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Summary of Lecture 5: 

· Equivalence classes defined via cosets:
○ Proof that it is an equivalence relation
○ The nature of the equivalence class E_b=Hb 
○ Examples:

□  integers modulo 6 and even subset
□ Even parity check code

○ Elements in different cosets can be placed in 1-1 
correspondence

· Rings and  Fields 
○ Axioms of a ring
○ Ring with identity
○ Commutative ring
○ Integral domain 
○ Division ring 
○ Examples: where do we place them ? 



Lecture 6:  Vector Spaces, Linear Independence and Basis 

·Rings and  Fields 
○ Examples: where do we place them ? 

  Vector Spaces
○ Axioms
○ Examples
○ Derived properties

· Subspaces
○ Definition
○ Example 1: plane in R^3
○ Test for a subspace
○ Further examples: repetition code and spc code

· Definition of a linear code
○ Show how the test applies to the Hamming code (nullspace 

          of a matrix) 
○ Point out that as far as subsets of F_2^n are concerned,  



































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































NPTEL: Error-Correcting Codes
Exercises

P. Vijay Kumar
Indian Institute of Science

Basics of Block Codes

1. What is the smallest possible minimum distance of a block code of length n that can
correct 2 errors and detect 5 errors ? If used only for error-detection, what is the
maximum number of errors that the code can detect ?

2. A ternary code C is a code whose symbol alphabet is the set {0, 1, 2}, i.e., C is a subset
of {0, 1, 2}n. Even in {0, 1, 2}n, the definitions of Hamming weight and Hamming
distance remain as in the binary case. In the binary case, a code is a (td, tc) code iff

dmin ≥ td + tc + 1. (1)

Is this also true in the ternary case ? (The definition of a (td, tc) code remains as in
the binary case.) Justify your answer.

Mathematical Preliminaries

3. Prove that if G is an Abelian group under the operation + and H is a finite subset of
G, then H is a subgroup of G if and only if

a+ b ∈ H whenever a ∈ H and b ∈ H.

Hint: Associativity and commutativity carry over to any subset. If a ∈ H consider the
list {la | 0 ≤ l, l an integer } (la is a the sum of l copies of a). There are only a finite
number of distinct elements in this list as H is finite. Thus l1a = l2a for some distinct
integers l1, l2. From this you should be able to conclude the existence of the identity
element and of the inverse.

4. Consider the group
G = Z4

2 = { all binary 4 tuples }
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Let H be the subgroup

H = {[0 0 0 0], [1 1 0 0], [1 1 1 1], [0 0 1 1].

Define two elements a, b ∈ G of G to be equivalent, written, a ≡ b if a + b ∈ H. For
example,

[1 0 0 0] ≡ [0 1 0 0],

since
[1 0 0 0] + [0 1 0 0] = [1 1 0 0] ∈ H.

This equivalence relation allows G to be partitioned into 4 subsets of size 4 called
equivalence classes where all the 4 elements within a subset are equivalent. Identify
the four equivalence classes and the elements that they contain.

5. Provide as best an algebraic characterization as you can (i.e., specify if it is a group, a
ring, a field, a vector space, etc) of the set

S = {
2∑

i=2

aiz
i | ai ∈ F2}

endowed with the addition operation

2∑

i=0

aiz
i +

2∑

i=0

biz
i =

2∑

i=0

ciz
i

where ci = ai + bi (mod 2) and with multiplication given by

2∑

i=0

aiz
i

2∑

i=0

biz
i =

2∑

i,j=0

aibiz
i⊕j

where i⊕ j := i+ j (mod 3).

6. If G is a non-Abelian group having subgroup H, and if for g1, g2 ∈ G, we define g1 ∼ g2

iff g−1
2 g1 ∈ H, does this represent an equivalence relation. Justify your answer.

7. Identify coset representatives for the cosets of the subgroup

H = {a0 + a2x
2 | a0, a2 ∈ F2}

of the group

G = {
3∑

i=0

aix
i | ai ∈ F2}.
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Linear Codes

8. Consider decoding of the length n = 7 repetition code using two methods:

(a) using bounded distance decoding (BDD) with dmin = 7

(b) maximum likelihood decoding (MLD) assuming that the channel is a binary sym-
metric channel having crossover probability ε < 1

2

Is there a difference between the two methods when applied to this code ? Explain
your answer.

9. Write down a parity-check (p.c.) matrix for the binary linear code C whose generator
matrix is given by

G =




1 1 1 0 0
1 1 0 1 0
1 0 0 0 1


 .

10. Identify a [4, 2] linear code C such that C⊥ is C itself, i.e., such that the code and its
dual are one and the same. Such codes are called self-dual codes.

11. For the purposes of this problem, let us define a linear [n, k] block code C to be system-
atic if there exists a generator matrix for the code such that when the code is encoded
using that generator matrix, the first k code symbols (c0, c1, · · · , ck−1) are precisely
the k message symbols, (m0, m1, · · · , mk−1).

Under this definition, is the linear block code C having generator matrix

G =




1 1 0 1 1 1 1
0 1 1 0 1 1 0
1 0 1 0 0 1 1
1 0 1 1 1 0 1




a systematic code ?

Justify your answer in a few words. Show all your working.

12. Consider the linear block code C having generator matrix given by

G =




1 0 0 1 1 1
0 1 1 0 1 1
0 1 0 0 0 0


 .

(a) What is the minimum distance of C ? Explain how you obtained your answer.

(b) What is the minimum distance of the dual code C⊥ ? Again, explain how you
obtained your answer.
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13. Determine the minimum distance dmin of the [7, 3] linear block code C having parity-
check matrix

H =




1 0 0 0 1 1 1
0 1 0 0 1 1 0
0 0 1 0 0 1 1
0 0 0 1 1 0 1


 .

Explain your reasoning and show all your working.

14. Show that the repetition code and the parity-check code are the only possible MDS
codes of length n = 7. (Hint: Start by attempting to construct an [n, k] MDS code by
attempting to build up a parity-check matrix H for the code, one column at a time.
Keep in mind that the parity-check matrix has n− k rows and it is required that any
n− k columns of H be linearly independent. ) Note: The same proof carries over to
any length n. However, you are only required to do the case n = 7.

15. Use cosets of the linear block code C having parameters [5, 2] and generator matrix:

G =

[
0 1 1 1 0
1 0 1 0 1

]
.

to partition the set F 5
2 , i.e., identify all cosets of C.

16. A linear block code C is used to accomplish error-correction over a Binary Symmetric
Channel (BSC) with cross-over probability ε. The standard array is used to carry out
maximum-likelihood decoding (MLD) of the code. Then the probability of codeword
error Pwe can be determined

(a) just from knowing the weight distribution of the code

(b) just from knowing the list of all coset leaders,

(c) only if both the weight distribution of the code and the list of coset leaders is
known

(d) only if the entire standard array is provided.

Identify the most appropriate answer(s).

17. Use the Hamming bound to determine an upper limit to the size of a binary block code
of length n = 15 and minimum distance dmin = 7.

18. Consider the linear block code of length 5 and dimension 2 with the following generator
matrix

G =

[
1 0 1 1 0
0 1 1 0 1

]
.
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(a) Choose as coset leaders the zero vector, all 5-tuples with weight 1 and {00011, 10001}.
Construct the standard array together with syndromes for complete decoding.
(The first row in this table should list the codewords and the first column to
the left should contain all the coset leaders. The last column should list the
corresponding syndromes. )

(b) Given that the received vector

r = [1 1 1 0 1]t,

what is the decoded codeword ? What is the residual error ? How many message
bits are in error ? You may assume that the transmitted codeword is the all-zero
codeword.

Repeat for the case
r = [1 1 0 0 0]t.

Again, you may assume that the transmitted codeword is the all-zero codeword.

(c) When the code is used only for the purposes for correcting error, what is the
probability Pwe of codeword error when the crossover probability of the BSC is
ε = 10−4 ?

(d) On the same channel as in the previous problem, what is the probability of un-
detected error if the code is used solely for the purposes of error detection ?

(e) With systematic encoding, the codeword corresponding to the message vector
[m0, m1], is given by [m0, m1, p0, p1, p2]. On the same channel as in the
previous problem, what is the probability that the first message symbol will be
in error if the code is used solely for the purpose of error correction ?

(f) On the same channel as in the previous problem, what is the probability that
of the two message bits [m0, m1], only the second message bit m1 is decoded
incorrectly ?

19. Let C be an [n, k, d] linear code having (k × n) generator matrix G. Prove that any
collection of n−d+1 columns selected from the n columns of G is a linearly independent
set.

20. The covering radius of a linear [n, k] code C is the smallest integer ρ such that for any
x ∈ Fn2 , there exists a codeword c ∈ C such that

dH(c, x) ≤ ρ.

(a) How would you determine ρ from a standard array decoding table of the code ?

(b) How would you determine ρ from inspection of the parity-check matrix H of the
code ?

(c) What is the covering radius of the [7, 4, 3] Hamming code ?

21. Derive the analogue of the Hamming bound as it applied to ternary codes, i.e., to codes
having the ternary alphabet {0, 1, 2}.
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Convolutional Codes

22. In the field of of formal power series F2[[D]], find the first 7 terms in the power-series
expansion of

(a) 1
1+D2

(b) D
1+D+D2

(c) D2

1+D2+D5

23. Determine whether the convolutional codes encoded using the G(D) below given below
are catastrophic. If so, find an infinite weight input sequence that generates a codeword
of finite weight.

(a) G(D) = [1 +D +D3, 1 +D +D2, 1 +D2 +D3].

(b) G(D) = [1 +D3, 1 +D +D2 +D4, 1 +D2 +D3 +D4].

Hint: The irreducible polynomials of degree ≤ 3 over GF (2) are listed below:

degree 1: D, 1 +D
degree 2: 1 +D +D2

degree 3: 1 +D +D3, 1 +D2 +D3 .

24. Consider the rate 1/2 convolutional code with

G(D) = [1 +D +D2 1 +D2].

(a) Draw a complete trellis diagram up to node level 6 (beginning at node level 0).
Label all branches with code symbols.

(b) Use the trellis to determine the free distance dfree of the code.

(c) If the received sequence (across a BSC) is

r = (01 00 01 00 00 00 . . . ...)

find (the information sequences associated to) all survivors at node level 6.

(d) If the received sequence (across an AWGN channel) is

r = (4 − 1 − 3 2 6 − 5 2 4 5 3 5 5 . . . ...)

find (the information sequences associated to) all survivors at node level 6.

25. Consider a rate 1/3 convolutional code with

G(D) = [1 +D 1 +D2 1 +D +D2].

(a) Draw the state diagram for the encoder.
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(b) Compute the generating function AF (L = 1, D, I)

(c) Use this generating functon to determine the free distance dfree of the code.

26. Will the choice of generator matrix,

G(D) =
[

1 +D +D2 +D3, 1 +D2 +D3 +D5, 1 +D4
]
,

cause the associated convolutional code C to exhibit catastrophic error propagation ?

Explain fully your answer.

27. This question pertain to convolutional codes of rate 1
n
, with m memory elements in the

encoder that are required to encode a given set of N message symbols {ui}N−1
i=0 that

are i.i.d, and equally likely to be 0 or 1. Under the conventional encoding of message
symbols using a terminated convolutional code, the convolutional encoder is forced to
begin and end at the all-zero state. In encoding using a “tail-biting” however, the only
restriction that is placed is that the encoder is required to begin and end at the same
state, but this state could be any of the possible encoder states. Derive an expression
for the exact rate of the convolutional code when operated in tail-biting fashion. [Hint:
How many code symbols does the tail-biting convolutional encoder need to transmit ?]

The Generalized Distributive Law

28. Consider the “min-star” semi-ring ((−∞,∞], min∗, +) in which the min∗ operation
is given by:

∗
min(x, y) := −ln(e−x + e−y).

(a) Identify the identity element under the min-star operation

(b) Verify that the distributive law holds.

29. Consider the single parity-check code of length 3 having parity check matrix H =
[1 1 1]. Thus vT = [v1, v2, v3] is a codeword if and only if Hv = 0. In a
certain instance, when communicating over a binary symmetric channel (BSC) having
crossover probability ε < 0.5, the received vector was found to be

yT = [0 1 0].

Use the GDL to carry out ML code-symbol decoding of this code. Show all intermediate
steps

(a) the formulation as an MPF problem

(b) the junction tree

(c) the message-passing schedule and the messages passed
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(d) the result of decoding

30. Consider the rate 1
2

convolutional code having polynomial generator matrix

G(D) = [1, 1 +D].

On a certain transmission, two message symbols u0 and u1 were encoded using the
code and then transmitted across a binary symmetric channel (BSC) having crossover
probability ε < 1

2
. The corresponding received symbols were

yT = [01 01].

Use the GDL and the junction tree shown below to carry out maximum aposteriori
(MAP) decoding of ONLY the message bit u1. (Note that the encoder is NOT returned
to the all-zero state, i.e., there are no tail bits inserted into the message stream).

Show ALL intermediate steps and all your working clearly.

S0

U0, S0, S1 U1, S1U0, S0

U0 U1

Figure 1: Junction Tree associated to the convolutional code.

31. Write down the distributive law as it applies to the semi-rings numbered 5,6,8,9 in
Table I of the “GDL paper” (the paper by Aji and McEliece).

32. Read Example 2.2 of the “GDL paper” and determine the savings in computation
between using the brute force approach to computing the 8 transform coefficients
F (x1, x2, x3) and the approach that makes intelligent use of the distributive law.

33. Consider the rate 1/2 convolutional code with

G(D) = [1 +D +D2 1 +D2].

If the received sequence (across a discrete memoryless AWGN channel) is

r = (4 − 1 − 3 2 6 − 5),
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use the GDL algorithm to implement minimum probability of bit error decoding of the
message bits u0, u1, u2. Show all your working including the graphs that you use and
the message passing schedule.

34. Consider decoding the [7, 4, 2] linear block code for the case when the received vector
across a binary symmetric channel with crossover probability ε << 1, is the vector

y = [1 0 0 0 0 0 0 ]T .

Use the GDL to make decisions based on maximizing the aposteriori probabilities

p(ui/y)

of the code symbols ui, i = 1, 2, 3, 4, 5, 6, 7 .

35. Verify that the min∗ sum semi-ring is in fact a semi-ring, starting from the defintion
of the min∗ operation:

min∗(x, y) = min{x, y} − ln(1 + e−|y−x|) = −ln(e−x + e−y).

Identify the underlying set and the identity element under the min∗ operation.

36. Set up a schedule for computing the objective function at vertex W for Example 2.4
of the GDL paper. Draw the corresponding message trellis.

37. Write down the distributive law as it applies to the semi-rings numbered 9,10 in Table
I of the “GDL paper” (by Aji and McEliece).

38. Set up an efficient message-passing schedule for computing the objective function at
vertex W for Example 2.4 of the GDL paper, i.e., identify the sequence in which you
would pass messages.

39. In the computation:

β(x3) =
∑

x1, x2, x4, x5

f(x1)g(x2)h(x1, x2, x3)p(x3, x4)q(x3, x5),

all the variables xi, i = 1, 2, 3, 4, 5 take on values from an alphabet A of size | A |= q. If
you were to reorganize this expression to minimize the number of operations (additions
and multiplications), how would you do it and how many operations would you end
up needing ?

40. Consider the problem of computing

F (x1) =
9∑

x2=0

9∑

x3=0

9∑

x4=0

f(x2, x3, x4)g(x3, x4)h(x1, x2, x4).

The functions f(·), g(·),h(·), are all real-valued functions.
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(a) It is desired to pose this problem as a marginalize a product function problem.
Identify the corresponding universal set, the corresponding local domains and the
local and global kernels.

(b) Organize if possible these local domains into a junction tree. Make clear all your
working.

41. Consider maximum-likelihood code-symbol decoding of the binary block code having
parity check matrix H given by

H =




1 1 0 1 0 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


 .

Thus all codewords c = [c1, c2, c3, c4, c5, c6, c7]
T , satisfy Hc = 0. The decoding problem

when posed as an marginalize-a-product function problem, leads to the graph shown in
Fig. 2. Use the distributive law in conjunction with this graph, to efficiently compute
the probabilities Pr(c4 = 0/r) and Pr(c4 = 1/r) where the received vector r is given
by r = [1111111]T . You may assume that the channel is a binary symmetric channel
(BSC) having crossover probability 0 < ε << 1.

A suggested approximation In your computations, you will run into expressions
of the form

aiε
i + ai+1ε

i+1 + ai+2ε
i+2 + · · · + ai+kε

i+k,

where i ≥ 0, k ≥ 0 and the ai are integers ≤ 10. It is suggested that whenever you
encounter such an expression, you make the approximation

aiε
i + ai+1ε

i+1 + ai+2ε
i+2 + · · · + ai+kε

i+k ≈ aiε
i.

42. Consider the joint probability function

p({ui}3i=0, {si}4i=0, {yi}3i=0) = p(s0)
3∏

i=0

p(ui)p(si+1/si, ui)p(yi/si, ui)

associated with a convolutional code. As in class the {ui ∈ {0, 1}} represent the binary
message symbols, the {si} is the state sequence and {yi} are the received symbols.
Consider the problem of maximum-likelihood code-symbol decoding of this code, i.e.,
of computing p(uk/{yi}3i=0), 0 ≤ k ≤ 3.

(a) Present this as an MPF problem,

(b) organize the local domains into a junction tree

(c) show that message passing can be organized into a forward wave and a backward
wave and that the forward wave is in essence, a sequence of matrix multiplications

Note: It is NOT necessary to do anything beyond what is asked above!
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Figure 13: Example of junction tree.

corresponding to the local domains {1, 2, 4}, {3, 4, 6}, and {4, 5, 7}, respectively. Fig. 13
shows the local domains organized into a junction tree. We are interested here in computing
the objective functions at all vertices Vi, i = 1, . . . , 7. With regard to the message schedule,
we will adopt an inward-outward schedule in which the outlying vertices send their messages
inward first. Once the innermost vertex V4 has acquired knowledge of all the local kernels,
the outward phase of message passing begins. The validity of this message schedule can be
verified with the aid of a message trellis if desired. The messages passed are as follows:

Phase 1

µ1,A(S1) = α1(x1) ⇒ µ
1,A

:=

[
µ 1,A(0)
µ1,A(1)

]
=

[
1
θ

]
= µ

6,B
= µ

7,C
. (119)

Similarly,

µ
2,A

=

[
θ
1

]
= µ

3,B
= µ

5,C
. (120)

Phase 2
µA,4(x4) =

∑

x1,x2

µ1,A(x1)µ2,A(x2)χA (x1, x2, x4) . (121)

Since χA(x1 + x2 + x4) = 0 for x4 6= x1 + x2, we have

µA,4(0) =
∑

x1+x2=0

µ1,A(x1)µ2,A(x2) = µ1,A(0)µ2,A(0) + µ1,A(1)µ2,A(1) = θ + θ = 2θ. (122)

Similarly, µA,4(1) = 1+θ2, which implies µ
A,4

=

[
2θ

1 + θ2

]
. Also, µ

C,4
=

[
2θ

1 + θ2

]
= µ

B,4
.

Phase 3
µ4,A(x4) = µB,4(x4)µC,4(x4)α4(x4). (123)

55

Figure 2: Junction Tree associated to the [7, 4, 2] code..

LDPC Codes

43. In the density evolution analysis of (dv, dc)-regular LDPC codes, where the goal is to
determine the evolution of the density of number of incorrect messages passed between
variable nodes and check nodes, it is customary to assume that the all-1 codeword is
transmitted. What are the assumptions on the channel and the processing carried out
at the variable and check node under which this assumption is valid ? Explain your
answer while making clear any notation that you introduce.

44. Derive from first principles, the transformation of densities that takes place during an
iteration at a check node.

45. Consider density evolution associated to Gallager Decoding Algorithm A applied to
an LDPC code C. Thus the channel is a BSC with cross-over probability ε << 1 and
all messages passed are either 1 or −1. You may assume that the neighborhood of
every node in the Tanner graph of C is tree-like to depth 8. What is the probability
p

(1)
−1that at the end of iteration 1, the message passed from a variable node to check

node will be in error. Notation is as in class. Following an initial round of message
passing, from the variable nodes to check nodes, based only on channel inputs, each
subsequent iteration is composed of two rounds of message passing: from check node
to variable node followed by from variable node back to check node. Show all your
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working clearly. You may use the fact that ε << 1 to simplify calculations. Hence aε2

for integer constants a < 100 (say) may safely be ignored in comparison with ε, etc.

46. Consider the variation of belief propagation decoding of binary LPDC codes in which,
in place of beliefs, the messages passed correspond to log-likelihood ratios (as discussed
in class).

(a) Identify (it is not necessary to derive them) the variable and check node maps

ψ(0)
v (l0), ψ

(l)
v (l0, l1, l2, . . . , ldv−1), ψ

(l)
c (l1, l2, . . . , ldc−1).

(b) Do these maps satisfy the variable-node and check-node symmetry conditions
which (along with the channel symmetry condition) permit us to conclude that
the number of incorrect messages passed is the same regardless of the transmitted
codeword ? Make clear your reasoning

47. Is the computational tree associated with variable node 11 (at the top of the graph
and incorrectly labelled as node 10 :-) ) in the Tanner graph in Fig. 3 of a certain
LDPC code a junction tree ? If so, identify the associated MPF problem along with
the local domains and the local kernels. What is the objective function being computed
if messages are passed as indicated by the arrows ?

Figure 3: Computational tree associated to node 10 in Tanner Graph.

48. (a) In the context of the performance analysis of LDPC codes, state (in terms of
the notation introduced in class), the variable and check-node symmetry assump-
tions that go into showing that the probability of passing an incorrect message is
independent of the transmitted codeword.

12



(b) Show clearly that the check-node symmetry condition holds when LDPC codes
are decoding using belief propagation with log-likelihood ratios (LLR) in place of
beliefs.

Finite Fields & Cyclic Codes

49. Use the Euclidean division algorithm (EDA) to determine the gcd of 6711 and 831.
Express the gcd as a linear combination u ∗ 6711 + v ∗ 831 of 6711 and 831.

50. Find the inverse of 7 modulo 13 using the EDA.

51. Identify all primitive elements of the finite fields of size 7 and 13 (the finite field of size
13 is the set of all integers modulo 13).

52. Over GF (2), compute if possible, the inverse of (1 + x) modulo (1 + x+ x2 + x3 + x4).

53. Let α be a primitive element of GF (64). Identify all the elements in all the subfields
of GF (64) in terms of α.

54. Use the irreducible polynomial (irreducible over GF (5)) x2 +x+2 to construct a finite
field of 25 elements. If α denotes a root of x2 + x+ 2, then α is known to be primitive
in GF (25). Set up an add-1 table for GF (25). Identify the 5-cyclotomic cosets modulo
24. Find the minimal polynomials of all elements in the field. Compute the product of
all the minimal polynomials (each distinct polynomial is taken just once) including the
minimal polynomial x of the zero element. Which powers of α constitute the subfield
GF (5) of GF (25) ?

55. Identify the 3-cyclotomic cosets modulo 26 as well as the 2-cyclotomic cosets modulo
19.

56. Let α be a primitive element of GF (26). Identify all the correct answers below with a√

• α + α4 ∈ GF (4)

• α + α8 ∈ GF (8)

• none of the above

57. The polynomials over GF (2) given below are all irreducible. Identify with a
√

, all
those having the property that all of their zeros are contained in GF (256).

• x2 + x+ 1

• x3 + x2 + 1

• x4 + x3 + 1

13



• x5 + x2 + 1

• x6 + x+ 1

• x8 + x6 + x5 + x4 + 1

58. Identify the smallest finite field of characteristic 2 that contains a primitive 17-th root
of unity.

59. In the notation used in class with regard to finite field Fourier transforms, let q = 2,
N = 15 and α be a primitive element of F16 satisfying α4 + α + 1 = 0. Let

(s(t), t = 0, 1, 2, . . . , 14) = 000110000101101 .

Compute the Fourier transform ŝ(λ) of s(t). Compute also the Fourier transform of
s(t) + s(t+ 2).

60. In the notation used in class with regard to finite field Fourier transforms, let q = 2,
N = 15 and α be a primitive element of F16 satisfying α4 + α + 1 = 0. Determine
the basic sequence b(t) of “frequency” λ = 6. Determine the Fourier transform of the
sequence c(t) given by c(t) = b(2t), 0 ≤ t ≤ 14.

61. Consider the binary (i.e., q = 2) cyclic code of length N = 15 consisting of all binary
codewords (c(t), 0 ≤ t ≤ 14) satisfying

C = {c(t) | ĉ(λ) = 0, λ = 0, 7, 14, 13, 11}.

Transforms are computed using a primitive element of GF (16) satisfying α4+α+1 = 0.
Find a codeword B(t) ∈ C such that every codeword c(t) in C can be expressed as a
linear combination of cyclic shifts of B(t), i.e., can be expressed in the form

c(t) =
14∑

t=0

u(τ)B(t− τ)

where u(τ) ∈ {0, 1},∀τ .

62. Determine the number of binary sequences {at} of period N = 15 that satisfy the
condition

âλ ∈ {0, 1}, all λ, 0 ≤ λ ≤ 14.

63. Let q = 2 and N = 23. What is the order m of q (mod N) ? Let α be a primitive
N -th root of unity lying in GF (2m). Determine the dimension of the binary q = 2
cyclic code of length N = 23 all of whose codewords c(t) satisfy

ĉ(λ) = 0, λ = 1 .

64. Why are there no interesting linear, cyclic binary codes of length N = 19 ?
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65. Design a single-error correcting, double-error detecting binary linear, cyclic code of
length 21. Naturally you would like to have dimension k as large as possible.

66. Identify the null spectrum of a Reed-Solomon (RS) code over GF (9) code of length
N = 8 and designed distance dmin = 6.

67. How many distinct binary cyclic codes of length 41 are there ? (Include in your count,
the cyclic code corresponding to the set of all binary 41-tuples as well as the cyclic
code consisting of just the all-zero codeword).

68. Consider the binary cyclic code C of lengthN = 15 with null spectrum {1, 2, 3, 4, 5, 6, 8, 9, 10, 12}.
You may assume that transforms are computed using primitive element α ∈ GF (16)
satisfying α4 + α + 1 = 0.

Does the all-one codeword (1, 1, . . . 1, 1) belong to the cyclic code C ? Explain your
answer.

69. Use the irreducible polynomial (irreducible over F3) x
2 + x + 2 to construct a finite

field of 9 elements. If α denotes a root of x2 + x+ 2, then α is known to be primitive
in F9.

(a) Set up an add-1 table for F9.

(b) Identify the 3-cyclotomic cosets modulo 8.

(c) Find the minimal polynomials of all elements in the field.

70. Use the Möbius inversion formulae to determine the number of irreducible polynomials
of degree 12 over the binary field F2 .

71. If α, β in F16 have orders a, b, then is it always true that αβ has order = lcm(a, b) ?
Justify your answer.

72. (a) How many binary cyclic codes of length 23 are there ?

(b) Design a double-error-correcting cyclic code of length 23 and identify its dimen-
sion.
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