Module 5 : Electrochemistry

Lecture 21 : Review Of Thermodynamics

21.1

21.2

Objectives

In this Lecture you will learn the following

The need for studying thermodynamics to understand chemical and biological processes.

Difference between state functions and functions dependent on path.

The three laws of thermodynamics.

Applications of the laws of thermodynamics.

Thermodynamic functions: enthalpy and free energy

Criteria for spontaneity and equilibrium.

Maximum work obtainable from systems and free energies.

Free energy changes and equilibrium constants.

The scope of Thermodynamics.

Almost all chemical and biological processes involve an interchange of heat and other forms of energy such as
pressure-volume work, photons and particles between different parts of the system (a region under consideration with
a boundary) as well as with the surroundings. These processes critically depend on temperature.

For example, the activities associated with “life” are nearly restricted to the temperature range of 0° C to 100° C. A
quantitative knowledge of these exchanges of heat and work at various temperatures allows us to construct various
thermodynamic functions such as energy, entropy and free energy.

These functions in turn allow us to estimate how much useful work can be obtained in a chemical or biochemical
process or what will be the concentration of all the species in a mixture (reactants, products and the solvents) when a
new equilibrium is established. Thermodynamics plays an important role in our metabolism and as well as during drug
action in our body.

State Functions.

We all know that climbing a mountain top via a very steep path is more strenuous than reaching the same mountain
top by a long winding path. This is an illustration of a general feature that work depends on the path followed in a
process. The same is true for the heat exchanged between the system and the surroundings. Consider a gas enclosed
in a cylinder as shown in Fig 21.1
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Fig 21.1 Gas enclosed in a cylinder. Initial volume V,, and pressure Pq.

The initial volume is V1 and the pressure is P; . When the gas is allowed to expand infinitesimally slowly from P, to
P, the gas may be considered to be at equilibrium throughout and the work done is given by

w, = F.dx = (F/A) (Adx) = PdV (21.1)
Here, F is the force on the piston, dx is the increment in the distance moved by the piston and A is the area of the

piston. This is the work done by the gas on the surroundings and is positive during an expansion.The work done on the
gas, or the work added to the gas is

wWg =- PdVv (21.2)

The process can be shown graphically as in Fig 21.2 and the area under the curve is the work done by the gas.

(]

Fig 21.2 Reversible and irreversible expansions of an ideal gas. The smooth curve corresponds to a reversible process
and the dashed lines represent an irreversible process.

This slow reversible expansion takes an infinitely long time to occur. A three step sequence is shown in Fig 21.2 . The
area under the dotted lines is the work done by the gas in the irreversible expansion of the gas.

Wir=Pc(Vc-V1)+Pp(Vp-Vc)+Pe(V2-Vp) (21.3)

Ex 21.1

Calculate the work done in the reversible and irreversible expansion of Fig 21.2, if p; = 4 atm, pc = 3 atm, Pp = 2 atm,
Pe = 1 atm, V; = 10 lit, Vo= 13.33 lit, Vp = 20 lit and V5, = 40 lit. Take T = 298 K and assume ideal gas behaviour.

The number of moles of gas n = 1.635, latm = 1.01325 bar, 1 bar =10° N/m 2, R = 8.314 J/(mol K) = 0.08025 lit
atm/ (mol K)

Solution

For an ideal gas, PV = nRT

Work done on the surroundings = Pdv
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If the system is in equilibrium throughout (reversible process)
P=nRT/V
And W gy = NRT/Vdv=nRTInV ,/V {=5545Ilit atm

= 5.62 kJ (Because 1 lit atm = 101.325 J or 1 lit atm = 1.01325 kJ)

In the irreversible process, using eq (21.3),
W jr = 3(13.33-10) + 2(20-13.33) + 1(40-20)

= 43.33 lit.atm
= 4.39 kJ (Because 1 lit atm = 101.325 J or 1 lit atm = 1.01325 kJ)

as

It is seen that the work done in an irreversible process is less than that in a reversible process. Note that the work
done on the system = - w g, . In an expansion process, work done on the system is negative.

The First Law of Thermodynamics

If the process of expansion shown in Fig 21.1 is carried out isothermally (constant temperature T) the gas absorbs a
certain amount of heat g. If the process is done reversibly, the work done by the system is maximum (w ,5x) and the

heat absorbed by the system is also maximum(qg max)- If irreversible work is done, then the work done is less than w
max and the heat absorbed is also found to be less than q ,ax - These observations lead us to the well known law of
conservation of energy in the familiar form of the first law of thermodynamics.

MAU=qg+w (21.4)

According to the above law, when a system changes from state 1 (V; ,T; and P;) to state 2 ( Vo, T, and Py) the
change in internal energy, /AU, is independent of the path. In a cyclic process, wherein the system returns to its
original state after passing through several steps, energy is conserved, i.e. it is neither created or destroyed and

M U gyelic = 0 (21.5)

The energy changes in a system can be determined by knowing the work and the heat.

Heat Capacities
The capacity to absorb heat in an infinitesimal increment in temperature, 3q/ 3 T is referred to as the heat capacity. At
constant volume, w = -pdV = 0, U = q and the heat capacity is

Cv=@@U/aMy (21.6)

In a constant volume process, / U =g = g y and the change in U for a given change in temperature is given by
A U= CydT (21.7)

Analogous to the state function U, other useful state functions can be defined. One such function is enthalpy, H and a
change in H is /H. Note also that P and V are naturally state functions.

H =U + PV (21.8)

AH= AU+ A(PV) (21.9)
For a constant pressure process, eq (21.9) becomes

MAH=q-PdV +d (PV)

=q - PdV + VdP + PdV

=q + VdP
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=qg,asdP =0 (21.10)

i.e., the heat absorbed by the system at constant pressure is equal to the enthalpy change in the process. Similar to
Cy ., we can define a heat capacity at constant pressure C, by

Cp=(aHlamn, (21.11)

A change in enthalpy resulting from a change in temperature at constant pressure is given by

aH= CodT (21.12)

Measurement of heat capacities of substances constituted a major part of the early development of thermodynamics. It
enabled the estimation of s H and 4 U for physical and chemical changes.

For an ideal gas, the equation of state (a relation between P,V and T for a given substance) is PV = nRT where n =
number of moles of the gas, R = gas constant and T the absolute temperature. For a monatomic ideal gas, Cy = 3/2 R

and Cp = 5/2 R. In general, heat capacities do have strong temperature dependence and mild pressure dependence

Entropy

Another state function of fundamental importance is entropy. While both heat and work are forms of energy, it was
found that all of heat could not be converted into useful work. Some heat always gets degraded as heat absorbed and
lost through the walls of pistons or lost in its flow from hot regions to cold regions without producing anything useful.

Carnot, in the 18 th century showed that even in a fully reversible cyclic process consisting of isothermal and adiabatic
(a process wherein g = 0) expansions and compressions, heat cannot be fully converted into work and that the ratio
work done by the system (not on the system) to the heat absorbed by the system is always less than 1. All these
observations can be summarized through the Clausius inequality.

dS > dqg/T and dS = dq (e, /T (21.13)

This defines a new state function S, which is the ratio of the reversible heat divided by temperature. Combining eq
(21.13) with the first law in a differential form

dU =dqg + dw

= TdS - PdV (21.14)

The subscript rev is not used in 21.14 because whether the process is reversible or not, the difference TdS-PdV is
always equal to dU.

Exact differentials

For a function dependent on two variables x and y, a change in f is brought about by changes in x and y. For an
infinitesimal change df we have

df=(aflax)ydx+(aflay)dy (21.15)

The quantity df is called an exact differential if the second partial derivative, taken in two different orders are identical
i.e., if eq.(21.17) is satisfied. Here (af/ax) y is the partial derivatives of f with respect to x when y is held constant. Let

df = Mdx + Ndy (21.16)
where M= (afl ax)yand N=( 3 f/ ay) « . Now, fis an exact differential if and only if

(aM ay)x=(aN axy (21.17)

3

These relations can be easily verified for typical functions such as f (x, y) = x ° e Y. The thermodynamic functions U, H

and S are exact differentials, and so are P and V.
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Applying eq.(21.17) to dU = TdS-PdV, we have

(am/avys=-(aPlas)y (21.18)

Similarly H = U + PV; dH = TdS — PdV +VdP+ PdV and

dH =TdS + VdP (21.19)
and applying eq. (21.17) to eq.(2.19 ), we have

(8T/aP)s=(av/as)y (21.20)

Ex 21.2

Show that for one mole of an ideal gas, C, — C y = R. Use the fact that PV = nRT for an ideal gas and that the energy
U of an ideal gas depends only on temperature T and not on volume/pressure.

Solution
Expand U as a function of T and V

du=(alUlaT)ydT +(aUuUl aV)tdVv
Take the derivative of this with respect to T at constant p. Note that (dT/dT) p = 1.

(aUWaTp=(allaT)y+(alaV)r(aViaT)p=Cy+(alaV)r(aViaTp
Now Cp = (aH/ aT),

(aH aTP=(aWaTp+(a@VaT,p=(alaT)p+P(aViaT),

Substitute for ( 3 U/ a T) p from the earlier equation
Cp=Cv+(aViaT)p(alaV)r+P)

But , (aV/aT)p: alaT (RT/p) =nR/P and (a U/ a V)t = 0 for an ideal gas
Cp=Cy+nR

= C y + R for 1 mole of an ideal gas

Free Energies

Now we define two more functions called the Helmholtz free energy A and the Gibbs free energy G through the
equations.

A=U-TS (21.21)
and
G=H-TS (21.22)

Substituting for dU and dH, we obtain

dA = -SdT — PdV and (21.23)

dG = - SdT + vdP (21.24)
and applying eq. (21.17), we get
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(as/avys=(aP/ aT)yyand (asS/ aP)yr=-(aV/ aT), (21.25)

A great advantage of eq. (21.25) is that the volume and pressure dependence of entropy can be obtained in terms of
aP/a Tand aV/aT which can be very easily measured. Equation (21.18), (21.20) and (21.25) are referred to as
Maxwell's relations.

Standard States

In the case of thermodynamic functions such as energy, enthalpy and free energies, only the difference of these
functions between two states of the system can be measured. It is not possible to ascertain the absolute values of
these functions. In order to get around this problem, standard states for each substance are defined and the values of
these functions in other states are measured with respect to these standard states. The standard state values are

represented as U° , H® , A® and G°.

For solids and liquids, the standard state at each temperature is the state at a pressure of 1 bar. For gases, the
standard state at each temperature is the (hypothetical) ideal gas state at a pressure of 1 bar. The changes in
thermodynamic functions between the standard states and other states can be calculated using the equations (21.14),
(21.19), (21.23) and (21.24). These four equations are equivalent to one another and are referred to as the
fundamental equations of thermodynamics. They contain the combined statements of the first and the second laws of
thermodynamics.

The Third Law of Thermodynamics

In the previous section you might have wondered why entropy was not one of the functions in connection with
standard states. The reason is not hard to guess .The absolute values of entropy can be ascertained. This follows from
the third law of thermodynamics. Entropy is related to disorder or randomness. As the temperature of any system
increases, the system changes from solid to liquid and then to gas.

In the gaseous state, the molecules move randomly with respect to each other and there is a great deal of disorder. As
the temperature is reduced to very low values, the system generally cools and gets arranged in a definite order. In the
case of perfect crystals, there is indeed perfect order and the entropy of such a state is zero.

This is the content of the third law of thermodynamics, which was formulated by Nernst, Planck and others. G.N.Lewis
and M Randall stated the third law of thermodynamics as follows. “If the entropy of each element in some crystalline
state be taken as zero at the absolute zero of temperature, then every substance has a finite positive entropy; but at
the absolute zero of temperature, the entropy may become zero and does so in the case of perfectly crystalline
substances”.

The value of zero for entropy refers to perfect order. Many substances do not condense into perfect crystals even at the
absolute zero of temperature. For example, CO at O K does not have perfect order. Each CO molecule can be placed as
CO or as OC, because both arrangements are energetically equally favorable. The value of entropy can be obtained by
the Boltzmann formula, S = kg In W, where W is the number of possible arrangements of the molecules. Since each
molecule can be arranged in two ways, Ny molecules can be arranged in 2NA ways. Here N, is the Avogadro number.
Thus the molar entropy of CO at OK is Na kg. In 2 or R In 2, which is about 1.4 cals/deg/mole. This has been verified
experimentally.

Ex 21.3
() At low temperatures, the heat capacity of solid KCl may be expressed as 0.006 T 3 cal
/(deg mol). Calculate the entropy of KCI at 15K, using the third law.
t . , the enthalpy of fusion of mercury is .6 cal/mol. Calculate the entropy
(b) At 234.3 K, th hal f fusi f is 548.6 cal/mol. Calcul h
change for the fusion process.
Solution

(a) S o for KCI may be taken to be O at O K.

ds = dqg ey = Cp dT at constant pressure \ MmMS=o0 TCp / TdT

AS=S15-S=01Cp/TdT =0 1%0.006 T3/TdT
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= 6.75 cal/(deg.mol)

(b)  Hg(s) =Hg ()

AS=S|—-Sg=Qv/T= AH/T=548.6/234.3 = 2.34 cal /(deg mol)

Criteria for spontaneity and equilibrium

One of the great applications of thermodynamics is its role in predicting the direction in which a process will go.
Thermodynamics is not able to give any idea about how long it will take for the process to be completed. But knowing
the directionality helps in setting up proper temperature and pressure conditions for reactants as well as assembling
appropriate electrodes in batteries. From equations (21.12) and (21.14), since TdS 2 dq

dS—dg/T > 0 (21.26)

Here dS and dq refer to the system only and not to the surroundings. When no PV work is done PdV = 0O,
du = (dq) y and

dS — dU/T > Oor

(dS) u, Vo 0 or (2127)

@d@vs,v ¢ 0 (21.28)

Thus, for all natural processes which are irreversible, eq. (21.28) is valid. This is a criterion for a spontaneous or an
irreversible process .The criteria are in terms of constant energy or constant entropy, which are difficult to realize in
practice. Constant volume/pressure and temperature processes are readily accessible and we look for such suitable
criteria now.

At constant pressure (dgq)p = dH and eq.(21.26) becomes
dS — (dH)/T > O

Or (dS) pp2 Oo0r (dH) sp ¢ 0 (21.29)

The Helmholtz free energy is given by eq.(21.21)
dA =dU -d (TS)

= dU — TdS (at constant temperature) (21.30a)
dG = dH —TdS (at constant temperature) (21.30b)

Since (dU) y » TdS and (dH)p . TdS, eq.(21.30a) and eq.(21.30b) become respectively

@dA) 1y ¢ 0 (21.31)

|

dG) 1p ¢ 0 (21.32)

The above two equations have extensive applications in chemistry. Note that the equalities apply to equilibria and
inequalities in eqns (21.27), (21.28), (21.29), (21.31) and (21.32) apply for spontaneous or irreversible processes
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Combining eq.(21.26), TdS-dg > 0 and eq.(21.13), dU = dg+dw, we have, since dq . TdS

dU , TdS +dw (21.33)

Rearranging,

dw » dU - TdS (21.34)
The most negative value of dw is the maximum work dw 5 obtained from the system;

dW max = - dw

or dw = -dw pax = dU —TdS

or dw max < -dU + TdS = -dA (21.35)

at constant temperature. The maximum work that can be obtained from the system, dw 5, is equal to the decrease in

the Helmholtz free energy of the system. Next, we want to consider the non-expansion work (i.e., work other than the
pressure volume work such as electrical work) obtainable from the system. The total work done on the system dw is
the sum of expansion work — PdV plus any non expansion work w ¢

dw = — PdV + W e (21.36)

For a constant temperature process from eq.(21.22),
dG = dH -TdS
Since dH =dq +dw + d (PV) from equation eq.(21.9), we have

dG = dq — PdV + dw o + PdV +VdP— TdS (21.37)

= dw pe +VdP (21.38)

At constant pressure,
dG = dw pe (21.39)

From eq.(21.39), we conclude that the work (other than pV work) obtainable from the system, -dw,e equals the

decrease in the free energy dG. For a reversible process this is truly the maximum non PV work obtainable from the
system, i.e.,

-dG = - (dw) ne, reversible (21.40)

In a chemical cell, the work performed by or obtainable from the cell=n g where n = no of moles electrons
transferred during the process occurring at the electrode, F = Faraday = 96500 coulombs and g of the cell. From
eq.(21.40),

AG=-NF g (21.41)
This will be used in our studies in electrochemistry.

Standard free energy changes for reactions
At each temperature, elements are in their standard states at 1 bar. Since the absolute value of the free energy of any
element can not be determined, this standard value of free energy G° in their most stable state is taken as zero. The
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standard free energy of formation of a compound is the standard reaction free energy for the formation of the
compound from its elements in their standard states. E.g., the standard reaction free energies # , G° for the following
reactions at 298 K are

C+0,= CO,, A, G°=-394.4 ki/mol

% C+%0 = CO, A, G°=-137.2 ki/mol. (21.42)

The reaction free energies above are the standard free energies formation G° for CO , and CO respectively.

The free energy changes for a reaction can be estimated from the free energies of formation of the reactants and
products. Consider the following reaction,

CO (g) +1/2 0 5 (g) == CO, (@), (T =298 K) (21.43)

For this reaction s G° =—394.4 -1/2 G° ¢ (0, ) — ( —137.2) = — 257.2 kJ/mol, since

Pressure dependence of free energy.
At constant temperature, eq.(21.24) becomes

dG = VdP (21.45)

and the free energy at pressure P,, G , can be obtained through G , — G | = p; P2 vdp

For an ideal gas, V = nRT/P and (21.46)
G,-G 1= AG=p; "2 (NRT/P) dP

=nRT In (P> /P71 ) (21.47)

Free energy increases with increasing pressure, since volume is always positive.

Ex 21.4

Calculate the change in free energy when the pressure is increased from 1 atm to 10 atmospheres at 298 K for

e One mole of liquid water.The molar volume of water is 18 cc.and

e 1 mole of water vapour.

Solution

Let G° be the free energy of the standard state at 298 K.
G-G°=, 200 vdp as the — SAT term = 0O for constant T

= 18 (10-1), cc. atm assuming the molar volume to be independent of pressure. If the volume is given as

there a and b are coefficients which depend on
temperature, this form of V can be substituted in the above equation to get / G by integrating VdP.

For the vapour phase, assume ideal gas behaviour. For real gases, the actual equation of state is
needed.

a function of pressure in a formula such as V = V5 + aP + bp
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AG vapour = VdP = nRT 1/P dP.

=nRT In (P2 /Pl)

= 0.08206 x 298 In 10 lit atm.
= 56.31 lit atm .

The equilibrium constant.
For one mole of a gas A at any pressure P, the free energy is given by

GA(P) =G° A+ RTINPy /P (21.48)

where P° is the standard pressure of 1 bar and G°j is the standard free energy at 1 bar. When a reaction represented
by the following equation takes place, (Ideal gas behaviour is assumed throughout this section).

aA +bB = cC +dD (21.49)

where, a, b, c and d are the stoichiometric coefficients, and reaches equilibrium, the initial pressures of A, B, C and D
change to the final equilibrium values (Pa)eq » (PB)eq » (Pc)eq » (PD)eq - At equilibrium, the free energy has reached the

lowest value and there will be no further decrease and so ~G = 0. The free energy change for eq.(21.49) can be
written as

4G = G products - Greactants

=ch+dGD—aGA—bGB (2150)

But ¢cG¢ = cG°: + ¢ RT In (Pc) eq’/ PO and similarly for A, B and D. Therefore,

AG= AGO+ RT{In{(P./P%) € (Pp /PO 4/ (Ps /P02 (Pg /PO P} (21.51)

Where #G%=cG OC +d GOD -aG OA -bG OB . The ratio of pressures in eq (41.51) may be expressed as a factor Q.

AG= AGY+RTINQ (21.52)
At equilibrium AG =0,Q =K eq and we get

AGO= - RT In K gq Where
K eq={(P ¢ IP%) ¢ (Pp /P?) @ /(PA 1P?) 2 (Pg 1PO) P Jeq (21.53)

Since P% are all equal to 1 bar,.they are left out in equations for Kgq with the understanding that P value will be

treated as dimensionless (because of the implicit division by po = 1bar).

EQq(21.52) is valid for ideal gases.For real gases, the pressures get replaced by effective pressures or fugacities f (which
are defined by RT In (f, /P) = p P2vdP where f, is the fugacity at pressure P, . If the gas is ideal, f,= P,) and for

liquids and solids, they get replaced by activities a. The activity a is defined as relative fugacity, a =f / f 5, where f 4 is
the activity in a standard state. For example, if a solution is in equilibrium with its vapour, the chemical potentials or
the fugacities of each component is the same in the liquid phase and the vapour phase. If the vapour pressure of say,
component A is 400 mm Hg and the vapour pressure of its pure component (i.e., pure A) is 500 mm Hg, then the
activity of the component A in the solution is 400/500 = 0.80. Here, we have assumed that the vapour behaves ideally
and therefore, fugacities can be replaced by pressures. Fugacities and activities are central to all equilibrium constant
estimations. Some of these aspects will be taken up in the chapter on electrochemical cells (Chapter 22).

Ex 21.5
For the reaction 2NH N +3H the equilibrium partial pressures at 298 K are 0.9 bar, 0.1 bar and 0.2 bar
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3 2 2

respectively for ammonia, nitrogen and hydrogen. Calculate Keq How does Kgq change with the total pressure on the
system?

Solution

Keq = -1 x (0.2) 3 /(0.9)?

=4.94 x 1073

Keq is dimensionless. In the above calculation, each partial pressure is divided by the pressure in the standard state, PO
which equals 1 bar for all gases and hence only the dimensionless numbers are given in the equation. If the total pressure
of the system is changed, the partial pressures readjust to give the same Kgq as per the Le Chatelier's principle and Keq

remains unchanged, as it is determined by AGQ | which is the difference in the standard state free energies at 1 bar. Kgq
depends on temperature.

Problems

21.1) For 2 moles of a monatomic ideal gas, at 297.35 K and 1 atm, what is the volume of the system? For this fixed
volume, if the temperature is doubled, what is the change in p, U and H? What are the values of q and w for this
process? If this system is now compressed to half its volume at the constant system pressure, what is the work done
on the system, AU and /A H? What is g for this process? In this state, the system has a temperature of 297.35 K.

Now, the system undergoes an isothermal reversible expansion until it reaches the starting volume. Calculate w and q
for this third step of this cycle. Represent this cyclic process on PV, VT and pT diagrams and calculate the changes in w,

g, U and H for the cyclic process. For a constant volume process, AU=Cy dT and for constant pressure process, M

H= CpdT. If 4Uisknown, sH can be calculated as sH = sU+ 4 (PV)

21.2) The heat capacity of water Cp is 18 cal/(deg mol). What is the enthalpy change of water when it is heated from
25°C to 100° C? Assume Cp to be independent of temperature and use #H = Cp(T; -Tq). For the process Hy O(l) —==
H > O(s), AH (0° C)=-1436 cal/mol. What is # H for this process at —10° C? For ice, Cp = 9 cal/(deg mol). Use the
Kirchoffs equation AH (T2)= AH(T 1)+ 11 T MCp dT. In this problem, assume Cp and 4 Cp to be independent of

temperature.

21.3) The heat capacities of many substances can be expressed as Cp =a + bT + cT 2 in the temperature range of 298

K to 2000 K. For CH 4, the values of the coefficients are a = 5.65, b = 11.44 x 10 -3 and ¢ = -7.0 x 10 5. The units (of Cp)
are in cal/deg/mol. For CH 4, what is /H between 300 K and 1500 K? What would be A H if C was assumed to be a
constant = 5.65 cal/(deg mol) in this temperature range?

21.4) What is the entropy change of the system in the following processes?

e Isothermal reversible expansion of an ideal gas from volume V ; to V , at temperature T.
o Isothermal irreversible expansion of an ideal gas from V ; to V 5.

e An adiabatic reversible expansion fromV ; to V 5

e An adiabatic irreversible expansion from V ; to V 5.

e A reversible cyclic process.
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21.5) Freezing of water at 0°C is a reversible process because water and ice are in equilibrium at this temperature at 1
atm pressure. A H(0 © C) = -1436 cal/mol. What is the entropy change for this process? Here AH =( rey-

Liquid water can be supercooled below 0° C. The supercooled liquid is unstable and can be easily frozen into ice, and
the process not spontaneous. Calculate the entropy change in the spontaneous freezing of water at -20° C.
Calculate the entropy change of the surroundings and # Synjverse. £+ Suniverse = #.Ssystem + #4Ssurroundings.

Hint: calculation of<> A4S ca<>n not be done by dividing qjr = AH (-20° C) by T = 253K (= -20 0 C). Calculate s
S in three reversible steps.

e ASy = entropy change of water from 253K to 273K. #S =Cp In T » /T 1, Cp = 18 cal/deg mol .
e /Sy = entropy of freezing at 273 K

» AS3 = entropy change of ice from 273 K to 253K. Use Cj, (ice) = 9 cal/deg mol. To calculate ﬁHsurroundings use A,
Hsurr = - AHsys » AHsys (253K) = AHgys (273K) + ACp (T 2 -T 1 ). Assume 4 Cp to be independent of
temperature. 4 Cp = Cy (ice) — C (water).

21.6) One mole of an ideal gas is compressed from 1 atm to 100 atm at 350 K. What are the changes in the Gibbs free
energy and the Helmholtz free energy?

21.7) At constant pressure dG = -SdT, and (a G/ { T)p = -S. Using the relation G = H -TS or S = (H-G)/T show that g
(GMIT=-HIT 2 This is called the Gibbs-Helmholtz equation. Applying this to changes in free energies in reactions, we
get[a( AGITY aTIP=- A H/T?

21.8) If ais independent of T, the above equation can be integrated to give & ~G 1/ T, = AH(1/T, —-1/T 1). The
same formula can be applied for 4G° as well . For the reaction N, + 3Hy == 2NHj at 298 K, ;_‘\Go = AG%=-3.97

kcal/mol. Calculate Keq using AG%=-RTIn Keg If AH 0 f =-11.04 kcal/mol for NH3, and it is independent of temperature,
calculate Kgq at 500 K.

21.9) In a gas phase reaction A + 2B —= 3C + 4D, 2 moles of A, 1 mol of B and 2 moles of D were mixed at 298K.
When equilibrium was reached, the total pressure was 1 bar and the amount of C present was 0.3 moles. Calculate the
equilibrium constant and the value of # GP°. First calculate the number of moles of all species at equilibrium.

21.10) Starting with dH = ( aH/ a T)p dT + ( aH/ a P)rdp, show that (aH/ aP)y=- LCP
where & = (a T/ & P)y. i is the Joule Thompson coefficient. When [ > 0, gases cool on expansion. This principle is
used in refrigeration.

21.11) Two containers A and B are placed next to each other. Both contain ideal gases at temperature T. The
container A has volume V, and ny moles of A and container B has a volume Vg and ng moles of B. When the partition

between A and B is removed, both the gases mix and the entropy increases. Show that the entropy of mixing is - (np
+ np) [Xa In xap + Xg In Xg], where x and xpg are the mole fractions of A and B in the mixture.

Recap

In this Lecture you have learnt the following

Summary



In this chapter we distinguished between thermodynamic functions such as energy, entropy and free energies which
depend on the state of the system alone and quantities such as work and heat, which depend on the path between two
states of a system. The first two laws of thermodynamics give us the state functions energy and entropy.

The absolute value of entropy is given by the third law of thermodynamics. Since the absolute values of energy,
enthalpy and free energy cannot be ascertained, standard states at each temperature are defined as the states at a
pressure of 1 bar for each substance. Estimation of » U, A H, A A and A G were shown through examples. The
criteria for spontaneous changes were obtained in terms of U, H, A and G and the maximum work obtainable from a
system at constant temperature was shown to be - A A.

The maximum non pressure volume work such as nF ¢ was shown to be equal to - A G. Standard free energy

changes were calculated for a few reactions. The dependence of free energy on pressure was estimated and the
equilibrium constant was defined as the ratio of dimensionless pressures at equilibrium and this was related to the
standard free energy change for the reaction.
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