
 Module 5 : MODERN PHYSICS
 Lecture 23 : Particle and Waves
  

 Objectives

 In this lecture you will learn the following

Radiation (light) exhibits both wave and particle nature.

Laws governing black body radiation, like Stefan's law and Wien's law.

Inadequacy of wave theory in explaining blackbody radiation spectrum.

Planck's hypothesis on atoms absorbing radiation in quanta of energy.

Particle and Waves

In classical physics have come to regard matter and waves as two disctinct entities. A particle is an idealized
point object which is characterized by

a mass

position (a particle cannot be in more than one position at the same time)

momentum

 

In practice entities like electrons, protons, atoms, molecules etc. are approximated as particles. In classical
dynamics it is also common to consider macroscopic objects like a billiard ball as a particle. Particle transmit
energy from one point in space to another by collisions with other particles during which transfer of
momentum also takes place. 
Wave is an extended disturbance in space which can transmit energy from one point to another without
imparting a net motion to the medium through which it propagates. Examples of waves are mechanical waves
like sound waves, water waves etc. which require a material medium to propagate and electromagnetic waves
(light waves, radio waves, x-rays etc.) which can propagate in space without requiring a medium. A wave is
characterized by

wavelength

frequency

 Traditionally, the wave and particle properties have been considered distinct. For instance, the following
phenomena can be only understood in terms of wave properties :

Interference

Diffraction

Polarization



 
Similarly, the process of collision or the concept of temperature as energy of vibrating molecules are
understood in terms of particle properties. However, some experimental observations made in the late 19th
century and early 20th century seemed to indicate that the strict behavioural pattern stated above is not
always valid.

 Particle Nature of Waves

 
Light was accepted to have wave nature in view of well established experiments on diffraction. However,
Photoelectric Effect could be understood only by assuming that light consisted of streams of particles
possessing energy and momentum. The first phenomenon which was observed to be in disagreement with the
wave nature of light is the black body radiation problem.

 Black Body Radiation :

 A black body, by definition, is an object which absorbs all radiation that fall on it. Since it does not reflect any
light, it appears black.

 
In a laboratory, one could approximate a blackbody by a cavity with highly polished walls. If the walls of the
cavity has a small hole, any radiation that enters through the hole gets trapped in the cavity. Stars may also
be approximated as black bodies as any radiation directed at them gets absorbed.

  

 

  

 A black body is also a perfect emitter of radiation. It can emit at all wavelengths. However, the radiation from
a black body is observed to obey the following two laws :

Stefan's Law : The intensity of emitted radiation for a given wavelength is proportional to the fourth power
of the temperature of the black body.

Wien's law : For a given temperature, the spectrum of emitted radiation has maximum intensity for a

wavelength , which is inversely proportional to the temperature of the black body. Thus relatively

colder bodies appear red as their maximum intensity is in the red end of the spectrum while hotter bodies
appear bluish. Because of this, when we heat a metal wire it firs becomes red hot and then as the
temperature increases it become "white hot".

 In classical physics, radiation is considered as waves and the calculation of radiant energy emitted by a black
body is carried out in the following steps.

(1) We consider the black body to be in the shape of a cubical metal cavity of side  with a small hole in it.

 Any radiation which falls on the hole is lost inside the cavity. The radiation which emerges from the hole has
the characteristics of the radiation that is trapped inside the cavity.

(2) The waves inside the cavity form standing wave pattern with nodes at the walls of the cavity since the electric
field must vanish inside a metal.

 

If we consider standing waves in one dimension, the electric field having nodes at  and  is

given by  where  is a positive integer. The pattern of the standing wave

is shown. The frequency  is given by 



 

                                   

 Extending to three dimensions, the electric field is given by

 

 

where  is a set of positive integers. (If any of these inegers is zero, it gives zero field. Taking

negative values of the integers do not give different fields as it amounts to simply multiplying  by a sign

factor.) Substituting Eqn. (1) in the electromagnetic wave equation

 

 we get

 

 The frequency  is given by

                                                     

For a given frequency, the equation above represents a sphere of radius  in the three



 
dimensional space of  and  and each value of  represents a distinct point in this space. Since 

 can only take integral values, the number of points per unit volume is one. If we treat  as a

continuous variable, the number of modes for frequency less than some given  is given by

 

 

where  is the volume of the cavity. In the above, the factor of 1/8 comes because we are restricted to the
positive octant as  can only be positive. The factor of 2 takes into account the fact that there are

two transverse modes. The number of modes in the frequency interval  and  is

 

(3) As the average energy of a mode is , the radiant energy density, which is defined as the average energy

 per unit volume is given by

(2)

 This is known as Rayleigh - Jeans' Law

 Exercise 1

 

Show that, in terms of the wavelength interval, the Rayleigh Jeans' law can be expressed as

 

(4) The radiant intensity can be obtained from the expression for the energy density by multiplying the above

 expression by . The curious factor of 1/4 arises because

At any instant, on an average, half of the waves are directed towards the wall of the cavity and another half

 is directed away from it. This gives a factor of 1/2.

We need to average over all angles. In computing the radiant power, we get a factor of , which



averages to 1/2. The radiant intensity is given by

 

 Black Body Radiation :

 

Rayleigh- Jeans' law is roughly in agreement with the thermal radiation curves at long wavelengths. However,

at short wavelengths, it gives infinite energy density as  as . This is clearly unphysical.

The failure of the classical wave theory to explain the observed radiation curve in the ultraviolet end of the
electromagnetic spectrum is known as ultraviolet catastrophe .

 

 See the animation

 

Planck's Theory : 
In 1900, Max Planck suggested that oscillating atoms could emit or absorb energy in tiny bursts of energy
called quanta . The energy of the quanta is proportional to the frequency of radiation. Planck's suggestion
imparts a discrete or particle nature to radiation. If the frequency of radiation is , the energy of the
quantum associated with it is

 

 

where the constant of proportionality  is called Planck's constant . Its value in SI units is 

 J-s. Thus the possible energy of a mode with frequency  is  where 

. According to Boltzmann distribution, the probability of a mode having an energy  at a

temperature  is given by , where . Here,  is the Boltzmann constant and 

is the absolute temperature. Thus the average energy of a mode is

 

(3)

 Exercise 2

Prove Eqn. (3).
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(Hint : Treat  as a continuous variable and show that the right hand side is 

 ).

Using  to be the average energy of the mode instead of , the energy density is given, instead of Eqn.
(2), by

(4)

 Exercise 3

 
Show that Eqn. (4) reduces to Rayleigh - Jeans' expression for long wavelengths i.e. as . [ Hint : use 

 for ]

 Exercise 4

 

Show that, in terms of wavelength, the expression for radiant intensity is given by

(5)

 Example-1

 Find the temperature for which the radiant energy density at a wavelength of 200 nm is four times that of the
density at 400 nm.

 Solution

 

 Substituting values of  and , we get

 

 
which gives, on simplification . On solving, the temperature works out

approximately to be 18,500 K.

 Stefan's Law

 The power radiated by the black body per unit area is

 

 To evaluate the integral, substitute , so that . We get



 

 The value of the integral  is known to be , so that

 

 where

 

 is known as Stefan's constant.

 
For a body with emissivity (the ratio of radiation emitted by a body to that predicted by PLanck's law for an
ideal black body) , the power radiated from a unit area of the surface is

 

 
In addition to emitting radiation, a body at temperature  also absorbs radiation. If the surrounding
temperature is , the power absorbed per unit surface area is

 

 Example-2

 Estimate the radiant energy emitted by a blackbody at 6000 K.

 Solution

 According to Stefan's law the radiant power emitted per unit area is

 

 Example-3

 Estimate the fraction of radiant power of Example 1 which is emitted in the visible region of the spectrum.

 Solution

 According to Planck's radiation formula, the power per unit area is given by

 

 Substituting , the expression reduces to

 

 
where  and  are respectively the upper and the lower limits of  corresponding to visible spectrum.

Taking  Hz and  Hz, we get  and . Thus



 

 

The integral above has to be done numerically, for instance, by Simpson's method. A crude estimate gives the

value of the integral to be approximately 2.41. Thus  watts, which is about 36% of the

total emitted radiation.

 Exercise 5

 
A spherical black body of radius 2m is at 27  C. Find the power radiated.

[Ans. 22077 watts]

 Exercise 6

 

Total energy radiated from a blackbody source is collected for one minute and is used to heat a quantity of
water. The temperature of water is found to increase from C to C. If the absolute temperature of
the blackbody were doubled and the experiment repeated with the same quantity of water at C, find the

temperature of water.(Ans. 28  C)

 Example-4

 

The earth receives 1.4 kW of power from the sun. Assume that both earth and the sun to be black bodies. If

the radius of the sun is  m and the earth-sun distance is  m, calculate the

temperature of the sun.

 Solution

 According to Stefan's law, the power radiated by the Sun per unit area is . If  is the radius of the

sun, the total power radiated is .

 
This power radiates outward from the sun. If at a distance , the power received per unit area is , the

total power is equal to the surface area of a sphere of radius  times this amount. Thus,

 

 See the animation

 

 Thus
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 Substituting  and  m, we get  K.

 Exercise 7

 

Using the above distances and the calculated temperature of the sun, estimate the equilibrium temperature of
the earth.

( Hint : First determine the total amount of power collected by the earth by observing that  section of

the earth collects all the power falling on the earth. In equilibrium, this amount is equal to the power radiated
from the earth..Ans.  K.)

 Wien's Displacement Law :

 
The wavelength at which the radiant intensity is maximum is inversely proportional to the temperature of the
black body. According to this law, hotter objects emit most of their radiation at shorter wavelength, which
would make them appear more bluish. Similarly, cooler objects radiate in the red end of the spectrum,
making them appear red.

 

 See the animation

 The radiant intensity at a given temperature has a maximum when

 

0

 which gives
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 This equation is to be solved numerically. Substituting , the equation becomes

 

 Black Body Radiation :

 Numerical solution of this equation gives

 

 

 See the animation

 Substituting the values of  and  we get Wien's law

 

 
where  is the wavelength at which the radiation intensity is maximum at a temperature . If 

is expresses in cm, the relationship is given by

 

 Exercise 8

 
The surface temperature of the sun is about 6000 K. What is the wavelength at which the sun emits its peak
radiation intensity ?

(Ans. 483 nm)

 Exercise 9

Taking the mean temperature of the surface of the earth to be 10  C, calculate the wavelength at which the
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earth emits maximum radiation.

(Ans. 10 , i.e. the earth emits mostly in infrared.)

 Example 5

 The exercise above shows that the sun emits mostly in the visible region. Compare the total intensity of
radiation emitted by a star of similar size as the sun whose surface temperature is 7200 K.

 Solution

 The total intensity is given by Stefan's law,

 

 However, the star emits its peak intensity in the blue end of the spectrum as the wavelength at which the
radiation intensity being inversely proportional to the temperature is given by

 

 Exercise 11

 
The black body spectrum of an object A has its peak intensity at 200 nm while that of another object of same
shape and size has its peak at 600 nm. Compare radiant intensities of the two bodies.      

(Ans. A radiates 81 times more than B)                   

 Cosmic Microwave Background

 
According to the big bang theory , the universe, at the time of creation was a very hot and dense object.
Subsequently it expanded, bringing down the temperature, the present temperature of the universe
isapproximately 2.7 K. As a result, the peak intensity of radiation is given by

 

 

The wavelength lies in the microwave region. This is known as the cosmic microwave background. The

energy density at this temperature is obtained by multiplying  by , which gives 

J/m .

 Recap

 In this lecture you have learnt the following

Traditional picture of light being a wave cannot explain several phenomena such as blackbody radiation and
photoelectric effect.

A blackbody is a an object whic absorbs all the radiation that falls on it.

A blackbody is also a perfect emitter, i.e. it emits all the radiation that it absorbs.

Intensity of radiation emitted by a blackbody is proportional to the fourth power of its temperature (Stefan's
law).

The wavelength at which the emitted radiation has the maximum intensity is inversely proportional to its
temperature (Wien's law).



Classical Rayleigh-Jeans' formula leads to the ultraviolet catastrophe at short wavelength.

Planck proposed that oscillating atoms emit or absorb radiation in quanta. Using Boltzmann distribution, he
derived a formula for radiation which satisfactorily explains the blackbody radiation spectrum.
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