
 Module 7 : Theories of Reaction Rates

Lecture 35 : Potential Energy Surfaces (PES) II

   Objectives

  After studying this Lecture you will learn to do the following

Relate a trajectory on a PES to a collision process.

  

Distinguish between reactive, non-reactive, associative and dissociative trajectories.

  
Plot the interatomic distances as a function of time and characterize the reactants and products through the
plot.

 w

Distinguish between classical trajectories and quantum mechanical state to state rate processes.

  

Relate microscopic state - to - state rates to bulk or macroscopic rate constants.

Introduction

In the previous lecture (lecture 34), we have studied the details of the shapes of the potential energy surfaces (PESs) for
H2+ H, HC + N and a few other systems. In the present lecture, we relate these surfaces to the dynamics involved in the
process of a chemical reaction. Imagine a ball rolling on this surface. Normally a ball rolls from a high value of potential
energy to a low value. However, the usual starting point of a reaction is a reaction valley, wherein one of the reactant is at
a minimum potential energy configuration and the other reactants are far away. Such a situation corresponds to a point on
the PES. With reference to the HAHB and HC collision (See Fig 35.1), as HC approaches HAHB with HAHB distance
nearly constant, we move towards the transition state in the valley. Each point on the surface along the trajectory
corresponds to one collinear configuration of HAHB....HC. The collision process is thus a path along the potential energy
surface. If the collision is reactive, we will get HA and HBHC and the point moves over the barrier to the product valley.
Such a trajectory is called a reactive trajectory. What causes the collision to be reactive? There are several driving forces.
The first is the high translational energy of the reactants (high relative velocity) which can be used to bind the products
HBHC and the rest of the energy can be transferred to HC as its kinetic energy. Another possibility is the high vibrational
energy of HAHB. This can be transferred to the vibrational energy of HBHC (which will now possibly have a lower
vibrational energy than of HAHB) and the translational energy of the product HA. A similar argument can be made for the
high rotational energy of HAHB. All the above factors lead to product formation.

If the relative kinetic energy of the reactants is small, and the vibrational energy of the polyatomic reactants is also small
(we have considered only diatomic reactants), then the the system does not have sufficient energy to go over the
transition region into the product valley and returns to the reactant state fairly early in the reactant valley. In Fig 35.1,
reactive, non reactive and dissociative trajectories are indicated. The probabilities of dissociative collisions are rather small.
In a dissociative collision, HAHB is hit by HC from the right, HB stays where it was, HC moves to the right opposite to its
direction of approach in the early part of collision and HA moves to the left.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure 35.1 Reactive (R), dissociative (D) and nonreactive (NR) trajectories on the H2 + H potential energy
surface.
 
Time Dependence of interatomic distances.

A good way to show the formation of products is to plot interatomic distances as a function of time. In Fig 35.2, RAB and
RBC for the H2 + H reaction are shown. In the reactive collision shown in the figure, the switch over to the products
begins after about 25 fs (femtoseconds) and the separation into the products is complete by 40 fs.
 

 
Figure 35.2 Interatomic HAHB (RAB ) and HBHC (RBC ) distances as a function of time.
 
In Fig 35.3, the time dependence of several pairs of distances in the reaction NaBr + KCl  NaCl +KBr is shown. The
transition state is fairly long lived (for 4 ps from 1.5 ps (pico seconds) to 5.5 ps). In this transition region, the distances
between all the pairs NaBr, BrCl and KBr are around 500 pm during this period. We can thus conclude that the
activated complex is tetraatomic. The complex undergoes nearly 15 oscillations before decomposing into the products.
The collision is not a direct one wherein the products are formed "instantly" as in the H2 + H (Fig. 35.2) case.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure 35.3 A trajectory for the NaBr + KCl  NaCl + KBr reaction showing the long lived (NaBr...KCl)
tetraatomic activated complex.
 
Example 35.1
Indicate reactive trajectories on an attractive and repulsive PES.
Solution : The trajectories are sketched in Fig. 35.4
 

 
Figure 35.4 Reactive (R) and nonreactive (NR) trajectories on an attractive and a repulsive PES.
 
35.3 Classical Trajectories

The movement of a point on a PES is associated with the changes in the potential energy and the kinetic energy of the
system. The PES gives the changes in the potential energy alone and the changes in kinetic energies can be assessed
from the velocities of the particles at each point. The position ( x ) and velocity ( v ) at any time (t +  t) can be
calculated from the position and velocity at a nearby time ( t ) by solving the equations of motion.

x ( t +  t ) = x ( t ) + (dx / dt)  t + 1/ 2(d 2 x / d t 2 ) t 2 + ... (35.1)
 
v ( t + t ) = v ( t ) + (dv / dt)  t + 1/ 2 (d2v / dt2)  t 2 + .... (35.2)
 
In (35.1) and (35.2), dv/dt = d2x / dt2 = acceleration in the x direction which is nothing but force per unit mass,   Fx /m.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





The force is given in terms of the PE ( V ) at the point (corresponding to time t ) by
 
Fx = - V / x ;        V  = PE (35.3)
 
Since the form of the PES is known, V / x can be calculated at each point. For small t, if we know x (t) and v( t )

, x ( t +  t ) and v ( t + t) can be calculated from eq. (35.1) and (35.2) very easily if we neglect the   t2 term in eq
(35.2). This approach constitutes the simplest algorithm for the time evolution of the point on a PES. Other more
sophisticated algorithms are available. A large number of trajectories can be generated starting from different initial
conditions. From these, an energy or velocity dependent reactive cross sections can be calculated. One actually
computes the probability of a reaction (i.e., a reactive cross section) for a given initial velocity and then averages the
product [ ( R ) . v] to get a rate constant, as was done in the collision theory. This is a direct application of (35.1) and
(35.2). These equations are not "symmetrical" in x and v. E.g., x ( t + t ) needs v(t), but v ( t + t ) does not need
x(t). More symmetrical form of the equations of motion are the Hamiltons equations, which are
 

x / t   =      =  H / p x (35.4)

 

 p x / t   =  =   - H /  x (35.5)
Where H = hamiltonian = KE + PE. Usually these are solved for obtaining classical trajectories. These equations are
completely equivalent to the Newtons Laws of motion.
 
   35.4  State to state rate constants.

The above approach to obtain the average of the product ( R ) v considers the ground state potential
(electronic) energy surface with no vibrational and rotational structure. To get the true microscopic rate, we
need the state to state reaction cross section R ( nR  nP ) where nR and nP are the complete set of
reactant and product quantum numbers. The state to state rate constant can then be obtained from:

k {( nR nP ); T } = < v  R ( nR  nP )> (35.6)
The averaging (which is commonly denoted by <  > ) is usually done by using the Maxwell-Boltzmann velocity
distribution f ( v ) at temperature T
 
k ( nR  nP; T ) =  dv f ( v ) v R ( nR  nP ) (35.7)
To obtain R (nR  nP) we need to study the evolution of the reactant wavefunction by solving the time
dependent Schrodinger equation. This gives us the probabilities of obtaining the products in various states (i.e.,
through the "extent" of the reactant wave function going over to those various product wave functions). From
the state to state rate constants, the macroscopic rate constant k can be obtained by the procedure outlined in
Fig (35.5). There is an averaging over all the reactant and product quantum states. We have also introduced
here the concept of the differential cross section, R (nR  nP,  , v) where  is the relative orientation of
the products. The integral cross section R ( nR  nP, v ) is obtained by integrating the differential cross
sections over all possible orientations (  ) in three dimensions.

 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
Figure 35.5 Different stages in going from the differential cross section [ R (nR  nP,  , v) ] and
the the microscopic rate constant [ k ij lm (T) ] to the macroscopic rate constant k.
 

  35.5  Problems

35.1) On the H2 + H PES, sketch a trajectory wherein

      a) high vibrational energy of reactants is converted to translational energy of products.
 b) high translational energy of reactants is converted into high product vibrational energy.
 
35.2) Can rotational energies of reactants be indicated on the PES? Justify your answer.
 
35.3) Sketch an associative HC + N trajectory on the HCN PES. Also indicate a reactive HC + N  H + CN

trajectory and a dissociative trajectory HC + N  H + C + N.
 
35.4) Sketch two PESs; one with a deep reactants valley and a shallow product valley and another with a

shallow reactant valley, moderate product valley and a very low dissociative plateau. How is the
dynamics in these surfaces expected to differ from the H2 + H dynamics?

 
35.5) What are the qualitative differences between classical trajectories and "quantal trajectories" which are

studied through the time evolution of wave functions?
 
35.6) For the simple harmonic oscillator, H = (1/ 2) k x2 + 1/ 2 px

2 / m show that the Hamilton's equations are
fully equivalent to Newton's laws. Here x is the position of the particle which is harmonically bound by a
force constant k.

 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




   Recap

   In this Lecture you have learnt the following

 Summary

 
In this lecture, we have related a trajectory or a path on a PES to a collision process. Collisions can be classified
into various categories. In a reactive collision, the trajectory moves from the reactant valley to the product valley by
going through the region associated with the activated complex. In a non-reactive trajectory, the path returns to
the starting reactant valley from an unfavourable configuration near the activated complex barrier.

 

The path along a classical trajectory can be investigated in time by solving the Newtons equations (or equivalently
the Hamiltons equations) of motion. Although classical trajectories give an excellent picture of the passage of
reactants to products, the correct picture is quantum mechanical wherein one obtains state to state rate constants,
k { nR  nP } wherein nR and nP represent the complete set of quantum numbers specifying the reactants and
products. The macroscopic or the bulk rate constant can then be obtained by averaging over all the state to state
rate constants by using an appropriate initial distribution over reactant states.
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