Features Extraction
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Why do we need feature extraction?

* Acoustic speech signal varies over time. Can’t compare
two waveforms

example: two instances of /a:/ vowel spoken in isolation, with
time interval between repetitions < 1 second:

Waveforms LLPC-smoothed spectra
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What is Features?

Feature = a measure of a property of the speech
waveform

Reasons for feature extraction:

— Redundancy and harmful information is removed
— Reduced computation time

— Easier modeling of the feature distribution

Speech has many “natural” (Acoustic-phonetic) features:

— Fundamental frequency (FO), formant frequencies, formant
bandwidths, spectral tilt, intensity, phone durations, articulation,
etc

Not-so-natural features:

— Cepstrum, linear predictive coefficients, line spectral
frequencies, vocal tract area function, delta and double-delta
coefficients, etc
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Speech Events
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Supra-segmental features and Prosody

O Intonation, pause, duration, stress together are called
prosodic or supra-segmental features and may be
considered as the melody, rhythm, and emphasis of the

speech at the perceptual level.

1 The prosody of a sentence is important for naturalness

and for conveying the correct meaning of a sentence.
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1 Peaks denote dominant frequency components
In the speech signal

1 Peaks are referred to as formants

 Formants carry the identity of the sound



Parameter / Feature Classification

Frequency Domain Parameters

e Filter Bank Analysis

e Short-term spectral analysis

e Cepstral Transfer Coefficient (CC)

* Formant Parameters

e MFCC, Delta MFCC, Delta-Delta MFCC

Time Domain Parameters
e |PC
e Shape Parameters

Time- Frequency Domain Parameters
e Perceptual Linear Prediction (PLP):

e Wavelet Analysis



Filter Bank Analysis
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How to determine filter band ranges

» Uniform filter banks
»Log frequency banks
» Mel filter bands



Uniform Filter Banks

e Uniform filter banks
— bandwidth B= Sampling Freq... (Fs)/no. of banks (N)
— For example Fs=10Kz, N=20 then B=500Hz
— Simple to implement but not too useful

V Filter output

Vil. V2 v3

freq)..
500 1K 15K 2K 25K 3K .. (Hz

13



Non-uniform filter banks: Log frequency

 Log. Freq... scale: close to human ear

filter 1 filter 2 filter 3 filter 4

Center freq. 300 600 1200 2400
\F/”ter bankwidth 200 400 800 1600
out;}a\ut vl v% )’E’

200 400 800 1600
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Mel filter bands
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Cepstral analysis

« Homomorphic speech processing

— Speech is modelled as the output of a linear, time varying system
(linear time-invariant (LTI) in short seq.) excited by either quasi-
periodic pulses or random noise.

— The problem of speech analysis is to estimate the parameters of
the speech model and to measure their variations with time.

— Since the excitation and impulse response of a LTI system are
combined in a convolutional manner, the problem of speech
analysis can also been viewed as a problem in separating the
components of a convolution, called "deconvolution”.

V[n]= x[n]* h[n]



The principle of superposition for conventional linear systems:

(L[x(n)] = L[x,(n) +x,(n)] = L[x,(n)]+ L[x,(n)]

=y, (n)+y,(n)=yn)
| Llax(n)|=al[x(n)]=ay(n)

If signals fall in non-overlapping frequency bands then they are separable

X[n]=X4[N]+x,[N]
Xy (@)= AN} & X, () [0, TU/2],
Xo(@)=FxIN]} & X,(0) [TU/2, T,



Principles of Homomorphic Processing

» Importance of homomorphic systems for speech
processing lies in their capability of transforming
nonlinearly combined signals to additively combined
signals so that linear filtering can be performed on them.

» Homomorphic systems can be expressed as a cascade of
three homomorphic sub-systems - referred to as the
canonic representation:

Homomorphic Systems for Convolution



Canonic Representation of a Homomorphic
System

System takes inputs combined
by convolution and transforms
them into additive outputs

. System is a conventional linear

system

Inverse of first system--takes
additive inputs and transforms
them into convolution outputs

I
X[n] —

f[n]—

g[n]—-

D. ——[n]
L ——9[n]
D! ——— yinl




d The characteristic system for homomorphic deconvolution

___________________________________________________________________________________________



Cepstral analysis

Observation:
xX[n]=x[n]Fx,[n]<= X(z)=X,(=2)X.(=2)

taking logarithm of X(z), then
log{X(2)} =log{X,(2)} +1og{X,(2)}
ie, X(2)=X,(2)+X,(2)
X[n]=x[n]+x,[n] in the cepstral domain

e S50, the two convolved signals are additive in the
cepstral domain



Computational Considerations

.. () U
] X[k] [ Complex| X[k]  ¥n)
— | DFT Lo 1 IDFT T

D
sl per | 141 JGomwe]_11_[" oot

S Cl
Xl r : fi x| :ﬂr
u:'" N 1 Ma;,i?m log XTK1_f \oFT Iu:[n]




Cepstral analysis

Real cepstrum c[n] is the even part of X[n]

- |
fnl=—1[" X(e™)e"" dw
2r "
| S
‘* = —j log{X(e™)}e™"dw complex cepstrum
2777
c[n]= —fF log| X (&™) | e dw cepstrum



Relationship of complex cepstrum )’Z[n] to real cepstrum c[n]:

— If X[n] real then:
* |X(w)| is real and even and thus log[|X(w)|] is real and even
» «X(mw) is odd, and hence

=—J'Iog ()’ dew

>A([n] IS referred to as the complex cepstrum.

 Even component of the complex cepstrum, c[n] is referred to
as the real cepstrum.

[n]— []+X[— ]




Homomorphic Filtering

e Inthe cepstral domain:
— Pseudo-time < Quefrency
— Low Quefrency < Slowly varying components.
— High Quefrency < Fast varying components.

 Removal of unwanted components (i.e., filtering) can be attempted
in the cepstral domain (on the signal X[n], in which case filtering is
referred to as liftering):

« When the complex cestrum of h[n] resides in a quefrency interval
less than a pitch period, then the two components can be separated
form each other.



Homomorphic Filtering

o If log[X(w)]

— |Is viewed as a “time signa

I”

— Consisting of low-frequency and high-frequency contributions.

— Separation of this signal with a high-pass/low-pass filter.

* One implementation of low pass filter:

x[nl=h[n*p[n]__ *|

D,

I[n]

y

[n]

A 4

D—l

— y[n]



Homomorphic Filtering

e Alternate view of “liftering” operation: Filtering operation L(®) applied in
the log-spectral domain

X[n]: —> : - > >
nInj*pin] s §[n]

T
A
Q)
X
@)
\ 4
T
H

— YIn]

* Interchange of time and frequency domain by viewing the frequency-
domain signal log[X(®)] as a time signal to be filtered. =

— “Cepstrum” can be thought of as spectrum of log[X (®)]
— Time axes of)'{[n] is referred to as “quefrency”
— Filter [[n] as the “lifter”.



Voiced Speech Example

Complex Cepstrum ‘

_2_ -
| | | 1 | |
=200 =150 =100 -50 0 50 100 150 200
Quefrency (Samples)
0.6 [ T T T T T T
Cepstrum T
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Value
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Basic Speech processing steps for Frequency
Parameter

Signal: S(t) = x[n]

rocessing
Block

Power Spectrum

=

9/26/2017

ﬁ v[n] = x[n] = a * x[n-1] (where a = 0.95)

C D oo

Hamming :
Hanning

Cosine

N-1 ori
—dmig,
X;i: —_— Z Iﬂﬂ J"'lr n

n=l)

0.54 — 0.46 cos(2*pi*n/(N-1))
0.5(1- cos(2*pi*n/(N-1)))
sin(pi*n/(N-1))

k=0,.... N-1

31



Cepstral Transform Coefficients (CC)

Speech |

Basic
Signal
Processing
Block

Log

IDFT

— > Cepstrum

Cepstrum = IDFT(log(DFT(S(n))))



Relationship of complex cepstrum )’Z[n] to real cepstrum c[n]:

— If X[n] real then:
* |X(w)| is real and even and thus log[|X(w)|] is real and even
» «X(mw) is odd, and hence

=—J'Iog ()’ dew

>A([n] IS referred to as the complex cepstrum.

 Even component of the complex cepstrum, c[n] is referred to
as the real cepstrum.

[n]— []+X[— ]




#[n] — X (%) = log | X (e7¥)| + j arg[X (e7¥)]
c[n] — log | X (e*)]

By definition we have

1 /7 : -
_ o Jjw wn
c[n] 2ﬂ‘/_ﬂ log | X (7)) |e?“ " dw
= QL‘/ log | X (7%)|[cos(wn) + j sin(wn)]dw
TJ—m
Recall that for x[n] real, | X (e/¥)| is an even function; therefore
/ log | X (e7*)|[j sin(wn)]dw = 0
Leading to the result
1 (" )
cln] = 2—/ log | X (¢’%)| cos(wn)dw
-?rl

—T

By inverse transforming X (%) we obtain



A

] = o / log | X (7)| + j arg (X () }] - [cos(wn) + j sin(wn)]dw

m

For x[n| real, arg{ X (e/¥)} is an odd function, therefore

] jarg{ X (e’*)} cos(wn)dw =0

—m

Similarly, since log |X(e/“)| is an even function of w and sin(wn) is an odd
function of w, therefore we have

]; log | X (e7“)|(j sin(wn))dw = 0

Thus we get:

[n] = %/L [log | X (e7)|][cos(wn)]dw — %/L arg[ X (¢7“)][sin(wn)]dw
t[—n] = %‘/_ [log | X (e7)|][cos(wn)]dw + %‘/_ arg[ X (e7“)][sin(wn)]dw
t[n] + &[—n] 1

: - o /_ [log X () | fcos(wn)]de = el



LPC Cepstrum

The LPC vector is defined by [a,,a,,a,,...a,] and the CC vector is defined

by [CoC;C5---Cp---Cpyg

LPC Cepstrum (c,)

g = lﬁg GE
m=1 k

Cm — &6 Z E Crlyp—f
k=1

ﬂ'I"II:

|
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I

o

s | =

u
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1
ol
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Mel Frequency Cepstral Coefficients (MFCC)

MFCC is the most used parameters in Speech Technology development.

MFCC computed from the speech signal using the following three steps:

N

Compute the FFT power spectrum of the speech signal

Apply a Mel-space filter-bank to the power spectrum to get energies
Compute discrete cosine transform (DCT) of log filter-bank energies to get
uncorrelated MFCC'’s



Block diagram of Extracting a sequence of 39-
dimensional MFCC feature vectors

Basic Signal Processing Block
speech MFCC 12 12MFCC
signal el i coefficients 12 AMFCC
—_ P window =] DFT =t O ME Ll jog | DFT | dloltas = 12AAMFCC
emphasis bank 1 energy
1A energy
f 1 AA energy

——p| £1ergy 1 energy feature



Mel scale

3200 T T T T 1 1
3000 i g

2800
2600
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200

0
Hertz scale

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 €500 9000 9500 10000

Amplitude
——

f
| A N AT \

| o II ; h f \ f E I
|||||II|II|'.,' | / L l". !

AAA
/ ,/ \-.\ | / \

\/ \

-

/ \ /\
\/ \‘/ . \/ /

3000 ~ 4000

-

=33221o¢

J<= 810

Pitch (mels) (1+ £ /1000)
Alternatively, we can approximate curve as:
Pitch (mels)=1127log (1+ f/700)




Time domain signal

DFT

Ir,a;f-.l el
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Mel Filter bank

Half the FFT size Total number of
Mel Spectrum triangular Mel
\ Orlglnal Spectrum We'*il/hlng filters (20)

5(/) ZLS(k)M(k) [=0,1,...,L -1

Will get the whole Fllter from filter bank
range of frequencies
but only L samples

Hz




SM) = > 85()M, (K)

M,(k) the filter weighting function can be normalized

S =SS IM, (K)

Triangular filter bank

Af\\

| HI/ | Jl\i /\ / | / \ / .f

HIRVAAAA /\ / \

0 1000 2000 3000 4000 5000 6000
Frequency (Hz)
Triangular filter bank (normalized)
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Mel
Cepstrum

AN

—> Log() —> DCT —>

Total number of
triangular Mel
weighing filters (20)

. ) _ |
DCT Equation: ¢(i) = Ez:l()g(S(;f:':r))cos[%(m —O.S)J i=0,1,..C-1

m=1 T

# cepstral
Mel Spectrum

coefficients desired



Why the DCT?

e The signal is real with mirror symmetry

e The IFFT requires complex arithmetic

e The DCT does NOT

« The DCT implements the same function as the FFT

more efficiently by taking advantage of the redundancy
In a real signal.

e The DCT is more efficient computationally



Delta Cepstrum

- The set of mel frequency cepstral coefficients provide perceptually
meaningful and smooth estimates of speech spectra, over time
- Since speech is inherently a dynamic signal, it is reasonable to seek
a representation that includes some aspect of the dynamic nature of
the time derivatives (both first and second order derivatives) of the short-
term cepstrum
- The resulting parameter sets are called the delta cepstrum (first derivative)
and the delta-delta cepstrum (second derivative).
» The simplest method of computing delta cepstrum parameters is a first
difference of cepstral vectors, of the form:

Amfcc [n]=mfcc [n]-mfcc, [n]
- The simple difference is a poor approximation to the first derivative and is
not generally used. Instead a least-squares approximation to the local slope
(over a region around the current sample) is used, and is of the form:

N
Z'ﬂ(':n+é_'sn—é:l
=1




Perceptual Linear Prediction

o PLP parameters are the coefficients that result from standard
all-pole modeling or linear predictive analysis, of a specially
modified, short-term speech spectrum.

e In PLP the speech spectrum is modified by a set of
transformations that are based on models of the human
auditory system

o The spectral resolution of human hearing is roughly linear up
to 800 or 1000Hz, but 1t decreases with increasing frequency
above this linear range



Perceptually motivated analyses

O Critical-band spectral resolution: PLP incorporates critical-band
spectral-resolution into its spectrum estimate by remapping the
frequency axis to the Bark scale and integrating the energy in the
critical bands to produce a critical-band spectrum approximation.

O Equal-loudness pre-emphasis: At conversational speech levels,
human hearing Is more sensitive to the middle frequency range of
the audible spectrum. PLP iIncorporates the effect of this
phenomenon by multiplying the critical-band spectrum by an equal
loudness curve that suppresses both the low- and high-frequency
regions relative to the midrange from 400 to 1200 Hz.

d Intensity-loudness power law: There is a nonlinear relationship
between the intensity of sound and the perceived loudness. PLP
approximates the power-law of hearing by using a cube-root
amplitude compression of the loudness-equalized critical band
spectrum estimate.



Perceptual LPC

(Hermansky, J. Acoust. Soc. Am., 1990)

e First, warp the spectrum to a Bark scale:

N—-1
S®) =) [Hy®)PIX(®), b=1,... K
k=0

e The filters, H,(k), are uniformly spaced in Bark frequency.
Their amplitudes are scaled by the equal-loudness contour
(an estimate of how loud each frequency sounds):

=
o

|

A

1 129

PERCEPTUAL WEIGHTI?LG FUI#LCTIONS

FREQUENCY [ FFT SPECTRAL POINT ]



Perceptual LPC

e Second, compute the cube-root of the power spectrum
— Cube root replaces the logarithm that would be used in MFCC
— Loudness of a tone is proportional to cube root of its power

Y(b) = S(b)°33

e Third, inverse Fourier transform to find the “Perceptual
Autocorrelation:”

— ]_ 2K j2mwbm
R(m) = EZY(E’)E 2K
b=0
1 — b ™
_ EZY(E))CGS(%) (QB), Y (K)



Perceptual LPC

Fourth, use Normal Equations to find the Perceptual LPC (PLP)
coefficients:

aR(jm — k)

Pjﬁ

R(m) =

k=1

Fifth, use the LPC Cepstral recursion to find Perceptual LPC
Cepstrum (PLPCC):

m—1

é(m) = a,, + ( ) K)am—k, 1<m<p
k=1



Perceptual Linear Prediction

Speech

Fast Fourier Transform

Prdedbebvebberdibberetierderideid

Critical-band integration and re-sampling
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Cepstral recursion
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Cepstral coefficients of PLP model
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RASTA(RelAtive SpecTrA )

 The rate of change of nonlinguistic components of
speech and background noise environments often lies
outside the typical rate-of-change of vocal-tract
shapes In conversational speech

e Hearing Is relatively insensitive to slowly varying
stimuli

* The basic idea of RASTA filtering Is to exploit these
phenomena by suppressing constant and slowly
varying elements in each spectral component of the
short term auditory-like spectrum prior to
computation of the linear prediction coefficients



RASTA (RelAtive SpecTral Amplitude)

(Hermansky, IEEE Trans. Speech and Audio Proc., 1994)

 Modulation-filtering of e RASTA For o Erofof Specil Dy
the cepstrum is S
equivalent to
modulation-filtering of
the log spectrum:

sis (dB)

c,*[m] =2, h, ¢, [m]

RASTA Empha
I

e RASTA is a particular kind
of modulation filter:

_2{1 1 1 1 1 1 1
2 4+ Z_l . 2—3 . 22—4 0 5 10 15 20 25 30 35 40 45 50
_ Rate of Log—Magnitude Speciral Change (cycles/second)

H(z) = 102=2(1 — 0.98271)




Time Domain Methods in Speech
Processing



Fundemental Assumptions

* Properties of Speech Signal change relatively
slowly with time (5-10 sounds per second)

e Uncertainty in short/Long time measurements
and estimates

— Over very short (5-20ms) intervals

* Uncertainty due to small amount of data, varying pitch
and amplitude

— Over medium Length intervals (20-100ms)

e Uncertainty due to changes in sound quality, transition
between sounds, rapid transients in speech

— Overlong Intervals (100-500ms)

* Uncertainty due to large amount of sound changes



Frame-by-Frame Processing

— ] - b

L I 1

| I | 1 |
4200 4400 4600 4800 5000 5200 5400 5600 5800 6000

+— |nterval 1 —+— Interval 3 —

50% frame overlap

+— [nterval 2 —=+— Interval 4 —

* speech is processed frame-by-frame in overlapping intervals
until entire region of speech is covered by at least one such
frame

* results of analysis of individual frames used to drive model
parameters in some manner 7




Definition of STFT

8]

X;(e")="> x(mw(n-m)e” | both n and & are variables

M=—x

e w(n—m)is a real window which determines the portion of x(n)
that is used in the computation of X (e/?)

w50 —m]| w[100—m] w[200—m)|
~
‘\ﬂ ’(/ f"'l’/ _1'|n-:|
/s 7\
s\ Vs
~ 7 \
- \

illal ;.él Ll1t!iil'l;Illn‘lillilllllilall_ m
']’T"‘IT'IT‘ [T'TT' yVEivy I

n=0 n1n=30 =100 =200



Time-domain processing

e Time-domain parameters
— Short-time energy
— Short-time average magnitude
— Short-time zero crossing rate
— Short-time autocorrelation

— Short-time average magnitude difference



Short-Time Energy

E=23 x’[m]
— this is the long term definition of signal energy
— there is little or no utility of this definition for time-varying signals

Es= > x'[m] =x[n-N+1]+__+x7[A]

A
el — =1

— short-time energy in vicinity of time 7
T(x)=x"
wlnl=1 0<n<N-1
=0 otherwise



Computation of Short-Time Energy

xlim]

o M M A M Ann s B
EVALAY -

g wln—m]

/,,- xZim)

=M+ r| m
Fig. 4.2 Illustration of the computation of short-time energy.

- window jumpsi/slides across sequence of squared values, selecting interval
for processing

- what happens to E.as sequence jumps by 24,8, I samples ( E, is a lowpass
function—so it can be decimated without lost of information; why is E, lowpass?)

- effects of decimation depend on L; if L is small, then £,is a lot more variable
than if L is large (window bandwidth changes with LI)



Short-Time Energy Properties

+ depends on choice of h[n], or equivalently,
window wn]

— if wln] duration very long and constant amplitude
(wln]=1, n=0,1,...,L-1), E, would not change much over
time, and would not reflect the short-time amplitudes of
the sounds of the speech

— very long duration windows correspond to narrowband

lowpass filters

— want E,_ to change at a rate comparable to the changing
sounds of the speech == this is the essential conflict in
all speech processing, namely we need short duration

window to be responsive to rapid sound changes, but
short windows will not provide sufficient averaging to

give smooth and reliable energy function



Short-Time Magnitude

» short-time energy is very sensitive to large
signal levels due to x?[n] terms

— consider a new definition of ‘pseudo-energy’ based
on average signal magnitude (rather than energy)

M, = > |x{m]|vi{n—m]

M =—aC

— weighted sum of magnitudes, rather than weighted
sum of squares

X1 1x{ ]| M.=M

o | o in] .
Fg Fg Fs /R

- computation avoids multiplications of signal with itself (the squared term)

n=n




Short Time Energy and Magnitude—
Rectangular Window

[ What She Said / - Rectangular Window, E,
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Zero Crossing

* Number of times unvoiced speech crosses the
zero line is significantly higher than that of

voiced speech.

 Gender of speaker can also have an effect on
Zero crossing.

 Small pitch weighting can be used to weight
the decision threshold.



Short-Time Average ZC Rate

Zero crossing == successive samples

‘ ‘ | have different algebraic signs

|‘| | \ I
41:: ::ru::ssingj

* Zero crossing rate i1s a simple measure of the ‘frequency content’ of a
signal—especially true for narrowband signals (e.g., sinusoids)

+ sinusoid at frequency F, with sampling rate F; has F/F, samples per
cycle with two zero crossings per cycle, giving an average zero
crossing rate of

Z,=(2) crossings/cycle x (F,/ F¢) cycles/sample
z,=2F,/ F crossings/sample (i.e., z, proportional to F,)

Z,=M (2F, /F ) crossings/(M samples)



Sinusoid Zero Crossing Rates

Assume the sampling rate is F, =10,000 Hz

1. F, =100 Hz sinusoid has F. / F, =10,000/100 =100 samples/cycle;
or z, = 2/100 crossings/sample, or z,,, = 2/100*100 =
2 crossings/10 msec interval

2. F, =1000 Hz sinusoid has F, / F, =10,000/1000 =10 samples/cycle;
or z, = 2/10 crossings/sample, or z,,, =2/10*100 =
20 crossings/10 msec interval

3. F, =5000 Hz sinusoid has F, / F, =10,000/ 3000 = 2 samples/cycle;
or z, = 2/2 crossings/sample, or z,, =2/2*100=
100 crossings/10 msec interval



Zero Crossing for Sinusoids

oftsetid. 73, 100 Hz sinewane, 205, oflsdl sinewae, 208

i
0.5
/ 7C=9
a
-1
Offset=0.75
1.5 __I?ﬁi_}b?-.;"%"_"" E fif:_} _;J — 100 Hz Elre.l:aE:rh-:h: mf
’ \ | ' ZC=8

e |



Zero Crossings for Noise

offseet0.75, random nolse, 20°252, ofset nolse, 20122
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Offset=0.75
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ZC Rate Definitions

1 o -
L=t | sgn(x[m]) —sgn(x[m —1]) |w[n —m]
Leﬁ ML=
sgn{x[n])=1  x[n]=0
=—1 x[n]<0
« simple rectangular window:
wln]=1 0=n=[-1
=0 otherwise
L. =L
v|n] — First Lowpass | £ = £y _.
- - - = Filter -
Difterence :
H |H|
} F F F, F IR

Same form for £, as for E; or M,




ZC Normalization

« The formal definition of z_ is:

Z.=z=2 3 |sgn(x{m])-sgn(x(m—1])|

M=n—L+1

Is Interpreted as the number of zero crossings per sample.
» For most practical applications, we need the rate of zero crossings
per fixed interval of M samples, which is
z,, =2Z,-M =rate of zero crossings per M sample interval
Thus, for an interval of r sec., corresponding to M samples we get
Zy =Z,- M, M=rtF=r/T



ZC Normalization

» For a 1000 Hz sinewave as input, using a 40 msec window length
(L), with various values of sampling rate (F; ), we get the following:

Fs L Z, M z,,
8000 320 1/4 80 20
10000 400 1/5 100 20
16000 640 1/8 160 20

« Thus we see that the normalized (per interval) 7ero crossing rate,
z,,, Is iIndependent of the sampling rate and can be used as a measure
of the dominant energy in a band.



Autocorrelation Technique

» Autocorrelation is a cross-correlation of a signal
with itself.

(1) = Nzn—o z(n )m(n—l—'r).

J The maximum of similarity occurs for time

shifting of zero.
1 An other maximum should occur Iin theory
when the time-shifting of the signal corresponds

to the fundamental period.



Autocorrelation function

By definition, auto - correlation is

. 1 N
R[k]= lim X[n]-x[n+k], 0<k <K
(k] = lim —— 3 x[n]- x[n+ k] :
Proparties of Autocorrelationsis
1. R[K] = R[-K]

2.R[k]is maximumat k =0

N —1-k
R[k]:% > x[n]-x[n+k], 0<k <K,
n=0



Signal wawefonm
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When a segment of a signal is correlated with itself, the
distance (Lag_time _in_samples) between the positions of
the maximum and the second maximum is defined as the
fundamental period (pitch) of the signal.



Average Magnitude Difference Function(AMDF)

> It IS an alternate to Autocorrelation function.
» It compute the difference between the signal and a
time-shifted version of itself.
1 N -1-k
D, [k]= N Z\x(k) —X(n+ k)\, 0<k <K,
n=0
» While autocorrelation have peaks at maximum

similarity, there will be valleys Iin the average
magnitude difference function.



Signal wavefomm
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Speech/Non-speech Detection



Ideal Speech/Non-Speech Detection

Beginning of
speech interval

Ending of speech
interval




Speech Detection Issues

« key problem In speech processing Is locating
accurately the beginning and end of a speech
utterance in noise/background signal

beginning of
speech

= need endpoint detection to enable:
« computation reduction (don’t have to process background signal)
« better recognition performance (can’t mistake background for speech)

* non-trivial problem except for high SNR recordings



Problems for Reliable Speech Detection

weak fricatives (/f/, /th/, /h/) at beginning or end of
utierance

weak plosive bursts for /p/, /t/, or /k/

nasals at end of utterance (often devoiced and
reduced levels)

voiced fricatives which become devoiced at end of
utterance

trailing off of vowel sounds at end of utterance

the good news is that highly reliable endpoint detection is not required
for most practical applications; also we will see how some applications
can process background signal/silence in the same way that speech is
processed, so endpoint detection becomes a moot issue
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Speech/Non-Speech Detection

Sampling
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Conversion
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Speech/Non-Speech Detection

LOG ENERGY MEASUREMENTS- 4 SPEAKERS
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Rule-Based Short-Time
Measurements of Speech

Algorithm for endpoint detection:

1.

compute mean and o of log E,, and Z,,, for first 100 msec of signal
(assuming no speech in this interval and assuming Fs=70,000 Hz).

determine maximum value of log E,, for entire recording => normalization.

compute log E, thresholds based on results of steps 1 and 2—e.g., take
some percentage of the peaks over the entire interval. Use threshold for
zero crossings based on ZC distribution for unvoiced speech.

find an interval of log E, that exceeds a high threshold ITU.

find a putative starting point (N,) where log E, crosses ITL from above; find
a putative ending point (N,) where log E,, crosses ITL from above.

move backwards from N, by comparing Z,,,to IZCT, and find the first point
where Z,,, exceeds I[ZCT, similarly move forward from N, by comparing Z,,
to IZCT and finding last point where Z,,, exceeds |ZCT.



Endpoint Detection Algorithm
E——

1TU;
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Speech Parameters

X =[x, x,,x,x,,x]
x, =log E. -- short-time log energy of the signal
x, =Z,,, - short-time zero crossing rate of the signal

for a 100-sample frame
x, = C, -- short-time autocorrelation coefficient at unit

sample delay

x, = a, - first predictor coefficient of a ™ order linear predictor
x; = E, -- normalized energy of the prediction error of a

p" order linear predictor



Manual Training

« Using a designated training set of sentences, each 10
msec interval is classified manually (based on waveform
displays and plots of parameter values) as either:

— Voiced speech — clear periodicity seen in waveform

— Unvoiced speech - clear indication of frication or whisper

— Background signal — lack of voicing or unvoicing traits

— Unclassified — unclear as to whether low level voiced, low level
unvoiced, or background signal (usually at speech beginnings
and endings); not used as part of the training set

« Each classified frame Is used to train a single Gaussian
model, for each speech parameter and for each pattern
class; i.e., the mean and variance of each speech
parameter is measured for each of the 3 classes



Frequency-domain Processing

e Spectrogram — short-time Fourier analysis

— two-dimensional waveform (amplitude/time) is converted into a

three-dimensional pattern (amplitude/frequency/time)

* Wideband spectrogram:
— analyzed on 15ms sections of waveform with a step of 1ms

— voiced regions with vertical striations due to the periodicity of the
time waveform (each vertical line represents a pulse of vocal folds)
while unvoiced regions are solid/random, or ‘snowy’

 Narrowband spectrogram:
— analyzed on 50ms sections of waveform with a step of 1ms

— pitch for voiced intervals in horizontal lines



Frequency-domain Processing
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