
 Module 4 : Solid State Chemistry
Lecture 19 : Indexing Diffraction Patterns

  Objectives

 In this Lecture you will learn the following

Systematic absences in the diffraction patterns

Electron densities from Fourier synthesis

Strategies to resolve the phase problem.

Other diffraction methods.

  
19.1 Introduction

 
The central problem in diffraction methods is to interpret the data obtained from diffraction experiments and
identify uniquely the nature of the crystal responsible for the diffraction pattern. Nowadays, there are
standard softwares built into the diffractometers which just about give a printout of the three dimensional
structure. In this lecture we will illustrate some important features and concepts involved in this process.

  

 
We know from Bragg's law that n  = 2d h k lsin  and dh k l = a [ h2 + k2 + l 2 ] -1/ 2 where dh k l is the
perpendicular distance between two adjacent Miller planes and a is the edge length of the unit cell of a cubic
lattice. These two equations can be combined to give

  

 sin  = (h2 + k2 + l 2 ) 1/ 2  / 2a                                           (19.1)

  

 For each hkl plane present in the crystal, there will be a maximum intensity corresponding to  in Eq (19.1).

  
  19.2  Rationalizing Systematic Absences in Diffraction patterns.

 Let us see how Eq (19.1) works in detail. The short table below (Table 19.1) gives the values of h2 + k2 + l 2
for different Miller planes.

  

 

           
  h k l 100 110 111 200 210 211 220 300 221 310
           

  h2 + k2 +
l 2

1 2 3 4 5 6 7 8 9 10

           

  

 Table (19.1) h2 + k2 + l 2 for Miller planes of a simple cubic lattice
  

 
Continuing the table for higher values of h k l we will see that the integers 7 and 15 are absent for h2 + k2 +
l 2 because the sums of squares of three integers can not be 7 or 15. Of course, there are other higher
missing integers for the sums too!

  

 
We conclude from the above discussion that if  values corresponding to integer square sums of 7 and 15
are absent, but all other integers are present between 1 to 15, then the unit cell must correspond to a simple
cubic (sc) lattice.

  
In Fig 19.1 the Schematic diffraction patterns for the three cubic lattices (SC, BCC and FCC) are shown. It is



 seen that in the case of BCC, all reflections with h + k + l = odd are absent and that in the case of FCC, only
the reflections with all h, k, l even or all h k l odd are present.

  

 

                          Figure 19.1 Diffraction patterns for SC, BCC and FCC lattices.

  

 We readily note that systematic absences can be used to identify the nature of the unit cell.

 
To understand the absences, we need to consider the phase differences between reflections from adjacent
layers when the atoms in the layers are of different type. The case where layer 1 is A, layer 2 is B and layer 3
is A again is shown in Fig 19.2

  

 

              

 Figure 19.2 Diffraction patterns from three layers A , B and A showing the phase differences in





reflections from different layers.
  

 

The distance between the two A layers is a and the distance between the A and B layers is xa. When there is
a constructive interference from two adjacent A layers, the phase difference between the layers is 2  . For
an analogous reflection from the B layer, the phase difference is 2  x as the distance a is reduced by a
factor of x. Considering all the indices h k l, the phase difference  hkl between adjacent h k l planes when
the distances between the planes are xa, yb and xc is given by

  

  hkl = 2  ( h x + k y + l z )                                                                      (19.2)

  

 

Note that when x, y, z are 1, the phase difference corresponding to a, b and c gives the maximum intensity
because 2  a, 2  b and 2  c together correspond to 2 d sin  = n  ) . These phase differences
correspond to 100 or 010 or 001 type reflections. If the reflection is from 200 planes, then the phase
difference will be 4  x and not 2  x.

  

 We should now be able to see the rationale for the additional absences in BCC and FCC lattices ( relative to an
SC lattice ).

 
For a BCC lattice, x = y = z = 1/ 2 since an atom is present at x = y = z = 1/ 2 a where a = edge length. In
such a situation, the phase difference between the A and B layers is ( h + k+ l )  . This means that when
the value of h + k + l = odd, there is destructive interference and all reflections with h + k + l = odd are
absent in a BCC lattice. Our analysis so far has assumed identical atoms in the A and B layers.

  

 
Even if the atoms in the adjacent layers have very similar scattering powers, the same absences would occur.
In general, the scattering power of an atom or an ion depends on its electron density distribution   (r) where

 (r) is given by (r) =  ( r )  (r) ) (see Module 1).

  

 The scattering power of an atom A, fA is related to  A (r) by

  

 
                                                                (19.3)

  

 
                                                                                          (19.4)

  
19.3 Structure Factors and Electron Densities

  

 

We have seen that Eq (19.3) gives the scattering factor of an atom or an ion in terms of its electron density.
This scattering factor is a function of the wave - vector , which gives the vector in the direction of the
propagation of the wave. The magnitude of this vector is k. From an analysis of Eq (19.3) we find that fA is
greatest in the forward direction and smaller in other directions. A sketch of fA as a function of k is given in
Fig 19.3.

  

 




           
                        Figure 19.3 Scattering factors of atoms as a function of angle (k).

  

 
As k  0, sin ( kr ) / kr 1 (as the   ) and fA is equal to the number of electrons in the

atom /ion (Ne)

 As k 0, fA =                                                (19.5)

 
From the above discussion, we conclude that very good results for diffraction can be obtained for smaller
values of  (as scattering factors are large). Also since the scattering factor of hydrogen is very small for all
values of k, it is very difficult to infer about the location of hydrogen atoms through X - ray diffraction.

  

 Continuing our discussion from Fig 19.2, the total amplitude at the detector from layers of atoms A and layers
of atom B is

  

 F h k l = f A + f B e i  h k l                                                                (19.6)

 where  is the phase difference between the h k l reflections from A atoms and B atoms.

 The intensity ( I ) of X-rays is proportional to the square modulus of the amplitude given by Eq (19.6). We
get

  

 I  F * h k l F h k l = ( f A + f B e - i  h k l ) ( f A + f B e i  h k l)

                             = fA 2 + f B 2 + 2 f A f B cos  h k l                             (19.7)

  

 

We thus observe that depending on  h k l ( ie the phase difference between the h, k, l planes expressed in
terms of the distance between layers A and B and fractions x, y and z ) the intensities of two lattices
containing different sets of atoms is different. If the unit cell contains several types of atoms labeled by j with
scattering factors fj and coordinates (x j a, y j b, z j c) then the total amplitude of the wave scattered by the
h k l planes is

  

 F h k l =  f j e i  h k l ( j )                                                             (19.8)

 where  h k l ( j ) = 2  (h x j + k y j + l z j) and

 
the summation is over all the atoms in the unit cell. F h k l is known as the structure factor and the intensity

of reflection from the h k l plane is proportional to | Fh k l | 2

 Let us use Eq (19.8) to analyze the structure factor of NaCl, whose structure is shown in fig 19.4. The
coordinates of the atoms are also shown as (0, 0, 0), (1 1 1), (1/2, 1/2, 0) and so on.

  



 

                  
                                            Figure 19.4 NaCl structure with coordinates.

  

 
Let f + and f - be the scattering factors of Na+ and Cl - respectively. Just as the atom inside a BCC unit cell
contributes one atom to the unit cell, an atom inside the unit cell contributes a strength of f to the scattered
intensity. An atom shared between faces contributes f / 2, an atom at a corner contributes f / 8 and an atom
on the edge of a side contributes f / 4 . We will also need the two useful relations given below

  

 e 0 = e 2  i n = 1, e i  = -1, (e i  + e - i  ) / 2 = cos                        (19.9)

 where n is an integer

 There are 27 atoms in the unit cell of fig 19.4. Summing over all ions,

  
 

F h k l = f +[ 1/8 +1/8 e 2  i l +...........1/ 2 e 2  i (1 / 2 h +1 / 2 k + l ) ] + f - [ e2  i (1 / 2 h +1 / 2 k + 1 /

2l ) + 1/4

e 2  i ( h / 2) ....... ................................. + 1/4 e 2  i(1 / 2 h +1) ]          (19.10)

 Using Eq (19.9), Eq (19.10) can be simplified to

  

 
F h k l = f + [ 1 + cos ( h + k )  + cos ( h + l )  + cos (k + l)  ] + f - [ (-1) h + k + l + cos k + cos l 
+ cos h

 ]                                                                                                             (19.11)

  

 since cos n  = ( -1)n, we get

  

 Fh k l = f + [ 1 + (-1) h + k + (-1) h + l+ (-1) l + k ] + f - [ (-1) h + k + l+ (-1)h + (-1) k + (-1) l ]
          (19.12)

  

 We can easily deduce from Eq (19.12) that

  

 Fh k l = f + (1+ 1+ 1 + 1 ) + f - (1+ 1+ 1 + 1 ) = 4 f + + 4 f -                       (19.13)




 if all h, k and l are even

  

 Fh k l = 4 ( f + - f - ) if each of h, k and l is odd                                          (19.14)

 and

  

 Fh k l = 0 if one is odd and two are even or two are odd and one is even                                 (19.15)

  

 
This analysis now justifies our assertion made in Fig 19.12. This also brings out the fact that even if two unit
cells are the same (e.g., FCC or BCC ), their diffraction patterns can be very different if f + and f - in Eqs
(19.13) to (19.15) are different. This is illustrated in Fig 19.5.

  

 

                 Figure (19.5) Reflections from NaCl and kcl crystals (Powder diffractions)

  

 In KCl, K + and Cl - have similar scattering factors and hence there are greater number of absences in KCl.
  

 
From X - ray diffraction, we get F h k l for different hkl planes. Since the origin of F h k l is the electron density

 (r) of different atoms [ Eq (19.3) and Eq (19.8)] it is possible to obtain  (r) from all the F h k l values
through 

  

 V  (r) =  Fh k l e - 2  i ( h x + k y + l z )                                           (19.16)

  

 
where V is the volume of the unit cell and the summation is over all h k l values. This is a very crucial result,
since the location of all the atoms in the unit cell (through the values of  (r) corresponding to these atoms)
can be obtained by using the above equation.

  
 19.4 The Phase Problem

 

Everything seemed to be working rather well so far but it would be good to be aware of a major difficulty
encountered in the diffraction method and the ways and means of nearly overcoming them. We know that the
measured intensity I h k l of diffracted light is proportional to | F h k l | 2 . We need Fh k l in Eq (19.16). How

do we know whether to use F h k l or - F h k l or even more generally |F h k l | e i  where  is the phase of




Fh k l. While there are no methods to fully eliminate the problem, a common approach is to use (F h k l )2 in
place of F h k l in Eq (19.16). This is called Patterson synthesis.

  

  approximate (r) = ( 1 / V ) | F h k l | 2 e - 2  i (h x + k y + l z )       (19.17)

  

 
The use of Eq (19.17) results in multiple locations of some atoms which have to be corrected by trial and
error. Another useful approach is to neglect the scattering functions of light atoms relative to those of the
heavy atoms. 

  

 
F = (  ) f heavy (  ) f light                                                                  (19.20)

  

 

Since flight values are much smaller than fheavy, the former may be neglected in the first approximation.
Other convenient relations like relating the signs of Fa b c and Fd e f to the sign of Fa + d, b + c, c + f are also
used in finding partial solutions to the phase problem. Finally, the actual structure of the crystal is obtained by
repeatedly refining the results obtained from the diffraction pattern and getting back the diffraction pattern
from the estimated electron densities.

  
 19.5 Other Diffraction Methods :

  

 
In addition to X - rays, neutrons and electrons can also be used in diffraction techniques by carefully choosing
their wavelengths to lie between 10 pm to 200 pm. The wavelength  of any object may be obtained from
the de Broglie relation  = h / p where h is Planck's constant and p, the momentum of the particle.

  

 

The wavelength of thermal neutrons can be obtained by using the thermal value of p = (m k T ) 1/ 2.
Neutrons interact with the atomic nuclei and can sensitively detect the presence of hydrogen atoms as well as
distinguish atoms of similar electron densities such as Co and Ni. The bond lengths of C - H ( 109 pm ) and O
- H ( 97 pm ) estimated by neutrons are more accurate than the X - ray results. Furthermore, since neutrons
have a spin ( spin angular momentum of  / 2), they can distinguish magnetically different atoms of the
same substance and are very useful in the study of lattices wherein there is magnetic (spin) ordering

  

 
Electron diffraction is useful when the number of scattering centers are fewer, as in the case of molecules in
the gas phase as well as the surfaces of solids. Electron diffraction has been used to estimate interparticle
separations in molecules as well as the structures of the surfaces of solids. 

  
  19.6  Problems

  

 19.1) Associate the contribution of the scattering factor of each ion to each term of Eq (19.10)

   

 19.2) In an FCC lattice, what can you say about the reflections from all h k l even vis-a-vis all h k l odd?

   

 19.3) For a body-centered lattice, deduce the rules for systematic absences using analogies from the details
worked out for the FCC lattice.

   

 19.4) Determine the coordinates of each atom of a hexagonal lattice and a monoclinic lattice.

   

 19.5) The von Laue method is different from Bragg's derivation of Bragg's law. But both the results agree at
the end. Look up the derivation based on von Laue method.

   

 19.6)

Using  = h /  estimate the temperature at which thermal neutrons have a wavelength of 10
pm . Through what potential difference (V) should electrons be accelerated so that they attain a value
of  = 10 pm ? Use  = h / 

  

 Recap

 In this Lecture you have learnt the following



  

 Summary

 

In this lecture we have studied how systematic absences are brought about in the diffraction patterns of
different lattices. The emphasis was on cubic lattices. The scattering function is derived from the electron
density and the resultant of the scattering functions of all the atoms in the unit cells (weighted by their
phases and their effective number in the unit cell) gives the structure factor F h k l whose square is
proportional to the diffracted intensity I h k l .

 

Since only the square of Fh k l is measurable, the square root of Ih k l can be determined except for a phase

factor  e i . Methods to circumvent the phase problem were listed. The difference between the diffraction
patterns of SC, BCC and FCC lattices was illustrated in Fig (19.2) and rationalized in section 19.3. Diffraction
techniques using neutrons and electrons were mentioned in section 19.4 and the special advantages of these
methods were indicated.
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