulators.

 

 Temperature coefficient of resistivity :

 
The resistivity of metals increase with the increase of temperature. This is because with increase in temperature, ions
in a solid vibrate more causing electrons to scatter more frequently from them. The semiconductors, on the other
hand, have a negative temperature coefficient of resistivity, i.e., their resistivity decreases with increase in
temperature.

 An empirical formula for resistivity of metal is



 

 
where  is the resistivity at a reference temperature , ususlly taken to be 0 C or 20 C. The constant 

is known as thecoefficient of resistivity, which is a small positive number (For Cu / C.

 

 An corresponding formula for resistivity of semiconductors (or of insulators) is

 

 
where  is the resistivity at 0 C (i.e. at 273 K) and  is the absolute temperature at which the resistivity is

measured. Here  is Boltzmann constant and  is the bandgap energy, which, for semiconductors is of the
order of 1 eV and much larger for insulators.

 



 Charge carriers

 
Conductivity arises due to motion of charge carriers in a material when placed in an electric field. The primary charge
carriers in a metal are electrons. In gases and solutions, the carriers could be charged ions. The density of carriers in a

metal is very high, being of the order of  per m . 

 
Charge carriers in semiconductors are electrons and vacancies, the latter being known as holes . Typical carrier

density in a semiconductor is about  which is substantially lower than that of metals. Insulators have negligible
carrier densities

 Energy Band Diagram

 
Electrical properties of materials are best understood in terms of their electronic structure. We know that the energy
levels of isolated atoms are discrete. When atoms are brought together to form a solid, these energy levels spread out
into bands of allowed energies. The effect is qualitatively understood as follows by considering what happens when a
collection of  atoms, which are initially far apart are brought closer.

 

When the spacing  between adjacent atoms is large, each atom has sharply defined energy levels which are denoted
by  etc. As the atoms are far apart their orbitals do not overlap. In particular if each atom is in its

ground state, the electrons in each atom occupy identical quantum states. As the distance starts decreasing, the
orbitals overlap. The electrons of different atoms cannot remain in the same state because of Pauli Exclusion
Principle. Pauli principle states that a particular state can at most accommodate two electrons of opposite spins. Thus
when  atoms are brought together, the levels must split to accommodate electrons in different states. Though they
appear continuous, a band is actually a very large number of closely spaced discrete levels.

 



 See the animation

 Conductors, Insulators and Semiconductors :

 

When an electric field is applied to any substance, the electrons can absorb energy from the field and can move to
higher energy levels. However, this is possible only when empty states with higher energies exist close to the initial
states in which the electrons happen to be in. If there is a substantial energy difference between the occupied electron
state and the higher unoccupied state, the electron cannot absorb energy from the electric field and conduction cannot
take place. Thus conduction takes place only in partially occupied bands.

 
In case of a metal, the bands which arise from different atomic orbitals overlap and the electrons can absorb energy
from an electric field (or absorb thermal or light energy). The electrons in such partially filled bands are called free
electrons .

 

 

For an insulator there is a wide gap (  eV) between the lower occupied band,known as the valence band ,
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 and the higher unoccupied band, called the conduction band . No electron can exist in this forbidden gap To
promote electrons from lower levels to higher levels would require a great amount of energy. It is incorrect to say that
electrons in an insulator are not free to move around. In fact, they do. However, as there are as many electrons as
there are states, the electrons only trade places resulting in no net movement of charges.

 

 
Semiconductors, like insulator have band gaps. However, the gap between the top of the valence band and the bottom
of the conduction band is much narrower than in an insulator. For comparison, the gap in case of Silicon is 1.1 eV
while that for diamond, which is an insulator is about 6 eV.

 Quantum Mechanical Concepts

 

Formation of bands can only be understood on the basis of quantum mechanics. Earlier, we had seen that an object
behaves both as particle and as wave. According to de Broglie theory, an electron having a momentum  has an

associated wave with a wavelength . Schrödinger proposed an equation for the wave associated with a particle of

mass  having a total energy  which is moving in a potential . The Schrödinger equation, which is as
fundamental to quantum mechanics as Newton's laws are to classical mechanics, is given by

 

 

According to quantum mechanical hypothesis, the wavefunction  is interpreted as the probability amplitude of

a particle of energy  being at a point . The square of the wavefunction  gives the probability density at

the point, so that the probability of finding the particle anywhere in space given by  is unity.

This is called the normalization of the wavefunction. It is also postulated that the wavefunction and its first derivative
are continuous and single valued.

` Wavefunction of a Free Electron

 The energy- momentum relationship for a free electron is given by

 

 The  relationship (known as the dispersion relation ) is a parabola.



 

 Free Electron Model of a Metal

 

The valence electrons in a metal are detatched from the individual atoms and move in the metal like a gas of free
particles. This leaves the atomic cores positively charged. In the free electron model of a metal, it is assumed that this
positive charge of the cores is uniformly distributed throughout the metal. Such an assumption essentially removes any
details of the crystal structure of the metal. Nevertheless, it is a good starting point in understanding behaviour of
electrons in a metal. 
As the interaction between the electrons themselves are also ignored, one can simply consider the motion of a single
electron which is moving in a constant potential, which can be conveniently taken to be zero. The electron can be
taken to be confined within a box of dimension  within which the potential is constant (taken to be zero)

and outside which it is infinite. The Schrödinger equation for the electron within the box is

 

 Defining , the equation reads

 

 The equation may be solved by separation of variables by substituting

 

 in eqn. (A) and dividing the resulting equation by . We get

 

 
Since  is constant and the first three terms depend upon  separately, the above equation can be satisfied

for all values of  only if each of the three terms is constant, i.e.



 

0

0

0

 with .

 The solutions of the above with boundary condition (i.e. wanishing of wavefunction at the walls) gives

 

 
where ,  being any non-zero positive integer. Thus the complete solution (with normalization

constant) is

 

 and the energy

 

 where  is the volume of the crystal.

 

At absolute zero temperature, electrons fill up available states from minimum energy upwards satisfying Pauli exclusion
principle. Each distinct energy level, specified by a combination of  and  is occupied by two electrons of

opposite spins. The maximum value of energy is known as Fermi energy and is denoted by .

  

 

 Density of States

Density of states at an energy  is the number of states per unit volume available per unit enit energy interval with



 

energy between  and . This would require counting of states, i.e., enumeration of different values of 

 corresponding to the energy of states within this interval. This is obviously a difficult task. However,

given the large dimension of a crystal, the states are very closely packed and and one can essentially treat the 

values as continuous.

 

Equation of constant energy given by eqn. (B) is a sphere in  space with a radius .

As the points in this space are separated from the adjacent ones by one unit in each direction, each point effectively

occupies a volume  in the  space. Thus a unit volume in  space contains  number of

states. As each  state can accommodate two electrons (corresponding to two distinct spin states), the number of

electrons per unit volume of  space is .

 

  

 
Since the constant energy surface in  space is a shhere, we can define Fermi wave vector  as the radius of

a sphere corresponding to the Fermi energy  by

 

 The volume of Fermi sphere being , the number of electrons  that lie within such a sphere is

 

 which gives the density  as equal to



 

 

Using eqn. (C), we can obtain an expression for the density of states . Since, by definition,  is the

number of states lying within energy interval  and , we may simply subtract the number of states below

energy  from the number below . We have

 

  

 The unit of density of states  is (eV)  m .

 Density of States and Fermi Energy

 

 See the animation

 

Free electron theory can be used to explain, reasonably satisfactorily, several qualitative properties of metals, such as,
thermal and electrical conductivity, magnetic properties, heat capacity etc. However, as the theory totally ignores the
crystalline structure of metals, it fails to provide a distinction between metals, semiconductors and insulators. The
atoms in a crystal are arranged in a periodic arrangement. Consequently, the electrons in the crystal are subject to a
periodic potential rather than a uniform potential assumed in the free electron model. If this potential is assumed to be
weak, the electrons do not become completely free but nearly so. The model is known as nearly free electron
model.

 Recap

 In this course you have learnt the following
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Metals have free charge carriers. With increase in temperature, the resistivity of a metal increases.

Pure (intrinsic) semiconductors are very similar to insulators. For a semiconductor, the resistivity decreases with
increase in temperature.

Metals have partially occupied band which allow charge carriers to move even when a small amount of energy is
supplied. Semiconductors have occupied valence band and unoccupied conduction band. Carriers can be thermally
excited from valence band to conduction band.

Insulators are similar to semiconductor in their band structure. However, the band gap is much larger than in a
semiconductor.

Behaviour of simple metals can be described by a free electron theory in which an electron is taken to move in a
constant potential. At zero temperature the electron states are occupied from the lowest energy state to a state of
maximum energy, known as Fermi energy.

Density of state is the number of states per unit volume of a substance per unit energy interval. For free electrons

 the density of state is proportional to the square root of energy.
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