
 Module 6 :  Reaction Kinetics and Dynamics
 Lecture 29 : Temperature Dependence of Reaction Rates
  
 Objectives

 In this Lecture you will learn to do the following

  

Give examples of temperature dependence of reaction rate constants (k).

Define the activated complex.

Outline Arrhenius theory of temperature dependence of k.

Rationalize the temperature dependence of molecular speeds and molecular energies through appropriate
distribution functions.

Summarize other theories for temperature dependence of k.

  
  29.1 Introduction

 

Temperature dependence of physical and chemical parameters is of great interests to chemists and
predicting correct temperature dependence is a test as well as a challenge for framing suitable theories. In
thermodynamics, temperature dependence of heat capacities and enthalpies was used in calculating
equilibrium constants at different temperatures. The departure of real gas behaviour from the ideal gas
behaviour is expressed through the temperature dependent viral coefficients.

  

 

In chemical kinetics, it was observed that for many reactions, increasing the temperature by 10oC, doubled
the rates. In rate processes, the temperature dependence is quite striking. In this lecture, we will consider
preliminary attempts at explaining this temperature dependence and take up the detailed explanations in
later lectures. A knowledge of the distribution of molecular speeds at a given temperature and the
population of energy levels is essential in understanding the temperature dependent rate processes and
these aspects will also be outlined here.

  

 The most common analysis of temperature dependence of reaction rates over a small temperature range of
a few tens of degrees Celsius has been through the Arrhenius equation given below.

  
 k = A e - Ea / RT (29.1)

 
Where A is the pre exponential factor (commonly referred to as the frequency factor) and Ea is the energy of
activation. The absolute temperature is denoted by T and R is the gas constant. The rationalization of the
Arrhenius equation was given by Van't Hoff, who noted that the equilibrium constant Kc for a reaction like

  

 A + B  C + D (29.2)

 depends on temperature according to the Gibbs Helmholtz equation (lecture 21)

  

 (  ln Kc /  T )p = U0 / R T 2
(29.3)

 Where U0 is the standard internal energy change for the reaction. Since

  



 K c = k 1 / k-1 = { [C] [D] / [A] [B] }eq (29.4)

  

  ln Kc /  T =  ln k1 /  T -  ln k -1 /  T =  U0 / R T 2 = E1 / R T 2 - E -1 / R T 2 (29.5)

 When U0 = E1 - E -1 and the central observation is that the forward and reverse rates are influenced by
different activation energies Eq (29.5) can be split into two separate equations

  

 d ln k1 / d T = E1 / R T 2 and d ln k2 / dt = E-1 / RT2 (29.6)

 and eq (29.6) readily integrates to give the Arrhenius equation for the forward and backward reactions

  
 k1 = A1 e - E 1 / RT , k-1 = A -1 e - E -1 / RT (29.7)

 The activation energies are graphically shown in Fig 29.1

  

 

                         
                             Figure 29.1 Energy as a function of the reaction coordinate (RC).

 

Activation energies for the forward and reverse reactions. The reaction coordinate (RC) represents a variable
or a parameter that changes as we go from reactants to the products. In a reaction like F2  2F, RC is the
distance between the fluorine atoms. Before the reaction, RC = bond distance in F2 and when the reaction is
over, RC = . In a reaction, such as HA + HBHC  HA HB + HC, RC = r BC - r AB.

 In the course of the reaction, RC goes from large negative values to large positive values. The important
region of interest is around the high values of the energy where the reaction "occurs".

  

 
Even though Arrhenius equation seems to imply that A and E are independent of temperature, kineticists
have all along been aware of a more complex temperature dependence. Some of the equations that have
been used are

  
 k = AT m (29.8)

  
 k = A e DT (29.9)

  
 k = AT m e -B / T (29.10)

  
 k = A T m e - (B - D T * T ) / T (29.11)




 The temperature dependence of k in eq (29.11) is determined by the temperature dependence of the three
parameters m, B and D.

  

 
Let us interpret the graph of Fig. 29.1. When the reactants collide in the normal course of their motion, they
do not necessarily react and remain as reactants. Certain collisions which occur with sufficient energy (the
activation energy) to enable the bond breaking (in the reactants) and the bond making (in the products)
steps so that the reaction goes in the forward direction.

  

 

There is a minimum or threshold energy for this process which has been referred to as the activation
energy. This explanation does not imply that all reactions have a positive activation energy. Reactions such
as precipitation reactions seem to occur "instantly", i.e., as soon as the reactants approach one another
within a certain distance, the reaction is complete. These are called diffusion controlled reactions. There are
some reactions for which the activation energy is negative !

  
 Example 1

 The rate constant for the aqueous transformation of thiourea to ammonium thiocyanate is measured at
90oC, 120oC and 130oC. Obtain the Arrhenius parameters for this reaction.

  
 Solution :

 

The values of k and temperature are shown in the first two rows of Table 29.1. The first step is converting
oC into Kelvins. Since ln k = ln A - Ea / RT ( ln = loge ), lnk plotted against 1 / T should yield a straight line
with slope = 
- E a / R and intercept = ln A. If there are departures from Arrhenius like behaviour, the graph will depart
from a straight line. Plot the graph and verify that you get a straight line. Assuming that you have verified
that, let us get values of Ea and A in a simpler way.

  
 Table 29.1 Temperature dependence of k for the reaction thiourea  ammonium thiocyamate.

 

Temp / oC k / s –1 ln ( k / s –1 ) Temp / K { 1/ T} K –1 103 K / T

90 4.53 * 10 - 8 -16.910 363.15 0.00275 2.754

110 59.3 * 10 - 8 - 14.338 383.15 0.00261 2.610

120 197 * 10 -8 -13.137 393.15 0.00254 2.544

130 613 * 10 -8 -12.002 403.15 0.00248 2.480

  
 Let k1 correspond to T 1 = 363.15 K and k2 correspond to T2 = 403.15 K.

  
 ln k2 - ln k1 = +12.002 - 16.910 = - 4.902 (29.12)

  

 = (- Ea / R) ( 1 / T1 - 1 / T2) = -( Ea/ R) (0.002754 - 0.002480) = -0.000274 Ea / R (29.13)

 Taking R as 8.314 J mol -1K -1,

 Ea = 8.314 * 4 . 902 / 0.000274 = 148 * 103 kJ mol. (29.14)

 Substituting the values of Ea in Arrhenius equation, we get the value of A

 ln A = ln k + Ea / RT = - 13.137 + 148 / (8.314 * 393.15)



 = 8.8 * 1013 s -1 (29.15)

  

 Note that when ln of k was taken, k was taken dimensionless (as we are interested in the difference
between ln k values). Ea and RT have to be in the same units in the calculations.

  
  29.2 The Maxwell Boltzmann Distribution of Molecular Speeds

 

We have already commented that molecules have to collide with sufficient speeds so that the reaction
occurs. Where does this sufficient energy come from? At a given temperature, not all molecules have the
same speeds. During intermolecular collisions, these speeds change too. If we represent a molecular velocity
by , it has three independent components x, y and z in the three directions x, y and z. Let us

consider monoatomic gas of molecular mass m. The probability F ( x, y, z) that a given molecule will
have velocity components lying between x and x+ d x, y and y + d y and z and z + d z is
written as

  

 F ( x, y, z ) d  z d  y d  z = f ( x ) f ( y) f ( z) d x d y d z (29.16)

 

F is written as a product of three fs because x, y and z are independent and since nature does not
distinguish between x, y and z (unless directional fields like gravitational or electromagnetic are present),
the form of f is the same in the three directions. Again, since there is no distinction between positive and
negative x, f depends on | x| or x

2. We can rephrase (29.16) as

  

 F( x
2 , y

2 , z
2 ) = f ( x

2 ) f ( y
2 ) f ( z

2 ) (29.17)

 
The only function that satisfies an equation like eq (29.17) is an exponential function since e x * x + y * y + z

* z = e x *x e y * y e z * z and so we conclude that f ( x
2 ) may be written as

  

 f ( x
2 ) = C e   C e (29.18)

 
We take only the negative exponent (C and d are positive) because a positive exponent implies that very
large velocities have very high probabilities. This scenario is highly unlikely. To evaluate C, We invoke the
physical argument that the velocity has to lie somewhere between -  to +  and that the total
probability is one, i.e.,

  

 (29.19)

 The above integral is a standard integral  = 1/ 2 (  / a )1/2. Thus eq (29.19) becomes

  

  d x = C (  / b )1/2. (29.20)

  

 But since we want the right side to be unity, C (  / b) 1 / 2 = 1 or C = ( b / ) 1/2 and

 
(29.21)

 
From a probability distribution such as f ( x), average quantities can be easily determined. The averages of 

x and x
2 are given by

  



 (29.22)

  

 (29.23)

 

In eqs (29.22) and (29.23), averages are denoted by < >. We have also used another standard integral,

 

The integral in eq (29.22) is zero because the value of the integrand for positive x is equal and opposite to
its value at - x and thus the area corresponding to the integral on the left of x = 0 is equal and opposite
in sign to the area on the right. This is a special case of a general result that the integral of the product of
an even function and an odd function of x is zero over a symmetric interval around zero.

  

 To evaluate eq (29.23), we take the help of the kinetic theory of gases. Do look up the derivation. The
pressure of a gas is given in terms of the mean square velocity (speed) as

  

 p = (1/3) (N/ V ) m < 2> (29.24)

 
Where N/ V = number of molecules of the gas / volume = the density of the gas. But N = n N A where n =
number of moles and N A the Avogadro number. Since pV = nRT, we have

  

 pV = (1/3) Nm < 2 > = 1 / 3 n NA m <  2> = nRT (29.25)

  

 <  2> = 3 RT / mNA = 3 k B T / m (29.26)

 
Where kB = R / NA is the Boltzmann constant, 1.38 * 10 -23 J / K. Since <  2> = 3 kB T / m, we have <

x>2 = kBT/ m and substituting this in eq (29.23), we get

  
 b = m / 2 kB T (29.27)

  
 Equations (29.21) and (29.17), now become

 (29.28)

  

 (29.29)

  

 

This is the Maxwell - Boltzmann distribution of molecular speeds. F ( x, y, z) d x, d y, d z gives
the probability of finding an arbitrary molecule with a velocity ( x, y, z) in the corresponding volume
element. A more appealing interpretation of the same is that it is the fraction (of the total molecules) of
molecules having velocities ( x, y, z).

  

 
Analogous to the radial probability distribution, we can now estimate the probability of finding a particle in a
spherical shell of volume 4 2 d . This probability in such a spherical shell is given by



  

 (29.30)

 The plot of this function at two temperature is given in Fig 29.2.

  

 

          
           Fig 29.2 The Maxwell - Boltzmann velocity distribution at low and high temperatures.

  

 
The ordinate gives the probability of finding molecules with velocity  in a spherical shell of radius  in a
unit interval d .

 
Having described the velocity distribution, we can now interpret Arrhenius's equation for temperature
dependence of reaction rates. Only a fraction of collisions are with molecular velocities that correspond to
sufficient energy Ea (activation energy). When the temperature is raised, the fraction of molecules with high
velocities (or large energies) is raised, and so we get a larger value of the rate constant.

  
  29.3 The Boltzmann Distribution of energies

  

 

The dependence of the probability of the earlier section on molecular speed can be re-expressed
alternatively in terms of kinetic energy K.E = 1/ 2 m 2. The probability . The

gas molecules in an ideal gas possess only kinetic energies and the dependence of the probability on  and
on K.E are equivalent. However, in a general case, molecules possess both kinetic and potential energies
(PEs) and the total energy E = K.E + P.E. Boltzmann generalised Maxwell's result for only KEs to include all
energies and the probability distribution for energies, P(E), is called the Boltzmann distribution and is given
by,

  

 (29.31)

 
This also has to be normalized such that the sum of P(E)s for all energies should be 1. Boltzmann, and Gibbs
in particular, developed very general methods for deriving equations such as eq. (29.31) and here, we have
merely stated the equation and given some justification for it.




 
As the energies of all microscopic systems are quantized into levels Ei, we should indeed be looking for the
probability of finding a given system with energy Ei and this is given by

  

 (29.32)

 
The denomination in the above equation is a factor that ensures that  P(Ei) = 1 and it is called the

partition function Q.

  

 (29.33)

 Here,  = 1/ k B T and is called the Boltzmann factor.

 

Once we know the probability distribution for energy, we can calculate thermodynamic properties like the
energy, entropy, free energies and heat capacities, which are all average quantities. To calculate P(E)s we
need the energy levels of a system. The energy "levels" of a system can be built up from the molecular
energy levels and intermolecular forces. We will consider the simpler problem of molecular energy levels
which are pictorially shown in the figure 29.3.

  

 

                      Figure 29.3 Molecular energy levels and the Boltzmann distribution.

  
You have already studied molecular energy levels in the spectroscopy section (Module 3). The electronic




 energy levels are widely separated. In each electronic level, there are several vibrational levels and for each
vibrational level, there are several rotational states. This is a simplified and useful model to start with. The
total energy is a sum of all these energies and is given by

  

 
E total = E electronic + E vibrational + E rotational + E translational + E others (29.34)

 
The term Eothers includes nuclear spin energy levels and interactions between the first four. Assuming the
first four to be independent and neglecting the last term, the molecular partition function (i.e., a sum over
the molecular energy states) is given by

  

 q = (29.34)

  
 or q = q el q  q rot q trans , where  = (29.35)

 The molecular partition q function is written as the product of electronic, vibrational, rotational and
translational partition functions.

  

 

The partition function is a sum over states (of course with the Boltzmann factor  multiplying the energy in
the exponent) and is a number. Larger the value of q, larger the number of states which are available for
the molecular system to occupy. Since Eel > E > Erot > Etrans, there are far too many translational
states available compared to the rotational, vibrational and electronic states. qel is very nearly unity, q 

and qrot are in the range of 1 to 100 while qtrans can be much in excess of 1010. We shall calculate the
values of these qs and indicate how these qs and the molecular velocity distribution functions are useful in
calculating the rate constants.

  
 Example 29.2

 Using the standard formulae for the translational, rotational and vibrational energy levels, calculate the
molecular translational, vibrational and rotational partition functions.

 Solution

 a) The translational partition function, qtrans. 

 
A molecule confined inside a box of length L has the translational energy levels given by Etrans = h2 / 8 mL2

(nx
2 + ny

2 + nz
2 ) where nx, ny and nz are the quantum numbers in the three directions.

  

 (29.36)

  

 qtrans= qx qy qz, the product of translational partition functions in the three directions. (29.37)

  
 Since the levels are very closely spaced, we can replace the sum by an integral

  

 (29.38)

 using eq 29.20, this becomes

 q x = 1/2 (  /a) 1 / 2 = (29.39)

 Multiplying qx, qy and qz, we have, using V = volume of the box = L3



  

 q trans = [ 2 m k B T / h2 ] 3 / 2 V (29.40)

 This is usually a very large number (1020) for volumes of 1 cm3. This means that such a large number of
translational states are accessible for occupation by the molecules of a gas.

  
 b) The rotational energy levels.

 E rot =  J (J + 1 ) where  = h2 / 8  2I (29.41)

 

In the summation, qrot = , we can do an explicit summation if only a few terms

contribute. The factor (2J+1) for each term accounts for the degeneracy of a rotational state J. The partition
function is a sum over states. If energy EJ is degenerate with (2J + 1) states corresponding to it, the
Boltzmann factor  has to be multiplied by (2J+ 1) to account for all these states. If the rotational

energy levels are placed very close to one another, we can integrate similar to what we did in (a) above to
get.

  

 q rot =  (2J + 1) d J (29.42)

 
=  e - a x d x where a =  / kBT and x = J 2 + J, dx = (2J + 1) dJ

  
 q rot = 1/ a = kBT / (29.43)

  
 c) The vibrational energy levels

  = (  +1/2 ) h  where  is the vibrational frequency and  is the vibrational quantum numbers.

 In this case, it is easy to sum the geometric series shown below

  

 (29.44)

 

  ( 1 + x + x2 + x3....)

 [ 1 / (1-x) ] where x  which is less than 1

  

  if the zero of energy scale is at . (29.45)

  
 Example 29.3

 Find the electronic partition of H2 at 300 K.

 Solution

 The lowest electronic energy level of H2 is near - 32 eV and the next level is about 5 eV higher. Taking - 32
eV as the zero (or reference value of energy),

  

 qe = e 0 + e -5 ev / kT + ... (29.46)



 At 300 K, k BT = 0.02eV and qe = 1 + e -200 +...

 Where all terms other than the first are nearly 0. This implies that qe = 1. The physical meaning of this is
that only the ground electronic state is generally accessible at room temperature.

  
 Example 29.4

 Express the partition function (Q) of a collection of N molecules in terms of the molecular partion function q.

 Solution

 Assuming molecules to be independent, the total energy E of molecules is a sum of individual molecular
energies E i and

 

 = q q q q q q q q .................... q   =    q N (29.47)

 
Here  , ....  are energies of individual molecules 1, 2, ................N, and a sum of all Es

can only come from summing over all s. GIbbs postulated that Q = qN / N!.
(29.48)

 The N ! in the denominator is due to the indistinguishability of the tiny molecules (or other quantum particles
in a collection).

  
 Example 29.5

 Show that the average energy <E> of the system above is given by -  ln Q / 

 Solution :

 

In the collection of N molecules, how many molecules (ni) have the energy Ei?This has to be N e  / Q

using eq (29.32). This is because the fraction of molecules ni / N having the energy Ei is e  / Q which

is the same as the probability of finding a molecule with energy Ei in the collection. The average energy is
obtained by multiplying E i with its probability and summing over all i . i.e.,

  

 (29.49)

  

 = (29.50)

  

 

Other thermodynamic functions from the partition function we have already seen that  and that

the average energy . This average energy is not the absolute value (since the

thermodynamic functions U, S, A and G have no absolute value, their value has to be measured with respect
to a standard or a reference value. Let the standard value of U be U(0). Then U is given by

 (29.51)

 

We next obtain entropy. The standard procedure is to use the Boltzmann formula S = kBlnW where W is the
number of ways of achieving a given configuration or a given distribution of energies of molecules. We will
use a shorter path to s by noting that the formula for entropy of mixing, S =  can be

generalized by replacing xis by P is, the probabilities of the states of a distribution.

 (29.52)

 Using (29.53)



 (29.54)

 (29.55)

 (29.56)

 (29.57)

 
Where Q, the partition function for N molecules is written as qN for distinguishable molecules. For
indistinguishable molecules, 

 Rewriting (29.57), we get the Helmholtz free energy.

 

 or (29.58)

 

Just as U is measured relative to U(0), A is measured relative to A(0). As T  0, U(0) = A(0).

To obtain the thermodynamic functions, enthalpy (H) and the Gibbs free energy (G), we need to express

pressure in terms of the partition function. From thermodynamics, we know that . Using this in

eq (29.58), we get

 (29.59)

 Enthalpy  or  or

 (29.60)

  

 Similarly,  or A – A(0) + PV, or

 (29.61)

 For an ideal gas, PV = nRT, (29.62)

 Substituting these values in (29.61), we get

 

 
where N = number of molecules = number of moles  Avogadro number, i.e. . Defining the molar

partition as  in units of mol -1, we have the final expression.

 (29.63)

 
This is a very central expression which is useful for the calculation of equilibrium constants in terms of
partition functions.
Consider the reaction

 (29.64)

 To obtain the equilibrium constant K, we need , the standard free energy change for the reaction,
which is given by

 (29.65)

 Where

 (29.66)

 is the standard molar free energy of A (subscript m refers to molar and superscript 0 refers to the



 standard state of 1 bar pressure). We can write similar relations for  and  and equation (29.65)

becomes

  (29.66)

 We know that at T = 0, U(0) = H(0) = A(0) = G(0) and the first three terms of eq (29.65) can be combined
to give

 (29.67)

 The last three terms of eq (29.66) can be combined and using (29.67) and ,

 (29.68)

 
This is an expression for the equilibrium constant for reaction (29.64) in terms of the partition functions of
reactants and products and the reference values of their energies U0. This can be very easily generalized to
reaction of all stoichiometry.

  
  29.4 Problems

 29.1)The rate constants for the decomposition of acetaldehyde are 0.343 M-1 s -1 and 0.789 M -1 s -1 at 70
K and 81 K respectively. Find the preexponential factor and the activation energy.

  
  
 29.2)Using the following information, find Ea and A ( in M -1 s -1 where M = mol / lit)

 

T in K 300 350 400 450

k /(10 7 M –1 s –1) 0.79 3.0 8.0 17

 At what temperature is the rate constant at 300 K doubled?

  

 29.3)The rate constant for a first order reaction is 4.53 * 10 8 and 5.93 * 10 9 s -1 at 363 K and 383 K
respectively. Find Ea and A (now in s -1).

  

 29.4)Bromination of propanone in acidic medium gave the following data. Find A and Ea.

 

T / K 293 297 300 302

k(10 – 6 M –1 s –1) 1.16 2.02 5.59 8.60

  
 29.5)For the Maxwell - Boltzmann distribution of molecular speeds, at what speed is F( ) maximum?

  

 
29.6)At T = 300 K, for what  (  = max) is F (  ) maximum? What should be the increase in T so that
the new F ( max) ( at the higher T) has half the value of F ( max) at 300 K?

  
29.7)The ground state of Na is a doublet (two states with the same energy). Assuming this to be the zero of



 energy and assuming that the next higher energy to be 2 e V higher than this state, calculate q e

  

 
29.8)The bond length e of O2 is 1.2 . The moment of inertia I is m r 2e / 2 where m of O is 16 * 1.66 *

10 -27kg. Calculate B and the rotational partition function at 300 K.

  

 29.9)The vibrational frequency of ICl is 384 cm -1 . What is its vibrational partition function at 300 K ? What
is the fraction of molecules in the ground state (  = 0) and the first excited state  = 1?

  

 29.10)Calculate the translational partition function of N2 at 300 K. For volume, use the molar volume at 300
K.

  
 Recap

 In this Lecture you have learnt the following.

  
 Summary

 

In the present lecture, the temperature dependence of reaction rates was the focus of interest. Arrhenius
equation accounted for the increase in reaction rates with increasing temperature with considerable success.
It postulated an energy of activation which was the minimum energy needed for the reactants to cross over
to the products. Temperature dependence of reaction rates was used to estimate the activation energy using
the Arrhenius plot.

  

 

The reaction coordinate is a parameter or an indicator indicating the extent of passage from the reactant to
the product. Since the activation energy plays a critical role in reaction rates ( except in diffusion limited
reactions where in just bringing the reactants " close to one another" completes the reaction) we need to
find out where this "extra" energy comes from. Additional energy may either come from collisions with
molecules with great speeds or from some of the molecules which have excess internal energy which can be
transferred to the reacting molecules. This led us naturally to the velocity distribution and energy
distribution among molecules. We presented approximate derivations of the Maxwell Boltzmann distribution
of molecular speeds and the Boltzmann distribution of energies.

  

 

The energy distributions are expressed in terms of partition functions which measure the number of
available states with each state i weighted by the Boltzmann factor, exp ( - Ei / kB T). Since the total
molecular energy can be written as a sum over electronic, vibrational, rotational and translation energies,
the total partition function was expressed as the product of electronic, rotational, vibrational and
translational partition functions. Separate expressions were obtained for these partition functions; their
estimates were given and the partition function for a collection of molecules and the average energy of a
system was obtained in terms of molecular partition functions.
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