
 Module 4 : Solid State Chemistry
Lecture 18 : Bragg's Law and X - ray diffraction

  
  Objectives
 In this Lecture you will learn the following

The workings of diffractometers.

Bragg's law of X - ray diffraction.

Lattice planes through Miller indices.

Distances between adjacent planes of the crystal.

  
 18.1  Introduction

  

 

X - ray diffraction is one of the earliest methods for studying the structure of solids. In the process of
diffraction, electromagnetic waves of a given frequency but different phases interact to produce constructive
interference (bright spots on the film exposed to the light) and destructive interference (dark spots). By a
careful analysis of the diffraction patterns, very accurate values of the lattice parameters (unit cell
dimensions) can be inferred.

  
 18.2  X- ray diffractometers

  

 

When high energy electrons are incident on metallic surfaces they knock off the bound electrons from even
the inner shells of the atoms. When electrons from the higher shells undergo a transition into the lower (now
partially empty ) shells, X-rays are emitted. E.g., the  line in copper (  = 154.18 pm ) is produced by

the n = 2 to the n = 1 transition, while the  line (  = 139.22pm ) corresponds to the n = 3  n = 1

transition. Suitable filters are used to obtain monochromatic beams of X-rays. The sample to be studied
consists of either a powdered form of the solid or a single crystal. The Debye-Sherrer method is for powders.
A photographic film is rolled over the sample and the diffraction pattern traces a cone around the incident
beam. The crystallites in the powder are arranged in random directions. If the angle of incident light is  on
any plane, then the diffracted light is at an angle of 2  from the incident beam.

  

 
The powdered sample is also rotated in the plane containing the X-rays to give all possible orientations of the
crystallites towards the incident beam. Since the powder of each substance has a characteristic diffraction
pattern, powder diffraction is extremely useful in identifying materials.

  

 

In the single crystal method developed by Bragg, the single crystal is mounted on a platform. The platform
(and the mounted crystal) can be rotated in four different circles along four axes so that the diffraction
pattern from every plane of the crystal can be observed in the detector. In modern diffractometers most tasks
such as rotating the crystal, analyzing the data ( except growing the crystal ! ) are automated and controlled
through computer programs. The schematic diagrams of the powder diffractometer and the single crystal
diffractometer are shown in Figures 18.1 (a) and 18.1 (b) respectively.

  



 

             
                         Figure 18.1 (a) Schematic diagram of a Powder diffractometer.

 

              
                                            Figure 18.1 (b) Single crystal diffractometer

  
 18.3  Bragg's Law

 
This is a simple and elegant law which is central to the analysis of diffraction data. This law relates the angle 

 ( at which there is a maximum in diffracted intensity ) to the wavelength  of X-rays and the inter-layer
distance d between the planes of atoms / ions / molecules in the lattice. Figure 18.2 illustrates the details
involved in the derivation of Bragg's Law.

  





 

           
                           Figure 18.2 Details involved in the derivation of Bragg's Law.

  

 

The layers of atoms are indicated by the labels to the right of the lines. The Lattice points are denoted by
solid circles. The dashed lines along the row of atoms are only for guiding the eyes. The rays R1 and R2 are
parallel and they have the same phase till they are at b and e respectively. The ray R2 traverses an additional
distances efg. This additional distance causes a phase difference between rays R1 and R2. If rays R1 and R2
are at an angle of  with respect to the atomic planes, then the angles e b f and f b g are also  and the
path length ef and fg are both equal to d sin  where d is the perpendicular distance between any two
adjacent layers. For constructive interference between rays R1 and R2, the path difference between R1 and

R2 has to be an integral multiple of , the wavelength of X-rays used, i.e.,

  

 2d sin  = n  ( Braggs Law )                                                (18.1)

  

 

The reflection of R2 is called a first order reflection as it is from the first inner layer. The ray R3 which is
reflected by layer 3 is a second order reflection. The intensities of reflected light from the inner layers ( 3, 4
(not shown) and so on ) is much less and the major diffraction is brought out by the first inner layer. From
the intense peaks of the diffraction patterns, the distances between various crystal planes can be determined.
We now move on to the labeling of the lattice planes through Miller indices.

  
 18.4  Miller Indices

 Consider a square lattice as shown in Fig 18.3(a).

  

 





         
            Figure 18.3 (a) A few planes in a lattice.              18.3 (b) The coordinate system.

  

 

In this case, an atom occupies each lattice point. The coordinate system used here is also shown in Fig 18.3
(b). Several lines can be drawn in this lattice such that at least one (or more) atoms lie on the lines. A few
examples are shown. The unit cell for the Lattice in Fig 18.3 (a) is a square. Lines 1 and 2 are similar in that
atoms lie on these at the same separations. Line 3 is less "densely packed", i.e., the distance between
adjacent atoms is larger than that in lines 1 and 2. We need a system to label or characterize each of these
lines. In three dimensions our interest would be the different planes of atoms.

  

 Figure 18.4

 

               
  

 





                    
  

 

           
  

 

In Fig 18.4 the plane containing the atoms intersects the x axis at a. This plane does not intersect with the y
and z axes at all. We may rephrase this by saying that the intersections with y and z axis at y =  and z = 

. The x, y and z intersections are at ( a, ,  ). Taking the reciprocals of these, we get ( 1/a, 0, 0 ) and
since a, b and c are characteristics of the crystal, we can simply refer to it as (100)

  

 

These are the Miller indices of this plane. Using the same procedure verify that the Miller indices of the other
planes in the figure (18.4) are (110), (111). In a simple cubic lattice, the (100) plane is identical to the (1/2,
0 0 )plane, because it has exactly the same density and the relative positions of atoms / ions. Therefore all
planes parallel to the (100) planes may be referred to as the (100) planes. In a "body centered" cubic lattice
such as the CsCl lattice, the (100) planes containing the Cl- ions would be different from the (200) planes
containing the Cs+ ions. Now that we can label all these planes accurately, let us see how the distance
between the planes can be determined using Bragg's law. 

  
 18.5  Interplane spacings in lattices

 
Now we are in a position to combine Bragg's law which gives the distance between the adjacent planes in the
crystal to the Miller's characterization of the planes through the indices ( h, k, l ). The unit cell edge-lengths
are a, b and c.

  

 Consider a square Lattice as shown in Fig 18.5

  




 

           
                              Figure 18.5 Calculation of the separation between planes.

  

 
In Fig 18.5, two adjacent hkl planes are shown. If a is the edgelength of the lattice, then the hkl plane
intersects the axes at a / h, b / k, and c / l. For example, if ( hkl ) was (1,1,1), then this Miller plane would
intersect the three axes in a cubic lattice at (a,a,a). If ( hkl ) is (1,0,0), the intersections would be at (a, , 

).
  

 Label the two planes in Fig. (18.5) as 1 and 2. Plane 2 intersects the x axis at a / h and the y axis at b / h.
The distance perpendicular to the planes 1 and 2 is d h k. For the planar lattice, l = 0.

  

 sin  = dh k/ (a / .k) and cos  = dh k/ ( a / h )                                        (18.2)

 squaring and adding

     or                                                                         (18.3)

  

                                                                                          (18.4)

 Extending the analogy to three dimensions and for a plane where l  0, the distance d hkl will now be given
by

  

                                                                                  (18.5)

 or

                                                                            (18.6)

  

 For a general orthorhombic lattice wherein a  b  c, the expression corresponding to (18.5) is

                                                                                 (18.7)

  
 18.6  Examples

  

 
18.1) What is the distance between the adjacent Miller planes if the first order reflection from X-rays of

wavelength 2.29  occurs at 27o 8' ?

   

  Solution :




  n  = 2d sin 

  n = 1,  = 2.29 ,  = 27o 8'

  d = 0.5 * 1 * 2.29 * 10 -8 / sin ( 27o 8' )

   = 2.51

   

 18.2) Gold crystallizes into an FCC structure. The edgelength of the FCC unit cell is 4.07 Calculate a) the

closest distance between two gold atoms and b) the density of gold if its atomic weight is 197
   

  Solution :

  Let b = closest distance between gold atoms; a = 4.07

  b 2 = a 2 / 4 + a 2 / 4 = 0.25 * 4.07 2

  b = 2.878

  Density =  = mass / volume

  volume of the unit cell = (4.07 )3

  mass of the unit cell = 4 * 197 g / 6.02 * 1023

  as there are four atoms per unit cell in an FCC Lattice

    = 19.419 g/ cm3

   

 
18.3) X rays of  = 0.1537 nm from a Cu target are diffracted from the (111) planes of an FCC metal. The

Bragg angle is 19.2 o. Calculate the Avogadro number if the density of the crystal is 2698 kg / m 3 and
the atomic weight 26.98

   

  Solution :

  The distance between the 111planes

  d = 0.5 * 1.537 * 10 -10 m / sin ( 19.2o )
     = 2.51 * 10 -10 m
  We need the edge length a which is related to d by

  a = d (h 2 + k 2 + l 2) 1/ 2 where hkl = (111) are Miller indices

  a = 2.51 * 10 -10  = 4.0475 * 10 -10 m

   = mass / volume = 2698 kg / m3

  mass of unit cell = 4 * 26.98 * 10 -3 kg / [NA * (4.0475 * 10 -10)3]

     = 2698 kg / m3

  This yields NA = 6.036 * 10 23 particles / mole

 18.7  Problems

   

 18.1
a)

Consider the two following planes that cut the crystallographic axes as indicated. Plane 1 cuts the axes
at a / 3, b / 2 and c /4 and plane 2 cuts the axes at a / 2, b /3 and . What are the Miller indices of
these planes ?

   

 18.1
b) Draw the planes for which the Miller indices are (112), (200), (120) and (221)

   

 18.2
a) 

In the Born-Haber cycle for the formation of a crystalline ionic solid, what are the parameters are
there which need to be experimentally determined ?

   

 18.2
b) Calculate the electron affinity of the F atom using the data given below. All energies are in kcal / mol.



  
 H diss ( F2 ) = 38,  H f ( NaF ) = 136,  H vap [Na (s) ] = 24

  I.E (Na) = 117.7 and UL ( NaF ) = 212.8

   
 18.3) The Born-Lande equation for the Lattice energy of ionic crystals is

  UL = - NA M z, z2e2 ( 1-1 / n ) / r0 (in CGS units)

  

Where z1 e and -z2 e are the charges on the cation and the anion, NA = Avogadro number, M =
Madelung constant, r0 = closest equilibrium distance between the anion and the cation and n = Born
exponent. The value of n depends closed shell electronic configuration of the ion. The close shell
configuration may resemble any of the rare gas atoms, He, Ne, Ar, Kr and Xe. The values of n for
these configurations are 5, 7, 9, 10 and 11 respectively. If the value of n for the anion is n1 and that
for cation is n2, then an average value of ( n1 + n2 ) / 2 may be taken for the Lattice. Using this

formula and M = 1.747, determine the lattice energies for MgO ( r0 = 2.1  ) and NaCl ( r0 = 2.81

 ) . How does this value for NaCl compare with the experimental value of UL ?

   

 18.4) What are the unit cells for the NaCl and the CsCl structures ? How many atoms are there in these unit
cells ?

   

 
18.5) The edge length of the Ag FCC structure is 408.6 pm An X-ray beam produces a strong interference

(intense reflection ) from the 111 planes at 2  = 38.2 o . What is the X- ray wavelength ?

   

 
18.6) The X - rays of wavelength 154.2 pm produce reflections from the 200 planes and the 111 plane of

Cu which has FCC structure and density of 8.935 g /cm3 . At what angles will the diffracted intensity
be maximum?

   

 

18.7) The molecular weight of NaCl is 58.448 and its density 2.165 g / cm3. What is the edge length of a
cube that contains one mole of NaCl ? How many sodium and chloride ions lie along this edge if the
distance between the nearest neighbour ions is 2.819  ? Calculate the Avogadro number using the

information given above.

   

 

18.8) From the face of a FCC lattice of NaCl, the Bragg diffraction from X-rays of 0.0586 nm wavelength
occurs at an angle of 5o 58'. What is the distance separating these planes and what is the smallest
distance between Na+ and Cl - and Cl - and Cl - ? Study the NaCl structure closely for a clear picture
of the problem.

   

 

18.9) The atoms / ions in a crystal vibrate similar to a mass at the end of a string. For the mass at the end
of a string, vibrational frequency increases with decreasing mass. It is found that the heat capacities
of solids of lighter atoms such as Be, B and C are lower than the standard equipartion value of 6 cal
/mol at room temperature. Can you make a connection between the heat capacity values and the
dependence of frequency on mass?

   

 
18.10) The lattice parameter of the FCC silver unit cell is 408.6 pm. An X-ray beam produces a strong

reflection from the 111 plane at angle 2  = 38.2o . What is the wavelength of the X-ray ?

   

 18.11) X-rays with  = 154.2 pm produce reflections from the 110 and 200 planes of FCC Cu of density
8.935 g / cm3. At what angles will these reflections appear?

   

 18.12) X- rays of wavelength = 179 pm produce a reflection at 2  = 47.2o from the 110 planes of BCC



lattice. Calculate the edgelength of the unit cell.

  
 Recap

 In this lecture you have learnt the following

  
 Summary

 

In this lecture you have been introduced to the X- ray diffraction method. The diffraction pattern from
adjacent layers of a crystal can be used to get the distance between these layers using Bragg's law. Miller
indices are interesting ways of characterizing lattice planes containing atoms /ions or molecules of the crystal
and equation 18.7 gives the distance between adjacent layers of an orthorhombic crystal. For less symmetric
crystals too, equivalent formulae can be derived. We have also considered in this lecture several numerical
examples that use Bragg's law to obtain interplanar distances in a crystal.
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