Module 3 : MAGNETIC FIELD
Lecture 19 : Time Varying Field

Objectives

In this lecture you will learn the following

Relate time varying magnetic field with emf generated.
Define mutual inductance and calculate it in simple cases.
Define self inductance.

Calculate energy stored in a magnetic field.

Time Varying Field

Even where there is no relative motion between an observer and a conductor, an emf (and consequently an
induced current for a closed conducting loop) may be induced if the magnetic field itself is varying with time as
flux change may be effected by change in magnetic field with time. In effect it implies that a changing
magnetic field is equivalent to an electric field in which an electric charge at rest experiences a force.

Consider, for example, a magnetic field B whose direction is out of the page but whose magnitude varies

with time. The magnetic field fills a cylindrical region of space of radius K. Let the magnetic field be time
varying and be given by

EBysinwt forr < R

B=19 for r> R

since B does not depend on the axial coordinate Zas well as the azimuthal angle !;L") the electric field is also

independent of these quantities. Consider a coaxial circular path of radius T E FHwhich encloses a time

varying flux. By symmetry of the problem, the electric field at every point of the cicular path must have the
same magnitude FE and must be tangential to the circle.

Thus the emf is given by ¢ _ fE_j . d_'i = 27rE

dd d
£ = —— =——[m’ Bt
By Faraday's law dt dt [ ( }]
,dB(t)
= —7r—

dt
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Equating these, we get for T < K E = _

= — T cos Wi

2 dt 2

For 7 > H, the fluxis @ = ?TRZB(f), so that ¢ _ _d(I) _ _ﬁRZdB
dt dt
2 2

and the electric field foir T > H is E = _R; dB _ BwR coswit
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Exercise 1
A conducting circle having a radius Rg at time t = Dis in a constant magnetic field Bperpendicular to its

plane. The circle expands with time with its radius becoming H= Rg(l + ﬂffz)at time t. Calculate the

emf developed in the circle.

(ans. —4w Raat(1 + at?) B)

Mutual Inductance

According to Faraday's law, a changing magnetic flux in a loop causes an emf to be generated in that loop.
Consider two stationary coils carrying current. The first coil has Nlturn and carries a current Il. The

second coil contains Ng turns. The current in the first coil is the source of a magnetic field Bl in the region

around the coil. The second loop encloses a flux Ng (I’g = Ng fg Bl . ng where S'is the surface of one
turn of the loop. If the current Il in the first coil is varied, Bl ,and consequently (1)2 will vary with time.

I
The variation of (132 causes an emf “2 to be developed in the second coil. Since Bl is proportional to Il , SO

is . The emf, which is the rate of change of flux is, therefore, proportional to ,



@, dI, /dt

& = —Mmg

where Mgl is a constant, called the mutual inductance of the two coils, which depends on geometrical factors

of the two loops, their relative orientation and the number of turns in each coil.

Analogously, we can argue that if the second loop carries a current Iz which is varied with time, it generates

dI,

an induced emf in the first coil given by 81 — _Mlz_

dt

For instance, consider two concentric solenoids, the outer one having &7 turns per unit length and inner one
with 715 turns per unit length. The solenoids are wound over coaxial cylinders of length L each. I the current

in the outer solenoid is Il , the field due to it is Bl = _{LDTI]_I]_, which is confined within the solenoid. The

flux enclosed by the inner cylinder is

qu)z = NzﬂTgBl
nzL’m‘g . E:p.ﬂnlfl)

2
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If the current in the outer solenoid varies with time, the emf in the inner solenoid is

d® dl
SE = —sz = —ﬁﬂﬂlﬂzLﬂTg?;
so that My = #ﬂﬁlﬂzL?TTg
L
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If, on the other hand, the current Iz in the inner solenoid is varied, the field due to it BZ = #Dnzfzwhich

is non-zero only within the inner solenoid. The flux enclosed by the outer solenoid is, therefore,
Ny ®, = (ny L)wr2 pgn, I
1% = (M LT, HoTlpda
if Jjis varied, the emf in the outer solenoid is L = L zdfz giving
2 ; 1= ~HoM LTy~
2
M]_z = }LﬂﬂlﬁzL?TTz

One can see that Mlz = M21 .

This equality can be proved quite generally from Biot-Savart's law. Consider two circuits shown in the figure.

,.

- - dl, x 7
The field at T2, due to current in the loop Gl (called the primary ) is Bl — ‘u_ﬂfl f 1—
| [?
where T = _'2 — '.f_"l. We have seen that Bl can be expressed in terms of a vector potential Al, where

Hn I]_ dil

, by Biot-Savart's law 1{1 = - S
4 |7 |

The flux enclosed by the second loop, (called the secondary ) is



(Ijg — g]_ . dgg
Sz

= fs_(vle)dgg

_ j{ A, -dl,  Stoke'slaw
Cha
. Fﬂflffdil dlz
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Clearly, Moy — @f}g dl, - di,
2T 4 |7 |

It can be seen that the expression is symmetric between two loops. Hence we would get an identical

expression for Mlz- This expression is, however, of no significant use in obtaining the mutual inductance

because of rather difficult double integral.
Thus a knowledge of mutual inductance enables us to determine, how large should be the change in the
current (or voltage) in a primary circuit to obtain a desired value of current (or voltage) in the secondary

circuit. Since Mgl = Mlg, we represent mutual inductance by the symbol M. The emf gsin the

dl

secondary circuit is given by E — _M—Z2 r , where fp is the variable current in the primary circuit.

dt

Units of M is that of Volt-sec/Ampere which is known as Henry (h)

Example 22

Consider two parallel rings Gl and Gg with radii Rl and Rg respectively with a separation dbetween their
centres. Radius of Gg is much smaller than that of Gl, so that the field experienced by Gg due to a current

in Cl may be taken to be uniform over its area. Find the mutual inductance of the rings.

Solution :
The field experienced by the smaller ring may be taken to be given by the expression for the magnetic field of

a ring along its axis. We had earlier shown that at a distance dfrom the centre of the ring, the field along the
axis is given by

_ R
Bi=73 (R: + d2)/? h
The fl losed by Cyi Ho R 2
e flux enclosed by L. 3is _ &/ .
= e
By Faraday's law the emf in Gg is £ = Ho R% 2 dIl
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which gives M, = Ho™ R%RE
T2 (R4 473

The expression above is obviously not symmetrical between the loops. This is because of our assumption of

uniform field over GZ- The approximation will be legitimate if the dimensions of Gg is negligibly small, i.e. if
Gg is taken to be a dipole, d >> Rl, so that from Gl, the other loop looks like a point. In such a case,

_ HoT
243

In the next example we assume that the current is changing in the dipolar loop and determine the emf
generated in the larger loop.

M, R R

Example 23

By considering the current in Gg to be time varying determine the change in flux of the larger coil and hence

determine the mutual inductance.
Solution :

Since the field over the larger loop cannot be considered uniform, we need to use expressions for the
magnetic field due to a magnetic dipole. The field is conveniently expressed in terms of its radial and
tangential components. For a point dipole, the field components are given by expressions similar to the ones

we derived for electric dipole. By replacing the electric dipole moment pby the magnetic dipole moment [L

and permittivity factor l/él’.‘n‘i‘t‘:'ﬂ by the permeability of vacuum ;Ln/él“ﬁ we have

L 2picos 8
B, = ——
dr i
pg psinf
By = ————
? qr 13

In the figure, the plane of the loop is normal to the page and the current direction is anticlockwise as seen
from the right, so that the magnetic moment vector is as shown.



Consider an element of area pdpdt;bof the larger ring at the position [:;J, t;f)) where the angle is measured

with respect to some reference line in the plane of the ring. From the figure it can be seen that

d T
P
2 = dz—l—pz
tanf = d
d
so that,
d
cosf =
FE_I_dE
: p
sinf = m

The angle between dSl and Lis #so that

B -dS; = B, cosfpdpdd 4+ By sinBpdpdg
cos? n’g
= LR ——pdpdp++ IZRE —— pdpd¢
where we have substituted [l = IgR%for the magnetic moment of the current loop. The flux enclosed by

Glis obtaied by integrating over t;fﬁfrom 0to 27and over pfrom O to Rl



The integration over ¢gives 2. Using the expressions for Si‘tla,cosaand Tin terms of the variable g,

we get, for the flux (13 = Jl" B . dSl

Rl d’p N P’
(2 + B2 7 2(p? + d2)%2
pol Ry fRI 2d? + o
0

D) (0% + d2)5/2 pdp

® = pplRiw dp

The integration can be easily performed by substituting I = dz + pz. After a bit of an algebra one gets
2 By
,#‘EIIZ Rz’ﬂ_

D =
2

- d’ -
(p2_|_d2) 1{2+§(p2+d2] 3/2

0

On substituting the limits and using a binomial expansion to retain leading order term when d>> Rl, we

get

P — #ﬂRfRS’?T
2d3

which gives the same expression for mutual inductance as in the previous example.

Iy

Exercise 1

The figure shows two coplanar and concentric rings of radii Rl and Rz where Rl = Rz. Determine the

mutual inductance of the coils. Solve the problem by considering the current to be changing in either of the
coils.

(Ans. _{LD?TRE/ER]_).

Exercise 2

A toroidal coil of rectangular cross section, with height hhas Ntightly wound turns. The inner radius of the



torus is @and the outer radius b. A long wire passes along the axis.

"Hbl'
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The ends of the wire are connected by a semi-circular arc. Find the mutual inductance. Show explicitly that

MEI = Mlz -

(Hint : When the current flows in the turns of toroid, the field at a distance T from the toroid axis is

;LDNI/Q’?TT. The semi-circular area traps flux only in one rectangular turn of height hand width b— a.

Answer : ( ;LDN.II/??T]IL(L‘)/{I] )

Self Inductance :

Even when there is a single circuit carrying a current, the magnetic field of the circuit links with the circuit
itself. If the current happens to be time varying, an emf will be generated in the circuit to oppose the change
in the flux linked with the circuit. The opposing voltage acts like a second voltage source connected to the
circuit. This implies that the primary source in the circuit has to do additional work to overcome this back emf
to establish the same current. The induced current has a direction determined by Lenz's law.

If no ferromagnetic materials are present, the flux is proportional to the current. If the circuit contains N
turns, Faraday's law gives

where Lis known as Self Inductance of the circuit. By definition, Lis a positive quantity. From the above it
follows, on integrating,

N® = L] + constant
Since ® = Dwhen I = ﬁ, the constant is zero and we get

N®
L=—
1

The self inductance can, therefore, interpreted as the amount of flux linked with the circuit for unit current.
The emf is given by

d dI
£=—-N— = —L—

Example-24

Obtain an expression for the self inductance in a toroid of inner radius (&, outer radius b and height h.



Solution :

We have seen that the field inside the toroid at a distance T° from the axis of the toroid is given by

B(r) = pgNI/2xr.

The flux through one turn of the coil is the integral of this field over the cross section of the coil

b pugNT INh b
Ho Ho
(I) = h —d — —]_u —
(one turn) ./; - T o (a;)
The flux threading N turns is
IN*h b
i Y
27 a
dr
T E

i b
W T
B L
b
The self inductance is thus given by
D N3h . b
L=—=0"1n-

I 2T a
Energy Stored in Magnetic Field
Just as capacitor stores electric energy, an inductor can store magnetic energy. To see this consider an L-R
circuit in which a current Ig is established. If the switch is thrown to the position such that the battery gets

disconnected from the circuit at T = D the current in the circuit would decay. As the inductor provides back
emf, the circuit is described by

dl
L—+4+IR=0
dt+

With the initial condition I = Ig, the solution of the above is

I = Iyexp(—Rt/L)

As the energy dissipated in the circuit in time dt is sz dﬁ, the total energy dissipated from the time the
battery is disconnected is

o0 s} 1
U= L RI%dt = j; RI} exp(~2Rt/L)dt = SLI;



Thus the energy initially stored must have been (l/?)Lfg. If an inductor carries a current { , it stores an

energy (l/?)LIE. Thus the toroidal inductor discussed earlier stores an energy

poNRI” | b

4 a

when it carries a current I . We eill now show that this is also equal to the volume integral of BE/Q;LD

Consider the magnetic field in the toroid at a distance T from the axis. We have seen that the magnetic field

B is given by ;igNI/ZTTT‘ Thus the value of Bz/zpﬂ at this distance is ;jgszz/Sﬂsz.

Considering the toroid to consist of shells of surface area 2mrh and thickness r:fi"‘, the volume of the shell is
27rhdr . The volume integral of BZ/Q;LD is therefore,

BE b ﬂﬂszz
—d'r = ——27wrhdr
2pin f 8mw2r?
b pﬂNthE 1
= f Fol¥ B2 ar
a 4T T
N3hI? b
I e
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which is exactly the expression for the stored energy derived earlier.
Recap

In this lecture you have learnt the following

The emf generated in one circuit due to a changing current in a second circuit is due to mutual inductance
between the circuits.

Mutual inductance is symmetric.

In a few simple cases mutual inductance was calculated.

A circuit gives rise to a back emf because of change in the current in the same circuit. A circuit can have a
self inductance.

Magnetic field can store energy and the energy density of the field can be calculated from a knowledge of the
self inductance.
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