
SHORT-TIME FOURIER TRANSFORM(STFT)

STFT  (a) Analysis   (b) synthesis

(a) Analysis:- FT view and Filtering view
(b) Synthesis:-Filter bank summation (FBS) 

Method and OLA Method



Short-Time Fourier Transform

 Speech is not a stationary signal, i.e., it has
properties that change with time.

 Thus a single representation based on all
the samples of a speech utterance, for the most
part, has no meaning

 Define a time-dependent Fourier transform
(TDFT or STFT) of speech that changes
periodically as the speech properties change
over time





STFT is a function of two variables, the time
index, n which discrete and the frequency
variable ω which is continuous
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STFT can be viewed as having two different  time origins

1. Time origin tied to signal 

Different  time origins of STFT

2. Time origin tied to window 
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STFT Analysis 
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w[n] is non zero only in the interval [0,N-1] where N is the 
window length

Time reversing the analysis window w[m] and multiplying 
it with x[m]
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DFT view



Filtering view
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The signal x[n] is first modulated with e−jω0n, and then passed
through a filter with impulsive response w[n].
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That is, the sequence x[n] is first passed through the filter
w[n] with a linear phase factor. The output is then modulated
by e− jω

0
n .



Analysis with the discrete STFT



1. If x[n] has length N and w[n] has length M then
X(n,ω) has length N+M-1

2. The bandwidth of the sequence X(n,ω0) is less than
or equal to the bandwidth of w[n]

3. The sequence X(n,ω0) has the spectrum centered at
origin

General properties of the filtered sequence
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Time-Frequency Resolution Tradeoffs

A fundamental problem of STFT and other time-frequency
analysis techniques is the selection of the windows to achieve
a good tradeoff between time and frequency resolution.



Role of Window in STFT

The window w(n−m) does the following:
 Chooses portion of the signal to be analyzed
Window shape determines the nature of the X(n, ω )



Window Function for FIR Filter Design

Name of Window Window function
Bartlett(triangular)

Blackman

Hamming

Hanning

Kaiser
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Common Windows (Frequency)



For a given value of n, X(n,ω ) has the same properties as a
normal Fourier transform, we can recover the input
sequence exactly.

For each n , we take the inverse Fourier transform of X(n,ω) 
from the STFT. 

Then obtain    f[m]=x[m]w[n-m] . 

Evaluating f[m]  at m = n, obtain x[n]w[0] . Assuming w[0] ≠ 0 

Then x[n]= f[n] /w[0] 

STFT Synthesis
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Synthesis equation for discrete-time STFT

If the STFT is unique
representation of x[n]
then it invertible.



 To reduce the computational complexity, the STFT is not
computed at every time sample, but rather at a certain time
decimation rate. In some cases, the discrete STFT may not be
invertible, i.e. there are certain constraints on the frequency-
sampling and time-decimation rates.

 By selecting appropriate constraints on the frequency
sampling and time decimation rates the discrete STFT is
invertible

With the requirement that w[0]≠0 , the sequence x[n] can be
recovered exactly from X(n, ω), if X(n, ω) is known for all
values of ω over one complete period
 Sample-by-sample recovery process
 X(n, ω), must be known for every value of n and for all ω
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Short-Time Synthesis
• Example 1.

– Consider the case when w[n] is band limited with bandwidth 
of B. 

If there are frequency components of x[n] which do not pass through
any of the filter regions of the discrete STFT then it is not a unique
representation of x[n], and x[n] is not invertible.



Example 2.
Consider X(n,k) decimated in time by factor L, i.e., STFT is applied 
every L samples.

w[n] is non-zero over its length Nw.
If L > Nw then there are gaps in time where x[n] is not considered. Thus in
such cases again x[n] is not invertible.

x[n] is invertible if temporal decimation factor L is equal
to or less then the size of the analysis window Nw and
the frequency sampling interval 2π/N≤ 2π/Nw
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L > Nw

L
w[pL-m]x[m]

Nw



Two common methods for STFT synthesis
 Filter Bank Summation (FBS) method 
 Overlap-Add (OLA) method.
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Filter Bank Summation (FBS) Method

• Traditional short-time synthesis method that is commonly
referred to as the Filter Bank Summation (FBS).

• FBS is best described in terms of the filtering interpretation 
of the discrete STFT.
– The discrete STFT is considered to be the set of outputs

of a bank of filters.
– The output of each filter is modulated with a complex

exponential
– Modulated filter outputs are summed at each instant of

time to obtain the corresponding time sample of the
original sequence



Analysis with the discrete STFT



Filter Bank Summation (FBS) method 
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Finite sum over the complex exponential reduce to an impulse train with period N 
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Interchanging summation operation this equation reduces to:

y[n] is the output of the convolution of x[n] with a product of the analysis window
with a periodic impulse sequence
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Fourier transform of the
analysis window were
required to add up to a
constant
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reduces to δ[n] if:

Window length Nw≤N, or
 For Nw>N, must have w[rN]=0 for r≠0, that is 

This constraint is known as the FBS constraint.
This expression states that the
frequency responses of the
analysis filters should sum to a
constant across the entire
bandwidth.
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Generalized FBS Method

• Note:

• “Smoothing” function f[n,m] is referred to as the time-varying
synthesis filter.

• It can be shown that any f[n,m] that fulfills the condition below makes 
the synthesis equation above valid

• Basic FBS method can be obtained by setting the synthesis filter to be 
a non-smoothing filter:

f[n,m]=δ[m]
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Consider the discrete STFT with decimation factor L.
Generalized FSB of the synthesized signal is given by:

Furthermore, consider time invariant smoothing filter:
f[n,m]=f[m]

That is:
f[n, n-rL]=f[n-rL]
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Generalized FBS Method

Thus

This equation holds when the following constrain is
satisfied by the analysis and synthesis filters as well as
the temporal decimation and frequency sampling factors:

• For f[m]=δ[m] and L=1 this method reduces to the basic 
FBS method.

∑∑
∞

−∞=

−

=

−=
r

N

k

nk
N

j
ekrLXrLnf

N
Lny

1

0

2

),(][][
π

∑
∞

−∞=

∀=+−−
r

nppNnrLwrLnfL       ],[][][ δ



15

Generalized FBS Method

If L>1 f[n] is an  interpolating filter⇒ Interpolation FBS 
Methods:

1. Helical Interpolation (Partnoff)
2. Weighted Overlap-add Method (Croshiere)



Overlap-Add (OLA) method
 Take inverse DFT for each fixed time in the discrete STFT. Instead of
dividing out the analysis window from each of the resulting short time
sections perform an overlap add operation between the short sections
 Overlap and add operation effectively eliminates the analysis window

If x[n] is averaged over many short-time segments and normalized by W(0) then

∑
∞

−∞=

=
n

nwW ][)0(

∫ ∑
−

∞

−∞=

=
π

π

ω ωω
π p

pj depX
W

nx ),(
]0[2

1][

where

∫
−

=
π

π

ω ωω
π

denX
W

nx nj),(
]0[2

1][

Discrete version of OLA is given by:
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Sum of values of a sequence must be the first value of its Fourier
Transform
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The above equation depicts general constrain imposed by OLA method. It
requires that the sum of all the analysis windows (obtained by sliding w[n] with
L-point increments) to add up to a constant



This finite bandwidth can be relaxed provided

LkatLkW /20)/2( πωπω ==−

For OLA methods it can be shown that its constrained is satisfied by all-finite-
bandwidth analysis windows whose maximum frequency is less than 2π/L 
(where L is temporal decimation factor).

Analogous to FBS constrain for Nw>N where the window w[n] is
required to take on value zero at n= ±N, ±2N, ±3N,...



FBS Method OLA Method
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Time-Frequency Sampling

1. The analysis window is non-zero over its finite 
length Nw.

2. The temporal decimation factor L≤Nw
3. The frequency sampling interval 2π/N ≤ 2π/Nw

 Summary of sampling issues for those two methods
that gives motivation for our earlier statement that
sufficient but not necessary conditions for invertability
of the discrete STFT are:
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• Consider windowed/short-time signal:
 fn[m]=w[m]x[n-m], and
 X(n,ω) – Fourier transform of fn[m]
 Analysis window duration of Nw 

• From Fourier transform point of view:
 Reconstruction of fn[m] from X(n,k) requires a frequency sampling of at 

least 2π/Nw or finer.

• From Time-domain point of view:
 Time decimation interval L is required to meet Nyquist criterion based 

on the bandwidth of the window w[n]. 
• This implies sampling of X(n,k) at a time interval 

L ≤ 2π/ωc to avoid frequency-domain aliasing of the time sequence 
X(n,ω) 

• ωc is the bandwidth of W(ω) [-ωc, ωc]

-ωc ωc
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Time-Frequency Sampling

• Sufficient (but not necessary) conditions for signal
reconstruction are:

1. Window is non-zero over its lengths Nw

2. Temporal decimation factor L ≤ Nw (2π/ωc)
3. Frequency sampling interval 2π/N ≤ 2π/Nw

• To avoid aliasing:
I. In the time domain - by ensuring condition 3.
II. In the frequency domain - by ensuring condition 2.
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• Implication on the use of practical windows:
I. Rectangular window, Nw

⇒Assuming bandwidth equal 
to the extent of the main lobe 
B = [-2π/Nw,: 2π/Nw]= 4π/Nw

⇒ ;50% Overlap in windows 

II. Hamming Window, Nw

⇒Bandwidth B = 8π/Nw

⇒ 75% Overlap in windows 
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Time-Frequency Sampling
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Summary

• OLA Method (DFT of order N)
1. No time aliasing if window length Nw so that: 

2π/N ≤ 2π/Nw

2. No frequency-domain aliasing occurs if decimation factor L is small 
enough so that filter bandwidth 
ωc =(2π/L)

3. If zeros are allowed in W(ω) then condition 2 can be relaxed. In this 
case we can under-sample in frequency and still recover the 
sequence.
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Summary

• FBS Method
1. No frequency-domain aliasing occurs if the decimation factor L 

meets the Nyquist criterion, i.e., L ≤ Nw (2π/ωc) where ωc is the w[n] 
bandwidth. 

2. Not time-domain aliasing occurs if 2π/N ≤ 2π/Nw
⇒ Nw≤ N.

3. If zeros in w[n] are allowed then condition 2 can be relaxed. In this 
case we can under-sample in time and still recover the sequence.
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Short-Time Fourier Transform Magnitude (STFTM)

• STFTM discards (possibly) phase information, which has
numerous uses in application areas:
– Time-scale modification
– Speech Enhancement

• In all these applications phase information estimation of
speech is difficult (e.g., presence of noise in the signal)

• Furthermore, a number of techniques have been
developed to obtain phase estimate from a STFT
magnitude.
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• Squared-Magnitude and Autocorrelation Relationship:

– m-autocorrelation “lag”
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Short-Time Fourier Transform Magnitude 
(STFTM)

• Furthermore, the autocorrelation r[n,m] is given by the convolution 
of the short-time signal:

r[n,m] = fn[m]*fn[-m]
where

fn[m]=x[m]w[n-m]
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Signal Representation
• Under what conditions STFTM can be used to represent a sequence 

uniquely?
• Note that:

|F{x[n]}|= |F{-x[n]}|

⇒ Ambiguity, thus STFTM is not unique representation for all cases.

• However, by imposing certain mild restrictions on: 
– the analysis window and 
– the signal, 

unique signal representation is indeed possible with the discrete-
time STFTM.
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Reconstruction from Time-Frequency 
Samples

• To carry out STFTM analysis on a digital computer, discrete STFTM 
must be applied.

• Uniqueness theory of STFTM can be easily extended to discrete 
STFTM.
– Uniqueness of STFTM based on the short-time autocorrelation 

functions.
– Autocorrelation functions can be obtained even if the STFTM is 

sampled in frequency (discrete STFTM) with adequate 
frequency sampling. 

• To consider effects of temporal decimation with factor L, we note 
that adjacent short-time sections now have an overlap of Nw-L 
instead of Nw-1.



 Signal Estimation from Modified STFT or STFTM

 Time Scale Modification and Enhancement of Speech

 Noise Reduction

Application of STFT Analysis and Synthesis
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Time-Scale Modification and Enhancement of 
Speech

Goal
 To either speed up or slow down a speech signal 

while maintaining the approximate pitch

Applications
Change voice mail playback
Court stenographers-play proceedings quicker
Sound effects
Etc…
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Time-Scale Modification
• Methods:

– Cut & Paste (Fairbanks method):
• Discard or duplicate frames, in order to speed up or slow down the articulation 

respectively.
• Problem:

– Pitch period mismatch at adjacent frames causes distortion.
– Pitch-synchronous OLA (Scott & Gerber)

• Select frame size & location synchronous to pitch periods. Problem of pitch period 
mismatch is avoided.

• Problem:
– Pitch synchronization is not always easy.

– STFTM Synthesis
• To avoid pitch synchronization problems use only the magnitude of STFT (i.e., 

STFTM)
1. Compute |X(nL,ω)| at an appropriate frame interval – decimation rate L (e.g., 

L=128 at Fs=10000 Hz, and N is several T0 long)
2. Modify decimation rate with new rate M (e.g., M=L/2) for a speed-up of factor of ½: 

|Y(nM,ω)|= |X(nL,ω)|
3. Apply the Least-Squared Error iterative estimation algorithm until |Y(nM,ω)| 

converged.
• Problem:

– Occasional reverberant characteristic of synthesized signal are perceived due 
to lack of STFT phase control. 
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Time-Scale Modification



Slide 38 of 49

Short Time Fourier Transform

STFT Decimate
Samples IFFT

OLA

Signal

Output
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Noise Reduction
• A number of techniques developed to remove/reduce additive 

noise:
• Noise corrupted signal is given by:

y[n]=x[n]+b[n]
– STFT Synthesis: 

• Subtract Noise spectrum Ŝb(ω)

• Original phase spectrum ∠Y(nL,ω) is retained because phase of the 
noise can not be reliably estimated in general.

• Factor α is a control of the degree of noise reduction.
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Noise Reduction
– STFTM Synthesis:

• Ignore phase and use Sequential Extrapolation or Least-Squared Error 
estimation method to construct clean signal. 
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Signal Representation

• Suppose x[n] is the sum of two signals: x1[n] 
and x2[n] occupying different regions of the 
n-axis.

• Furthermore, suppose that the gap of zeros 
between x1[n] and x2[n] is large enough so 
that there is no analysis window position for 
which the corresponding short-time section 
includes non-zero samples of both x1[n] and 
x2[n].

• Because of the ambiguity condition STFTM 
of:

– x1[n] + x2[n]
– x1[n] - x2[n], and
– -x1[n] + x2[n]
is the same.
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Signal Representation
• Any uniqueness conditions must include a restriction on the 

length of zero gaps between non-zero portions of the signal x[n].
• Sufficient uniqueness conditions are the following:

1. The analysis window w[n] is known sequence of finite length Nw, 
with no zeros over its durations.

2. The sequence x[n] is one-sided with at most Nw-2 consecutive zero 
samples, and the sign of its first non-zero value is known.
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Signal Representation
• If the successive STFTM correspond to overlapping signal segments 

then:
– If short-time spectral magnitude of signal segment at time n is know 

then
– Spectral magnitude of the adjacent section at time n+1 must be 

consistent in the region of overlap with the known short-time section.
⇒ If the analysis window were non-zero and of length Nw, then after dividing 

out the analysis window, the first 
Nw-1 samples of the segment at time n+1, must equal the last Nw-1 of the 
segment at time n (as illustrated in the next slide)

⇒ If the last sample of a segment can be extrapolated from its first Nw-1 
values, one could repeat this process to obtain the entire signal x[n].
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Signal Representation
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Signal Representation
• To develop the procedure for extrapolating the next sample of a sequence 

using its STFTM, assume that the first Nw-1 samples under the analysis 
window positioned at time n are known. 
– The sequence x[n] has been obtained up to some time n-1 from its STFTM.

• Goal is to compute sample x[n] from these initial samples and the STFT 
magnitude, |X(n,ω)|, or equivalently r[n,m]. 
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Signal Representation
• Note that r[n, Nw-1], the maximum lag of autocorrelation, is given by the product 

of the first and last value of the segment:

⇒

( )( )
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Signal Representation
• Note that:

• If the first value of the short-time section, 
x[n-(Nw-1)] happens to be equal to zero, must find the first non-zero 
value within the section and again use the product relation as 
depicted in the last expression. 

• Note that such a sample can be found because it was assumed that 
there are at most Nw-2 consecutive zero samples between any two 
non-zero samples of x[n].
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Signal Representation

• Sequential extrapolation algorithm
1. Initialize with x[0]
2. Update time n
3. Compute r[n,Nw-1] from the inverse DFT of 

|X(n,k)|2.

4. Compute:

5. Return to step (2) and repeat
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Reconstruction from Time-Frequency 
Samples

• Sufficient uniqueness conditions for the partial overlap case:
1. The analysis window w[n] is a known sequence of finite length Nw, 

with no zeros over its duration.
2. The sequence x[n] is one-sided with, at most Nw-2L consecutive zero 

samples. 
L consecutive samples of x[n] (from the first non-zero sample) are 
known. 
This is a sufficient but not a necessary condition.
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Signal Estimation from the Modified STFT or 
STFTM

• Synthesis of a signal from a time-frequency function of a modified STFT 
or STFTM required in many applications.

• Modification may arise due to:
1. Quantization errors (e.g., from speech coding)
2. Time-varying filtering
3. Speech Enhancement
4. Signal Rate modifications

 Limitations:
– Modifications in frequency should result in time modification that are 

restricted within an analysis window (Figure 7.18 next slide)
– Overlapping sections must undergo similar modifications (Figure 7.19)
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Signal Estimation from the Modified STFT 
or STFTM

• Example 7.5. Removal of interfering 
tone.

– Consider modifying a valid X(n,ω) of 
short time fn[m]=x[m]w[n-m] 
segment by inserting a zero gap 
where there is known to lie an 
unwanted interfering sine wave 
component.

– Removal of the interfering signal 
with H(n,ω).

– Resulting frequency representation 
is: Y(n,ω)=X(n,ω)H(n,ω)

– Inverse transforming it to obtain 
modified short-time sequence gn[m] 
is non-zero beyond the extent of the 
original short-time segment 
fn[m]=x[m]w[n-m].  
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Signal Estimation from the Modified STFT 
or STFTM

• Example 7.6
– At time n:

• Suppose a time-decimated STFT, 
X(nL,ω) is multiplied by a linear 
phase factor ejωno to obtain 
Y(nL,ω)=X(nL,ω)ejωno

– At time (n+1)
• X((n+1)L,ω) is multiplied by a 

negative of this linear phase factor 
e-jωno to obtain 
Y((n+1)L,ω)=X((n+1)L,ω)e-jωno

– Overlapping sections of inverse Fourier 
Transforms denoted by gnL[m] and 
g(n+1)L[m] are not consistent.
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Heuristic Application of STFT Synthesis 
Methods

• Although modifications of the STFT or STFTM may violate some principles, 
results may be ”reasonable”.

• Resulting effect of modifying STFT (FBS and OLA) with another time-
frequency function can be shown to be a time-varying convolution 
between x[n] and a function ĥ[n,m]: x[n]*ĥ[n,m].

• Let X(n,ω) be modified by a function H(n,ω):
Y(n,ω) = X(n,ω)H(n,ω) 

• This corresponds to a new short-time segment:
gn[m] = fn[n]*h[n,m]

• h[n,m] – time varying system impulse response (Chapter 2).
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Heuristic Application of STFT Synthesis 
Methods

• Consider FBS method (discretization in frequency to obtain):

• N-point IDFT of H(n,k):

• Then resulting sequence can be written as:

where
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Heuristic Application of STFT Synthesis 
Methods

• Using OLA method, it can be shown (see Exercise 7.11) that:

• Contrasting FBS with OLA
– FBS: multiplication ⇒ instantaneous change
– OLA: convolution ⇒ smoothing
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Heuristic Application of STFT Synthesis 
Methods

• Example 7.7
– Suppose we want to deliberately introduce reverberation into a signal 

x[n] by convolution with the filter:
h[n] = δ[n] + α δ[n-no]

– Fourier transform of which is:
H(ω) = 1 + αe-jωno

– STFT of resulting signal is given by: 
Y(n,ω)= X(n,ω)H(ω)

where
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Example 7.7 (cont.)

• Using OLA method (7.21):

• It is then possible to express y[n] in terms of original sequence:
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Example 7.7 (cont.)

• Where

is periodic extension of h[n], over N, of which we only consider 
interval [0,N-1].

• This implies that original reverberated signal is obtained only when 
no<N, otherwise temporal alias will occur (as illustrated in 7.20). 
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Example 7.7 (cont.)
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