
 Module 4 :  Solid State Chemistry

Lecture 20 : Band Theory of Solids
  
 Objectives

 In this lecture you will learn the following

  

Formation of energy-level bands in solids.

Distinction between the band structures of conductors, semiconductors and insulators.

Elementary theory for obtaining the energy levels in a band.

Occupation of the levels in a band by electrons.

Ideas relevant in superconductivity.

  
  20.1 Introduction to Band Structure

 

In our studies of atoms and molecules we have seen that molecular orbitals are formed by the interaction of
atomic orbitals. In molecular orbitals of H2 for example, the binding orbital  is separated from the

antibonding orbital  by several electron-Volts ( 1eV = 23.06 kcal / mol ). When three orbitals from three

atoms ( as in the case of H3 ) combine to form MOs, we get three orbitals ( ,  and  ), a bonding, a

nonbonding and an antibonding orbital. When N atomic orbitals from N atoms interact, they give N
molecular orbitals. When N becomes very large, as in the case of a solid, there will be a large number of
orbitals in a given range of energy, say between  and . This collection of orbitals or energy levels is

referred to as an (energy) band. The study of band structure forms a central theme in the study of
electronic structure of solids.

  

 Fig 20.1 illustrate the formation of bands as the number of atoms increases. This is shown for a one
dimensional solid. The overlap diagrams have a straight forward extension in three dimensions.

  




 

     Figure 20.1 Band formation as a function of the number of atoms/s-orbitals in one dimension. 

 The above figure is for the overlap of s orbitals.

  

 Similar overlap diagrams can be obtained for the overlap of p,d,f... orbitals as well. These are shown in fig
20.2

 

              

 
Figure 20.2 Formation of s, p and d bands. Eh and El refer to the highest ( most antibonding ) and the
lowest ( most bonding ) energy levels in a given band. As we go up in energy in a given band, the number
of nodes increases.

  
  20.2 Band structures in insulators, metals and semiconductors

 

The term band structure refers to the size of various bands, the gap between adjacent bands and the
occupation of the levels in the bands by electrons. In the solids formed by systems such as rare gas atoms,
all the bands (corresponding to filled shells in atoms ) are completely filled with electrons and the unfilled
bands (corresponding unoccupied orbitals in the atoms) are fully empty. There is no discernible movement
of these electrons when the system is subjected to an external electric field and the substance behaves as
an insulator. The same is true for diamond (Fig 20.3) where the filled bonding sp3 band is widely separated




from the unfilled antibonding sp3 by a considerable gap and the substance is a well known insulator.

  

 

        
                               Figure 20.3 Filled and unfilled sp3 bands in diamond.

  

 
In the case of metals such as Li, Na, Mg and Al, the atoms have partially filled shells. The bands in the
metals are also partially filled. Consider the case of N electrons occupying a band of N orbitals. Only N / 2
orbitals are occupied and the band is only half full as shown in fig 20.4.

  

 





               
                                                     Figure 20.4 : Partly filled band in a metal.

  

 When metals with a band occupancy as in Fig 20.4 are subjected to an external electric field, the electrons
are highly mobile and flow "almost freely" in the band leading to high electrical conductivity.

 

Let us next consider the energy bands in semiconductors, shown in Fig 20.5. Here too, at T = 0K, the
valence band is completely filled and the upper or the conduction band is empty and the conductivity is
negligible. This is similar to diamond except that the gap between the occupied valence band and the higher
unoccupied conduction band is small. As the temperature is increased, some levels of the higher band get
occupied due to thermal excitation and the system behaves as a conductor. This is observed in the case of
elements like Ge and Si and they are called semiconductors. These materials exhibit increased conductivity
with increasing temperature.

  

 

              
                                          Figure 20.5 The band structure of a semiconductor.

  

 

Another way of getting semiconducting behaviour is to "dope" pure materials with foreign atoms (dopants)
which are either rich in electrons ( i.e., atoms that can donate electrons) or are short of electrons ( i.e.,
these atoms can trap electrons). For example, when phosphorus is doped into germanium, the additional
electrons in P (the donor band) can occupy the empty conduction band in Ge heading to conducting
behaviour. This is called an n-type semiconductor. On the other hand, if germanium or Si is doped with
electron "deficient" materials such as Al, the band of the dopant can accept electrons from the valence band
of the host. Since the band loses electrons, the charge carriers in the valence band are "positive charges" or
"holes". This is referred to as p- type of semiconductivity. In n-type, the charge carriers are negative. The
band structures of n- type and p-type semiconductors are shown in Fig 20.6 

  




 

           
  

 

            
                      Figure 20.6 The band structures of n-type and p-type semiconductors

  
  20.3 Energy levels in bands

 

In this section we outline a simple method to obtain the energy levels in a band . This is similar to the
method needed to obtain the  orbital energies of butadiene. Let us consider the bonding (  ) and

antibonding orbitals (  ) of a diatomic.

  

  = c 1b  + c 2b 

  = c 1a + c 2a                                                  (20.1)

We need to determine the coefficients c 1b, c 2b, c 1a and c 2a as well as the energies of  and . Here 





 
and  are atomic orbitals. Consider a general MO  defined as 

  

  = c 1  + c 2                                                      (20.2)

 The normalization of  is (since  and  are normalized individually)

  

  + 2 c1 c2S with                               (20.3)

 S = 

 If H is the hamiltonian operator of the molecule, the energy of the molecule is given by

  

 E =                                               (20.5)

  

 E = [  ] /         (20.6)

  

 Here  ,  and              (20.7)

  

 
To find the optimum coefficients c1 and c 2 for bonding and antibonding orbitals, we minimize E with respect
to    c 1 and c 2 by setting E/ c 1 = 0 and E / c2 = 0

  

 Taking the derivatives of Eq ( 20.6 ) with respect to c1 and c2, we get the following two equations.

 ( 1 -E )c1 + (  - ES ) c2 = 0                                  (20.8a)

  
 (  - ES)c1 + ( 2 - E) c2 = 0                                   (20.8b)

  
 To solve (20.8) the determinant called the secular determinant of equation 20.9 has to be zero.

  

 

                                            (20.9)

  

 
For identical atoms  =  and the two roots of the quadratic equation (20.9) for E ( which give Eb and

Ea ) are

                                                 (20.10a)

  

 and Ea =                                          (20.10b)



  

 
Substituting Eb in eq (20.8) we get c1 = c2 for the bonding orbital and substituting Ea in eq (20.8) we get
c1 = -c2 for the antibonding orbital. Thus the coefficients in 20.1 can be determined.

  

 We can extend the argument to  orbitals of ethylene by taking S  O in eq (20.9) and  The

secular determinant becomes

  

 
                                                      (20.11)

 and the energies of the bonding and antibonding orbitals are

  

 Eb =  and Ea =                                       (20.12)

 Here  is negative and hence the bonding orbital lies lower in energy compared to the antibonding orbital.

  

 For butadiene, assuming  and all  s to be the same, the secular determinant

becomes

  

 

                                 (20.13)

 and for N atomic orbitals in a linear chain, the secular determinant gets generalized to
  

 

 (20.14)

 The solutions for the above secular determinant are the large number of roots of E of eq 20.14. With some
algebraic manipulations, they can be shown to be

  
 E k =  +2  cos (k  /(N+1)), k = 1,2 ...N          (20.15)

  
 For large N, the energy difference between adjacent levels is very small as illustrated in fig 20.7

  



 

                      
                                        Figure 20.7 Energy levels of eq (20.15) in a band

 As N becomes very large, the energy difference between EN and E1 becomes

  
 EN - E1 = 4                                                       (20.16)

 Although this section is sketchy and we have made many approximations (which need to be improved in real
solids), we have an expression for the energy levels in a band).

  
  20.4 Population of the band energy levels by electrons.

 

In our earlier section on bands (with N electrons) in metals, we saw that only N / 2 levels were doubly
occupied at T = 0 . The highest occupied MO (HOMO) was called the Fermi level. At temperatures other than
T = 0, the occupation of levels does not follow the Boltzmann probability distribution p(Ei)  e -Ei / kBT but
follows the Fermi Dirac distribution which is given by

  

 p(Ei) = 1/ [e (Ei-  ) / kBT +1]                          (20.17)

  

 

Here,  is the value of Ei for which p ( Ei ) = 1/ 2.  is called the chemical potential. The Fermi-Dirac
distribution includes the effect of the Pauli exclusion principle, according to which no two electrons can have
all quantum numbers identical; i.e., for each state ( or non-degenerate level ), there can be at most one
electron of a given spin type. For energies close to and less than  eq (20.17) differs completely from the
Boltzmann distribution. For energies greater than  and for large T, the second term of the denominator of
(20.17) is very small and P ( Ei ) resembles the Boltzmann distribution

  

 p (Ei) = e - (Ei -  ) / kBT                                (20.18)

  
 A sketch of P(Ei) vs (Ei -  ) /  is given in fig 20.8

  




 

                     
           Figure 20.8 Population of electronic energy levels according to Fermi-Dirac distribution.

 
The curves are labeled by ... .....  / kBT. The distribution at T = 0 is the shaded region where p (Ei) = 1 for
Ei<  and 0 otherwise.

  
  20.5  Superconductivity

 

For metals in the usual temperature range around 298 K, resistance decreases with T, or conductivity
increases with lowering T. In 1911, Kimberling ones showed that when Hg is cooled to T  4.2K, the
resistance to electron flow drops to below 10-5 ohms and the metal behaves as a "superconductor". In the
superconducting state, electrons flow without any resistance offered by lattice sites or lattice vibrations.
Unusual magnetic and entropic behaviour is also exhibited. In the first insightful theory of superconductivity,
Bardeen, Cooper and Schrieffer (1957) proposed a theory wherein ordered pairs of electrons are formed at
low temperatures. Although the ordering is caused by the interaction of electrons with lattice ions, the
"ordered pairs" move freely in the lattice. Considerable efforts have been put in to find high temperature
superconductors and nonstoichiometric materials of Pervoskite structures, such as Y Ba2Cu3 O7-x with x
0.1 have shown superconductivity for T  Tc = 90 K.

  

 

 
Figure 20.8 (a) A sketch showing unusually low resistance for T<Tc = 4.2K. 20.8 (b) Bands for ordered pairs
and normal electrons showing the superconducting band gap of   5kBTc

  





20.6  Problems

  

 

20.1) One million Na atoms are placed on a straight line. If the energy of the highest level of the 3s band is
1 ev higher than the lowest energy level of the band and if all the levels in the band are equally
spaced, what is the energy difference between adjacent levels? Is the thermal energy (kT = 207 cm-

1 at room temperature ) sufficient to excite electrons among these levels ? If the number of atoms is
increased to  6 * 1023, what is the difference in energy between adjacent energy levels? if you treat
this as a particle in a box problem, what will be the length of a one-dimensional box whose energy
for the n = 1 state corresponds to the above energy difference?

   

 
20.2) The distribution of electrons in the energy levels in the electronic bands follows the Fermi-Dirac

distributions. Instead of electrons which are Fermions (particles with half integral spins), if we were
to fill these levels with bosons (particles with integral spins, e.g., photons, nuclei of nitrogen atoms)
what are the major differences that you would expect?

   

 
20.3) From literature or some common websites, list the name of a few commonly used superconductors in

daily life. Also find out the temperature below which they become superconducting, their cost per
gram of substance, their structures, name of the inventor and the year of invention and the nature of
their specific application.

   
 Recap

 In this lecture you have learnt the following

  
 Summary

 

In this lecture you have been introduced to the band structure of solids . The band structure deals with the
closely spaced energy levels of electrons in various groups or bands of levels, the gaps between the bands,
the effect of temperature on the occupation of levels, as well as the influence on the band occupancy by
dopants. Electron rich dopants lead to n-type semiconductivity wherein the electrons are the charge
carriers. In p-type semiconductivity, the charge carriers are +ve charges. The energy levels of a model of a
band were obtained and some details of obtaining energy levels and coefficients of AOs in the band MOs
were given. The Fermi-Dirac distribution was distinguished from the temperature Boltzmann distribution and
some ideas relevant to superconductivity were outlined.
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