Week 4: C@\aérial
TeQeneration
é ure 17/

Test

Generation
Introduction

Random Test Generation
Theoretical Foundations

D
D

D

D Deterministic Combinational ATPG
D Untestable Fault/ldentification
D
D
D
D

Simulation-based ATPG

ATPG for Delay and Bridge Faults
Other Topics in Test Generation
Concluding Remarks

Introducti
on

D Test generation is the bread-and-butter in VLSI
Testing
» Efficient and powerful ATPG can alleviate high costs of DFT
» Goal: generation of a small set of effective vectors at a low
computational cost
D ATPG is a very challenging task
» Exponential complexity
» Circuit sizes continue to increase (Moore’s Law)
— Aggravate the complexity problem further
» Higher clock frequencies
— Need to test for both structural and delay defects

Conceptual View of ATPG

D Generate an input vector that can distinguish
the defect-free circuit from the hypothetically
defective one

Defect-free Generate a vector that
Inputs can pmduna a logic 1
Outputs)
Defective ‘
X
» « Defect

Fault
Models

D Instead of targeting spéecific defects,
fault models are used te capture the
logical effect of the'underlying defect

D Fault models coensidered in thischapter:
o Stuck-at fault
 Bridging fault
 Transition fault
« Path-delay fault

Simple illustration of
ATPG

Consider the fault d/1 in the defective circuit

Need to distinguish the output.ofithe defective
circuit from the defect-free €ircuit

Need: set d=0 in the defect-free circuit
Need: propagate effect of fault'to output

Vector: abc=001(output'= 0/1)

a stuck-at 1
s
bj> d =

-

A Typical ATPG System

D Given a circuit and a fault model
* Repeat
 Generate a test for each undetected fault

« Drop all other faults detected by the test using
a fault simulator

e Until all faults have been considered

D Note 1: a fault'may be untestable, in which no
test would be.generated

D Note 2: an ATRG may abort on a fault if the
resources needed exceed a preset limit

Random Test
Generation

D Simplest form of test generation
* N tests are randomly generated

D Level of confidence onh random test set T

* The probability that T can detect all stuck-at
faults In the given circuit

« Quality of a random test set highly depends on
the underlying circuit

e Some circuits have many random-resistant faults

Weighted Random Test
Generation

Bias input probabilities to targetiwrandom
resistant faults

Consider an 8-input AND_gate

« Without biasing input probabilities, the prob of generating a
logic 1 at the gate output = (0.5)8 =0.004

 If we bias the inputs to 0.75, then the prob of generating a
logic 1 at the gate output = (0.75)8 =0.100

Obtaining an optimal‘set of input probabilities
a difficult task

Goal: increase the signal probabilities of hard-to-
test regions

Probability of Fault
Detection

D Given a circuit with ninputs

D Let T;be the set of vectors that can
detect fault f

D Then dr= ? s the prob that f can be
detected by a,random vector

D Let ¢ =1-dnpe the prob that a random
vector cannot detect f

Prob of Fault Detection
(Cont.)

D Then, ¢ =(1-4d,)" Is the prob that N
random vectors do not detect f

D Thus, the prob thatat least one out ofN
random vectors can detect fis

I (1 —d)"

Minimum Detection
Probabilit

D The min detection prob of any detectable fault actually does not
depend on n, the num of Pls

D Instead, it depends on the largest primary-output cone that it is
in

D This is because any detectablesfault‘imust.be excited and
sensitized to a primary output

Pls POs
Excitation cone Primary output cone

for PO #4

Propagation of fault effect

Inputs outside of PO cone are not needed for detection of fault f

Lemma
1

D In a combinational circuit with multiple
outputs, let n. ., be the aumber of
primary inputs that.canlead to a primary
output. Then, the,detection probability
for the most«difficult detectable fault,
dyin, 1S: dagz(0.5)"

Exhaustive Test
Generation

D Exhaustive Testing

» Apply 2" patterns to an n-input combinational circuit under
test (CUT)

 Guarantees all detectable faults in the combinational circuits
are detected

. _Telst time maybe be prohibitively long if the number of inputs
s large

» Feasible only for small circuits
D Pseudo-exhaustive Testing
 Partition circuit into respective cones
» Apply exhaustive testing only to each cone

« Still guarantees to detect every detectable fault based on
Lemma 1

Week 4: Course Material

Test Generation (Contd.)
Lecture 18

Theoretical Foundations: Boolean
Difference

b The function for the circuitis [=X¥ +¥2

D Let the target fault be y/0, then the function for.the faulty circuit
Is ' = f(y=0)

D Goal of test generation: find awector thatimakes f XOR f' =1

)

X

)
A

2>

Boolean Difference
Continued

Df XOR f'=1iff fand f’ result in opposing
logic values

D Thus, any vectorthat can set f XOR f'=
1 is able to preduce opposing values at
the outputs of the fault-free and faulty
circuits respectively

D Definition: % —fy =) @f(y=0).

Boolean Difference

Example
D To excite the fault y/0,y=1
D Thus, y-fy=1 @y #0) =y - (xD2)
=V-(XT4+Xx2)
— = xyZ+ Ty
Y

i_f
4l>0 xyz= 110 or 011 can
detect the fault
£ W

Another

Example
D Let target fault bew/0

d Wex +w-y=1

.

w.—=1 _ _ —

dw = V-2:X4+¥v-z-v=1
= w-(flw=1@flw=0))=1 = TF-z47z=1

(1 =1
= W E_a;x:f} = Foz=1
= W-(XV)= Xyz=001, 101
—~ W (E+7) y Y can detect w/0
= W_—|—‘L-'L?_}?_=l

vV [
ST

A Third
Example

D Fault:z/0 \/
a-%=l @

2 (xy@ay) =1

=
=

= z-0=1

= UNSAT‘%

This fault is untestable! -

Wrap Up on Boolean
Difference

D Given a circuit with output f andfault a/v.

D The set of vectors that.can detect this

fault includes all vectors'that satisfy

df
=1

(a =T)-

Deterministic
ATPG

D In general, we don’'t need an entire set of vectors
that can detect the target fault

D Instead, we just want to compute ane vector quickly

D Rather than using Boolean Difference that can
obtain all vectors
« Simply use a branch-and-bound search to find one vector
quickly
D Deterministic ATPG has two main goals
» Excite the target fault
* Propagate the corresponding fault effect to an output

5-valued Algebra for
Comb. Circuits

D Instead of using two circuitsy(fault-free and

the faulty)
« We will solve the ATPG problem on one single
circuit
D To do so, every signal value must be able to
capture fault-free,and faulty values
simultaneously

D 5-Value Algehra: 0, 1, X, D, D-bar
« D:1/0
e D-bar: 0/1

Boolean Operators on 5-Valued

Algebra

— O | 4O x

NOT

o —~ ala x

OR|(O 1 D

X

D

1 (1931171

DDl |D|1|X
1

X | X |1 | X |X|X

OO0 1| D

X

D

AND | O 1 D

O|o0o|l0(0O0|0|O

DIO|(D|D|0O]|X
0

X0 | X | X | X | X

1101 |D

Decision Tree for Branch-and-Bound
Search

D The ATPG systematically and implicitly searches the
entire search space

‘_r"sc:lutuinn L solution ; solution™-, " golution ™.
- spacewith ;. spacewith , . spacewith™. '\ space with .
. a=0,¢=0 . . a=0,¢=1,d=0" .a=0,¢e=1,d=1".% a=1

Backtrackin
g

D The ATPG searches one branch at a time

D Whenever a conflict (e.g., all D’s disappeared)
arises, must backtragk on‘previous decisions

If d=1 also causes a conflict, backtrack
toc=0

Basic ATPG for Fanout-Free
Circuits

Algorithm 2 Basic Fanout Free ATPG (C, giv)

1: initialize circuit by setting all values to X;
2: JustifyFanoutFree(C, g, v); /* excite the fault by justifying line g to v */
3: PropagateFanoutFree(C, g); * propagate fault-effect from g to a PO %/

The Justify
Routine

Algorithm 3 JustifyFanoutFree(C, g, v)

l:g=w;
2: if gate type of g == primaryinput then
3: return;
4: else if gate type of g == AND gate then
oF if v==1 then
¥ for all inputs h of g do
E JustityFanoutFree(C, h, 1);
8- end for
9: else {v==0}
10: h = pick one input of g whose value == X;
11: JustifyFanoutFree(C, h, 0);
12: endif
13: else if gate type of g == OR gate then
4. ...
15: end if

g
z
h

The recursive calls to JustifyFanoutFree():

call #1: JustifvFanoutFree(C, g, 1)
call #2: JustifvEanoutFree(C a, 1)
call #3: JustitvFanoutFree(C, f, 1)
call #5: JustitvFanoutFree(C, ¢, 0)

Fault: g/0

s
d >

The Propagate

Rniitine

Algorithm 4 PropagateFanoutFree(C, g)

1: if g has exactly one fanout then

h = fanout gate of g;

if none of the inputs of h has the value of X then
backtrack;

end if

: else {g has more than one fanout}

h = pick one fanout gate of g that is unjustified;

: end if

: if gate type of h == AND gate then

for all inputs, j, of h, such that j £ g do
if the value an j == X then

JustifyFanoutFree(C, j, 1);

end if

end for

: else if gate type of h == OR gate then

for all'inputs, j, of h, such that j £ g do
if the value on j == X then

JustifyFanoutFree(C, j, 0);

end if

end for

21: else if gate type of h==... gate then

[l b= b e e e e e e e
e A o el = Sl R R A L S S

23: end if
24: PropagateFanoutFree(C, h);

Week 4: Course Material

Test Generation
Lecture 19

Example
Continued

b=
¢ I—"';r Propagate fault-effect
c DO* from g toz
:z>_z
h
d
b s

call #1: PropagateFanoutFree(C, g)
call #2: JusttyFanoutFree(C, ki, 0)
call #3: JustityFanoutFree(C, b, 0)
call #4: PropagateFanoutFree(C, z)

D
Algorithm

D Can handle arbitrary combinational
circuits, with internalfanoutsstructures

D Main idea: always:imaintain a non-empty
D-frontier and try. to ‘propagate at least a
fault effect to a primary output

D Initially, all.cireuit nodes are X, except
for the fault'cite, where a fault effect (D

or D-bar) Is placed.

D-Frontier and J-
Frontier

D D-Frontier: All gates whese outputs are
X but has at least one D or'D-bar at the
input of the gates

* |nitially, the D-frontier consists of only 1
gate (output of the fault-site)

D J-Frontier:All.gates whose outputs are
specified by are not justified by the input
assignments

D-Frontier Example

D The D-frontier contain Ws
l&mm

|

J Lo

X

J-Frontier Example

D The J-Frontier conth

J-frontier

e

ldea Behind D Algorithm

D To advance the fault-effects in the D-frontier,

add nodes to the J-frontier ww

J-frontier

D
Algorithm

Algorithm 5 D-AlgorithmiC, f)

1: initialize all gates to don't-cares;

2: set a fault-effect (D or D) on line with fault f and insert it to the D-frontier;
3: J-frontier = ¢;

: result = D-Alg-Recursion(C);

. if result == success then

print out values at the primary inputs;

. else

print fault f is untestable;

. end if

W00~ o e

Algorithm 6 D—Aig-Recursion(C)

1. if there is a conflict in any assig

- nment or D-frontier is @ then
2= return failure;
3. end if
4. /= first propagate the fault-effect to a PO */
5. if no fault-effect has reached a PO then
6. while not 21l gates in D-frontier has been tried do
7: g — a gate in D-frontier that has not been tried;
8- <=t zll unassigned inputs of g to non-controlling value and add them to the J-frontier;
=B result = D—Alg—Recursion(C);
10: if result == success then
11: return (success);
12: end if
13: end while
14: return (failure);
15: end if {fault-effect has reached at least.one PO}
16: if J-frontier is @ then
17: return (success);
12: end if
19- g — a gate in J—frontier-,
20- while g has not been justified do
21: j=an unassigned input of g;
22:

set j= 1 and insert j =1 toJ
Z23: result = D—A\g-Recursion(C)-,
24- if result == success then
25: return (success);

else try the other assignment
set j = 0O;

28: end if

2a-. end while

30- return(failure);

—frontier;

D Algorithm Example

Target f stuck-at-0 fiDO'f

Initialize all gates to X | B T

Places D on line f l

b
Propagate fault effect to z

Places a=1 in J-frontier, followed by

h=0

Fault effect has reached primary output
Try to justify entries in J-frontier

a is already justified as it'is primary input
For f=D, d = 0, making c=0

For h=0, either e=0 or b=0 is sufficient
Test found.

D Algorithm
Fxamnble

o

]
LT A
!

D Target fault: g/i
D Initially, D-Frontier: {n}, J-Frontier={g=D-bar}

D To advance D-frontier, add f=1 and c=1 to J-
frontier

D Algorithm Example
(Cont.)

i
- d—\l g s-a-1 h }

D Now justify everywalue in J-Frontier via
branch-and-bound'search

* Must not make D-frontier empty or conflict
with other J-frontier values

 Otherwise backtrack
D Result: g/1 is untestable

PODE
\Y

D Also a branch-and-bound search

D Decisions only on Pls
 No J-Frontier needed
 No internal conflicts
D D-frontier may still'become empty
 Backtrack whenever D-frontier becomes
empty

« Backtrack also when no X-path exists from
any D/D-barto a PO

D Decisions selected based on a backtrace
from the current objective

X-
Path
D The D in the circuit has no WX’S to any

PO
e j.e.,theDis blocke& ath to any PO

0

e
o

Getting the
Objective

Algorithm 9 getObjective(C)

. if fault is not excited then

return (g, v);

. end if

. d = a gate in.D-frontier;

: g = an input of d whose value is x;
: v = hon-controlling value of d;

s return (g, ¥);

e o T [= e I

Backtrace to Select a

Decision
Algorithm 10 backtrace(C)

l:i=g:

2: num_inversion = O;

3: while i £ primary input do

d: i=an inputof i whose value is x;
b ifdis an invertad gate type then
=¥ AUm_inversion4+4;

7. endif

&: end while

9:if num_inversion == odd then
10: v=w;

11: end if

12: returnii, v);

Week 4: Course Material

Test Generation
Lecture 20

O

O

g

d ‘ ED f) Target fault: f/0
’ @72

1st Objective: f=1inorder to excite the target fault
Backtrace from the object: c=0

Simulate(c=0). D=Frontier = {g}, some gates
have been assighed {c=d=e=h=0, f=D}

2nd Objective: advance D-frontier, a=1
Backtrace from the object: a=1
Simulate(a=0): Fault detected at z

Another PODEM
Exambple

b
4l>3737d Target fault: b/0

c

D 1st Objective: excite faultib=1

D Backtrace from objective: a=0

D Simulate(a=0): b=D,;.€=0, d=0: empty D-frontier.
Must backtrack

D Change decision to a=1

D Simulate(a=1): b=0, c=1, d=1, D-frontier still

emtpy

D Backtrack, no more decisions. Fault untestable.

FAN

D Extend PODEM for a

WedATPG
D Concept of headl reducethe
number decision

D Multiple Obj S to reducelater
conflicts :\..

Headline

S
D Output signals of fanout-free cones

D Any value on headlines can always be
justified by the Pls

headlines

We only need to b N !/ }
backtrace to the gy L/

headlines to ﬂ’—j—li /

reduce the Al !

number of ;:) >
decisions h_}

Multiple

Objectives a
BD e
D Objectives: {k=0,,m=1}

D Backtrace from k=0 may favor b=0, but
simulate(b=0) would violate the second

objective m=1!
D Makes backtrace more intelligent to avoid
future conflicts

)

Static Logic
Implications

D Can help ATPG make betterdecisions
D Avoidconflicts
D Reduce the number of backtracks

D |dea: what isthe effect of asserting a
logic value to'a gate on other gates in
the circuit?

Direct

Imnliratinnc

B
_

D Direct implications forf=1.:
e {d=1, e=1, g=1, =1, k=1}
D Direct implications for|=0:
« {h=0, g=0, =0, w=1, w=0, z=0}

Indirect

Imnliratinnc

) W

B
_

D Direct implications,forf=1:
 {d=1, e=1, g=1,j=1, k=1}
D Indirect Implications for f=1 obtained by
simulating the direct implications of f=1.:
« {x=1}
D This is repeated for every node in the circuit

Extended Backward

lmnliratinnc

D Direct and indirectimplications for f=1.:
o {d=1, e=1,9g=1, =1, k=1, x=1}

D Ext. Back. Implications obtained by
enumerating cases for unjustified gates

e Unjustified gates: {d=1}
—————————————————————————————————

Extended Backward

I L F N [>N | : - L : N aam -_—

D In order to justify d=1; need either a=1 or b=1
e Simulate(a=1, impl(f=1)) = Sa
» Simulate(b=1, impl(f=1)) = Sb
D Intersection of Sa and Sb Is the the set of ext. back. Implications
for f=1
» f=1implies {z=0}
D This is repeated for every unjustified gate, as well as for every
node in the circuit

Dynamic Logic
Implications
D Similar to Static Logic Implications, but has

some signals already assignedwalues

D Suppose c=1 has already been assigned
* Then to obtain z=0, b must be 0

* This is the intersection of having either d=0 or
e=0 in the presence of c=1
&

}j

Another Dynamic Implications

Example

D Suppose b=D

D In order to propagate the fault-effectto z, f= 1
IS a necessary condition//Akers.76, Fujiwara
83]

D To take this further the ntersection of all the
necessary assignments for all fault-effects In
the D-frontier can be taken [Hamzaoglu99]

Do
)"

&

Evaluation Frontiers

D If two faults have the sa
least one fault-effect, t

unassigned Pls can&

Wtier with at
lues on the

same [Giraldi 90]

Yo

3
I
h

Fast Untestable Fault
ldentification

D Untestable faults are:
 Those that could not be excited, or
* Those that could not be propagated, or
* Those that could not be simultaneously excited
or propagated
D ATPG can spend a.lot of time trying to
generate a testfor an untestable fault

e Fast identification of untestable faults can
allow the ATPG to skip those faults

FIRE [lyer
1996]

D Based on conflict analysis
D SO = set of faults that are.untestable when
signal s=0
* These faults must require s=1 to be detectable
D S1 = set of faults that are untestable when
signhal s=1
* These faults must require s=0 to be detectable
D Intersection,0f SO and S1 are definitely
untestable

e They require s=1 and s=0 simultaneously to
be detectable!

FIRE Example

1
£
b }

D Impl[b=1] = {b=1, b2=1, b2=1, d=1, x=0, z=0}

D Faults unexcitable'when b=1: {b/1, b1/1, b2/1,
d/1, x/0, z/0}

D Faults unobservable.when b=1: {a/0, a/1, el/0,
el/l, y/O, y/1, e2/0, e2/1}

D Faults undetectable when b=1: {a/0, a/1, b/1,
bl/1, b2/1, d/1,e1/0, el/1, e2/0, e2/1, x/0, y/0O,
y/1, z/0}

FIRE Example

[P

- s
b.
e Y e ez I}D ¥
c -/
p Impl[b=0] = {b=0, b2=0, b2=0, e=0, e1=0, e2=0,
y=1}

D Faults unexcitablewhen b=0: {b/0, b1/0, b2/0,
e/0, el/0, e2/Q, y/1}

D Faults unobservable when b=0: {c/0O, c/1}

D Faults undetectable when b=0: {b/0, b1/0, b2/0,
c/0, c/1, el/0, e2/0, y/1}

FIRE Example

[P

— Yia
b.
£ e 8o
) LA
D Now that the twossets of‘faults undetectable
when b=0 and b=1/have been computed

D The intersectionofithe two sets are those
faults the requireb=1 AND b=0 for detection,
thus untestable:

e {b2/0, c/O, c/1, el0, el/0, e2/0, y/1}

Week 4: Course Material

Test Generation
Lecture 21

Generalization of
FIRE

D Conflict on a single line®b=0 AND b=1

D Conflict on any illegalcombination

e Suppose FFs x=1, y=0, z=1 is illegal, then
any fault that require x=1, y=0, and z=1 for
detection will be untestable

* This can'be-generalized to any illegal value
combination.in the circuit

Multi-Line

Conflict 2 c
D Consider the AND gate b | j
D {a=0, c=1} is illegal (but this,is‘capturea ny
single-line conflicts)
D Likewise {b=0, c=1}
D But, {a=1, b=1, c=0} is a'multi-line conflict not
captured by single-line conflict
m S5,—Set of faults not detectable when signal a = 0.

B S5, —Set of faults not detectable when signal 5= 0.
B S,—Set of faults not detectable when signal ¢ = 1.

Intersection of SO, S1, S2 will be untestable faults due to this
multi-line conflict

Multi-Line Conflicts
(Cont.)

IR
o S

D Can extend theprevious concept further
D Consider multi<line,conflict {h=1, g=1, z=0}
D We can extend'these values as far as

possible: {f=1,¢=1, d=0, e=0, z=0} is a multi-
line conflict as well

Summary on Untestable Fault
Identification

D First compute static logieimplications

D Compute untestablefaults basedon
single-line conflicts

D Compute untestable faults basedon
multi-line conflicts

D Remove alkidentified untestablefaults
from the fault list

Simulation-Based
ATPG

- b Random and weighted-random TPGare the
simplest forms of simulation-based ATPG

- D Challenge: how to-guide the search to
generate effective vectors to obtain high fault
coverage, low computation costs, and small
test sets?

Genetic Algorithms for Sim-based
ATPG

D A GA made up of

« A population of individuals (chromosomes)
— Each individual is a candidate solution

« Each individual has an associated fithess
— Fitness measures the quality of the individual

* Genetic operators to evolve from one
generation to the next

— Selection, crossover, mutation

a3 P =

lllustration of GA

10111010
01101110
10000101
00101111

11010011

Generation 0

process
Selection
Filness Crossover
Evaluation
Mutation

11010000

100101011
01001110

£ wh =

N

Generation 1

10011101

01111101

Pseudo Code for

7 A

Algorithm 13 Simple_GA_ATPG

1: test set T = @;

2: while there is improvement do

3 initialize a random GA currentPopulation;

4 compute fitness of currentPopulation;

5: fori=1 to maxGenerations do

B: add the best individual to test set T;

7 nextPopulation = &;

8 for j = 1 to populationSize/2 do

9 select parent; and parent, from currentPopulation;

10: crassover(parent, , parent, , child, , child,);
11: mutate(child,);

12: mutate(child-);

13: place child, and child, to nextPopulation;
14. end for

15: compute fitness of nextPopulation;

1&: currentPopulation = nextPopulation;

17: endfor

18: end while

The Selection
Operator
D Roulette Wheel Selection

D TournamentSelection

The Crossover

D One-pointcrossover

Parent #1
Parent #2

Child #1
Child #2

110011001100 | 110011001100
101010101010 4101010101010
1100110011006 | 101010101010
101010104010 | 110011001100

D Two-pointcrossover

Parent #1
Parent #2

Child #1
Child #2

11001100
10101010

11001100
10101010

11001100
10101010

10101010
11001100

11001100
10101010

11001100
10101010

Uniform Crossover

D The crossover is performed whenevera
mask bit is set

Mask 010011 100100010021110101
Parent #1 11001100110Q110011001100
Parent #2 101010101010101010101010
Child #1 100010101000100010101000
Child #2 111011001110111011001110

The Mutation
Operator

D Random flip of a bit pasition

D Need to keep mutatien‘rate small, so
that the search willknot seem
randomized

GA Population
Size
D Should be a function of the individual size
D Larger individuals require largerpopulations

to allow for reasonable diversity

D Individual size depends,on the number of Pls

In the circuit
 |n sequential circuits, an individual may be
a sequence of vectors
D Generation Gap: some individuals may be
carried over from one generation to the next

Number of GA
Generations

D Related to the populationsize

e Larger populations usually demand more
generations
e Generation gap also will affect the number

of generations needed to reach a
satisfactory solution

The Fitness
Function

D Measures the quality of the‘individual
D Essential for a GAto converge on a solution

D Example fitness funetions:
 Number of faults detected by the individual
 Number of faults excited by the individual

 Number of flip-flops set to a specified value (in
seq ckts)
« A weighted sum of various factors

