
 Module 4 : Solid State Chemistry
Lecture 17 : Closed Packed Structures

  
 Objectives
 In this lecture, you will learn the following

The packing fraction.

Evaluation of the packing fractions in simple cubic, FCC and BCC lattices.

Estimate of the critical radius ratios for spherical particles that can be inserted in the holes of the lattice
structures.

Examples to illustrate radius ratios.

  
  17.1 Introduction

 
We are all too familiar with the ideas of packing, whether we go on a trip or when we move from one house
to another. Nature too uses the principles of efficiency and economy in its myriad forms of close packed
structures. We will illustrate these principles with spherical objects for simplicity. For non spherical objects
too, packing is governed by the "sizes" of objects and the intermolecular forces.

  

 Close packed Structures

 

Consider a single horizontal line of touching hard spheres. When we want to place the next layer below it, the
second layer has to be shifted by one radius so that it can closely fit into the "gaps" provided between every
two adjacent spheres of the first layer. The next lower layer, i.e., the third layer is now parallel to the first
layer and uses the gaps below the second layer. This is the closed packed arrangement in a plane. (If all the
three layers were exactly parallel to one another without a lateral shift, the packing would have been short of
closest packing, and this would correspond to a simple cubic lattice).

 

To get three dimensional structures, we need to place a plane of spheres (similar to the original plane) such
that each sphere rests on the cavities formed in the first plane of spheres (this is to ensure closest packing;
you may convince yourself of this by using marbles or ping pong balls). Let us label the second layer as the b
layer and the first as the a layer. The third layer of atoms can now be exactly on top of the first layer giving
an arrangement like ababab-----or it can be placed at cavities labeled c, giving an arrangement
abcabcabc...... the first arrangement (abab...) is the hexagonal closest packed (HCP) structure and the
second arrangement is the cubic closest packed structure (CCP) which is identical to a face centered cubic
(FCC) Lattice. This is illustrated in the picture below (figures 17.1and 17.2).

  

 




   
  

 

                                     Figure 17.1 Packing arrangements in a plane.

  

 The location of sites a, b, and c is shown in Fig 17.1 and the packing according to HCP mode is shown in Fig
17.2.

 a)

 

           
                                  ababab (HCP)                                                 abcabc (CCP)
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Figure 17.2 (a) Three layers of spheres showing HCP (i.e., abab layers) arrangement. Notice that the C layers
are not occupied here. This figure is shown in flash mode and static mode. (b) Three layers of spheres
showing FCC ( CCP ) (i.e., abcabc layers) arrangement. Notice that the C layers are occupied here, (c) FCC
(abc layers) arrangement.

  

 
The abc packing is identical to FCC packing and we have already seen FCC structures in the previous lecture.
You should actually use ping pong balls to construct abcabc layer structures and convince yourself that this is




FCC. No amount of explanation or visualization on the screen is equal or equivalent to a hands on experience.
  

 

Before we consider the calculation of packing fractions in these structures, let us consider what kind of voids
or holes can be created in the above packing process. On the first layer of (three) spheres, when a single
sphere is placed, it creates a tetrahedral hole near the location of the base of this (fourth) sphere. The center
of the tetrahedral hole is midway between the two layers a and b and the tetrahedral hole is equidistant from
these four spheres.

  

 The tetrahedral hole is shown in Figure 17.3.

 a)

 

                
  

 b)

 





               
          Figure 17.3( a) Tetrahedral and octahedral sites (holes). b) Tetrahedral holes.

  

 
When two more spheres are placed adjacent to the single sphere placed in layer b, the central point between
these six spheres (3 from layer a and 3 from layer b) is referred to as an octahedral hole and is shown in
figure 17.4

 a)

 

                                          

 b)

 




                   
                                    Figure 17.4 Octarahedral holes.  

  

 There is an upper limit to the size of the sphere that can be placed in these holes and we will take this up
after calculating the packing fraction.

  
 17.2  Packing Fraction

  

 
When spheres are placed in any kind of arrangement, they can not occupy the whole space because some
voids such as the one created between three spheres touching one another are unavoidable. The ratio of the
volume occupied by the spheres to the total volume available is called the packing fraction. The highest
packing fraction possible is for the ababab or the abcabc packing described earlier.

  

 
Let us consider the packing fraction of a simple cubic lattice first. In this structure, the packing is neither
ababab nor abcabc but it is aaaaaa. Eight spheres at the corners of a cube constitute the unit cell whose edge
length is equal to the diameter of the sphere.

  

 




           
         Figure 17.5 Packing fraction in a) simple cubic lattice, b) BCC lattice and c) FCC lattice.

  

 If r is the radius of each sphere, the volume of each sphere is 4  r 3 / 3. Since 1/ 8th volume of each of the
eight spheres is inside the cube of edge length 2r, the packing fraction, n is

  

  = 

     = 4  / 24 =  / 6 = 0.5236                                                                 (17.1)

  

 This means that in a simple cubic lattice, 52.36 % volume is occupied by the spheres. In the void space
available, other spheres of smaller radii can easily be fitted, resulting in a much higher packing fraction.

  

 Consider the packing fraction in a body centered cubic lattice. In this lattice, if the radius of the spheres is r,
then the body diagonal of the BCC unit cell is 4 r and therefore the edge length l is

  

 ( 4r )2 = l 2 + l 2 + l 2 or l = ( 4 /  ) r       

                                         = 2.309 r

  

  =                                                                         (17.3)

  

 
In the case of an FCC lattice, the face diagonal = 4r (See Fig 17.5 (c)), and therefore, the edge length l = 4r /

 . The number of spheres in the FCC unit cell is 4 and hence the packing fraction in the FCC lattice (closest
packed) is

  

                                                          (17.4)

  

 
The highest packing fraction possible is 74.04 % and this is for the FCC lattice. The same value of packing
fraction is for the HCP structure as well, which only differs from FCC in that the location of the third layer is
different (ababab), but the number of atoms in a given volume is identical in FCC and HCP.

  
17.3 Critical Radius Ratios:

  

 
We have made a passing mention in the earlier section by placing atoms or ions in the voids or holes
generated during triangular, tetrahedral, octahedral or cubic as shown in Fig 17.6. We shall now calculate the
critical radius ratios (i.e., the ratio of the radius of the largest sphere that can be fitted in the holes to the
radius of the spheres that have generated the hole) for the various coordinations that are possible.

  

 The case of triangular coordination is shown in Fig 17.6(a)

  



 

                   
  

 

             
   Figure 17.6 (a) Triangular Coordination , b) Tetrahedral coordination and c) Cubic coordination.

  

 Let r be the radius of the smaller inner sphere and let R be the radius of the outer sphere. Then,

 R / ( R +r ) = cos ( 30o ) = 0.866                                                          (17.5)
  

 and the critical radius ratio r / R = 0.155                                             (17.6)

 
For tetrahedral coordination, two spheres of radius R and the smaller one of radius r are shown in fig 17.6 (b).
The other two spheres of radius R lie above and below the plane of the figure, with the four spheres of radius
R equidistant from the central point O. 

 The tetrahedral angle is 109o 28' and is indicated in Fig 17.6 (b)
  





  = 90 - (109o 28')/2 = 35 o16'                                                          (17.7)

  

 and cos ( 35o 16' ) = R / ( R + r )                                                         (17.8)
  

 r/ R = 0.255                                                                                         (17.9)

 The case of octahedral coordination is shown in Fig 17.6 ( c ). In this case,

  

 cos 45o = R / ( r + R ) and r / R = 0.414                                              (17.10)

 

In this manner, we can evaluate the critical radius ratios for all other coordinations. In Table 17.1, examples
for different radius ratios have been given. In ionic crystals cations and anions pack as closely as possible to
maximize the Coulombic interaction. Anions always remain farther than what their ionic radii would permit
and the cations try to be surrounded by as many anions as possible around them within the permitted radius
ratios. For example, if the radius ratio is 0.35, octahedral coordination is ruled out, because, for closest
packing, the anions have to be closer than that permitted by the sum of their radii and hence tetrahedral
coordination prevails.

  

 

Range of
Radius Ratios Geometries Coordination

numbers
Examples of
solids

Central
Cation

0  0.155 linear 2 HF H+

0.155 
0.225

triangular 3 BO3 B3+

0.225 
0.414

tetrahedral 4 SiO2 Si4+

0.414 
0.712

octahedral 6 MgO2 Mg2+

0.712  1 cubic 8 CsCl Cs+

                             Table 17.1 Radius ratios, geometries and coordination numbers.

  
17.4 Defects in Solids:

 

At non-zero temperatures, there is hardly a perfect solid and imperfections or defects in solids not only exist,
but also play a crucial role in the dynamics of atoms in crystals as well as catalysis. The defects include
vacancies, substitutional impurities, interstitial impurities, self interstitial dislocation, edge dislocations and
grain boundaries. Some of these examples are shown in Fig 17.7. If E is the energy required to create one
impurity or vacancy, then the fraction of vacancies or impurities ( f ) is given by

  

 f = Nv / N = e - E / RT                                                                     (17.11)

  

 

Among point defects we have vacancies ( atom or ion missing from the site ), substitutional impurities (one
site in the lattice substituted by a "foreign" site, which is not a part of the crystal), self interstitial site (a
particle moving to a site which is not the usual site of particle in the lattice ) and an interstitial impurity (a
foreign particle sitting in an interstitial position). All these defects are shown in Fig 17.7(a). In ionic lattices,
the above imperfections can be reclassified as a Frenkel defect (an ion moving from a regular site to an
alternative site), a Schottky defect ( a missing anion - cation pair ) and an F - center ( an electron in place of
a negative charge ). These are shown in Fig 17.7(b). Other more complex defects are edge dislocations ( rows
of atoms missing from a layer) and grain boundaries ( boundaries along which there are a collection of
defects ). When a crystal is placed under a shearing stress, the motion is around the dislocations. When a
lattice dissolves, the "dissolution" starts near dislocations or grain boundaries. Defects play major role in
conductivity, reactivity and catalysis by permitting greater mobility and reactivity at these active sites.

  



 

              
                                                                          Figure 17.7 (a)

 

               
                                                                      Figure 17.7 (b)

 

               
                                                                    Figure 17.7 (c)

  






17.5 Problems

  

 
17.1) For the tetragonal ( four spheres whose centers coincide with the corners of a square and which are

such that each sphere is touching two adjacent spheres ) and pentagonal coordination, estimate the
critical radius ratios for the spheres that can be accommodated in the void space available. Treat the
problem as a planar problem as this is much simpler .

   

 17.2) We have given a few examples of triangular, cubic and other coordinations. From web-sites / literature,
give another distinct example for each one of these coordinations.

   

 17.3) When we go from planar to non - planar coordination in exercise 17.1 above, does the critical radius
ratio increase or decrease ?

   

 17.4) Find the critical radius ratio for cubic coordination.

  
 Recap

 In this lecture you have learnt the following

 Summary

 

In this lecture, we have studied the closest packing of spheres. Layerwise packing of ababab type gives the
hexagonal close packing (HCP) arrangement, while abcabc type of layerwise packing gives the cubic closest
packing which is equivalent to the face centered cubic (FCC) packing. In both these arrangements, the
packing fraction is 74 % and is the highest possible value for spheres. For body centered cubic and simple
cubic packing, the packing fraction is smaller. We have also estimated the sizes of the largest spheres
(critical radius ratios) that can be accommodated in the various coordination schemes that can be generated
with spheres and given examples for systems that fall in each one of these categories. Towards the end of
the lecture we have also described in brief the nature of impurities and imperfections in solids and also their
role in catalysis and the dynamics of particles in lattices. At high temperatures the lattice develops defects or
impurities and the fraction of the defect sites can be calculated using the Boltzmann distribution.
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