
Week 3: Course Material

Logic and Fault Simulationg
Lecture 11

1
EE141

Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l iD Logic simulation
D Fault simulation
D Concluding remarks

33
EE141

D Predict the behavior of a design prior to its physical

Logic Simulation
D Predict the behavior of a design prior to its physical

realization
D Design verification Specificationg

Manual design or
via Synthesis

Testbench
Development

Circuit
Description Input Stimuli Expected

Responses

Simulated
Responses

yes

Bug?
Response
Analysis

Bug?
no

Next Design
Stage

4
EE141

g

Fault Simulation

D Predicts the behavior of faulty circuits
• As a consequence of inevitable fabrication

process imperfections

D An important tool for test and diagnosisD An important tool for test and diagnosis
• Estimate fault coverage

Fault simulator• Fault simulator

• Test compaction

• Fault diagnosis

5
EE141

Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l iD Logic simulation
D Fault simulation
D Concluding remarks

6
EE141

Gate-Level Network
D The interconnections of logic gatesD The interconnections of logic gates

A H
G2

L
KG4

B
C E F

J
G3G1

7
EE141

Sequential Circuits
D The outputs depend on

x1 z1

D The outputs depend on
both the current and
past input values

Combinational
Logic

x2

xn

z2

zm

Y1

Y2

y1

y2

xi: primary input (PI)

zi: primary output (PO) Ylyl

yi: pseudo primary input (PPI)

Yi: pseudo primary output (PPO)

-F
lo

ps
clock

Fl
ip

-
8

EE141

A Positive Edge-Triggered D-FF

PresetB

Q

PresetB

D Q

Clock QB
Clock

Q

QB
DFF

D

ClearB

ClearB

9
EE141

Logic Symbols

Th t l d 0 1 d ZD The most commonly used are 0, 1, u and Z
D 1 and 0

t d f l f th t l B l l b• true and false of the two-value Boolean algebra
D u

U k l i t t (b 1 0)• Unknown logic state (maybe 1 or 0)
D Z

High impedance state• High-impedance state
• Not connected to Vdd or ground

10
EE141

Ternary Logic
D Three logic symbols: 0 1 and uD Three logic symbols: 0, 1, and u

AND 0 1 u OR 0 1 u NOT 0 1 u
0 0 0 0 0 0 1 u 1 0 u0 0 0 0 0 0 1 u 1 0 u
1 0 1 u 1 1 1 1
u 0 u u u u 1 u

11
EE141

Information Loss of TernaryLogic
D Simulation based on ternary logic is pessimisticD Simulation based on ternary logic is pessimistic
D A signal may be reported as unknown when its value

can be uniquely determined as 0 or 1

u
A u

K
G2 G4

q y
1

B
C u

u
u

G3G1

0

A
0

0 or 1
K

G2 G4

1

B
C 0 or 1

1 or 0
0 or 1

G3G1

0
12

EE141

High-Impedance State Z
D Tri state gates permit several gates to time share aD Tri-state gates permit several gates to time-share a

common wire, called bus
D A signal is in high-impedance state if it is connected g g p

to neither Vdd nor ground

i
i iif e 1x

o 
Z if e  0iZ if e  0

G1x1

e1
o1

pull-up
d

G2x2

e2

DFF

o2

or down

y

3
G3x3

e3

DFF

o3

Resolution
Function

13
EE141

Resolving Bus Conflict

B fli t if t l t t d i d iD Bus conflict occurs if at least two drivers drive
the bus to opposite binary values

D To simulate tri-state bus behavior, one may
insert a resolution function for each bus wire
• May report only the occurrence of bus conflict
• May utilize multi-valued logic to represent y g p

intermediate logic states (including logic signal
values and strengths)

14
EE141

Logic Element Evaluation Methods

D Choice of evaluation technique depends on
• Considered logic symbols

• Types and models of logic elements

D Commonly used approachesD Commonly used approaches
• Truth table based

• Input scanning

• Input counting

• Parallel gate evaluation

15
EE141

Truth Table Based Gate Evaluation
D The most straightforward and easy toD The most straightforward and easy to

implement
• For binary logic, 2n entries for n-input logic y g , p g

element
• May use the input value as table index
• Table size increases exponentially with the• Table size increases exponentially with the

number of inputs
D Could be inefficient for multi-valued logicg

• A k-symbol logic system requires a table of 2mn

entries for an n-input logic element
– m = log k– m = log2k
– Table indexed by mn-bit words

16
EE141

Input Scanning

D Th t t t b d t i d b thD The gate output can be determined by the
types of inputs
• If any of the inputs is the controlling value theIf any of the inputs is the controlling value, the

gate output is ci
• Otherwise, if any of the inputs is u, the gate output

is u
• Otherwise, the gate output is c'i

Table 3.2: The c (controlling) and
i (inversion) values of basic gates

c i
AND 0 0AND 0 0
OR 1 0
NAND 0 1
NOR 1 1

17
EE141

Input Scanning - cont’d

Start

u in  falseu_in  false

noNext
input?

yes

return c’iu_in is
true?

yes

no

v  next inputu_in  true return u

v == u? v == c? return ci
yesno

yes
no

18
EE141

Input Counting

D K th t f t lli d kD Keep the counts of controlling and unknown
inputs
• c count: the number of controlling inputs• c_count: the number of controlling inputs
• u_count: the number of unknown inputs

D Update counts during logic simulationD Update counts during logic simulation
• Example:

One input of a NAND switches from 0 to u
– c_count --
– u_count ++

S l i t i d tD Same rules as input scanning used to
evaluate gate outputs

19
EE141

Parallel Gate Evaluation
D Exploit the inherent concurrency in the host computerD Exploit the inherent concurrency in the host computer

• A 32-bit computer can perform 32 logic operations in parallel

A
H

G2

1 0 0 0
1 0 0 1

KG4
0 1 1 0

B
C

E J
G3G1

0 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1
0 0 1 0

20
EE141

Logic and Fault Simulation (contd.)

Lecture 12

Multi-Valued Parallel Gate Evaluation

U t l i lD Use ternary logic as example
• Assume

– w-bit wide wordw bit wide word
– Symbol encoding: v0 = (00), v1 = (11), vu = (01)

• Associate with each signal X two words, X1 and X2
– X1 stores the first bits and X2 the second bits of thew

copies of the same signal

• AND and OR operations are realized by applyingAND and OR operations are realized by applying
the same bitwise operations to both words

– C = OR(A,B) ==> C1 = OR(A1,B1) and C2 = OR(A2,B2)
C• Complement requires inversion

– C = NOT(A) ==> C1 = NOT(A2) and C2 = NOT(A1)

21
EE141

Timing Models

T t d lD Transport delay
D Inertial delay

Wi d lD Wire delay
D Function element delay model

22
EE141

Transport Delay
D The time duration it takes for the effect of gate inputD The time duration it takes for the effect of gate input

changes to appear at gate outputs

A

A

G
A

B=1 F

1 2(a) Nominal delay
F

A 1 51

2dN = 2 ns

(b) Rise/fall delay A

F

1.51

2

2

() y
dr = 2 ns
df = 1.5 ns

3

A

F

1.5 1
2

1
2

(c) Min-max delay
dmin = 1 ns
dmax = 2 ns

23
EE141

2

Inertial Delay
D The minimum input pulse duration necessary for theD The minimum input pulse duration necessary for the

output to switch states
A

G
A

B=1 F Id = 1.5 ns, dN = 3 ns

1

(a) Pulse duration less than dI

A

F

(b) Pulse duration longer than dI

2

3A 2

F 3

24
EE141

Wire Delay
D Wires are inherently resistive and capacitiveD Wires are inherently resistive and capacitive
D It takes finite time for a signal to propagate along a

wire

p q

a

b
da-b

c
dda-c

d
da-d

25
EE141

Functional Element Delay Model
D For more complicated functional elements like flipD For more complicated functional elements like flip-

flops

Table 3.3: The D flip-flop I/O delay model

PresentInput condition Present
state Outputs Delays (ns)

D Clock PresetB ClearB q Q QB to Q to QB Comments
X X  0 0   1.6 1.8 Asynchronous presety p
X X 0  1   1.8 1.6 Asynchronous clear
1  0 0 0   2 3 Q: 01
0  0 0 1   3 2 Q: 10

Š ÕX Š indicates donÕtcare

26
EE141

Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l tiD Logic simulation
D Fault simulation
D Concluding remarks

27
EE141

Compiled Code Simulation

D Translate the logic

network into a series of

start

machine instructions that

model the gate functions
nonext

vector?
es

end

and interconnections read in next input
vector v

yes

run compiled code
with input v in host

machine

output simulation
results

28
EE141

Compiled Code Generation Flow
gate levelgate-level
description

logic optimization

logic levelization

code generation

compiled
code

29
EE141

Logic Optimization
D Enhance the simulation efficiencyD Enhance the simulation efficiency

before optimization after optimization

1
A
B

A
B

(a)

A

A

A(b)

() A
1

0

A A

(c)

(d)

3

AA(e)

30
EE141

Logic Levelization
D Determine the order of gate evaluations

start

assign level 0 to
all PI’s

put all PI fanout
gates in Q

t tQ d ’ f tno pop next gate g
from Q

Q
empty?

append g’s fanout
gates to Q

1 l = maximum of
yes

no

3

yesno
end append g to Q ready to

levelize g?

1. l = maximum of
g’s driving gate
levels

2. assign l+1 to g
31

EE141

Exampl
eA

G2

Table 3.4: The levelization process of circuitB

K
G2 G4

GG
p

step A B C G1 G2 G3 G4 Q
0 0 0 0 <G2, G1>
1 0 0 0 <G1, G2>
2 0 0 0 1 <G2, G3>

C G3G1

3 0 0 0 1 2 <G3, G4>
4 0 0 0 1 2 2 <G4>
5 0 0 0 1 2 2 3 < >

D The following orders are produced
• G1 => G2 => G3 => G4

3

• G1 => G3 => G2 => G4

32
EE141

Code Generation

D Hi h l l i lD High-level programming language source
code
• Easier to debug• Easier to debug
• Can be ported to any target machine that has the

compiler
• Limited in applications due to long compilation

times

D Native machine code
• Generate the target machine code directly

Hi h i l ti ffi i

33

• Higher simulation efficiency
• Not as portable

33
EE141

Code Generation - cont’d

I t t d dD Interpreted code
• The target machine is a software emulator
• The codes are interpreted and executed one at a• The codes are interpreted and executed one at a

time
• Best portability and maintainabilityp y y
• Reduced performance

334
EE141

Logic and Fault Simulation (contd)Logic and Fault Simulation (contd.)

Lecture 13Lecture 13

Event-Driven Simulation
D Event: the switching of a signal’s valueD Event: the switching of a signal s value
D An event-driven simulator monitors the occurrences

of events to determine which gates to evaluateg

A H: 0  1
G

0  1
G2

B

K: 1  0G4

GG
0  1

3

C E: 1 J: 0
G3G1

1

35
EE141

Zero-Delay Event-Driven Simulation
D Gates with events at their inputs are places in theD Gates with events at their inputs are places in the

event queue Q
start

read in initial
condition

yesno Q

end

yesQ
empty?

evaluate next gate
g from Q

next
vector?

no

read in new input
vector

output
change?

yes

no
yes

3

put active Pis’
fanout gates in Q

put g’s fanout
gates in Q

yes

36
EE141

Nominal-Delay Event-Driven Simulation
D Need a smarter scheduler than the event queueD Need a smarter scheduler than the event queue

• Not only which gates but also when to evaluate

337
EE141

Two-Pass Event-Driven Simulation
start

yes

get next time

end
no Next time

stamp?
yes

get next event get next gate g

yesLE
empty?

no

LA
empty?

no

get next time
stamp t

retrieve current

get next event
+

(g, vg) from LE

get next gate g
from LA

evaluate g andyes +
?event list LE

1. vg  vg
+

g
schedule (g, v +)g

at t+delay(g)
vg ==vg?

no

3

1. vg  vg
2. append g’s

fanout gates to
activity list LA

LE = Event List

38
EE141

Example A
K

G2 G4

H

B
C G1 G3

E J
Nominal delays
of G1, G2, G3, G4

Table 3.5: Two-pass event-driven simulation
Time LE LA Scheduled events
0 {(A,1)} {G2} {(H,1,8)}

1, 2, 3, 4
are 8, 8, 4, 6 ns

{(,)} { 2} {(, ,)}
2 {(C,0)} {G1} {(E,1,10)}
4 {(B,0)} {G1} {(E,0,12)}
8 {(A,0),(H,1)} {G2,G4} {(H,0,16),(K,0,14)}
10 {(E,1)}
12 {(E,0)} { G2,G3} {(H,0,20),(J,1,16)}
14 {(K,0)}
16 {(H 0) (J 1)} {G } {(K 0 22)}

3

16 {(H,0),(J,1)} {G4} {(K,0,22)}
20
22

{(H,0)}
{(K,0)}

39
EE141

Example - cont’d

40
EE141

Compiled-Code vs. Event-Driven Simulation

C il d dD Compiled-code
• Cycle-based simulation
• High switching activity circuits• High switching activity circuits
• Parallel simulation
• Limited by compilation timesLimited by compilation times

D Event-driven
• Implementing gate delays and detecting hazardsImplementing gate delays and detecting hazards
• Low switching activity circuits
• More complicated memory management

41
EE141

Hazards
D Unwanted transientD Unwanted transient

pulses or glitches

INV delay = 3ns
Others = 2ns

42
EE141

Types of Hazards
D Static or dynamicD Static or dynamic

• A static hazard refers to the transient pulse on a signal line
whose static value does not change

• A dynamic hazard refers to the transient pulse during a 0-to-
1 or 1-to-0 transition

D 1 or 0

Static 1-hazard Static 0-hazard Dynamic 1-hazard Dynamic 0-hazard

343
EE141

Static Hazard Detection

L t b tD Let be two
consecutive input vectors

according toD Add a new vector   V  according toD Add a new vector
the following rule

1 2
  V  v vv 

n

if v1  v 2v1

D Simulate the V1V+V2 sequence using ternary

i
i

if v  v
i i

i i

v1

v   
u if v1  v 2

D Simulate the V1V+V2 sequence using ternary
logic

D Any signal that is 1u1 or 0u0 indicates theD Any signal that is 1u1 or 0u0 indicates the
possibility of a static hazard.

44
EE141

Multi-Valued Logic for Hazard Detection
D 6 valued logic for static hazard detectionD 6-valued logic for static hazard detection
D 8-valued logic for dynamic hazard detection
D Worst case analysisD Worst case analysis

Table 3.6: Multi-valued logic for hazard detection
Symbol Interpretation 6-valued logic 8-valued logicy p g g
0 Static 0 {000} {0000}
1 Static 1 {111} {1111}
R Rise transition {001,011}=0u1 {0001,0011,0111}R Rise transition {001,011} 0u1 {0001,0011,0111}
F Fall transition {100,110}=1u0 {1110,1100,1000}
0* Static 0-hazard {000,010}=0u0 {0000,0100,0010,0110}
1* Static 1-hazard {111 101}=1u1 {1111 1011 1101 1001}1 Static 1 hazard {111,101} 1u1 {1111,1011,1101,1001}
R* Dynamic 1-hazard {0001,0011,0101,0111}
F* Dynamic 0-hazard {1000,1010,1100,1110}

45
EE141

Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l iD Logic simulation
D Fault simulation
D Concluding remarks

46
EE141

Logic and Fault Simulation (contd.)

Lecture 14

Fault Simulation
D IntroductionD Introduction
D Serial Fault Simulation
D Parallel Fault SimulationD Parallel Fault Simulation
D Deductive Fault Simulation
D Concurrent Fault SimulationD Concurrent Fault Simulation
D Differential Fault Simulation
D Fault DetectionD Fault Detection
D Comparison of Fault Simulation Techniques
D Alternative to Fault SimulationD Alternative to Fault Simulation
D Conclusion

47
EE141

Introduction

Wh t i f lt i l ti ?D What is fault simulation?
• Given

– A circuitA circuit
– A set of test patterns
– A fault model

• Determine
– Faulty outputs
– Undetected faultsUndetected faults
– Fault coverage

48
EE141

Time Complexity

D Proportional to
• n: Circuit size, number of logic gates

• p: Number of test patterns

• f : Number of modeled faultsf : Number of modeled faults

D Since f is roughly proportional to n, the overall
time complexity is O(pn2)time complexity is O(pn2)

49
EE141

Serial Fault Simulation

Fi t f f lt f l i i l ti thD First, perform fault-free logic simulation on the
original circuit

• Good (fault-free) response

D For each fault perform fault injection andD For each fault, perform fault injection and
logic simulation

• Faulty circuit response

50
EE141

start

Algorithm Flow
F  collapsed fault list

fault-free simulation for
all patterns

no next
fault?

yes
1 t t f lt f f F

end

1. get next fault f from F
2. reset pattern counter

1 get next pattern p

next
pattern?

yes

no

delete f from F

1. get next pattern p
2. fault simulation for p

mis-
match?

yesno

51
EE141

match?

Exampl
e

A H

K

G2

G4

f: A stuck-at 1

B
C E F J

L

G3G1

g: J stuck-at 0

Pat. # Input Internal Output

A B C E F L J H Kgood Kf Kg

P1 0 1 0 1 1 1 0 0 1 0 1
P2 0 0 1 1 1 1 0 0 1 0 1P2 0 0 1 1 1 1 0 0 1 0 1

P3 1 0 0 0 0 0 1 0 0 0 1

52
EE141

Fault Dropping

H lti i l ti f th d t t d f ltD Halting simulation of the detected fault
D Example

S t i l t P P P i d• Suppose we are to simulate P1, P2, P3 in order
• Fault f is detected by P1

• Do not simulate f for P P• Do not simulate f for P2, P3

D For fault grading
• Most faults are detected after relatively few test• Most faults are detected after relatively few test

patterns have been applied
D For fault diagnosis

3

g
• Avoided to obtain the entire fault simulation results

53
EE141

Pro and Con

D Advantages
• Easy to implement
• Ability to handle a wide range of fault models

(stuck-at, delay, Br, …)(y)

D Disadvantages
• Very slow

54
EE141

Parallel Fault Simulation

E l it th i h t ll li f bit iD Exploit the inherent parallelism of bitwise
operations

D Parallel fault simulation
• Parallel in faults

D Parallel pattern fault simulation
• Parallel in patterns• Parallel in patterns

55
EE141

Parallel Fault Simulation

A tiD Assumption
• Use binary logic: one bit is enough to store logic

signalsignal

• Use w-bit wide data word

P ll l i l tiD Parallel simulation
• w-1 bit for faulty circuits

1 bit f f lt f i it• 1 bit for fault-free circuit

D Process faulty and fault-free circuit in parallel
i bit i l i tiusing bitwise logic operations

56
EE141

Fault Injection
A H

G

L
K

G2

G4

f: A stuck-at 1

B
C E F J

G3G1

g: J stuck-at 0

A
HGf

L

H

K

G2

G4

Gf0 1 0

B
C E F

J
G3G1 Gg0 1 0

57
EE141

Example

Pat #
Input Internal Output

A Af B C E F L J Jg H K

FF 0 0 1 0 1 1 1 0 0 0 1

P1

FF 0 0 1 0 1 1 1 0 0 0 1

f 0 1 1 0 1 1 1 0 0 1 0

g 0 0 1 0 1 1 1 0 0 0 1g

P2

FF 0 0 0 1 1 1 1 0 0 0 1

f 0 1 0 1 1 1 1 0 0 1 0

g 0 0 0 1 1 1 1 0 0 0 1

FF 1 1 0 0 0 0 0 1 1 0 0

P3 f 1 1 0 0 0 0 0 1 1 0 0

g 1 1 0 0 0 0 0 1 0 0 1

58
EE141

Pro and Con

D Advantages
• A large number of faults are detected by each

h i l i h b i i fpattern when simulating the beginning of test
sequence

D Disadvantages
• Only applicable to the unit or zero delay models
• Faults cannot be dropped unless all (w-1) faults

are detected

59
EE141

Parallel Pattern Fault Simulation

P ll l tt i l f lt tiD Parallel pattern single fault propagation
(PPSFP)

D Parallel pattern
• With a w-bit data width, w test patterns are packed

i t d d i l t d f th f lt finto a word and simulated for the fault-free or
faulty circuit

D Single faultD Single fault
• First, fault-free simulation
• Next for each fault fault injection and faulty circuit• Next, for each fault, fault injection and faulty circuit

simulation

60
EE141

start

Algorithm Flow
F  collapsed fault list

no new w
patterns?

yes
end

yes
1. apply next w patterns
2. Ogood  good circuit outputs

next
fault?

yes

F
empty?

yes

no

delete f from F
1 remove last fault

endget next fault f from F

y

1. remove last fault
2. inject fault f

f goodO == O ? Of  faulty circuit outputs
f tt

yes
no

61
EE141

f goodO O ? of w patterns

Logic and Fault Simulation (contd.)

Lecture 15

Example
A H

G2f: A stuck-at 1

B

L
KG4

g: J stuck-at 0

Input Internal Output

B
C E F J

G3G1

g: J stuck at 0

p p

A B C E F L J H K

Fault
Free

P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 1 0 0

f

P1 1 1 0 1 1 1 0 1 0

P2 1 0 1 1 1 1 0 1 0

P3 1 0 0 0 0 0 1 0 0

g

P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 0 0 1

62
EE141

Pro and Con

D Advantages

• Fault is dropped as soon as detectedpp

• Best for simulating test patterns that come later,

where fault dropping rate per pattern is lowerwhere fault dropping rate per pattern is lower

D Disadvantages

• Not suitable for sequential circuits

363
EE141

Deductive Fault Simulation

B d l i i th thD Based on logic reasoning rather than
simulation

D Fault list attached with signal x denoted as Lx
• Set of faults causing x to differ from its fault-free

lvalue

D Fault list propagation
• Derive the fault list of a gate output from those of

the gate inputs based on logic reasoning

64
EE141

Fault List Propagation Rules

Z stuck‐at c XOR i

65
EE141

Algorithm Flow

start

F  collapsed fault list

no next
pattern?end pattern?

yes

apply next pattern

1. fault-free simulation
2. propagate fault list

no
delete detected faults

from F F empty? end
yes

no

66
EE141

Example

PD P1

JHKL  L  L  K / 0 by first Eq.

A
G2

LA = {A/1}

0

{A/1, H/1}
H

K

2

G4

0

L {B/0}

0 1

1 L
{B/0, E/0, L/0}

{A/1, H/1, B/0,
E/0 F/0 J/1 K/0}

B
C F

G3G1

B

1
L = {B/0}

0

1 1 0

{ , , }

E J

E/0, F/0, J/1, K/0}

0
LC = {C/1}

{B/0, E/0} {B/0, E/0, F/0} {B/0, E/0, F/0, J/1}

67
EE141

Example (cont’d)

PD P2

A H

K

G2

G4

0

0 1

B

4

LB = {B/1}
0

1 1 0

1 L
{C/0}

{C/0}

B
C G3G1

1
LC = {C/0}

1 1 0

E
{C/0}

F
{C/0}

J
{C/0}

68
EE141

Example (cont’d)

PD P3
LK  (LJ  LH)K /1 by second Eq.

A
G2

LA = {A/0}

1

{B/1, C/1, E/1, L/1}
H

K

2

G4

1

L = {B/1}

0 0

0 L
{B/1, E/1, L/1}

{F/1, J/0, K/1}

B
C F

G3G1

0

LB = {B/1}
0

0 0 1

{ , , }

E J
0

LC = {C/1}
{B/1, C/1, E/1} {B/1, C/1, E/1, F/1} {B/1, C/1, E/1, F/0, J/0}

69
EE141

Pro and Con

D Advantages
• Very efficient

• Simulate all faults in one pass

D DisadvantagesD Disadvantages
• Not easy to handle unknowns

O f• Only for zero-delay timing model

• Potential memory management problem

70
EE141

Concurrent Fault Simulation

D Simulate only differential parts of whole circuit
D Event-driven simulation with fault-free and

faulty circuits simulated altogether

D Concurrent fault list for each gateD Concurrent fault list for each gate
• Consist of a set of bad gates

– Fault index & associated gate I/O valuesFault index & associated gate I/O values

• Initially only contains local faults

• Fault propagate from previous stageFault propagate from previous stage

71
EE141

Good Event and Bad Event
D Good eventD Good event

• Events that happen in good circuit
• Affect both good gates and bad gatesAffect both good gates and bad gates

D Bad event
• Events that occur in the faulty circuit of

corresponding fault
• Affect only bad gates

D DivergeD Diverge
• Addition of new bad gates

D ConvergeD Converge
• Removal of bad gates whose I/O signals are the

same as corresponding good gates
72

EE141

Algorithm Flow start

F  collapsed fault list

nonext
pattern? endpattern?

yes

apply next pattern

1. analyze events at gate inputs
2. execute events
3 compute events at gate outputs3. compute events at gate outputs

yes

yes more
events?

3

delete detected faults
from F

F
empty?end

yes
no

no

73
EE141

Example

PD P1

74
EE141VLSI Test Principles and Architectures Ch. 3 - Logic & Fault Simulation - P. 77

Example (cont’d)

PD P2

75
EE141

Example (cont’d)

PD P3

76
EE141

Pro and Con

D Advantages
• Efficient

D Disadvantages
• Potential memory problem• Potential memory problem

– Size of the concurrent fault list changes at run time

77
EE141

Differential Fault Simulation

[Ch 1989]D [Cheng 1989]
D Combines the merits of two techniques

C t f lt i l ti• Concurrent fault simulation
• PPSFP

D IdeaD Idea
• Simulate in turn every fault circuit
• Track only difference between faulty circuit and• Track only difference between faulty circuit and

last simulated one
• Inject differences as events
• Easily implemented by event-driven simulator

78
EE141

Simulation Sequence

P1 P2 … Pi Pi+1 … Pn

Good G1 G2 … Gi Gi+1 … Gn1 2 i i+1 n

f1 F1,1 F1,2 … F1,i F1,i+1 … F1,n

f2 F2,1 F2,2 … F2,i F2,i+1 … F2,n, , , , ,

. . . … . . … .

fk Fk,1 Fk,2 … Fk,i Fk,i+1 … Fk,n

fk+1 Fk+1,1 Fk+1,2 … Fk+1,i Fk+1,i+1 … Fk+1,n

. . . … . . … .

fm Fm,1 Fm,2 … Fm,i Fm,i+1 … Fm,n

79
EE141

start

Algorithm Flow F  collapsed fault list

no next
pattern?

yes

end

restore good circuit state

1. apply next pattern
2. Ogood  good circuit outputs

next
fault? F empty?

yes

no

g

no

end

1 t f lt i it t t

get next fault fdelete f from F

yes yes

1. restore faulty circuit state
2. remove last fault
3. inject fault f
4. Of  fault circuit outputs
5 t t diff

Of == Ogood?
yes

no

80
EE141

5. store gate difference

Pro and Con

D Advantages

• Suitable for sequential fault simulationq

D Disadvantages
O d f t d b f lt it i NOT th• Order of events caused by faulty sites is NOT the

same as the order of the timing of their occurrence

81
EE141

Logic and Fault Simulation (contd.)

Lecture 16

Fault Detection

D Hard detected fault
• Outputs of fault-free and faulty circuit are different

– 1/0 or 0/1

– No unknowns, no Z

D Potentially detected fault
• Whether the fault is detected is unclearWhether the fault is detected is unclear
• Example: stuck-at-0 on enable signal of tri-state

bufferbuffer

82
EE141

Fault Detection (cont’d)

D Oscillation faults
• Cause circuit to oscillate
• Impossible to predict faulty circuit outputs

D Hyperactive faultsyp
• Catastrophic fault effect

– Fault simulation is time and memory consuming

• Example: stuck-at fault on clock

• Usually counted as detected

3

y
– Save fault simulation time

83
EE141

Comparison of Fault Simulation Techniques (1)
D SpeedD Speed

• Serial fault simulation: slowest
• Parallel fault simulation: O(n3), n: num of gates

D d ti f lt i l ti O(2)• Deductive fault simulation: O(n2)
• Concurrent fault is faster than deductive fault simulation
• Differential fault simulation: even faster than concurrent fault

i l ti d PPSFPsimulation and PPSFP
D Memory usage

• Serial fault simulation, parallel fault simulation: no problem
• Deductive fault simulation: dynamic allocate memory and

hard to predict size
• Concurrent fault simulation: more severe than deductive fault

i l tisimulation
• Differential fault simulation: less memory problem than

concurrent fault simulation
84

EE141

Comparison of Fault Simulation Techniques (2)

D M lti l d f lt i l ti t h dlD Multi-valued fault simulation to handle
unknown (X) and/or high-impedance (Z)
• Serial fault simulation concurrent fault simulation• Serial fault simulation, concurrent fault simulation,

differential fault simulation: easy to handle
• Parallel fault simulation: difficult

D Delay and functional modeling capability
• Serial fault simulation: no problem
• Parallel fault simulation, deductive fault simulation:

not capable
C t f lt i l ti bl• Concurrent fault simulation: capable

• Differential fault simulation: capable
85

EE141

Comparison of Fault Simulation Techniques (3)

D Sequential circuit
• Serial fault simulation, parallel fault simulation,

concurrent fault simulation, differential fault
simulation: no problem

• PPSFP: difficult
• Deductive fault simulation: difficult due to many y

unknowns

86
EE141

Comparison of Fault Simulation Techniques (4)

PPSFP d t f lt i l tiD PPSFP and concurrent fault simulation are
popular for combinational (full-scan) circuits
Diff ti l f lt i l ti d tD Differential fault simulation and concurrent
fault simulation is popular for sequential
i itcircuits

D Multiple-pass fault simulation
• Prevent memory explosion problem

D Distributed fault simulation
• Reduce fault simulation time

87
EE141

Summary

F lt i l ti i i t t fD Fault simulation is very important for
• ATPG
• Diagnosis
• Fault grading

D Popular techniques
• Serial, Parallel, Deductive, Concurrent, Differential

D Requirements for fault simulation
• Fast speed, efficient memory usage, modeling

functional blocks, sequential circuits

95
EE141

Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l iD Logic simulation
D Fault simulation
D Concluding remarks

96
EE141

Conclusions

L i d f lt i l ti t f d t lD Logic and fault simulations, two fundamental
subjects in testing, are presented

D Into the nanometer age, advanced
techniques are required to address new
issues
• High performanceHigh performance

• High capacity
• New fault modelsNew fault models

97
EE141

