
 Module 4 : Solid State Chemistry
Lecture 16 : Lattices and Unit Cells

  

  Objectives
 In this Lecture you will learn the following

Definition of a lattice and a unit cell

Classification and characterization of different lattices

Some examples of different lattices.

Estimates of lattice energies.

16.1 Introduction

 

Solids may be classified into different types such as crystalline, amorphous, glassy and so on. At low
temperatures and high pressures, most substances condense into a solid state. The formation of a solid is a
consequence of a variety of intermolecular forces such as ionic, covalent as well as non-covalent (such as van
der Waals forces). In this lecture we will classify crystalline solids into various types of lattice structures and
give examples of each type. We will also estimate lattice energies of ionic crystals.

  

 

The variety and beauty of patterns in crystals is due to the presence of repeating units. The repeating units
extend periodically in three dimensional space giving a space filling structure. The structurally repeating unit
may be a group of one or more atoms, molecules or ions. If each one of these units is represented by a point,
a space filling pattern can be obtained by regularly repeating this unit in three dimensions. This space filling
pattern is called a space lattice or a crystal lattice or a Bravais lattice. Bravais showed in 1875 that there can
be only 14 distinct lattices in three dimensions. Each point of a Bravais lattice can be associated with a unit
cell, which is an imaginary parallelopiped (i.e., a figure with parallel sides) that contains one unit of the
translationally repeating pattern.

 
The fourteen Bravais lattices can be grouped into seven crystal systems by using the symmetry properties of
unit cells, as well as by the relations between the sides and angles of the unit cell. Consider two unit cells as
shown below.




 
Figure 16.1 Unit cells. Sides are a, b and c and the angles are  (between b and c in the bc plane),  (in the
ac plane, between a and c) and  (between a and b in the ab plane. (a) cubic unit cell, (b) non-cubic unit cell

 

. 

In a cubic crystal system (formed from cubic unit cells placed at the lattice points) there are four C3 axes
placed in a tetrahedral arrangement. In Fig 16.1(a) the line joining the points 3 and 5, for example is a C3

axis. What this means is that if the unit cell/crystal is rotated by 120o, 240o and 360o (three angles, multiples
of 120o), we get an arrangement which is indistinguishable from the original arrangement. Having only a C1
axis is as good as having no symmetry at all because every object has a C1 axis of symmetry, i.e., if you

rotate it with respect to any axis by 360o, you will recover the original arrangement. A triclinic crystal has no
symmetry or has only a C1 symmetry axis

 
The symmetry elements of the seven crystal systems are given in Table 16.1

 
 Table 16.1 Essential symmetries of the seven crystal systems.

 

Sr no System Symmetries

   

1 Cubic four C3 axes tetrahedrally arranged

   

2 Hexagonal one C6 axes

   

3 Tetragonal one C4 axes

   

4 Rhombohedral one C3 axes

   

5 Orthorhombic three perpendicular C2 axes

   

6 Monoclinic one C2 axes

   

7 Triclinic none ! or only C1 axes

  

 
The seven cubic systems can also be classified in terms of the relations between their unit cell parameters a,
b, c and , and . These relations are shown in Table 16.2

  
 The parameters characterizing the seven crystal systems are given in Table 16.2
  



 Table 16.2 Seven crystal systems or Bravais unit cells

 

Sr no Type/category cubic Edge lengths Internal angles

    

1 Cubic a = b= c  =  =  = 90o

    

2 Hexagonal a = b c  =  = 90o,  = 120o

    

3 Tetragonal a = b c  =  =  = 90o

    

4 Rhombohedral a = b = c  = =     90o

    

5 Orthorhombic a  b c  =  =  = 90o

    

6 Monoclinic a  b c  = = 90o,   

    

7 Triclinic a  b c             90o

  

 
The cubic unit cell can be further categorized as simple cubic, face centered cubic and body centered cubic.
The fourteen Bravais lattices are shown in fig 16.2

  




 
  

 
                                                    Figure 16.2 The 14 Bravais lattices
  

 

In the following table (16.3), we list some common substances which are found in the 14 Bravais lattices. How
a given substance chooses to be found in a given lattice type is determined by the sizes of the constituent
particles and the detailed interactions between them.

  
 Table 16.3 Common substances in seven crystal systems.

1      Cubic Metal like Ni, Ag, Au, Cu, Al; Na+ ions in NaCl lattice [FCC] one form of
Fe, V, Cr, Mo, W; CsCl, taking Cs+ and Cl - together [BCC], -




 

Polonium, Cl- lattice in a CsCl lattice [simple cubic]

2 Hexagonal
Metallic Be, SiO2, Mg2SiO4, corundum, quartz, ruby

3 Orthorhombic
Epsom salts, ancylite, sulphur, pyrite, Hg(II)chloride

4 Tetragonal
Zircon, Tellurium oxide, PbTiO3

5 Triclinic
Pentahydrate form of Cu (II) sulphate, serandite, feldspar, n- alkanes,
lysozyme crystals grown at pH 4.5

6 Mono clinic
Gypsum, sulphur, jadite, nephrite, K3Fe(CN)6 Hg(II) chloride,
potassium chlorate

7 Rhombohedral
La cerite, dolomite, calcite, ruby, MgCO3

   
  
16.2  Ionic lattices and Lattice Energies.

  

 
We have studied in Module 2 the details regarding intermolecular interactions. In Fig 16.3, the total interaction
is shown as a sum of the attractive (Coulombic) and repulsive interactions.

  

               

 
Figure 16.3 Interaction energy between a positive ion and a negative ion as a function of interionic
distance r.

  

 

The repulsive term is dominated by exchange interactions(see lecture 10). The above form is for a pair of
ions. When ion pairs are stable at a distance r0, why are lattices fromedat all? To see why, consider a one
dimensional chain of sodium and chloride ions as shown in fig 16.4.




  

                      
                                     Figure 16.4 A one dimensional sodium chloride lattice.
  

 

Let the central sodium ion be at r = 0. The other sodium ions, will be at  2r0,  4r0,  6r0, and so on and
the chlorides at  r0,  3 r0,  5 r0 and so on. The total Coulombic interaction for this central ion is

  

 U ionic = -2e2/r0 [ (1-1/2) + (1/3 - 1/4) +(1/5 -1/6)+...]             (16.1)

 
In each parentheses, the first term is the attraction due to Cl- and the second term is the repulsion due to the
next neighbour Na+. Note that each term in parentheses is positive and the sum of the series is found to be

 
 

 U ionic = 2 / r0;                                                                          (16.2)

 

This arrangement is more stable than a single pair of Na+ and Cl-. This is the reason why lattices of ions or
other objects are stabler than pairs, triplets or quartets. In three dimensions, the summation such as eq
(16.1) leads to a value of Coulombic energy given by

 
 

 
UCoulombic = - Me2 / r0,                                                            (16.3)

 
where r0 is the shortest distance between the + and the - ions and M is called the Madelung constant. The
values of M for various lattices is given in Table 16.4.

  

Molecule Lattice M M/nf Coordination Number

NaCl Rock salt 1.7476 0.8738 6

CsCl Calsium chloride 1.7627 0.8813 8




 

ZnS Wurtzite 1.641 0.820 4

TiO2 Rutile 2.408 0.803 4

  

 

In the Table nf is the number of ions per molecular formula unit (e.g., nf for CaCl2 is 3) and the coordination
number is the average number of neighbours around an ion. Madelung constants are in the range 1.5 to 2.5
and the total Coulomb energy for N ion pairs is given by

  

 Ucoul = - NM z + z - e 2 / r0,                                                                          (16.4)

 where z+ and z- are the magnitudes of charges on the ions.

  

 

In eq (16.4) we have taken into account only the attractive interaction between ions. The repulsive
interactions may be expressed as Be -r /r0 (exponential form) or Cr-n (power law repulsion). The values of B
or C and n are to be determined for each lattice.

  
 Taking the second form for the repulsive term, the total ionic lattice energy is
  
 UL = -Me2/ r + C / rn                                                                                        (16.5)

  

 
At equilibrium when r = r0, dUL / dr = 0 and we get

 C = Me2 r0 n-1 / n and

  

 UL = - Me2 / r0 [1-1/n].                                                                                    (16.6)

  

 
The lattice energy UL is the energy for the process of forming the solid from the ions:

 A+(g) + X - (g)  AX(s); H = UL.                                                                  (16.7)

  

 

This is not an easy quantity that can be determined experimentally. We shall now illustrate how to obtain UL
through a thermodynamic cycle (known as the Born Haber cycle) in the case of the NaCl lattice. We start with
the normal forms of atoms at room temperature Na(s) and Cl2(g), obtain their gaseous forms Na(g) and
Cl(g), through vaporization [ Hv (Na)] and dissociation for Cl2] ionize the gaseous atoms and then condense
the ions into the ionic lattice. These steps can be expressed as in equations (16.8) to (16.11).

  

 
Na (s) +1/2 Cl2 (g)  Na(g) + Cl (g);  H =  H v (Na) + 1 / 2 D (Cl2)          (16.8)

  

 Na (g) + Cl (g)  Na+ (g) + Cl - (g); H = I(Na) - A(Cl)                                  (16.9)

  

 Na+ (g) + Cl - (g)  NaCl (s), H = UL                                                           (16.10)

  
 The resultant of the above three steps is

  

 
Na(s) +1/2 Cl2 (g)  NaCl(s); H = Hf (NaCl).                                           (16.11)

  

 

Eq (16.11) gives the enthalpy of formation of NaCl. This is identical to the sum of equations (16.8), (16.9)
and (16.10) by the first law of thermodynamics (energy and enthalpy changes are independent of path.
Summing eq (16.8) to (16.10) we get

  



  Hf (NaCl) = Hv (Na) +1/2 D (Cl2) + I (Na) - A (Cl)+ UL                              (16.12)

  
 Here I is the ionization energy of Na ( Na  Na+ + e- ) and A (Cl) is the electron affinity of Cl - (i.e., the

energy change for the process Cl -  Cl + e -. By taking all the quantities in kcal/mol units, we have,
  
  Hf (NaCl) = 24.14 +28.56 +118.4 - 83.4 + UL                                             (16.13)

 i) Lattice energy for an exponential repulsion form

 i) Calculations of UL

  
 Heat of formation of NaCl can be easily found from calorimetric measurements. A knowledge of this heat of

formation allows us to calculate the lattice energy. We can also calculate the lattice energy by a knowledge of
ionic sizes, the value of r0 and the value of the Madelung constant. If the calculated value of the lattice energy
matches with the value calculated from the Born Haber cycle, it gives us an indication that the form of the
interionic potentials and the sizes of ions that we have used are quite good. We thus have a method to test
our theories of intermolecular forces with experimental results.

  
 16.3 Problems

 16.1 Identify the four C3 axes of the cubic unit cell in Fig 16.1 (a). One of them is the line joining the points
3 and 5. How many C2 axis does a cubic unit cell have? In the same manner (by labeling the corners or
additional points by numbers) identify the C2 axis in monoclinic and orthorhombic lattices, the C3 axis in
a rhombohedral lattice, the C4 axis in a tetragonal lattice and the C6 axis in a hexagonal lattice. Can
you show that the four C3 axes in the cubic lattice are in a tetrahedral arrangement relative to each
other?

   
 16.2 Give an example for each one of the fourteen Bravais Lattices (other than the examples given in Table

(16.3)
   
 16.3 Parallelograms can be repeated periodically (by repeatedly translating through the edge lengths a and

b) to fill up the whole of two dimensional space. Satisfy yourself that a regular pentagon can not be
repeated (by using translations and rotations) so as to fill the whole of a 2-dimensional space. Can you
fill up a two dimensional space using triangles?

   
 16.4 Distinguish between a lattice and a unit cell.
   
 16.5 Why do substances exist in different allotropic forms at different temperatures? e.g., monoclinic and

rhombohedral forms of sulphur.
   
 16.6 For the repulsive potential of the form B / rn, we have derived the equation for Lattice energy UL = -

NAM z1, z2e2 r0
-1 (1- 1/n) where NA is the Avogadro number, M the Madelung constant and r0 the

closest cation - anion separation. If the repulsive potential has the form Ce -r/r0, what is the expression
for the Lattice energy?

   
 16.7 For NaCl, r0 = 2.8 * 10 -10 m. The value of n in the repulsive form B/rn can be estimated from the

close shell configuration of the ions. FOr close shells like He, n = 5; Ne, n = 7; Ar, n = 9; Kr, n = 10;
xe, n =1. If the cations and anions have different closed shells, as in NaCl. The average value of n over
the two closed shells is used. If the cations and anions have different closed shells is used. If the
average is a fraction, (as in the case of NaCl again), the larger value of n (of the two) can be used.
Estimate the lattice energy of NaCl from the Born Lande equation and compare that with the value of UL
obtained from the Born Haber cycle given in Example 1.

   
 16.8 The alkaline earth oxides of group II - A (MgO, CaO,...) have the NaCl crystal structure (ie, two

interpenetrating FCC Lattices of anions and cations). Using the value of the nearest neighbour
separation (r0) for the oxides given below (in pm = 10 -12m), calculate their lattice energies (using
Born Lande eq) MgO (210pm), CaO (240pm), SrO(257pm), BaO(276pm).

   
 16.9 Why are the lattice energies of the above oxides greater than those of the corresponding chlorides?



   
 16.10 Using the energy data given below (in kJ/mol) calculate the electron affinity of fluorine

 
 

H dissociation (F2) = 160, Hf (NaF) = -571, 1E(Na) = 494

  
Hvaporization (Na) = 101, UL (NaF) = -894

   
 16.11 To extend the Born Haber cyle to bivalent oxides MO, where M is divalent metal ion, we need the

second ionization potential (M+ M2+ + e-) and the second electron affinity (O2- O-). Calculate the heat
of formation of MO (solid) using the following data (in kJ/ mol).

 
 

Hdissociation (O2 = 309 H vaporization (M) = 309

  First 1.E of M (M m+ + e-) = 900, second 1.E of M = 1760
  First electron affinity of O (o - o +e) = 142
  Second electron affinity of 0 = -879
  Madelung constant = 1.747, Born exponent n = 8
 

 r0 (M-0) = 1.75*10 -10m

   
 16.12 To calculate the heat of formation of gaseous MO, we can use the Born Haber cycle except that, instead

of Lattice energy M 2+ +O2- MO(lattice), we have the gas phase energy for M2+ + O2- MO(g). We can
use the Born Lande formula for the above process without the factor of Madelung constant. The
calculation reveals that MO(solid) is a more stable than MO(gas).can you rationalize this fact?can use
the Born Land formation.

  
 Recap

 In this Lecture you would have learnt the following

  
 Summary

 
In this lecture you have been introduced to lattices and unit cells. The fourteen Bravais lattices were
characterized in terms of the unit cell parameters a, b, c,  ,  and  (edge lengths and interplanar angles).

  

 

The symmetry properties of the unit cells and examples of various space filling lattice systems were given.
The lattice energy of ionic crystals was calculated using the interionic forces by the introduction of the
Madelung constant. The value of the Madelung constant is a characteristic of each lattice type and arises out
of the summation of the Coulombic energies between the infinite sites of the lattice. The Born-Haber cycle
was also described which gives an experimental method for determining the lattice energies using the first
law of thermodynamics.
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