SHORT-TIME FOURIER TRANSFORM(STFT)

STFT - (a) Analysis (b) synthesis

(a) Analysis:- FT view and Filtering view
(b) Synthesis:-Filter bank summation (FBS)
Method and OLA Method



Short-Time Fourier Transform

1 Speech is not a stationary signal, I.e., it has
properties that change with time.

d Thus a single representation based on all
the samples of a speech utterance, for the most
part, has no meaning

 Define a time-dependent Fourier transform
(TDFT or STFT) of speech that changes
periodically as the speech properties change
over time
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STFT i1s a function of two variables, the time
iIndex, n which discrete and the frequency
variable w which Is continuous

o0

X (n,w)= > x[mwn—mle™ " = DTFT (x[m]w[n —m])

M=—o0




Different time origins of STFT

STFT can be viewed as having two different time origins

1. Time origin tied to signal

X (n,w)= 3 x[mM{n —mle " = DTFT (x[m]wn — m])

M=—o0

2. Time origin tied to window

X (n,@) =& > x[n+mw[-m]e " = e " DTFT (x[n + mw[-m])

M=—00



STFT Analysis
DFT view _

X (n,w)= > xImmw[n—mJe "

Mm=—o0

dw[n] is non zero only Iin the interval [0O,N-1] where N is the
window length

dTime reversing the analysis window w[m] and multiplying
It with x[m]
X (n,k)=X(n,®) | 2x,
N

DFT STFT

X (n, k) = Z [miwin—mle N

m=



Filtering view

X (n,@,) = 3 (x[mle ™ )w[n —m]

M=—o0

X (N, @,) = (x[NJe ") *w[n]

The signal x[n] is first modulated with e7~% and then passed
through a filter with impulsive response w[n].

X(n] ~ X (N, @)
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X (n, @,) =" (x[n])* (wn]e'*")

That Is, the sequence X[n] is first passed through the filter
w[n] with a linear phase factor. The output is then modulated

by e~/ .
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Analysis with the discrete STFT
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General properties of the filtered sequence

. If x[n] has length N and w[n] has length M then
X(n,m) has length N+M-1

. The bandwidth of the sequence X(n,a,) Is less than
or equal to the bandwidth of w[n]

. The sequence X(n,w,) has the spectrum centered at
origin



Time-Frequency Resolution Tradeoffs
X(N,w)—>DFT—> f [m]=XxXm]w[n —m]
X(w)—>DFT of Xx[m]

W (—w)e™—>DFT of wn-m]

X(n,a))ziJ‘W(é’)eij(a)+6’)d6’
27T 7
X(n,w)=X(w) then W(w) should be Impulse

A fundamental problem of STFT and other time-frequency
analysis techniques is the selection of the windows to achieve
a good tradeoff between time and frequency resolution.



Role of Window In STFT

The window w(n—m) does the following:
1 Chooses portion of the signal to be analyzed
4 Window shape determines the nature of the X(n, w )

(a) Voiced Speech with 251 - and 81-point Hamming Windows
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Window Function for FIR Filter Design

Name of Window

Window function

Bartlett(triangular) 2‘,1 M 1

T M —1
Blackman

0.42 —-0.5cos 27 + 0.08cos 47N
M —1 M —1

Hamming 0.54 —0.46cos 27m1
Hanning 3[1_(:08 271 j

2 M —1
Kaiser

! {a\/(M _1)2{n_ Mz_l)z}
- [a[ Mz_ 1)]
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STFT Synthesis

For a given value of n, X(n,w ) has the same properties as a
normal Fourier transform, we can recover the Input
sequence exactly.

For each n, we take the inverse Fourier transform of X(n,w)
from the STFT.
Then obtain  f[m]=x[m]w[n-m] .

Evaluating ffm] at m = n, obtain x[n]w[0] . Assuming w[0] # O

Then x[n]= f[n] /w[0]



f.[m] = x[m]w[n—m]

X[n] =

!
o If the STFT Is unigque
i representation of x[n]
IDJ: atm=n  then it invertible.
X[m]wiO]
__ 1 r X (n, w)e'"dw
272W[0] 7~

Synthesis equation for discrete-time STFT



With the requirement that w[0]=0 , the sequence x[n] can be
recovered exactly from X(n, w), if X(n, w) i1s known for all
values of w over one complete period

O Sample-by-sample recovery process
4 X(n, w), must be known for every value of n and for all w

U To reduce the computational complexity, the STFT is not
computed at every time sample, but rather at a certain time
decimation rate. In some cases, the discrete STFT may not be
Invertible, i.e. there are certain constraints on the frequency-
sampling and time-decimation rates.

U By selecting appropriate constraints on the frequency
sampling and time decimation rates the discrete STFT Is
Invertible



Short-Time Synthesis

Example 1.
— Consider the case when w[n] is band limited with bandwidth

of B.
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Figure 7.10 Undersampled STFT when the frequency sampling interval
27 s greater than the analysis-filter bandwidth 5.
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Source: 5.H. Nawab and T.F. Quatieri. “Short-Time Fourier Transform™ [13].

©1987. Pearson Education. Inc. Used by permission.

If there are frequency components of x[n] which do not pass through
any of the filter regions of the discrete STFT then it is not a unique

representation of x[n], and x[n] is not invertible.



Example 2.
Consider X(n,k) decimated in time by factor L, i.e., STFT is applied
every L samples.

w[n] is non-zero over its length N,
If L > N, then there are gaps in time where x[n] is not considered. Thus in
such cases again x[n] is not invertible.

X[n] is invertible if temporal decimation factor L is equal
to or less then the size of the analysis window N, and
the frequency sampling interval 2n/N< 2n/N,,
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Two common methods for STFT synthesis
d Filter Bank Summation (FBS) method
d Overlap-Add (OLA) method.




Filter Bank Summation (FBS) Method

Traditional short-time synthesis method that is commonly
referred to as the Filter Bank Summation (FBS).

FBS is best described in terms of the filtering interpretation
of the discrete STFT.

— The discrete STFT is considered to be the set of outputs
of a bank of filters.

— The output of each filter is modulated with a complex
exponential

— Modulated filter outputs are summed at each instant of
time to obtain the corresponding time sample of the
original sequence



Analysis with the discrete STFT
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Filter Bank Summation (FBS) method

y[n] = NW[O ]ZX(n k)e *
1 N —j%km\ j%kn
y[n]= NW[O]kZ:; kaoox[m]w[n—m]e J>e

X (k)
Interchanging summation operation this equation reduces to:

j 27k

yInl=J [0] X[n]™* kZ;W[n]e :

Finite sum over the complex exponential reduce to an impulse train with period N

yInl=3 WO ]X[n]*W[n]Z5[n—rN]

y[n] is the output of the convolution of x[n] with a product of the analysis window
with a periodic impulse sequence




W[n]r;f[”_rN] W[”]i o[n—rN]=w[0]o[n]

reduces to 9[n] if:
yln] = x[n]
4 Window length N, <N, or
4 For N,,>N, must have w[rN]=0 for r#0, that is

W[rN]=0for r=-11-2,2........

This constraint 1S known as the FBS constraint.
This expression states that the

ZW (a)——k) — Nw[()] frequency responses of the
analysis filters should sum to a
constant across the entire

bandwidth.

W (-2 k) . .
~wir] Shifted version of the
f.\‘L_‘ ¥ — Tﬁ?ﬁfﬁ Fourier transform of the

b1 1 _ ) .
- M. - A S A analysis window were
" N N required to add up to a

=N constant




Generalized FBS Method

ote: x[n]:%ﬂ i f[n,n—r]X (r,a))}ej””da)

“Smoothing” function f[n,m] is referred to as the time-varying
synthesis filter.

It can be shown that any f[n,m] that fulfills the condition below makes
the synthesis equation above valid

S f [n-m]w{m]=1

M=—00

Basic FBS method can be obtained by setting the synthesis filter to be
a non-smoothing filter:

fln,m]=dm]



Consider the discrete STFT with decimation factor L.
Generalized FSB of the synthesized signal is given by:

y[n]=— iZf[nn rLIX (rLk)e' N

r=—oo k=0

Furthermore, consider time invariant smoothing filter:
f[n,m]=f[m]
That Is:
f[n, n-rL]=f[n-rL]



Generalized FBS Method

Thus yIn- LSS In-rLX (1L, e N

r=—o0 k=0

This equation holds when the following constrain is
satisfied by the analysis and synthesis filters as well as
the temporal decimation and frequency sampling factors:

L i f[n—rL]w[rL—n+pN]=o[p], V¥n

r=—0

* For fim]=J[m] and L=1 this method reduces to the basic
FBS method.



Generalized FBS Method

If L>1 f[n] is an Interpolating filter= Interpolation FBS
Methods:

1. Helical Interpolation (Partnoff)
2. Weighted Overlap-add Method (Croshiere)



Overlap-Add (OLA) method

O Take inverse DFT for each fixed time in the discrete STFT. Instead of
dividing out the analysis window from each of the resulting short time
sections perform an overlap add operation between the short sections

O Overlap and add operation effectively eliminates the analysis window

1 o
x[N]= 5 ANTO] £ X (n,w)e'dw

If X[n] is averaged over many short-time segments and normalized by W(0) then

x[n]= 1 TiX(p,a))ejwpda)

272W[0]) “
where 0
W (0) = > w[n]
Discrete version of OLA is given by: 1 = [N 27
ylnl=—— 2 12 X(pk)e "
W (O) poo{ N %

IDFT:f, [n];fx[n]w[ p—n]



1 oo
yinl =&y ) IO:Z_OOX[FI]W[ p—nl]

O

yI[n] = x[n](W%O)) S wip—n]

vin] = X[n] it

> " wWI[p —nl=W (O)

P=—o0o

Sum of values of a sequence must be the first value of its Fourier
Transform

> Wp—n]l=W (0)

p=—c0
For decimation in time by factor of L-> iw[pL—n]:W—IEO)
L N 1 % - j27nk /N
y[n] =—— {— X (pL,k)e!?™ }
W(O) p=—c0 N k=0

The above equation depicts general constrain imposed by OLA method. It
requires that the sum of all the analysis windows (obtained by sliding w[n] with
L-point increments) to add up to a constant



L 2L 3L n

For OLA methods it can be shown that its constrained is satisfied by all-finite-
bandwidth analysis windows whose maximum frequency is less than 2n/L
(where L is temporal decimation factor).

This finite bandwidth can be relaxed provided

W(o-2&k/L)=0 at w=27k/L

Analogous to FBS constrain for N, >N where the window w[n] is
required to take on value zero at n=+N, +2N, +3N,...



FBS Method
N—1 27
y[n] =
N k=0

Adding Frequency component for
eachn

ZW (0 — —k) = Nw[0]
Constraint

N, <N—-——>y[n]=Xx[n]

OLA Method

o0

1
VIl = 107 2 XnwLpL -

Adding time component for each n

Zw[pL—n] _m

p=—c0

Constraint

@, <2W7Z__> y[n] = X[n]




Overlap Addition (OLA) Method

n=L'4 Farm window,
=1 wn]

|

Form

PR

* wlrR-n] x[n] €

1 * w(n) is an L-point
Pad with zeros to Hamming window with

give M point

seqUEnce R=U4
« assume x(n)=0 for n<0

Modifications to
acnum » time overlap of 4:1 for HW

l . .
N-paint « first analysis section

'mf — begins at n=L/4

yim]=ylml+y Im], | Initialize
m=n-M+1,... n-1,n y[m]=0, all m

|

fn=n+Lid
r=r|+1 73




Overlap Addition (OLA) Method
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Time-Frequency Sampling

Summary of sampling issues for those two methods
that gives motivation for our earlier statement that
sufficient but not necessary conditions for invertability
of the discrete STFT are:

The analysis window Is non-zero over its finite
length N,

The temporal decimation factor L<N,,
The frequency sampling interval 2n/N < 2n/N,,



e Consider windowed/short-time signal:
» f.[m]=w[m]x[n-m], and
» X(n,m) — Fourier transform of f_ [m]
» Analysis window duration of N,

 From Fourier transform point of view:
» Reconstruction of fn[m] from X(n,k) requires a frequency sampling of at
least 2n/N,, or finer.
 From Time-domain point of view:

» Time decimation interval L is required to meet Nyquist criterion based
on the bandwidth of the window w[n].
« This implies sampling of X(n,k) at a time interval
L = 2n/w, to avoid frequency-domain aliasing of the time sequence
X(n,w)
* o, IS the bandwidth of W(®) [-®,, ®]




21 September 2017

Falrn] = x[rmjwln—m]

L = 2
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1, >i{nlL, co)
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Figure 2714 Timnme-treguency sampling constraints from the perspective of
classical time- and freguency-—domain aliasing. The time sampling most satisfy
thie MNyguist criterion to avoid aliasing in freguency (but the OLA constraint
allows relaxing the finite flter bandwidth constraint), while the fregquency
sampling must be fine enough w avoild aliasing in time (bur the FBS constraint
allows relaxing the finite window duaration condition).

Veton Képuska
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Time-Frequency Sampling

Sufficient (but not necessary) conditions for signal
reconstruction are:

1. Window is non-zero over its lengths N,
2. Temporal decimation factor L = N, (2/®,)
3. Frequency sampling interval 2n/N < 2n/N,,

To avoid aliasing:
l. In the time domain - by ensuring condition 3.
1. In the frequency domain - by ensuring condition 2.



Time-Frequency Sampling

* Implication on the use of practical windows:
I. Rectangular window, N,

—> Assuming bandwidth equal | /
to the extent of the main lobe /
B =[-2n/N,: 2n/N,]= 4r/N,,
2 N ;1 NAVAYA \/'\ \ j / \*vf\v,-\/-\/-\_
= LWSEﬂST\N ;50% Overlap in windows A N (-

II. Hamming Window, N,
—Bandwidth B = 8r/N,,

WSZESNW
B 4

75% Overlap in windows




Summary

OLA Method (DFT of order N)

1. No time aliasing if window length N, so that:
21/N < 21/N,,

2. No frequency-domain aliasing occurs if decimation factor L is small
enough so that filter bandwidth
o, =(2m/L)

3. If zeros are allowed in W(®) then condition 2 can be relaxed. In this
case we can under-sample in frequency and still recover the
sequence.



Summary

FBS Method

No frequency-domain aliasing occurs if the decimation factor L
meets the Nyquist criterion, i.e., L< N, (2n/0.) where o_ is the w[n]
bandwidth.

Not time-domain aliasing occurs if 2n/N < 2nt/N,,

— N, < N.

If zeros in w[n] are allowed then condition 2 can be relaxed. In this
case we can under-sample in time and still recover the sequence.

: Wi}
|

gl w6
el g @ 2n

K[n] - C}E"} = W[ﬂ] \-{( EJC -




Short-Time Fourier Transform Magnitude (STFTM)

« STFTM discards (possibly) phase information, which has
numerous uses in application areas:

— Time-scale modification
— Speech Enhancement

* In all these applications phase information estimation of
speech is difficult (e.qg., presence of noise in the signal)

 Furthermore, a number of techniqgues have been
developed to obtain phase estimate from a STFT
magnitude.



e Squared-Magnitude and Autocorrelation Relationship:

— ﬁ
r[n m] =— “X (n a))‘ el®d Short-time

autocorrelation

0

2 _ —Jon Short-time
‘X (n’a))‘ _ Zr[n’ m]e magnitude
M=—o0
S

— m-autocorrelation “lag”



Short-Time Fourier Transform Magnitude
(STFTM)

e Furthermore, the autocorrelation r[n,m] is given by the convolution
of the short-time signal:

rin,m] =f [m]*f [-m]
where

f [m]=x[m]w[n-m]



Signal Representation

Under what conditions STFTM can be used to represent a sequence
uniquely?
Note that:

FxIn}= [FxInTY

Ambiguity, thus STFTM is not unique representation for all cases.

However, by imposing certain mild restrictions on:
— the analysis window and
— the signal,

unique signal representation is indeed possible with the discrete-
time STFTM.



Reconstruction from Time-Frequency
Samples

To carry out STFTM analysis on a digital computer, discrete STFTM
must be applied.

Uniqueness theory of STFTM can be easily extended to discrete
STFTM.

— Uniqueness of STFTM based on the short-time autocorrelation
functions.

— Autocorrelation functions can be obtained even if the STFTM is
sampled in frequency (discrete STFTM) with adequate
frequency sampling.

To consider effects of temporal decimation with factor L, we note

that adjacent short-time sections now have an overlap of N-L
instead of N,-1.



Application of STFT Analysis and Synthesis

4 Signal Estimation from Modified STFT or STFTM
4 Time Scale Modification and Enhancement of Speech

] Noise Reduction



Time-Scale Modification and Enhancement of
Speech

Goal

[ To either speed up or slow down a speech signal
while maintaining the approximate pitch

Applications
» Change voice mail playback
» Court stenographers-play proceedings quicker
»Sound effects
> Etc...



Time-Scale Modification
e Methods:

— Cut & Paste (Fairbanks method):

e Discard or duplicate frames, in order to speed up or slow down the articulation
respectively.

* Problem:
— Pitch period mismatch at adjacent frames causes distortion.
— Pitch-synchronous OLA (Scott & Gerber)

e Select frame size & location synchronous to pitch periods. Problem of pitch period
mismatch is avoided.

* Problem:
— Pitch synchronization is not always easy.
— STFTM Synthesis

e To avoid pitch synchronization problems use only the magnitude of STFT (i.e.,
STFTM)

1. Compute |X(nL,®)| at an appropriate frame interval — decimation rate L (e.g.,
L=128 at Fs=10000 Hz, and N is several TO long)

2. Modify decimation rate with new rate M (e.g., M=L/2) for a speed-up of factor of %:
[Y(nM,0)|= |X(nL,®)

3. Apply the Least-Squared Error iterative estimation algorithm until |Y(nM,®) |
converged.

e Problem:

— Occasional reverberant characteristic of synthesized signal are perceived due
to lack of STFT phase control.



Time-Scale Modification

M 2M 3M 4M 5 6M-

- .,

r
Figure 7.28 Altemative modified STFT for time-scale modification

where no frames are discarded. In the example, M =

(8] el
¥
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Noise Reduction

A number of techniques developed to remove/reduce additive
noise:
* Noise corrupted signal is given by:
y[n]=x[n]+b[n]
— STFT Synthesis:

e Subtract Nois spectrum Sb((D) 1
X(nL ) EY(nl_ a))‘ a5 () et

if V(L)' ~aS, (@) < 0=|Y (nL,0)| —aS, (0)=0

e Original phase spectrum ZY(nL,») is retained because phase of the
noise can not be reliably estimated in general.

e Factor a is a control of the degree of noise reduction.



Noise Reduction

— STFTM Synthesis:

e Ignore phase and use Sequential Extrapolation or Least-Squared Error
estimation method to construct clean signal.






Signal Representation

Suppose x[n] is the sum of two signals: x,[n]

M, —1
and x,[n] occupying different regions of the - -
n-axis. M ‘ e
Furthermore, suppose that the gap of zeros 1 l I_T t il W i
between x,[n] and x,[n] is large enough so o c n
that there is no analysis window position for [l o -
which the corresponding short-time section | 4
includes non-zero samples of both x,[n] and 1 TY
x,[n]. Laf[]4
Because of the ambiguity condition STFTM 1)
of: _
— X1[n] + Xz[n] 'x‘.{'.1| P ’ %]
—  X4[n]-%,[n], and ' I 1
— _Xl[n] + Xz[n] _1 -! ".,_ .._l l I i .
is the same. %
Figure 216 Three sequences with the same STETN
Coniprte %.H. Mowah and TFE Quatierh ~Ehor-Time Fouries
IIr:"-\.llu'\i'u'" ||| 3T |!'.' repn Educanmea, Ini Ueed |
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Signal Representation

Any uniqueness conditions must include a restriction on the
length of zero gaps between non-zero portions of the signal x[n].
Sufficient uniqueness conditions are the following:

1. The analysis window w[n] is known sequence of finite length N,
with no zeros over its durations.

2. The sequence x[n] is one-sided with at most N-2 consecutive zero
samples, and the sign of its first non-zero value is known.



Signal Representation

e |f the successive STFTM correspond to overlapping signal segments
then:
— If short-time spectral magnitude of signal segment at time n is know
then

— Spectral magnitude of the adjacent section at time n+1 must be
consistent in the region of overlap with the known short-time section.

= If the analysis window were non-zero and of length N, then after dividing

out the analysis window, the first
N,-1 samples of the segment at time n+1, must equal the last N,-1 of the
segment at time n (as illustrated in the next slide)

= If the last sample of a segment can be extrapolated from its first N -1
values, one could repeat this process to obtain the entire signal x[n].



Signal Representation

=x[rm]

m

111;,TTTTTTTT?

Figure 7.16 [llustration of the consistency required among adjacent
short-time sections. Note the samples that are common to the adjacent

sections. A rectangular analyvsis window is assumed.
SOoURCE: S _H. Mawab and T.F. Cuatieri. “Short-Time Fourier Transform”
[13]. @1987. Pearson Education. Inc. Used by permission.
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Signal Representation

To develop the procedure for extrapolating the next sample of a sequence
using its STFTM, assume that the first N -1 samples under the analysis
window positioned at time n are known.

— The sequence x[n] has been obtained up to some time n-1 from its STFTM.
Goal is to compute sample x[n] from these initial samples and the STFT
magnitude, | X(n,®)|, or equivalently r[n,m].



Signal Representation

* Note that r[n, N,-1], the maximum lag of autocorrelation, is given by the product

of the first and last value of the segment:

r[n, N, ~1] = (W{0]x{n - 0])W{N,, ~2]x[n — (N,, ~1)])

J/

first of next last of\ﬁresent
X[n] = rin,N, -1
> W[OJW[N,, —1]x[n— (N, —1)]

fnlm]

rin, m] = fo[m] = f,[—m] T T T I i
- I
o — My, = 1 r - rm
- rlm, MN,—1] h rir,M,,—1] = wiO] =[n]
— -
frlm — M, + 1] 2w M —1] x[n—M,+1]
—a—3—2—1 | 1 2 3 4 m
- il T
n m
b
Figure 717 Compuration of the last non-zero autocorrelation sample of a Ave-point seguence: (al @auio-

correlation function: {b) product of first and last segquence values.
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Signal Representation

Note that: o0

X(n,@)" = > r[n,ml i

M=—0o0

If the first value of the short-time section,

x[n-(N,-1)] happens to be equal to zero, must find the first non-zero
value within the section and again use the product relation as
depicted in the last expression.

Note that such a sample can be found because it was assumed that
there are at most N,,-2 consecutive zero samples between any two
non-zero samples of x[n].



Signal Representation

e Sequential extrapolation algorithm

1.

Initialize with x[O]

2. Update time n

3. Compute r[n,N,-1] from the inverse DFT of

| X(n,k)[2.

X[n] = r(n,N,, —-1j

Compute: ) W[OIW[N,, —1]x[n—(N,, -1)]

Return to step (2) and repeat



Reconstruction from Time-Frequency
Samples

Sufficient uniqueness conditions for the partial overlap case:

1. The analysis window w[n] is a known sequence of finite length N,
with no zeros over its duration.

2. The sequence x[n] is one-sided with, at most N -2L consecutive zero
samples.

L consecutive samples of x[n] (from the first non-zero sample) are
known.

This is a sufficient but not a necessary condition.



Signal Estimation from the Modified STFT or
STFTM

. Synthesis of a signal from a time-frequency function of a modified STFT
or STFTM required in many applications.

. Modification may arise due to:

Quantization errors (e.g., from speech coding)

Time-varying filtering

Speech Enhancement

ol S

Signal Rate modifications

H Limitations:

—  Modifications in frequency should result in time modification that are
restricted within an analysis window (Figure 7.18 next slide)

—  Overlapping sections must undergo similar modifications (Figure 7.19)



Signal Estimation from the Modified STFT

tone

21 September 2017

or STFTM

e Example 7.5. Removal of interfering

Consider modifying a valid X(n,») of
short time f_ [m]=x[m]w[n-m]
segment by inserting a zero gap
where there is known to lie an
unwanted interfering sine wave
component.

Removal of the interfering signal
with H(n,m).

Resulting frequency representation
is: Y(n,0)=X(n,m)H(n,m)

Inverse transforming it to obtain
modified short-time sequence g,[m]
is non-zero beyond the extent of the
original short-time segment

f [m]=x[m]w[n-m].

n- NW+1 Y(n, U})

gn[m] 4 M
\ \
T 0

Figure 218 Schematic of violation of STFT duration constraint after modification. The
original STFT X{n, ) is modified by a fiter H (1, w) that removes an interfering
sinewave componzt.

—
=3

=Nyt

Veton Képuska
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Signal Estimation from the Modified STFT
or STFTM

e Example 7.6

21 September 2017

At time n:

e Suppose a time-decimated STFT,
X(nL,®) is multiplied by a linear
phase factor e/“"o to obtain
Y(nL,®)=X(nL,w)e/®"o

At time (n+1)

e X((n+1)L,m) is multiplied by a
negative of this linear phase factor
e1®"o to obtain .
Y((n+1)L,m)=X((n+1)L,w)el®

Overlapping sections of inverse Fourier
Transforms denoted by g, [m] and
8(n+1).[M] are not consistent.

G [m]

g(nﬂ]L[”ﬂ

m

Figure 719 Consistency must be satisfied in adjacent short-time segments after
modification for a vlid STFT. This figure illustrates the violation of the consistency
consteaint with linear phase modification. After dividing out the window, the
resulting sequences are not equal in their region of overlap.
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Heuristic Application of STFT Synthesis
Methods

Although modifications of the STFT or STFTM may violate some principles,
results may be “reasonable”.

Resulting effect of modifying STFT (FBS and OLA) with another time-
frequency function can be shown to be a time-varying convolution
between x[n] and a function h[n,m]: x[n]*h[n,m].

Let X(n,®) be modified by a function H(n,®):
Y(n,®) = X(n,®)H(n,o)
This corresponds to a new short-time segment:
g,lm] =f_[n]*h[n,m]
h[n,m] — time varying system impulse response (Chapter 2).



Heuristic Application of STFT Synthesis
Methods

Consider FBS method (discretization in frequency to obtain):

Y (n,k)=Y(n,w)| ,. =X(nk)H(nk)

w=—K

N-point IDFT of H(n,k):

h[n,m]= > h[n,m-IN], periodicover N

. |=—c0 .
Then resulting sequence can be written as:

yinl= > x{n-m]A[n,m]

where M=—o0

ALn.ml=w{n] > h{n,m-IN]

|=—o0




Heuristic Application of STFT Synthesis
Methods

e Using OLA method, it can be shown (see Exercise 7.11) that:

Al ml=win®> h[n,m-IN]

|=—0

e Contrasting FBS with OLA
— FBS: multiplication =~ = instantaneous change
— OLA: convolution = smoothing



Heuristic Application of STFT Synthesis
Methods

e Example 7.7

— Suppose we want to deliberately introduce reverberation into a signal
x[n] by convolution with the filter:

h[n] =98[n] + a d[n-n_]

— Fourier transform of which is:
H(w) = 1 + ae’®no

— STFT of resulting signal is given by:
Y(n,m)= X(n,0)H(®)
where

X (nw)=" x[m]w{n-m]e "

M=—00



Example 7.7 (cont.)

e Using OLA method (7. 21)'
52 (e
ylnl=—-= 2 | =
W(O) p=—

e |tisthen possible to express y[n] in terms of original sequence:

IDFT— Zh[n m+rN ]

r=—o0

= 3 X[m]A[n-m]

pP=—00



Example 7.7 (cont.)

e Where
h[n]= > h[n+rN1= Y (S[n+rN+as[n-n,+rN])

[=—00 =—c0

is periodic extension of h[n], over N, of which we only consider
interval [O,N-1].

 This implies that original reverberated signal is obtained only when
n,<N, otherwise temporal alias will occur (as illustrated in 7.20).



Example 7.7 (cont.)

hin]

e L L R —

Ng N N+ ng n

Figure 720 Illustration of the echo-generating function F?[n} that results from
the OLA method in Example 7.7. R[n] is the rectangular function, non-zero in
the interval [0, N — ], invoked by the inverse DFT.
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