
 Module 3 : MAGNETIC FIELD
 Lecture 19 : Time Varying Field
  

 Objectives

 In this lecture you will learn the following

Relate time varying magnetic field with emf generated.

Define mutual inductance and calculate it in simple cases.

Define self inductance.

Calculate energy stored in a magnetic field.

  

 Time Varying Field

 

Even where there is no relative motion between an observer and a conductor, an emf (and consequently an
induced current for a closed conducting loop) may be induced if the magnetic field itself is varying with time as
flux change may be effected by change in magnetic field with time. In effect it implies that a changing
magnetic field is equivalent to an electric field in which an electric charge at rest experiences a force. 

Consider, for example, a magnetic field whose direction is out of the page but whose magnitude varies
with time. The magnetic field fills a cylindrical region of space of radius . Let the magnetic field be time
varying and be given by

Since does not depend on the axial coordinate as well as the azimuthal angle , the electric field is also

independent of these quantities. Consider a coaxial circular path of radius which encloses a time

varying flux. By symmetry of the problem, the electric field at every point of the cicular path must have the
same magnitude and must be tangential to the circle.

Thus the emf is given by  

By Faraday's law   



 

Equating these, we get for   ,

For , the flux is , so that 

and the electric field foir  is  

Exercise 1

 

A conducting circle having a radius at time is in a constant magnetic field perpendicular to its

plane. The circle expands with time with its radius becoming at time . Calculate the

emf developed in the circle.

(Ans. )

 Mutual Inductance

 

According to Faraday's law, a changing magnetic flux in a loop causes an emf to be generated in that loop.
Consider two stationary coils carrying current. The first coil has turn and carries a current . The

second coil contains turns. The current in the first coil is the source of a magnetic field in the region

around the coil. The second loop encloses a flux , where is the surface of one

turn of the loop. If the current in the first coil is varied, ,and consequently will vary with time.

The variation of causes an emf  to be developed in the second coil. Since is proportional to , so

is . The emf, which is the rate of change of flux is, therefore, proportional to ,  



where is a constant, called the mutual inductance of the two coils, which depends on geometrical factors

of the two loops, their relative orientation and the number of turns in each coil.

 

Analogously, we can argue that if the second loop carries a current which is varied with time, it generates

an induced emf in the first coil given by 

For instance, consider two concentric solenoids, the outer one having turns per unit length and inner one

with turns per unit length. The solenoids are wound over coaxial cylinders of length each. If the current

in the outer solenoid is , the field due to it is , which is confined within the solenoid. The

flux enclosed by the inner cylinder is

If the current in the outer solenoid varies with time, the emf in the inner solenoid is

so that  



 
If, on the other hand, the current in the inner solenoid is varied, the field due to it which

is non-zero only within the inner solenoid. The flux enclosed by the outer solenoid is, therefore,

If is varied, the emf in the outer solenoid is    giving  

One can see that   .

 

This equality can be proved quite generally from Biot-Savart's law. Consider two circuits shown in the figure.

The field at , due to current in the loop (called the primary ) is 

where . We have seen that can be expressed in terms of a vector potential , where

, by Biot-Savart's law  

The flux enclosed by the second loop, (called the secondary ) is



 Clearly,  

It can be seen that the expression is symmetric between two loops. Hence we would get an identical
expression for . This expression is, however, of no significant use in obtaining the mutual inductance

because of rather difficult double integral. 
Thus a knowledge of mutual inductance enables us to determine, how large should be the change in the
current (or voltage) in a primary circuit to obtain a desired value of current (or voltage) in the secondary
circuit. Since , we represent mutual inductance by the symbol . The emf in the

secondary circuit is given by   , where is the variable current in the primary circuit. 

Units of is that of Volt-sec/Ampere which is known as Henry (h)

 Example 22

 

Consider two parallel rings and with radii and respectively with a separation between their

centres. Radius of is much smaller than that of , so that the field experienced by due to a current

in may be taken to be uniform over its area. Find the mutual inductance of the rings.

 Solution :

 
The field experienced by the smaller ring may be taken to be given by the expression for the magnetic field of
a ring along its axis. We had earlier shown that at a distance from the centre of the ring, the field along the
axis is given by

 

 The flux enclosed by is  

 By Faraday's law the emf in is  



 
which gives  

The expression above is obviously not symmetrical between the loops. This is because of our assumption of
uniform field over . The approximation will be legitimate if the dimensions of is negligibly small, i.e. if 

is taken to be a dipole, , so that from , the other loop looks like a point. In such a case,

In the next example we assume that the current is changing in the dipolar loop and determine the emf
generated in the larger loop.

 Example 23

 
By considering the current in to be time varying determine the change in flux of the larger coil and hence

determine the mutual inductance.

 Solution :

 

Since the field over the larger loop cannot be considered uniform, we need to use expressions for the
magnetic field due to a magnetic dipole. The field is conveniently expressed in terms of its radial and
tangential components. For a point dipole, the field components are given by expressions similar to the ones
we derived for electric dipole. By replacing the electric dipole moment by the magnetic dipole moment 

and permittivity factor by the permeability of vacuum , we have

 

 In the figure, the plane of the loop is normal to the page and the current direction is anticlockwise as seen
from the right, so that the magnetic moment vector is as shown.



 
Consider an element of area of the larger ring at the position where the angle is measured

with respect to some reference line in the plane of the ring. From the figure it can be seen that

 

so that,

The angle between and is so that

where we have substituted for the magnetic moment of the current loop. The flux enclosed by 

is obtaied by integrating over from 0 to and over from 0 to .



 

The integration over gives . Using the expressions for and in terms of the variable ,

we get, for the flux 

The integration can be easily performed by substituting . After a bit of an algebra one gets

On substituting the limits and using a binomial expansion to retain leading order term when , we

get

which gives the same expression for mutual inductance as in the previous example.

 Exercise 1

 

The figure shows two coplanar and concentric rings of radii and where . Determine the

mutual inductance of the coils. Solve the problem by considering the current to be changing in either of the
coils.

(Ans. ).

 Exercise 2

A toroidal coil of rectangular cross section, with height has tightly wound turns. The inner radius of the



 

torus is and the outer radius . A long wire passes along the axis.

The ends of the wire are connected by a semi-circular arc. Find the mutual inductance. Show explicitly that 
. 

(Hint : When the current flows in the turns of toroid, the field at a distance from the toroid axis is 

. The semi-circular area traps flux only in one rectangular turn of height and width .

Answer : ( .)

 Self Inductance :

 

Even when there is a single circuit carrying a current, the magnetic field of the circuit links with the circuit
itself. If the current happens to be time varying, an emf will be generated in the circuit to oppose the change
in the flux linked with the circuit. The opposing voltage acts like a second voltage source connected to the
circuit. This implies that the primary source in the circuit has to do additional work to overcome this back emf
to establish the same current. The induced current has a direction determined by Lenz's law. 
If no ferromagnetic materials are present, the flux is proportional to the current. If the circuit contains 
turns, Faraday's law gives

 

 where is known as Self Inductance of the circuit. By definition, is a positive quantity. From the above it
follows, on integrating,

 

 Since when , the constant is zero and we get

 

 The self inductance can, therefore, interpreted as the amount of flux linked with the circuit for unit current.
The emf is given by

 

 Example-24

 Obtain an expression for the self inductance in a toroid of inner radius , outer radius  and height .



 Solution :

 
We have seen that the field inside the toroid at a distance  from the axis of the toroid is given by 

.

 The flux through one turn of the coil is the integral of this field over the cross section of the coil

 

 The flux threading  turns is

 

 

  

 The self inductance is thus given by

 

 Energy Stored in Magnetic Field

 

Just as capacitor stores electric energy, an inductor can store magnetic energy. To see this consider an L-R
circuit in which a current  is established. If the switch is thrown to the position such that the battery gets

disconnected from the circuit at , the current in the circuit would decay. As the inductor provides back
emf, the circuit is described by

 

 With the initial condition , the solution of the above is

 

 As the energy dissipated in the circuit in time  is , the total energy dissipated from the time the
battery is disconnected is

 

 



  

 
Thus the energy initially stored must have been . If an inductor carries a current , it stores an

energy . Thus the toroidal inductor discussed earlier stores an energy

 

 when it carries a current . We eill now show that this is also equal to the volume integral of .

 

Consider the magnetic field in the toroid at a distance  from the axis. We have seen that the magnetic field 

 is given by . Thus the value of  at this distance is .

Considering the toroid to consist of shells of surface area  and thickness , the volume of the shell is

. The volume integral of  is therefore,

 

 which is exactly the expression for the stored energy derived earlier.

 Recap

 In this lecture you have learnt the following

The emf generated in one circuit due to a changing current in a second circuit is due to mutual inductance
between the circuits.

Mutual inductance is symmetric.

In a few simple cases mutual inductance was calculated.

A circuit gives rise to a back emf because of change in the current in the same circuit. A circuit can have a
self inductance.

Magnetic field can store energy and the energy density of the field can be calculated from a knowledge of the
self inductance.
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