
Features Extraction
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Why do we need feature extraction?

• Acoustic speech signal varies over time. Can’t compare 
two waveforms

example: two instances of /a:/ vowel spoken in isolation, with 
time interval between repetitions < 1 second:
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What is Features?

• Feature = a measure of a property of the speech 
waveform

• Reasons for feature extraction:
– Redundancy and harmful information is removed
– Reduced computation time
– Easier modeling of the feature distribution

• Speech has many “natural” (Acoustic-phonetic) features:
– Fundamental frequency (F0), formant frequencies, formant

bandwidths, spectral tilt, intensity, phone durations, articulation,
etc

• Not-so-natural features:
– Cepstrum, linear predictive coefficients, line spectral

frequencies, vocal tract area function, delta and double-delta
coefficients, etc
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Segmental

Duration profile #1 Duration profile #2

Amplitude profile #1 Amplitude profile #2 

Pitch profile #2 Pitch profile #1 

Supra-Segmental
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Speech Events

Segmental Supra-
segmental
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Supra-segmental features and Prosody

 Intonation, pause, duration, stress together are called

prosodic or supra-segmental features and may be

considered as the melody, rhythm, and emphasis of the

speech at the perceptual level.

 The prosody of a sentence is important for naturalness

and for conveying the correct meaning of a sentence.



 Peaks denote dominant frequency components
in the speech signal
 Peaks are referred to as formants
 Formants carry the identity of the sound
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Parameter / Feature Classification

Frequency Domain Parameters
• Filter Bank Analysis
• Short-term spectral analysis
• Cepstral Transfer Coefficient (CC)
• Formant Parameters
• MFCC, Delta MFCC, Delta-Delta MFCC

Time Domain Parameters
• LPC
• Shape Parameters

Time- Frequency Domain Parameters
• Perceptual Linear Prediction (PLP):
• Wavelet Analysis



Filter Bank Analysis



Complete Filter Bank Analysis Model
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How to determine filter band ranges

Uniform filter banks
Log frequency banks
Mel filter bands
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Uniform Filter Banks

• Uniform filter banks
– bandwidth B= Sampling Freq... (Fs)/no. of banks (N) 
– For example Fs=10Kz, N=20 then B=500Hz
– Simple to implement but not too useful

...
freq..

1 2 3 4 5 .... Q

500 1K 1.5K 2K 2.5K 3K ... (Hz)

V Filter output

v1 v2 v3
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Non-uniform filter banks: Log frequency

• Log. Freq...  scale : close to human ear 

filter 1 filter 2 filter 3 filter 4
Center freq. 300 600 1200 2400
bankwidth 200 400 800 1600

200 400 800 1600 3200freq.. (Hz)

v1 v2 v3

V
Filter 
output
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Mel filter bands

• Freq. lower than 1 KHz 
has narrower bands 
(and in  linear scale)

• Higher frequencies 
have larger bands (and 
in log scale)

• More filter below 1KHz
• Less filters above 1KHz

Filter 
output
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• Formants and a smooth curve connecting them
• This Smooth curve is referred to as spectral 
envelope

What we want to Extract?  Spectral Envelope



Cepstral analysis

• Homomorphic speech processing
– Speech is modelled as the output of a linear, time varying system

(linear time-invariant (LTI) in short seg.) excited by either quasi-
periodic pulses or random noise.

– The problem of speech analysis is to estimate the parameters of
the speech model and to measure their variations with time.

– Since the excitation and impulse response of a LTI system are
combined in a convolutional manner, the problem of speech
analysis can also been viewed as a problem in separating the
components of a convolution, called ”deconvolution”.



The principle of superposition for conventional linear systems:

If signals fall in non-overlapping frequency bands then they are separable

x[n]=x1[n]+x2[n]
X1(ω)=ℱ{x1[n]} & X1(ω) [0, π/2],

X2(ω)=ℱ{x2[n]} & X2(ω) [π/2, π],
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Principles of Homomorphic Processing

 Importance of homomorphic systems for speech
processing lies in their capability of transforming
nonlinearly combined signals to additively combined
signals so that linear filtering can be performed on them.

 Homomorphic systems can be expressed as a cascade of
three homomorphic sub-systems  referred to as the
canonic representation:

H

D*
x[n]

* +
y[n]L+ +

D*

*+ -1

I II III

[ ]nx̂ [ ]nŷ

Homomorphic Systems for Convolution
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Canonic Representation of a Homomorphic 
System

D*
x[n]

* +
I

[ ]nx̂

L+ +[ ]nx̂ [ ]nŷ
II

y[n]D*

*+ -1

III

[ ]nŷ

I. System takes inputs combined
by convolution and transforms
them into additive outputs

II. System is a conventional linear
system

III. Inverse of first system--takes
additive inputs and transforms
them into convolution outputs



 The characteristic system for homomorphic deconvolution



Cepstral analysis

Observation:

taking logarithm of X(z), then

in the cepstral domain 

• So, the two convolved signals are additive in the
cepstral domain





Cepstral analysis

][ˆ nxReal cepstrum c[n] is the even part of
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• Relationship of complex cepstrum          to real cepstrum c[n]:
– If x[n] real then:

• |X(ω)| is real and even and thus log[|X(ω)|] is real and even
• ∠X(ω) is odd, and hence 

is referred to as the complex cepstrum.
• Even component of the complex cepstrum, c[n] is referred to 

as the real cepstrum.

[ ] [ ] [ ]
2
ˆˆ nxnxnc −+

=

[ ]nx̂

[ ] ( )[ ]∫
−

=
π

π

ω ωω
π

deXnx njlog
2
1ˆ

[ ]nx̂
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Homomorphic Filtering

• In the cepstral domain:
– Pseudo-time  Quefrency
– Low Quefrency  Slowly varying components.
– High Quefrency  Fast varying components.

• Removal of unwanted components (i.e., filtering) can be attempted 
in the cepstral domain (on the signal       , in which case filtering is 
referred to as liftering):

• When the complex cestrum of h[n] resides in a quefrency interval
less than a pitch period, then the two components can be separated
form each other.

[ ]nx̂
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Homomorphic Filtering

• If log[X(ω)] 
– Is viewed as a “time signal”
– Consisting of low-frequency and high-frequency contributions.
– Separation of this signal with a high-pass/low-pass filter.

• One implementation of low pass filter:

D＊

＊ +
y[n]l[n]+ +

D＊

＊+ -1
[ ]nx̂ [ ]nŷ

x[n]=h[n]*p[n]
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Homomorphic Filtering

• Alternate view of “liftering” operation: Filtering operation L(ω) applied in 
the log-spectral domain

• Interchange of time and frequency domain by viewing the frequency-
domain signal log[X(ω)] as a time signal to be filtered. ⇒ 
– “Cepstrum” can be thought of as spectrum of log[X (ω)]
– Time axes of            is referred to as “quefrency”
– Filter l[n] as the “lifter”.   

F-1 y[n]l[n] F-1

[ ]nx̂ [ ]nŷ
x[n]=

h[n]*p[n] F log F exp

X(ω)^ Y(ω)
^L(ω)

[ ]nx̂
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Basic Speech processing steps for Frequency 
Parameter

Pre-emphasis

Windowing

DFT

Framing

Signal: S(t) = x[n]

y[n] = x[n] – α * x[n-1] (where α = 0.95)

x(n) = x(n)*W(n)

Power Spectrum

Hamming : 0.54 – 0.46 cos(2*pi*n/(N-1))

Hanning : 0.5(1- cos(2*pi*n/(N-1)))

Cosine   : sin(pi*n/(N-1))

Basic
Signal

Processing
Block
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Cepstral Transform Coefficients (CC)

( )( )( )( )nSDFTlogIDFTCepstrum =

Speech
Basic 
Signal 

Processing
Block 

Log IDFT Cepstrum
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• Relationship of complex cepstrum          to real cepstrum c[n]:
– If x[n] real then:

• |X(ω)| is real and even and thus log[|X(ω)|] is real and even
• ∠X(ω) is odd, and hence 

is referred to as the complex cepstrum.
• Even component of the complex cepstrum, c[n] is referred to 

as the real cepstrum.

[ ] [ ] [ ]
2
ˆˆ nxnxnc −+

=

[ ]nx̂

[ ] ( )[ ]∫
−

=
π

π

ω ωω
π

deXnx njlog
2
1ˆ

[ ]nx̂







LPC Cepstrum

The LPC vector is defined by [a0,a1,a2,...ap] and the CC vector is defined 
by [c0c1c2...cp...cn−1



MFCC is the most used parameters in Speech Technology development.

MFCC computed from the speech signal using the following three steps:

1. Compute the FFT power spectrum of the speech signal
2. Apply a Mel-space filter-bank to the power spectrum to get energies
3. Compute discrete cosine transform (DCT) of log filter-bank energies to get 

uncorrelated MFCC’s 

Mel Frequency Cepstral Coefficients (MFCC)



Basic Signal Processing Block

Block diagram of Extracting a sequence of 39-
dimensional MFCC feature vectors





Mel Filter bank





)()()(ˆ kMkSlS
l

l

U

Lk
l∑

=

=

Ml(k) the filter weighting function can be normalized   

)()(1)(ˆ kMkS
M

lS
l

l

U

Lk
l

l
∑
=

=

)(kMM
l

l

U

Lk
ll ∑

=

=





• The signal is real with mirror symmetry
• The IFFT requires complex arithmetic
• The DCT does NOT
• The DCT implements the same function as the FFT
more efficiently by taking advantage of the redundancy
in a real signal.
• The DCT is more efficient computationally

Why the DCT?





Perceptual Linear Prediction

• PLP parameters are the coefficients that result from standard
all-pole modeling or linear predictive analysis, of a specially
modified, short-term speech spectrum.

• In PLP the speech spectrum is modified by a set of
transformations that are based on models of the human
auditory system

• The spectral resolution of human hearing is roughly linear up
to 800 or 1000Hz, but it decreases with increasing frequency
above this linear range



Perceptually motivated analyses 
 Critical-band spectral resolution: PLP incorporates critical-band

spectral-resolution into its spectrum estimate by remapping the
frequency axis to the Bark scale and integrating the energy in the
critical bands to produce a critical-band spectrum approximation.

 Equal-loudness pre-emphasis: At conversational speech levels,
human hearing is more sensitive to the middle frequency range of
the audible spectrum. PLP incorporates the effect of this
phenomenon by multiplying the critical-band spectrum by an equal
loudness curve that suppresses both the low- and high-frequency
regions relative to the midrange from 400 to 1200 Hz.

 Intensity-loudness power law: There is a nonlinear relationship
between the intensity of sound and the perceived loudness. PLP
approximates the power-law of hearing by using a cube-root
amplitude compression of the loudness-equalized critical band
spectrum estimate.



Perceptual LPC
(Hermansky, J. Acoust. Soc. Am., 1990)

• First, warp the spectrum to a Bark scale:

• The filters, Hb(k), are uniformly spaced in Bark frequency.  
Their amplitudes are scaled by the equal-loudness contour 
(an estimate of how loud each frequency sounds):



Perceptual LPC
• Second, compute the cube-root of the power spectrum

– Cube root replaces the logarithm that would be used in MFCC
– Loudness of a tone is proportional to cube root of its power

Y(b) = S(b)0.33

• Third, inverse Fourier transform to find the “Perceptual 
Autocorrelation:”



Perceptual LPC
• Fourth, use Normal Equations to find the Perceptual LPC (PLP) 

coefficients:

• Fifth, use the LPC Cepstral recursion to find Perceptual LPC 
Cepstrum (PLPCC):





RASTA(RelAtive SpecTrA )
• The rate of change of nonlinguistic components of

speech and background noise environments often lies
outside the typical rate-of-change of vocal-tract
shapes in conversational speech

• Hearing is relatively insensitive to slowly varying
stimuli

• The basic idea of RASTA filtering is to exploit these
phenomena by suppressing constant and slowly
varying elements in each spectral component of the
short term auditory-like spectrum prior to
computation of the linear prediction coefficients



RASTA (RelAtive SpecTral Amplitude)
(Hermansky, IEEE Trans. Speech and Audio Proc., 1994)

• Modulation-filtering of 
the cepstrum is 
equivalent to 
modulation-filtering of 
the log spectrum:

ct*[m] = Σk hk ct-k[m]

• RASTA is a particular kind 
of modulation filter:  



Time Domain Methods in Speech 
Processing



Fundemental Assumptions
• Properties of Speech Signal change relatively 

slowly with time (5-10 sounds per second)
• Uncertainty in short/Long time measurements 

and estimates
– Over very short (5-20ms) intervals

• Uncertainty due to small amount of data, varying pitch 
and amplitude

– Over medium Length intervals (20-100ms)
• Uncertainty due to changes in sound quality, transition 

between sounds,  rapid transients in speech
– Overlong Intervals (100-500ms)

• Uncertainty due to large amount of sound changes







Time-domain processing

• Time-domain parameters

– Short-time energy

– Short-time average magnitude

– Short-time zero crossing rate

– Short-time autocorrelation

– Short-time average magnitude difference













Zero Crossing

• Number of times unvoiced speech crosses the
zero line is significantly higher than that of
voiced speech.

• Gender of speaker can also have an effect on
zero crossing.

• Small pitch weighting can be used to weight
the decision threshold.

















 Autocorrelation is a cross-correlation of a signal 
with itself.

 The maximum of similarity occurs for time
shifting of zero.
 An other maximum should occur in theory
when the time-shifting of the signal corresponds
to the fundamental period.

Autocorrelation Technique



∑

∑

−−

=

−=
∞→

≤≤+⋅=

=
=

≤≤+⋅
+

=

kN

n

N

NnN

Kkknxnx
N

kR

ofoparties

Kkknxnx
N

kR

1

0
0

0

0  ],[][1][

0kat  maximum R[k]is 2.
R[-k]R[k] 1.

is ationsAutocorrel  Pr

0  ],[][
12

1lim][

isn correlatio-auto ,definitionBy 

Ch4. pitch, v3.a 20

Autocorrelation function



When a segment of a signal is correlated with itself, the
distance (Lag_time_in_samples) between the positions of
the maximum and the second maximum is defined as the
fundamental period (pitch) of the signal.

T0 T0 T0



 It is an alternate to Autocorrelation function.
 It compute the difference between the signal and a

time-shifted version of itself.

While autocorrelation have peaks at maximum
similarity, there will be valleys in the average
magnitude difference function.

Average Magnitude Difference Function(AMDF)
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Speech/Non-speech Detection





















Frequency-domain Processing
• Spectrogram – short-time Fourier analysis

– two-dimensional waveform (amplitude/time) is converted into a 
three-dimensional pattern (amplitude/frequency/time)

• Wideband spectrogram: 
– analyzed on 15ms sections of waveform with a step of 1ms 

– voiced regions with vertical striations due to the periodicity of the 
time waveform (each vertical line represents a pulse of vocal folds) 
while unvoiced regions are solid/random, or ‘snowy’

• Narrowband spectrogram: 
– analyzed on 50ms sections of waveform with a step of 1ms

– pitch for voiced intervals in horizontal lines



F3
F2
F1

waveform

Wideband spectrogram

narrowband spectrogram

Frequency-domain Processing
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