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TestTest
Generation

D IntroductionD Introduction
D  Random Test Generation
D  Theoretical Foundations
D  Deterministic Combinational ATPG
D  Untestable Fault Identification  
D  Simulation-based ATPG
D  ATPG for Delay and Bridge Faults
D  Other Topics in Test Generation
D  Concluding Remarks
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IntroductiIntroducti
on

D Test generation is the bread-and-butter in VLSI 
Testing
• Efficient and powerful ATPG can alleviate high costs of DFTp g
• Goal: generation of a small set of effective vectors at a low  

computational cost

D ATPG is a very challenging tasky g g
• Exponential complexity
• Circuit sizes continue to increase (Moore’s Law)

– Aggravate the complexity problem furthergg p y p
• Higher clock frequencies

– Need to test for both structural and delay defects
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Conceptual View of ATPG
D Generate an input vector that can distinguishD Generate an input vector that can distinguish

the defect-free circuit from the hypothetically
defective one
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FaultFault
Models

D Instead of targeting specific defects,
fault models are used to capture the
logical effect of the underlying defectlogical effect of the underlying defect

D  Fault models considered in thischapter:
• Stuck-at fault• Stuck-at fault
• Bridging fault
• Transition fault
• Path-delay fault
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Simple illustration ofSimple illustration of
ATPG

D Consider the fault d/1 in the defective circuitD Consider the fault d/1 in the defective circuit
D Need to distinguish the output of the defective

circuit from the defect-free circuit
D Need: set d=0 in the defect-free circuitD Need: set d 0 in the defect free circuit 
D Need: propagate effect of fault to output 
D  Vector: abc=001 (output = 0/1)
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A Typical ATPGSystem

D  Given a circuit and a fault model
• Repeat
• Generate a test for each undetected fault
• Drop all other faults detected by the test using 

a  fault simulator
• Until all faults have been considered

D  Note 1: a fault may be untestable, in which no  
test would be generated

D  Note 2: an ATPG may abort on a fault if the  y
resources needed exceed a preset limit
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Random TestRandom Test
Generation

D  Simplest form of test generation
• N tests are randomly generated

L l f fid d t t t TD  Level of confidence on random test set T
• The probability that T can detect all stuck-at 

faults  in the given circuitg
• Quality of a random test set highly depends on 

the  underlying circuit
• Some circuits have many random resistant faults• Some circuits have many random-resistant faults
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Weighted Random TestWeighted Random Test
Generation

D Bias input probabilities to target random
resistant faults

D Consider an 8-input AND gate
• Without biasing input probabilities, the prob of generating a  

logic 1 at the gate output = (0.5)8  = 0.004
• If we bias the inputs to 0.75, then the prob of generating a  

logic 1 at the gate output = (0 75)8  = 0 100logic 1 at the gate output = (0.75) = 0.100
D Obtaining an optimal set of input probabilities

a  difficult task
D Goal: increase the signal probabilities of hard-to-D Goal: increase the signal probabilities of hard-to-

test regions
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Probability of FaultProbability of Fault
Detection

D  Given a circuit with n inputs
D  Let Tf be the set of vectors that can  f

detect fault f
D Then is the prob that f can be 

detected by a random vector
D Let be the prob that a random 

vector cannot detect f
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Prob of Fault DetectionProb of Fault Detection
(Cont.)

D Then, is the prob that N
random vectors do not detect f

D  Thus, the prob that at least one out ofN
random vectors can detect f is
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Minimum DetectionMinimum Detection
Probability

D The min detection prob of any detectable fault actually does not  p y y
depend on n, the num of PIs

D Instead, it depends on the largest primary-output cone that it is 
in

D This is because any detectable fault must be excited and  y
sensitized to a primary output
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LemmaLemma
1

D  In a combinational circuit with multiple  
outputs, let nmax be the number of  
primary inputs that can lead to a primary  
output. Then, the detection probability  
for the most difficult detectable faultfor the most difficult detectable fault,  
dmin, is:
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Exhaustive TestExhaustive Test
Generation

D Exhaustive Testing
• Apply 2n patterns to an n-input combinational circuit under  

test (CUT)
• Guarantees all detectable faults in the combinational circuitsGuarantees all detectable faults in the combinational circuits  

are detected
• Test time maybe be prohibitively long if the number of inputs  

is large
• Feasible only for small circuitsFeasible only for small circuits

D Pseudo-exhaustive Testing
• Partition circuit into respective cones
• Apply exhaustive testing only to each cone
• Still guarantees to detect every detectable fault based on  

Lemma 1
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Theoretical Foundations: Boolean  
Difference

D The function for the circuit is
D Let the target fault be y/0, then the function for the faulty circuit  

is f’ = f(y=0)
D Goal of test generation: find a vector that makes f XOR f’ = 1D Goal of test generation: find a vector that makes f XOR f  = 1
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Boolean DifferenceBoolean Difference
Continued

D f XOR f’ = 1 iff f and f’ result in opposing  
logic values

D  Thus, any vector that can set f XOR f’=  
1 is able to produce opposing values at  
the outputs of the fault-free and faulty  
circuits respectively

D Definition:
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Boolean DifferenceBoolean Difference
Example

D  To excite the fault y/0,y=1
D Thus,

xyz= 110 or 011 can  
detect the fault
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AnotherAnother
Example

D  Let target fault bew/0

xyz=001, 101
can detect w/0

But:
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A ThirdA Third
Example

D  Fault:z/0

This fault is untestable!
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Wrap Up on BooleanWrap Up on Boolean
Difference

D  Given a circuit with output f andfault
D The set of vectors that can detect this  

fault includes all vectors that satisfy
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DeterministicDeterministic
ATPG

D In general, we don’t need an entire set of vectors
that can detect the target fault

D Instead, we just want to compute one vector quickly
D Rather than using Boolean Difference that can

obtain  all vectors
• Simply use a branch-and-bound search to find one vector  

i klquickly
D Deterministic ATPG has two main goals

• Excite the target fault
P t th di f lt ff t t t t• Propagate the corresponding fault effect to an output
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5 valued Algebra for5‐valued Algebra for 
Comb. Circuits

D  Instead of using two circuits (fault-free and  
the faulty)
• We will solve the ATPG problem on one singleWe will solve the ATPG problem on one single  

circuit
D  To do so, every signal value must be able to  

capture fault free and faulty valuescapture fault-free and faulty values  
simultaneously

D  5-Value Algebra: 0, 1, X, D, D-bar
• D: 1/0
• D-bar: 0/1
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Boolean Operators on 5‐Valued  
Algebra
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Decision Tree for Branch-and-Bound  
Search
D The ATPG systematically and implicitly searches theD The ATPG systematically and implicitly searches the  

entire search space
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BacktrackinBacktrackin
g

D  The ATPG searches one branch at a time
D  Whenever a conflict (e.g., all D’s disappeared)  

i t b kt k i d i iarises, must backtrack on previous decisions

If d 1 l fli b k kIf d=1 also causes a conflict, backtrack  
to c=0
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Basic ATPG for Fanout FreeBasic ATPG for Fanout‐Free
Circuits
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The JustifyThe Justify
Routine
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ExamplExampl
e

Fault: g/0

The recursive calls to JustifyFanoutFree():
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The PropagateThe Propagate
Routine
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ExampleExample
Continued

Propagate fault-effect  
from g to z
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DD
Algorithm

D  Can handle arbitrary combinational  
circuits, with internal fanout structures
M i id l i t i tD Main idea: always maintain a non-empty
D-frontier and try to propagate at least a
fault effect to a primary outputfault effect to a primary output

D  Initially, all circuit nodes are X, except  
for the fault cite, where a fault effect (D  , (
or D-bar) is placed.
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D Frontier and JD‐Frontier and J‐
Frontier

D D-Frontier: All gates whose outputs are
X but has at least one D or D-bar at the
input of the gates
• Initially, the D-frontier consists of only 1  

gate (output of the fault site)gate (output of the fault-site)
D  J-Frontier: All gates whose outputs are  

specified by are not justified by the inputspecified by are not justified by the input  
assignments
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D-Frontier Example

D  The D-frontier contains 2gates
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J-Frontier Example

D  The J-Frontier contains 2gates
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Idea Behind D Algorithm
D  To advance the fault-effects in the D-frontier,  ,

add nodes to the J-frontier to justify
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DD
Algorithm
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D Algorithm Exampleg p

Target f stuck‐at‐0

Initialize all gates to XInitialize all gates to X
Places D on line f
Propagate fault effect to z
Places a=1 in J‐frontier, followed by 
h 0h=0
Fault effect has reached primary output
Try to justify entries in J‐frontier
a is already justified as it is primary inputy j p y p
For f=D, d = 0, making c=0
For h=0, either e=0 or b=0 is sufficient
Test found.



D AlgorithmD Algorithm
Example

D  Target fault: g/1
D  Initially, D-Frontier: {h}, J-Frontier={g=D-bar}

T d D f ti dd f 1 d 1 t JD  To advance D-frontier, add f=1 and c=1 to J-
frontier
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D Algorithm ExampleD Algorithm Example
(Cont.)

N j tif l i J F ti iD  Now justify every value in J-Frontier via  
branch-and-bound search
• Must not make D-frontier empty or conflict 

with other J frontier valueswith  other J-frontier values
• Otherwise backtrack

D  Result: g/1 is untestable
39
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PODEPODE
M

D  Also a branch-and-bound search
D  Decisions only on PIs

• No J-Frontier neededNo J Frontier needed
• No internal conflicts

D  D-frontier may still become empty
• Backtrack whenever D-frontier becomes• Backtrack whenever D-frontier becomes

empty
• Backtrack also when no X-path exists from 

any D/D-bar to a POany  D/D bar to a PO
D  Decisions selected based on a backtrace

from the current objective
40
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XX‐
Path

D  The D in the circuit has no path of X’s to any  
PO

i e the D is blocked by every path to any PO• i.e., the D is blocked by every path to any PO
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Getting theGetting the
Objective
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Backtrace to Select aBacktrace to Select a
Decision
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PODEMPODEM
Example

Target fault: f/0

D 1st  Objective: f=1in order to excite the target faultD 1 Objective: f 1in order to excite the target fault
D Backtrace from the object: c=0
D Simulate(c=0): D-Frontier = {g}, some gates

have been assigned {c=d=e=h=0, f=D}have been assigned {c d e h 0, f D}
D 2nd  Objective: advance D-frontier, a=1
D Backtrace from the object: a=1
D Simulate(a=0): Fault detected at z
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Another PODEMAnother PODEM
Example

Target fault: b/0

D 1st  Objective: excite fault: b=1
D Backtrace from objective: a=0
D Simulate(a=0): b=D c=0 d=0: empty D frontierD Simulate(a=0): b=D, c=0, d=0: empty D-frontier.

Must backtrack
D Change decision to a=1

Si l ( 1) b 0 1 d 1 D f i illD Simulate(a=1): b=0, c=1, d=1, D-frontier still
emtpy
D Backtrack, no more decisions. Fault untestable.
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FAN

D  Extend PODEM for an improvedATPG
D  Concept of headlines to reducethe  p

number decisions
D  Multiple Objectives to reducelater  j

conflicts
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HeadlineHeadline
s

D Output signals of fanout free conesD  Output signals of fanout-free cones
D  Any value on headlines can always be  

justified by the PIs

We only need to  
backtrace to thebacktrace to the  
headlines to  
reduce the  

b fnumber of  
decisions
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MultipleMultiple
Objectives

D  Objectives: {k=0, m=1}
D Backtrace from k=0 may favor b=0 butD Backtrace from k=0 may favor b=0, but

simulate(b=0) would violate the second
objective m=1!

D  Makes backtrace more intelligent to avoid  
future conflicts
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Static LogicStatic Logic
Implications

D  Can help ATPG make betterdecisions
D  Avoidconflicts
D  Reduce the number ofbacktracks
D Idea: what is the effect of asserting aD  Idea: what is the effect of asserting a  

logic value to a gate on other gates in  
the circuit?
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DirectDirect
Implications

D  Direct implications for f=1:
•  {d=1, e=1, g=1, j=1, k=1}

D  Direct implications for j=0:
•  {h=0, g=0, f=0, w=1, w=0, z=0}
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IndirectIndirect
Implications

D Direct implications for f=1:
• {d=1, e=1, g=1, j=1, k=1}

D Indirect Implications for f=1 obtained byp y
simulating the direct implications of f=1:
• {x=1}

D This is repeated for every node in the circuit
51
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Extended BackwardExtended Backward
Implications

D  Direct and indirect implications for f=1:
• {d=1, e=1, g=1, j=1, k=1, x=1}

E t B k I li ti bt i d bD  Ext. Back. Implications obtained by  
enumerating cases for unjustified gates
• Unjustified gates: {d=1}
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Extended BackwardExtended Backward
Implications

D In order to justify d=1, need either a=1 or b=1
• Simulate(a=1, impl(f=1)) = Sa
• Simulate(b=1, impl(f=1)) = Sb

D Intersection of Sa and Sb is the the set of ext. back. Implications 
for f 1for f=1

• f=1 implies {z=0}
D This is repeated for every unjustified gate, as well as for every  

node in the circuit
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Dynamic LogicDynamic Logic
Implications

D  Similar to Static Logic Implications, but has  
some signals already assigned values
S 1 h l d b i dD  Suppose c=1 has already been assigned
• Then to obtain z=0, b must be 0
• This is the intersection of having either d=0 orThis is the intersection of having either d 0 or 

e=0  in the presence of c=1
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Another Dynamic Implications  
Example

D  Suppose b=D
D  In order to propagate the fault-effect to z, f =  1 

is a necessary condition [Akers 76, Fujiwara  
83]

D To take this further, the intersection of all the
necessary assignments for all fault-effects in
the D-frontier can be taken [Hamzaoglu99]
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Evaluation Frontiers
D If two faults have the same E-frontier with at

least one fault-effect, then the values on the
unassigned PIs can be the same [Giraldi 90]unassigned PIs can be the same [Giraldi 90]
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Fast Untestable FaultFast Untestable Fault
Identification

D  Untestable faults are:
• Those that could not be excited, or

Th th t ld t b t d• Those that could not be propagated, or
• Those that could not be simultaneously excited 

or  propagated
D  ATPG can spend a lot of time trying to  

generate a test for an untestable fault
F t id tifi ti f t t bl f lt• Fast identification of untestable faults can 
allow  the ATPG to skip those faults
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FIRE [IyerFIRE [Iyer
1996]

D Based on conflict analysisD  Based on conflict analysis
D  S0 = set of faults that are untestable when  

signal s=0
These fa lts m st req ire s 1 to be detectable• These faults must require s=1 to be detectable

D  S1 = set of faults that are untestable when  
signal s=1

Th f lt t i 0 t b d t t bl• These faults must require s=0 to be detectable
D  Intersection of S0 and S1 are definitely  

untestable
• They require s=1 and s=0 simultaneously to 

be  detectable!
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FIRE Example

D Impl[b=1] = {b=1, b1=1, b2=1, d=1, x=0, z=0}
D Faults unexcitable when b=1: {b/1 b1/1 b2/1D Faults unexcitable when b=1: {b/1, b1/1, b2/1,

d/1, x/0, z/0}
D Faults unobservable when b=1: {a/0, a/1, e1/0,

e1/1, y/0, y/1, e2/0, e2/1}, y , y , , }
D Faults undetectable when b=1: {a/0, a/1, b/1,

b1/1, b2/1, d/1,e1/0, e1/1, e2/0, e2/1, x/0, y/0, 
y/1, z/0}
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FIRE ExampleFIRE Example
(Cont.)

D Impl[b=0] = {b=0, b1=0, b2=0, e=0, e1=0, e2=0,
y=1}y=1}
D Faults unexcitable when b=0: {b/0, b1/0, b2/0,

e/0, e1/0, e2/0, y/1}
D Fa lts nobser able hen b 0 {c/0 c/1}D Faults unobservable when b=0: {c/0, c/1}
D Faults undetectable when b=0: {b/0, b1/0, b2/0,

c/0, c/1, e1/0, e2/0, y/1}
65
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FIRE ExampleFIRE Example
(Cont.)

D  Now that the two sets of faults undetectable  
when b=0 and b=1 have been computedwhen b=0 and b=1 have been computed

D  The intersection of the two sets are those  
faults the require b=1 AND b=0 for detection,  
thus untestable:thus untestable:
• {b2/0, c/0, c/1, e/0, e1/0, e2/0, y/1}
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Generalization ofGeneralization of
FIRE

D  Conflict on a single line: b=0 ANDb=1
D  Conflict on any illegalcombinationy g

• Suppose FFs x=1, y=0, z=1 is illegal, then
any fault that require x=1, y=0, and z=1 for
d t ti ill b t t bldetection will be untestable

• This can be generalized to any illegal value  
combination in the circuitcombination in the circuit
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Multi LineMulti‐Line
Conflict

D  Consider the AND gate
D  {a=0, c=1} is illegal (but this is captured by  

single-line conflicts)g )
D  Likewise {b=0, c=1}
D  But, {a=1, b=1, c=0} is a multi-line conflict not  

captured by single-line conflictcaptured by single-line conflict

Intersection of S0, S1, S2 will be untestable faults due to this  
multi-line conflict
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Multi Line ConflictsMulti‐Line Conflicts
(Cont.)

D  Can extend the previous concept further
D  Consider multi-line conflict {h=1, g=1, z=0}
D  We can extend these values as far as  

possible: {f=1 c=1 d=0 e=0 z=0} is a multi-possible: {f=1, c=1, d=0, e=0, z=0} is a multi-
line conflict as well
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Summary on Untestable Fault  
Identification

D  First compute static logic implications
D  Compute untestable faults basedon  p

single-line conflicts
D  Compute untestable faults basedon  

multi-line conflicts
D  Remove all identified untestablefaults  

from the fault list
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Simulation BasedSimulation‐Based
ATPG

• D  Random and weighted‐random TPGare  the 
simplest forms of simulation‐based ATPGsimplest forms of simulation based  ATPG

• D  Challenge: how to guide the search to  
generate effective vectors to obtain high faultgenerate effective vectors to obtain high  fault 
coverage, low computation costs,  and small 
test sets?test sets?
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Genetic Algorithms for Sim‐based  
ATPG

D A GA made up of
• A population of individuals (chromosomes)

– Each individual is a candidate solution
• Each individual has an associated fitness

Fit th lit f th i di id l– Fitness measures the quality of the individual
• Genetic operators to evolve from one  

generation to the nextgeneration to the next
– Selection, crossover, mutation
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Illustration of GAIllustration of GA
process
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Pseudo Code forPseudo Code for
GA
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The SelectionThe Selection
Operator

D  Roulette WheelSelection

D  TournamentSelection
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The CrossoverThe Crossover
Operator

D  One-pointcrossover

D  Two-pointcrossover
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Uniform Crossover

D  The crossover is performed whenevera  
mask bit is set
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The MutationThe Mutation
Operator

D Random flip of a bit position
D  Need to keep mutation rate small,so  p

that the search will not seem  
randomized
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GA PopulationGA Population
Size

D  Should be a function of the individual size
D  Larger individuals require larger populations  

to allow for reasonable diversityto allow for reasonable diversity
D  Individual size depends on the number of PIs  

in the circuit
• In sequential circuits, an individual may be 

a  sequence of vectors
D  Generation Gap: some individuals may be  p y

carried over from one generation to the next
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Number of GANumber of GA
Generations

D  Related to the populationsize
• Larger populations usually demand more  

generations
• Generation gap also will affect the number  

of generations needed to reach aof generations needed to reach a  
satisfactory solution
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The FitnessThe Fitness
Function

D  Measures the quality of the individual
D  Essential for a GA to converge on a solution
D  Example fitness functions:

• Number of faults detected by the individual
• Number of faults excited by the individual• Number of faults excited by the individual
• Number of flip-flops set to a specified value (in 

seq  ckts)
• A weighted sum of various factors
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