
 Module 2 : Molecular Structure
Lecture 7 : Homonuclear Diatomic Molecules

 Objectives

 In this lecture you will learn the following

Definition of a molecular orbital and the construction of molecular orbitals from linear combinations of atomic orbitals.

Contour diagrams of  and orbitals of H2
+

Electronic configurations of homonuclear diatiomics.

Energy level diagrams for homonuclear diatomics.

The binding energy of a homonuclear diatomic as a function of the internuclear distance.

Schrödinger equation for diatomics.

  
 7.1 Introduction

 

The study of atomic structure dealt with the Schrödinger equation for atoms, atomic energy levels, charge densities and “filling up”
the atomic orbitals with electrons using the aufbau principle as well as the Pauli exclusion principle. In the case of molecular
structure too, the approach is similar. The Schrödinger equation has to take into account the presence of more than one nucleus
and the interaction of each electron with all the nuclei and all the other electrons. In a commonly used method, the atomic orbitals
are replaced by molecular orbitals (MOs). Like atomic orbitals, molecular orbitals are also functions of the coordinates of an (a
single) electron.

  

 
The value of this function (MO) depends on the positions of all the nuclei, which are generally considered fixed for the purpose of
calculating MOs. This is reasonable, since the nuclei are far heavier than the electrons. Before beginning our study on homonuclear
diatomics, let us see how the Schrödinger equation for a molecule looks like. In the following figure, A, B, C and D are the nuclei
and 1,2,3 ….n are electrons.

  

 



                                   

 Fig 7.1 Coordinates of nuclei (A, B, C, D, filled circles, considered to be fixed) and electrons (1,2,3,4,….n, shown as dots) of a
molecule.

  
 The Schrödinger equation is written as H  = E , where (1,2,….n) is the molecular wave function and H is the Hamiltonian

operator. H ( for the molecular system in fig. 7.1) is given by
 

 
  

  

 
Here  is the kinetic energy operator for nucleus X,  is the kinetic energy operator for electron i, riX is the distance between

electron i and nucleus X and rij is the distance between electron i and electron j. Since the nuclei are held fixed, the nuclear kinetic
energy operator terms will be set to zero.

  

 Molecular orbitals of 

 The simplest example of a molecule is H2, which has two nuclei and two electrons. The Hamiltonian for this species is given in the
following equation (7.2) and the coordinates of all the particles are shown in the following figure (fig 7.2)

  

 (7.2a)

  

 (7.2b)

  

 
The hydrogen molecular ion has two nuclei and one electron. The Hamiltonian for this species is given in the following equation

(7.3). Since there is only one electron, the subscript 1 in r 1A can be dropped for convence.

  

 (7.3)

  



 

                                  

      Figure 7.2 The electron coordinates in H2. In the molecular ion  there is only one electron.

  

 

In equation (7.1) it is simplest to treat the nuclei as fixed and so, the kinetic energy terms of the nuclei are not considered. In eq
(7.2) the kinetic energy terms for the nuclei  are not shown. This is known as the Born_Oppenheimer

approximation and helps greatly in simplifying the problem. Equations (7.1) and (7.2) do not have any exact solution. We need to
develop strategies to solve these as accurately as possible. In the present chapter we will develop qualitative ideas of the nature of
the solutions. A few public domain (free) softwares are available for quantitative solutions. The Schrodinger equation for  (a

one electron system) has an exact solution, but that is in the bipolar coordinate system. We will instead consider numerical
solutions here.

  

 
The reason why exact solutions can not be found is that the equation (7.1) and (7.2) can not be split into n independent equations

for n electrons. This is because the terms  can not be separated into n terms containing the variables ri alone. What can

be done is to get n effective one particle equations for the n orbitals, just as we did in the case of atomic orbitals in lecture 6.

  

 

An important  change  that  you  will  notice  in eq (7.1) and (7.2) is that CGS units are used here and the factor of 4 0 used in

earlier chapters is not there. In these units, the charge on an electron is 4.8 * 10 -10 esu (electrostatic unit of charge). The

repulsive force between two charges of 1 esu each separated by 1 cm is 1 erg. For two electrons separated by 1 , the interaction

energy (e 2 /r = e2 / 1 ) is 23.04 x 10 -12 erg.

 

 

In lecture 6, we have seen that an atomic orbital is a function of the coordinates of one electron. A molecular orbital is also a
function of the coordinates of one (a single) electron. The only difference is that since several atoms (more than one) are present
in a molecule, the electron will have different distances from the nuclei at each point in space and the value of the molecular
orbital (MO) will depend on all these distances, eg : r 1A , r 1B , r 1C … for electron 1, r2A , r2B , r2C , …. for electron 2 and so on.
Here r2C, for example, is the distance of electron 2 from nucleus C.

 In  , there is only electron and we will omit the subscript 1 and write the MO for  as a linear combination of atomic orbitals

on A and B.
  

 . (7.4)

 This is a linear combination because the functions occur in the first power. A general linear combination will be
  

 (7.5)

  

 
where is an MO,  are atomic orbitals and ci are coefficients. We only wish to comment that the method is extensively used

and is iterative in nature (ie, guess an initial solution to equations (7.1) or (7.2) and iteratively improve the solution till a
converged final solution is obtained). This is analogous to finding roots (iteratively) of algebraic equations of higher than orders.

  



  7.2 Plots of MOs .

 An MO is a function of the coordinates of an electron. To plot a function of x, y, z, we need a four dimensional plot and this is
clearly not possible. The other simpler options for plotting the MO are:

 

a) Plot contour diagrams (a contour connects the points on which the values of the MO are constant) in two or three dimensions
and indicate the value of the MO on the contour 

b) Plot the values of the MO and the AOs with the inter-nuclear axis taken as the x axis and the values of the function plotted on
the y-axis. and 

c) Show the pixel plots (charge density plots of the squares of the wave function. In such a plot, dense points indicate the regions
where the value of  is large and sparse points correspond to regions wherein the values of  are low.

  

 

In fig 7.3 (a) the contour diagram of the atomic orbitals centered on the atoms A and B is shown in the xy plane. There are two
atoms A and B and for each orbital on atoms A and B, there are two coordinates in the plane, ie, x1A and y1A for the orbital on

atom A and x1B and y1B for the orbital on atom B. We consider the s orbitals, ie e -r1A/a 0 and e –r1B/a0 . The distance from the
centers A and B are r1A and r1B . The z coordinate is not considered since we are plotting the values of the function in the xy
plane.

 

 

 
                 Figure 7.3 (a) Contour diagram of a bonding molecular orbital in H2

+ at rAB = 0.74 

  




                   

 

Fig 7.3(b) Contours of the two atomic orbitals on the two hydrogen atoms A and B are shown for comparision with the molecular
orbital.

  

 
When r (r1A or r2A ) is constant, the s orbital is a circle. On different circles, the values of the orbitals are different and they are

marked as C1 , C2 ….. C8 . For both the AOs, the normalization constant is , where a0 is the Bohr radius, 0.529 . By

estimating the value of r from the plot, you can easily estimate the values C1….C8 .

 

In fig 7.3 (b) the contours of the MO are shown. Eight contours, C1….C8 are shown. We shall illustrate the calculation of the value
of MO on the contour C6 at two points, P2 and P1 . On the x axis we have x1A / a0 and x 1B /a0 and on the y axis, we have y1A

/a0 and y1B /a0 . The coordinates of the nuclei are (-0.7a0, 0) and (0.7a0, 0) or in terms of , they are (-0.37 , 0) for

nucleus A and (0.37 , 0) for nucleus B. The coordinates of point P2 are (-1.4a0 , .6a0 ).

  

 
We need the distance of this point from the nuclei A and B, ie we need r1A and r1B . The values of x1A and y 1A are –0.7a0 and
0.6a0 and the values of x1B and y1B are –2.1a0 and 0.6a0 respectively. For the point P2 , the values of r1A and r1B are

  

 r1A = (0.72 + 0.6 2 ) 1/ 2 a0 = 0.922a0

 

 r1B = ((-2.1) 2 +0.6 2 ) 1/ 2 a0 = 2.184a0 (7.5)

 And the value of  is

 = (e -r1A /a0 + e-r1B /a0 )

     = (3.14 x 0.529 3 ) -1/ 2 -3/2 ( e -0.9 + e –2.3 )
 

     = 0.75 -3/2
(7.6)

 So,Let us verify that the value of on the same contour at the point P1 is also 0.75 -3/2

 In the contours it is seen that the MO looks like the corresponding AOs near the nuclei and far away from the nuclei, it looks the
atomic orbitals of the “whole molecule”.

 Another way to plot the MO is to sketch the values of , and = as functions of r1A and r1B. This sketch is

shown in fig 7.4

 




           

r1A and r1B in units of a0

 Fig 7.4 (a) A comparison of  (red thick line) with  and . (green lines). The values of  (stars) are also shown.

  

 
It is clearly seen that in the region between the nuclei the value of is greater than the sum of and . This feature is the

central theme of chemical bonding, ie, the charge density between the nuclei is different (generally larger) than the sum of the
individual charge densities of the respective atomic orbitals. We will elaborate the meaning of 2 a little latter in this lecture.

  

 
In fig 7.5, the plot of the MO 1 as a function of the x and y coordinates of the plane is shown. The highest value of the function

is 1.83 -3/2 at two points near each of the two nuclei. Can you rationalize why the maximum value occurs at two places?

 

                        

                 Fig 7.5 A 3 -dimensional plot of the MO. The value of 1at the peaks is 1.83 -3/2

 

 
If we view the molecule along the internuclear axis (and not perpendicular the internuclear axis that we have been doing so far),
then the contours are all circular. The MO is often shown as a perspective plot (fig 7.6 (a)) or as an overlap diagram (fig 7.6 (b))
as shown below.




 

                              (7.6a)                                                                                         (7.6b)

                Figure 7.6 (a) Perspective plot of the MO 1. Fig 7.6 (b) The MO - overlap diagram of 1

  

 

We have been considering all along, the behaviour of the MO, [eq (7.4)] which is called a bonding orbital. It is refered to as
bonding because it increases the charge density between the nuclei (relative to separately incremented charge densities of 

and . Another MO, which does the opposite of this MO is called the antibonding MO as it decreases the electron density
between the nuclei (in comparison to the non interacting or independently contributing AOs) and it is defined as

  

 (7.4)

 

Just as in the case of the bonding MO , we can sketch the antibonding MO,  in different ways. We shall show these sketches

in fig 7.7. The contours of  in the xy plane are shown in fig 7.7(a). It is seen that there are two sets of contours separated by a

nodal plane. The value of the wavefunction  in the plane bisecting the two nucleii (represented by the yZ plane containing x =

0) is identically zero. The contours on the right C1 , C2 , C3 and C4 ) have positive values and the contours on the left (C1 ', C2 ',
C3 ' and C'4 ) have negative values. This is an antibonding orbital because the charge density between the nuclei is smaller than

the charge density resulting from the sum of the two non-interacting charge densities, and .

  

 

A three dimensional plot showing  as a function of points in the xy plane is shown in fig 7.7(b). It is seen that near one of the

nuclei (the one on the right)  has a maximum value (because of the maximum in which has a positive sign). Near the

nucleus B,  has a minimum value because  appears with a negative sign in and  has a large value near nucleus B.

The density profile of  is shown in fig 7.7(c)

  

 




       

 
Fig 7.7(a)The contours of the MO  in a plane containing the internuclear axis A and B represent the nuclei. The values of  on

the contours C1, and C3 are 0.85 and 0.37 -3/2. The values on contours C1' and C3' are negative of the values on C1 and C3.

 

                        
  

 
Fig 7.7 (b) A three dimensional plot of the MO  . The value of  on the upper peak is 1.1 -3/2 and on the lower peak, it is -

1.1 -3/2.

  




 

                            
                                           Fig 7.7 (c) The dot profiles of the MO 

 
The calculation of the contours for  is similar to that of  except that there are different signs of contours in different regions.

The plots of  and  involved s orbitals on atoms A and B. We can now use the linear combinations using p orbitals. The four

combinations that can be made are

  

 (7.5)

  

 (7.6)

 

 (7.7)
  

 (7.8)
  

 

In the orbitals  to  (fig 7.3 (b) and fig 7.3 (a) the MOs have cylindrical symmetry. What this means is that if the orbital is

rotated with respect to the internuclear axis, it does not change in shape (or value) at any point. This is analogous to a sphere
which does not change in value (i.e., the value of the function defining the sphere) at any point when it is rotated with respect to
any axis passing through the center of the sphere. The orbitals  to  are called (cylindrical symmetry) orbitals. The bonding

orbitals are and the antibonding ones . In the orbital  and , there is a sideways overlap of orbitals and there is planar

symmetry (with respect to the xz plane). These are referred to as  and  orbitals. Instead of px orbitals we could

have used py orbitals to get the sideways overlap.

  

 The plane of symmetry in this case would have been the yz plane. The molecular axis is usually taken to be the z axis.

  

 The sketches of  to  are shown in fig 7.8 (a) to (c).




 

                      
  

 
Fig 7.8 (a) The  2p MO : (pz)A

(1) + (pz)B
(1) for r AB = 7 a0 (> 4 a0) for the hydrogen p-orbitals. The value of the MO on the

contours C1', C2' , C3' , C5 and C6 are -0.08, -0.03, 0.17, 0.07 and 0.02 -3/ 2 respectively.

  

 

              

 

 
Fig 7.8 (b)  2p MO : (px)A

(1) + (px)B
(1). The values of the MO on the contours C1, C2, C3 and C4 are 0.29, 0.20, 0.12 and .04 

-3/ 2 respectively. The values on the contours Cn' are negative of the values on the contours Cn.

  

                





 

        

y1A/a0 and y1B/a0

                                                       x1A / a0 and x1B / a0

  

 
Fig 7.8 (c) Sigma and pi molecular orbitals.  * 2p MO : (px)A

(1) - (px)B
(1). The values of the MO on the contours C1, C2, C3 and

C4 are 0.05, 0.03, 0.02 and .0.01 -3/ 2 respectively. The values on the contours Cn' are negative of the values of Cn. (Sigma

and pi molecular orbitals).
  

7.3 Electronic configurations

  

 

For atoms, we obtained electronic configurations by writing them as 1s2 2s1, 1s2 2s2 2p5 and so on. The principles used in filing
the orbitals were the aufbau principle and the Pauli exclusion princilple. For MOs too, similar procedure is used with the labels for
MOs being 1 , 2  or , ,  and so on where the subscript indicates the atomic orbitals used in the MO and the integer

on the left is the label or the index of the MO. The electronic configurations of the first and second row diatomics are given in Table
7.1. Also included in the Table are the number of bonding and antibonding electrons in each molecule, the bond order, the binding
energy and the bond length.

  

Diatomic Electronic Configuration No of
bonding
electrons

No of
antibonding
electrons

Bond
Order

Binding
Energy
(eV)

Bond
Length 

  or   1 0 ½ 2.78V 1.06

H2     or    2 0 1 4.74 0.74

   or    2 1 1/2 3.1 1.08



 

He2   or  2 2 0 - -

Li2 [He]2  2 2 0 1 1.1 2.67

Be2 [He]2 2   (2 2 2 0 - -

B2 [Be]2 1 4 2 1 3.0 1.59

C2 [Be]2 1 8 4 2 6.2 1.24

[Be]2 1   3 9 4 2.5 8.73 1.12

N2 [Be]2  1   3 10 4 3.0 9.76 1.09

[Be]2 3  1  (1 10 - 2.5 6.48 1.12

O2 [Be]2 3  1  (1  (2 10 6 2 5.08 1.21

F2 [Be]2 3 1  (1  (2 10 8 1 1.6 1.44

Ne2
[Be]2 3  1  (1  (2 

     (3
10 10 0 - -

 Table 7.1 The electronic configurations, bond lengths and bond energies of the first and the second row diatomics.

 

The subscripts g and u are shown only in the first 3 rows. These indicate inversion symmetry of the MO with respect to the center
of the molecule. Symmetric with respect to this inversion is represented by subscript g and antisymmetric (wavefunction changes
sign when  is replaced by  ) is represented by u. In heteronuclear diatomics, there is no center of symmetry and hence these

subcripts will not appear. Among the and *orbitals in the lower rows, which ones are g and which ones u?
  

 The bond length of a diatomic is the distance between the nuclei when the configuration is most stable. This stability comes about
when the binding energy is most favorable. The binding energy (B.E) is defined as

 

 B.E = energy of diatomic in the most stable configuration – 2 x energy of an
isolated atom (7.9)

  

 
It is seen from the table that the magnitudes of binding energies for single bonds are in the ranges of 1 to 5eV, double bonds
around 5 to 7 eV, triple bonds over 7eV. The bond order is a qualitative measures of the number of bonds between the atoms and
is defined as (No of bonding electrons – No of antibonding electrons) / 2.

  
 7.4 Energy level diagrams.

  
The energy of the MOs of diatomics are shown in the energy level diagrams wherein the energies of AOs are shown at the two ends



 and the energies of the MOs are shown in the middle. Fig 7.9 shows the energy level diagram for the first and second row
diatomics.

  

 

                         
  

 

                                                     

                                   Fig 7.9 (a) The energy level diagrams of the second row diatomics Li2...N2

 

                                        

 

                                                              

                                       Fig 7. 9 (b) The energy level diagrams of the second row diatomics O2 and F2.

 

As expected the energy of the bonding MO lies below the energy of the antibonding MO. Lower or more negative value of energy
implies greater binding or greater stability. It is seen from figure 7.9 that the “aufbau principle” for these diatomics may be stated
as  The ordering in the energies of  and  undergoes a change in O2 and F2

(compared to Li2 , Be2 , …..up to N2) and here we take it as a fact. The reason for the change over is that in O2 and F2 the

difference of the energies between and  is very large so as not to affect them. If these energy levels are very near, these



orbitals(which are of the same symmetry) would repel each other, pushing  to go higher than as in the case of Li2 , Be2 ,

…..up to N2 .

  

 
It is to be noted that these diagrams are for the minimum energy states or the bound states of the diatomics. If the distance
between the atoms change, then the spacings between the MO energy levels also change. Such a diagram, indicating the energy
of the MOs as a function of internuclear distance is given in the following figure

  

 

                                              
                    Fig 7.10 (a)The energies of bonding and antibonding MOs as a function of internuclear separation.
  

 

                          
                   Fig 7.10 (b) Potential energies of H2

+, H2, He2
+, He2 as a function of internuclear separation.

  

 

There are two main observations in this figure 7.10(b). One is that the energies of the MOs are distance dependent and the other is
that as the distance (r) between the nuclei is increased, the difference in the energies of the bonding and antibonding MOs
diminish and vanishes as . At very large r, there is no binding and the energies are simply the energy levels of two
separated non-interacting atoms. In fig 7.10(a) you will notice that the energy of the antibonding MO,  is greater than zero (the
energy of the AO is taken as the reference value of zero) throughout. The reference value of zero is actually the energy of the
atomic orbital (AO). The energy of the bonding orbital is lower than the energy of the AO for all but the very short distances. At
very short distances, the energies of the MOs rise very steeply; far more steeply than 1/r, which is the formula for Coulomb
repulsion between the electrons. The origin of this steep repulsion is not Coulombic, but the Pauli exclusion principle. When
electrons are forced to be very close to one another, there arises a possibility that all the four quantum numbers of two electrons
may be the same. Since this is forbidden by the exclusion principle, and furthermore since the electrons are indistinguishable as





well (ie labeling the electrons as 1234 is no different from labeling them as 1432 since one can not associate any labels with these
“tiny” indistinguishable particles), the energy rises sharply at short distances.

  

 

In Fig 7.10 (b), the potential energies of H2, H2+, He2+ and He2 are shown. He2 does not form a stable molecule at room
temperature, because its bond order is zero. Only at very low temperatures, such clusters like He2, Ar2, or Arn, n > 2) are found.
These are called van der Waals clusters because their binding energy is very small, less than 1 kcal/mol. The species He2+, H2+ do

have bound states with respectable amounts of stabilities. The bond lengths are all near 1 . Similar to the sketch in Fig 7.10(b),
the potential energies of other homonuclear diatomics can be drawn.

  

 

While concluding this lecture, we need to make an important point. Molecular orbitals are approximate constructs. They describe
each electron as moving “independently” of other electrons in an effective field. In reality the motion of all electrons is correlated,
ie the concept of an effective field is unreal as the electrons are moving all the time and the fields can not be averaged and the
instantaneous influence of electrons on one another contributes (about 15%) to the binding energies and bond lengths. A common
way to take into account this feature in the MO framework is through the inclusion of “higher” orbitals for calculating binding
energies. This means that orbitals 2s, 2p, 3s, 3p, 3d and so on also make significant contributions to the binding energy in H2 .
These aspects are of prime concern in the computations of binding energies of molecules and solids.

  
7.5 Problems

  
 7.1)  Write the Hamiltonian for a Li atom and a Li2 molecule.

  
 7.2)  Estimate the value of the MO on the contour C2 of fig 7.3

  
 7.3)  What is the difference between binding energy and bond dissociation energy?

  

 7.4)  Draw a few contours of the bonding MO of H2
+ in planes perpendicular to the internuclear axis. Consider three planes

 a)  A plane bisecting the nuclei,

 b)  A plane containing one of the two nuclei and

 c)  Any plane other than (a) and (b) above. Compute the values of contours by calculating the distances of any point on the
     contour from each of the nuclei.

  

 7.5)  What are the electronic configurations of Li2+ , Li2- , N2
3+ and O2

2- ?

  

 7.6)  Why does He2
+ have a bound state while He2 does not?

         Why is the binding energy of H2 less than that of H2
+ ? Why is the bond length of H2 less than that of H2

+ ? Please note
        the convention: lower value of potential energy implies a stronger bond.

  
 Recap
  In this Lecture you have learnt the following
  
 Summary
  

 

In this lecture, we have defined bonding and antibonding molecular orbitals (MOs) and plotted their contour diagrams, overlap
diagrams, perspective plots as well as their values as a function of distance from the internuclear axis. A MO is a function of the
coordinates of an electron and is a polycentric function. We also learnt how to write the Hamiltonian operator for a molecular
system. Electronic configurations of homonuclear diatomics were described and the symmetries of the MOs were captured in the
symbols  and .

  

 
The potential energy of these diatomics was plotted as a function of distance between the nuclei, and the energies of the MOs
(relative to the energy of the AOs taken as zero) were also plotted as a function of the distance between the nuclei. The sign of
potential energy should be noted with care. The qualitative concept of bond order was invoked to assess the relative strengths of
single and multiple bonds.
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