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• Pressure p(x, t) is a function of t and x and total pressure is

• Particle velocity is v(x, t)
• Density of air is  and also function of x and t
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To derive wave equation three law of physics is used

1. Newton’s Second law of motion  this law 
predicts that a constant applied force produces a 
constant acceleration

2. The Gas law from thermodynamics relates 
pressure volume and temperature under the 
adiabatic condition

3. Conservation of mass 



Assumption

1. The medium is homogeneous

2. The pressure change across a small 
distance can be linearized  

3. There is no friction of air particle 

4. The air particle velocity is small 

5. Sound is adiabatic
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Net force on the chunk is 

Assumed density in the cube is constant zyxm 

dt

dv
a Acceleration of the cube air is

maF 

dt

dv
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From Newton’s Second Law of Motion
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Is total derivative and v is a function of x and t

So true acceleration is
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This is nonlinear equation in the variable v because the particle velocity v is 
multiply with 
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Volume Velocity u(x,t) define as the rate of flow of air 
particle perpendicularly through a specific area. 

u(x,t)= Av(x,t)
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u(x,t) is the volume velocity
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),( txv is the electrical voltage

),( txi is the electrical current

Acoustic Electrical

),( txp Acoustic pressure

),( txu Acoustic volume 
velocity

Acoustic inductance
A


electrical inductanceL

2c

A


Acoustic Capacitance

C electrical Capacitance
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Sound in the Vocal Tract



Use of basic physics to formulate air flow equations 
for vocal tract
• Need to make simplifying assumptions about vocal tract 
shape and energy losses to solve air flow equations
• Some complicating factors:
 time variation of the vocal tract shape ( we will look mainly at fixed 
shapes)
 losses in flow at vocal tract walls (we will first assume no loss, then a 
simple model of loss)
 softness of vocal tract walls (leads to sound absorption issues)
 radiation of sound at lips (need to model how radiation occurs)
 nasal coupling (complicates the tube models as it leads to multi-tube 
solutions)
 excitation of sound in the vocal tract (need to worry about vocal 

source coupling to vocal tract as well as source-system interactions)





Effects of Losses in VT

 Several types of losses to be considered 

Vibration of the tube walls
Viscous friction at the walls of the tube
Heat conduction through the walls of the tube

loss will change the frequency response of the tube



Uniform Lossless Tube

Assume uniform lossless tube => A(x,t)=A
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Traveling Wave Solution

)/( cxtu 

Wave traveling forward 

)/( cxtu 

Wave traveling  backward 

Two boundary conditions: 
(a) at the glottis gives: 
(b) at the lips gives:
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Since the differential equations are linear with constant coefficients, the 
solutions must be of the form where k+  and k- represent the amplitude 
of forward and backward wave
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Where Z0=

Acoustic impedance ]/)(tan[)( cxl
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If x is very small then from Taylor series expansion we get
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 Assume walls are elastic => cross-sectional area of the 
tube will change with pressure in the tube
 Assume walls are ‘locally’ reacting => A(x,t) ~ p(x,t)
  Assume pressure variations are very small

Wall vibrations

A(x,t ) = A (x,t ) +δ A(x,t )

Neglecting second order terms in u/ A and pA , the wave equations 
become





The differential equation relationship between area 
perturbation δ A(x,t ) and the pressure variation, p(x,t ) 
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Under the steady state assumption that sound 
propagation has occurred long enough so that transient 
responses have  died out and given that the three coupled 
equations (1,2,3) are linear  and time invariant
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Result in solution of the form



Using estimates for mW, bW, and kW from measurements on body 
tissue, and with boundary condition at lips of p(l,t)=0, we get:

Length of the tube l=17.5 cm and 5 cm2 in cross section
mw =0.4gm/cm2,bw=6500 dyne-sec/cm3,  kw=0

o Complex poles with non-zero 
bandwidths
o Slightly higher frequencies for 
resonances
o Most effect at lower 
frequencies
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• Increases bandwidth of complex poles
• Decreases resonance frequency (slightly)

Similarly account for effects of viscous friction and thermal 
conduction at the walls



Effects of Radiation at Lips

• We assumed p(l,t)=0 at the lips (the acoustical analog of a short 
circuit) => no pressure changes at the lips no matter how much 
the volume velocity changes at the lips
• In reality, vocal tract tube terminates with open lips, and 
sometimes open nostrils (for nasal consonants)
• This leads to two models for sound radiation at the lips

Radiation from a spherical 
baffle

Radiation from a infinite plane 
baffle

If the lip opening 
is small
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This 'radiation load' is the equivalent of a parallel connection 
of a radiation resistance and a radiation inductance 
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a is the radius of opening and c is the 
velocity of sound

For infinite baffle, Flanagan has given the value
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1. At low frequencies,          
short circuit termination which is the old solution 
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Overall Transfer Function
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 Frequency response of Uniform tube in no loss condition
 

Characterize by set of  
Formant Frequency Formant 
Band with is zero 

Effect due to the wall 
vibration

Effects of viscous friction and 
thermal conduction at the walls



Effects of Radiation at Lips



 The vocal tract can be characterized by a set of 
resonances (formants) that depend on the vocal 
tract area function-with shifts due to losses and 
radiation
 The bandwidths of the two lowest resonances 
(F1 and F2) depend primarily on the vocal tract wall 
losses
 The bandwidths of the highest resonances (F3, 
F4, ) depend primarily on viscous friction losses, 
thermal losses, and radiation losses

VT Transfer Functions



Nasal Coupling Effects

At the branching point
 Sound pressure the same as at input of each tube
 Volume velocity is the sum of the volume velocities at 
inputs to nasal and oral cavities

Nasal resonances have broader bandwidths than non-
nasal voiced sounds => due to greater viscous friction and 
thermal loss due to large surface area of the nasal cavity

Closed oral cavity can trap energy at certain frequencies, 
preventing those frequencies from appearing in the nasal 
output => anti-resonances or zeros of the transfer function



1. Air flow from lungs is modulated by vocal cord 
vibration, resulting in a quasi-periodic pulse-like 
source
2. Air flow from lungs becomes turbulent as air 
passes through a constriction in the vocal tract, 
resulting in a noise-like source
3. Air flow builds up pressure behind a point of total 
closure in the vocal tract => the rapid release of this 
pressure, by removing the constriction, causes a 
transigent excitation (pop like sound)

Sound Excitation



Vocal tract acts as a load on the vocal cord oscillator
Time varying glottal resistance and inductance-both 
functions of 1/AG(t) => when AG(t)=0 (total closure), 
impedance is infinite and volume velocity is zero
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Boundary condition (lips)
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Speech Production System





Concatenated Tubes

Glottis LipsA1 A2 A3 A4 A5
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Wave Propagation at the Junction
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Wave Propagation at the Junction
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Equal Spaced Tubes

rk rk

1+rk

1rk

)( kk tu 

)( kk tu 

)(1 tuk



)(1 tuk



Delay 
k

)(tuk


Delay
k)(tuk



Delay
k+1

)( 11 

  kk tu

Delay
k+1 )( 11 


  kk tu

x x x x x

1 2 3 4 5 1= 2 = 3=  
= 



Equal Spaced Tubes

rk rk

1+rk

1rk

)( kk tu 

)( kk tu 

)(1 tuk



)(1 tuk



Delay 
k

)(tuk


Delay
k)(tuk



Delay
k+1

)( 11 

  kk tu

Delay
k+1 )( 11 


  kk tu

z1 z1

z1 z1

Let sampling period T1= 

x x x x x

1 2 3 4 5 1= 2 = 3= 
 = 



Vocal Tract Model
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Impulse Response
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Impulse Response
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Two-Tube Model
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Two-Tube Model

   2nd order (2 poles)

   one zero at origin
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N-Tube Model
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All-pole Model

   2nd order (2 poles)

   one zero at origin
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Let length of the vocal tract l=17cm 
and the velocity of sound c=340m/s 
find the number of section required to 
generate 5 kHz bandwidth voiced 
signal



Digital Models for Speech Signals

Lecture-9



Direct Implementation
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Poles of Vocal Tract Model

• The roots of D(z) will be either real of occur in 
complex conjugate pairs.
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Assume all poles are in conjugated pairs.
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Formant Frequency and Bandwidth
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Formant Frequency and Bandwidth
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Formant Trajectory



Cascade Implementation
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Digital Models for Speech Signals

Lossless
Tube
Model

Lossless
Tube
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Area Function
(Reflection Coefficient)
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Speech Production Model

Lip
Radiation
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Radiation
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H(z)

Speech Production Model
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Speech Production Model
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