
Week 3: Course Material

Logic and Fault Simulationg
Lecture 11
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Logic and Fault Simulation

I t d tiD Introduction
D  Simulation models

L i i l iD  Logic simulation
D  Fault simulation
D  Concluding remarks
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D Predict the behavior of a design prior to its physical

Logic Simulation
D Predict the behavior of a design prior to its physical  

realization
D Design verification Specificationg

Manual design or  
via Synthesis

Testbench  
Development

Circuit  
Description Input Stimuli Expected  

Responses

Simulated  
Responses

yes

Bug?
Response  
Analysis

Bug?
no  

Next Design
Stage
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Fault Simulation

D  Predicts the behavior of faulty circuits
• As a consequence of inevitable fabrication  

process imperfections

D An important tool for test and diagnosisD  An important tool for test and diagnosis
• Estimate fault coverage

Fault simulator• Fault simulator

• Test compaction

• Fault diagnosis
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Logic and Fault Simulation

I t d tiD Introduction
D  Simulation models

L i i l iD  Logic simulation
D  Fault simulation
D  Concluding remarks
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Gate-Level Network
D The interconnections of logic gatesD The interconnections of logic gates

A H
G2

L
KG4

B  
C E F

J
G3G1
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Sequential Circuits
D The outputs depend on

x1 z1

D The outputs depend on 
both the current and  
past input values

Combinational  
Logic

x2

xn

z2

zm

Y1  

Y2

y1  

y2

xi: primary input (PI)

zi: primary output (PO) Ylyl

yi: pseudo primary input (PPI)

Yi: pseudo primary output (PPO)

-F
lo

ps
clock

Fl
ip

-
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A Positive Edge-Triggered D-FF

PresetB

Q

PresetB

D Q

Clock QB
Clock

Q

QB
DFF

D

ClearB

ClearB
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Logic Symbols

Th t l d 0 1 d ZD  The most commonly used are 0, 1, u and Z
D  1 and 0

t d f l f th t l B l l b• true and false of the two-value Boolean algebra
D u

U k l i t t ( b 1 0)• Unknown logic state (maybe 1 or 0)
D Z

High impedance state• High-impedance state
• Not connected to Vdd  or ground

10
EE141



Ternary Logic
D Three logic symbols: 0 1 and uD Three logic symbols: 0, 1, and u

AND 0 1 u OR 0 1 u NOT 0 1 u
0 0 0 0 0 0 1 u 1 0 u0 0 0 0 0 0 1 u 1 0 u
1 0 1 u 1 1 1 1
u 0 u u u u 1 u
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Information Loss of TernaryLogic
D Simulation based on ternary logic is pessimisticD Simulation based on ternary logic is pessimistic
D A signal may be reported as unknown when its value  

can be uniquely determined as 0 or 1

u
A u

K
G2 G4

q y
1

B  
C u

u
u

G3G1

0

A
0

0 or 1
K

G2 G4

1

B  
C 0 or 1

1 or 0
0 or 1

G3G1

0
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High-Impedance State Z
D Tri state gates permit several gates to time share aD Tri-state gates permit several gates to time-share a  

common wire, called bus
D A signal is in high-impedance state if it is connected  g g p

to neither Vdd nor ground

i
i iif e  1x

o  
Z if e  0iZ if e   0

G1x1

e1
o1

pull-up  
d

G2x2

e2

DFF

o2

or down

y

3
G3x3

e3

DFF

o3

Resolution
Function
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Resolving Bus Conflict

B fli t if t l t t d i d iD  Bus conflict occurs if at least two drivers drive  
the bus to opposite binary values

D  To simulate tri-state bus behavior, one may  
insert a resolution function for each bus wire
• May report only the occurrence of bus conflict
• May utilize multi-valued logic to represent  y g p

intermediate logic states (including logic signal  
values and strengths)

14
EE141



Logic Element Evaluation Methods

D  Choice of evaluation technique depends on
• Considered logic symbols

• Types and models of logic elements

D Commonly used approachesD  Commonly used approaches
• Truth table based

• Input scanning

• Input counting

• Parallel gate evaluation
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Truth Table Based Gate Evaluation
D The most straightforward and easy toD  The most straightforward and easy to  

implement
• For binary logic, 2n entries for n-input logic  y g , p g

element
• May use the input value as table index
• Table size increases exponentially with the• Table size increases exponentially with the  

number of inputs
D  Could be inefficient for multi-valued logicg

• A k-symbol logic system requires a table of 2mn  

entries for an n-input logic element
– m = log k– m = log2k
– Table indexed by mn-bit words
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Input Scanning

D Th t t t b d t i d b thD  The gate output can be determined by the  
types of inputs
• If any of the inputs is the controlling value theIf any of the inputs is the controlling value, the  

gate output is ci
• Otherwise, if any of the inputs is u, the gate output  

is u
• Otherwise, the gate output is c'i

Table 3.2: The c (controlling) and
i (inversion) values of basic gates

c i
AND 0 0AND 0 0
OR 1 0
NAND 0 1
NOR 1 1
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Input Scanning - cont’d

Start

u in  falseu_in  false

noNext  
input?

yes

return c’iu_in is  
true?

yes

no

v  next inputu_in  true return u

v == u? v == c? return ci
yesno

yes
no
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Input Counting

D K th t f t lli d kD  Keep the counts of controlling and unknown  
inputs
• c count: the number of controlling inputs• c_count: the number of controlling inputs
• u_count: the number of unknown inputs

D Update counts during logic simulationD  Update counts during logic simulation
• Example:

One input of a NAND switches from 0 to u
– c_count --
– u_count ++

S l i t i d tD  Same rules as input scanning used to  
evaluate gate outputs
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Parallel Gate Evaluation
D Exploit the inherent concurrency in the host computerD Exploit the inherent concurrency in the host computer

• A 32-bit computer can perform 32 logic operations in parallel

A
H

G2

1 0 0 0
1 0 0 1

KG4
0 1 1 0

B  
C

E J
G3G1

0 1 1 0

1 1 1 0

1 1 1 0

0 0 0 1
0 0 1 0
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Logic and Fault Simulation (contd.)

Lecture 12



Multi-Valued Parallel Gate Evaluation

U t l i lD  Use ternary logic as example
• Assume

– w-bit wide wordw bit wide word
– Symbol encoding: v0 = (00), v1 = (11), vu = (01)

• Associate with each signal X two words, X1 and X2
– X1  stores the first bits and X2  the second bits of thew

copies of the same signal

• AND and OR operations are realized by applyingAND and OR operations are realized by applying  
the same bitwise operations to both words

– C = OR(A,B) ==> C1 = OR(A1,B1) and C2  = OR(A2,B2)
C• Complement requires inversion

– C = NOT(A) ==> C1 = NOT(A2) and C2 = NOT(A1)

21
EE141



Timing Models

T t d lD  Transport delay
D  Inertial delay

Wi d lD  Wire delay
D  Function element delay model
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Transport Delay
D The time duration it takes for the effect of gate inputD The time duration it takes for the effect of gate input 

changes to appear at gate outputs

A

A

G
A  

B=1 F

1 2(a) Nominal delay
F

A 1 51

2dN = 2 ns

(b) Rise/fall delay A

F

1.51

2

2

( ) y
dr = 2 ns
df = 1.5 ns

3

A

F

1.5 1
2

1
2

(c) Min-max delay 
dmin = 1 ns  
dmax = 2 ns
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Inertial Delay
D The minimum input pulse duration necessary for theD The minimum input pulse duration necessary for the  

output to switch states
A

G
A  

B=1 F Id  = 1.5 ns, dN = 3 ns

1

(a) Pulse duration less than dI

A  

F

(b) Pulse duration longer than dI  

2

3A 2

F 3
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Wire Delay
D Wires are inherently resistive and capacitiveD Wires are inherently resistive and capacitive
D It takes finite time for a signal to propagate along a  

wire

p q

a

b
da-b

c
dda-c

d
da-d
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Functional Element Delay Model
D For more complicated functional elements like flipD For more complicated functional elements like flip-

flops

Table 3.3: The D flip-flop I/O delay model

PresentInput condition Present
state Outputs Delays (ns)

D Clock PresetB ClearB q Q QB to Q to QB Comments
X X  0 0   1.6 1.8 Asynchronous presety p
X X 0  1   1.8 1.6 Asynchronous clear
1  0 0 0   2 3 Q: 01
0  0 0 1   3 2 Q: 10

Š ÕX Š indicates donÕtcare
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Logic and Fault Simulation

I t d tiD Introduction
D Simulation models

L i i l tiD Logic simulation
D Fault simulation
D Concluding remarks
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Compiled Code Simulation

D Translate the logic 

network into a series of  

start

machine instructions that

model the gate functions  
nonext  

vector?
es

end

and interconnections read in next input  
vector v

yes

run compiled code  
with input v in host  

machine

output simulation  
results
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Compiled Code Generation Flow
gate levelgate-level  
description

logic optimization

logic levelization

code generation

compiled  
code

29
EE141



Logic Optimization
D Enhance the simulation efficiencyD Enhance the simulation efficiency

before optimization after optimization

1
A  
B

A  
B

(a)

A

A

A(b)

( ) A
1

0

A A

(c)

(d)

3

AA(e)
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Logic Levelization
D Determine the order of gate evaluations

start

assign level 0 to  
all PI’s

put all PI fanout  
gates in Q

t tQ d ’ f tno pop next gate g
from Q

Q
empty?

append g’s fanout  
gates to Q

1 l = maximum of
yes

no

3

yesno
end append g to Q ready to  

levelize g?

1. l = maximum of
g’s driving gate
levels

2. assign l+1 to g
31
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Exampl
eA

G2

Table 3.4:  The levelization process of circuitB  

K
G2 G4

GG
p

step A B C G1 G2 G3 G4 Q
0 0 0 0 <G2, G1>
1 0 0 0 <G1, G2>
2 0 0 0 1 <G2, G3>

C G3G1

3 0 0 0 1 2 <G3, G4>
4 0 0 0 1 2 2 <G4>
5 0 0 0 1 2 2 3 < >

D The following orders are produced
• G1 => G2 => G3 => G4

3

• G1 => G3 => G2 => G4
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Code Generation

D Hi h l l i lD  High-level programming language source  
code
• Easier to debug• Easier to debug
• Can be ported to any target machine that has the  

compiler
• Limited in applications due to long compilation  

times

D  Native machine code
• Generate the target machine code directly

Hi h i l ti ffi i

33

• Higher simulation efficiency
• Not as portable
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Code Generation - cont’d

I t t d dD  Interpreted code
• The target machine is a software emulator
• The codes are interpreted and executed one at a• The codes are interpreted and executed one at a  

time
• Best portability and maintainabilityp y y
• Reduced performance
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Logic and Fault Simulation (contd )Logic and Fault Simulation (contd.)

Lecture 13Lecture 13



Event-Driven Simulation
D Event: the switching of a signal’s valueD Event: the switching of a signal s value
D An event-driven simulator monitors the occurrences 

of events to determine which gates to evaluateg

A H: 0  1
G

0  1
G2

B  

K: 1  0G4

GG
0  1

3

C E: 1 J: 0
G3G1

1
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Zero-Delay Event-Driven Simulation
D Gates with events at their inputs are places in theD Gates with events at their inputs are places in the  

event queue Q
start

read in initial  
condition

yesno Q

end

yesQ
empty?

evaluate next gate
g from Q

next  
vector?

no

read in new input  
vector

output  
change?

yes

no
yes

3

put active Pis’  
fanout gates in Q

put g’s fanout  
gates in Q

yes
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Nominal-Delay Event-Driven Simulation
D Need a smarter scheduler than the event queueD Need a smarter scheduler than the event queue

• Not only which gates but also when to evaluate

337
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Two-Pass Event-Driven Simulation
start

yes

get next time

end
no Next time  

stamp?
yes

get next event get next gate g

yesLE
empty?

no

LA
empty?

no

get next time  
stamp t

retrieve current  

get next event
+

(g, vg  ) from LE

get next gate g
from LA

evaluate g andyes +
?event list LE

1. vg  vg
+

g
schedule (g, v +)g

at t+delay(g)
vg ==vg?

no

3

1. vg  vg
2. append g’s  

fanout gates to  
activity list LA

LE = Event List
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Example A
K

G2 G4

H

B  
C G1 G3

E J
Nominal delays
of G1, G2, G3, G4

Table 3.5: Two-pass event-driven simulation
Time LE LA Scheduled events
0 {(A,1)} {G2} {(H,1,8)}

1, 2, 3, 4
are 8, 8, 4, 6 ns

{( , )} { 2} {( , , )}
2 {(C,0)} {G1} {(E,1,10)}
4 {(B,0)} {G1} {(E,0,12)}
8 {(A,0),(H,1)} {G2,G4} {(H,0,16),(K,0,14)}
10 {(E,1)}
12 {(E,0)} { G2,G3} {(H,0,20),(J,1,16)}
14 {(K,0)}
16 {(H 0) (J 1)} {G } {(K 0 22)}

3

16 {(H,0),(J,1)} {G4} {(K,0,22)}
20
22

{(H,0)}
{(K,0)}
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Example - cont’d
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Compiled-Code vs. Event-Driven Simulation

C il d dD Compiled-code
• Cycle-based simulation
• High switching activity circuits• High switching activity circuits
• Parallel simulation
• Limited by compilation timesLimited by compilation times

D Event-driven
• Implementing gate delays and detecting hazardsImplementing gate delays and detecting hazards
• Low switching activity circuits
• More complicated memory management

41
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Hazards
D Unwanted transientD Unwanted transient 

pulses or glitches

INV delay = 3ns
Others = 2ns
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Types of Hazards
D Static or dynamicD Static or dynamic

• A static hazard refers to the transient pulse on a signal line  
whose static value does not change

• A dynamic hazard refers to the transient pulse during a 0-to-
1 or 1-to-0 transition

D 1 or 0

Static 1-hazard Static 0-hazard Dynamic 1-hazard Dynamic 0-hazard

343
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Static Hazard Detection

L t b tD Let be two
consecutive input vectors

according toD Add a new vector   V  according toD  Add a new vector  
the following rule

1 2
  V  v v ....v 

n

if v1  v 2v1

D Simulate the V1V+V2 sequence using ternary

i
i

if v  v
i i

i i

v1

v   
u if v1  v 2

D  Simulate the V1V+V2 sequence using ternary  
logic

D Any signal that is 1u1 or 0u0 indicates theD  Any signal that is 1u1 or 0u0 indicates the  
possibility of a static hazard.
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Multi-Valued Logic for Hazard Detection
D 6 valued logic for static hazard detectionD 6-valued logic for static hazard detection
D 8-valued logic for dynamic hazard detection
D Worst case analysisD Worst case analysis

Table 3.6: Multi-valued logic for hazard detection
Symbol Interpretation 6-valued logic 8-valued logicy p g g
0 Static 0 {000} {0000}
1 Static 1 {111} {1111}
R Rise transition {001,011}=0u1 {0001,0011,0111}R Rise transition {001,011} 0u1 {0001,0011,0111}
F Fall transition {100,110}=1u0 {1110,1100,1000}
0* Static 0-hazard {000,010}=0u0 {0000,0100,0010,0110}
1* Static 1-hazard {111 101}=1u1 {1111 1011 1101 1001}1 Static 1 hazard {111,101} 1u1 {1111,1011,1101,1001}
R* Dynamic 1-hazard {0001,0011,0101,0111}
F* Dynamic 0-hazard {1000,1010,1100,1110}
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Logic and Fault Simulation

I t d tiD Introduction
D  Simulation models

L i i l iD  Logic simulation
D  Fault simulation
D  Concluding remarks
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Logic and Fault Simulation (contd.)

Lecture 14



Fault Simulation
D IntroductionD Introduction
D Serial Fault Simulation
D Parallel Fault SimulationD Parallel Fault Simulation
D Deductive Fault Simulation
D Concurrent Fault SimulationD Concurrent Fault Simulation
D Differential Fault Simulation
D Fault DetectionD Fault Detection
D Comparison of Fault Simulation Techniques
D Alternative to Fault SimulationD Alternative to Fault Simulation
D Conclusion
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Introduction

Wh t i f lt i l ti ?D  What is fault simulation?
• Given

– A circuitA circuit
– A set of test patterns
– A fault model

• Determine
– Faulty outputs
– Undetected faultsUndetected faults
– Fault coverage
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Time Complexity

D  Proportional to
• n: Circuit size, number of logic gates

• p: Number of test patterns

• f : Number of modeled faultsf : Number of modeled faults

D  Since f is roughly proportional to n, the overall  
time complexity is O(pn2)time complexity is O(pn2)
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Serial Fault Simulation

Fi t f f lt f l i i l ti thD  First, perform fault-free logic simulation on the  
original circuit

• Good (fault-free) response

D For each fault perform fault injection andD  For each fault, perform fault injection and  
logic simulation

• Faulty circuit response

50
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start

Algorithm Flow
F  collapsed fault list

fault-free simulation for  
all patterns

no next  
fault?

yes
1 t t f lt f f F

end

1. get next fault f from F
2. reset pattern counter

1 get next pattern p

next  
pattern?

yes

no

delete f from F

1. get next pattern p
2. fault simulation for p

mis-
match?

yesno
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Exampl
e

A H

K

G2

G4

f: A stuck-at 1

B  
C E F J

L

G3G1

g: J stuck-at 0

Pat. # Input Internal Output

A B C E F L J H Kgood Kf Kg

P1 0 1 0 1 1 1 0 0 1 0 1
P2 0 0 1 1 1 1 0 0 1 0 1P2 0 0 1 1 1 1 0 0 1 0 1

P3 1 0 0 0 0 0 1 0 0 0 1
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Fault Dropping

H lti i l ti f th d t t d f ltD  Halting simulation of the detected fault
D Example

S t i l t P P P i d• Suppose we are to simulate P1, P2, P3 in order
• Fault f is detected by P1

• Do not simulate f for P P• Do not simulate f for P2, P3

D  For fault grading
• Most faults are detected after relatively few test• Most faults are detected after relatively few test  

patterns have been applied
D  For fault diagnosis

3

g
• Avoided to obtain the entire fault simulation results
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Pro and Con

D Advantages
• Easy to implement
• Ability to handle a wide range of fault models  

(stuck-at, delay, Br, …)( y )

D Disadvantages
• Very slow
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Parallel Fault Simulation

E l it th i h t ll li f bit iD Exploit the inherent parallelism of bitwise  
operations

D  Parallel fault simulation
• Parallel in faults

D  Parallel pattern fault simulation
• Parallel in patterns• Parallel in patterns
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Parallel Fault Simulation

A tiD Assumption
• Use binary logic: one bit is enough to store logic  

signalsignal

• Use w-bit wide data word

P ll l i l tiD  Parallel simulation
• w-1 bit for faulty circuits

1 bit f f lt f i it• 1 bit for fault-free circuit

D  Process faulty and fault-free circuit in parallel  
i bit i l i tiusing bitwise logic operations
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Fault Injection
A H

G

L
K

G2

G4

f: A stuck-at 1

B  
C E F J

G3G1

g: J stuck-at 0

A
HGf

L

H

K

G2

G4

Gf0 1 0

B  
C E F

J
G3G1 Gg0 1 0
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Example

Pat #
Input Internal Output

A Af B C E F L J Jg H K

FF 0 0 1 0 1 1 1 0 0 0 1

P1

FF 0 0 1 0 1 1 1 0 0 0 1

f 0 1 1 0 1 1 1 0 0 1 0

g 0 0 1 0 1 1 1 0 0 0 1g

P2

FF 0 0 0 1 1 1 1 0 0 0 1

f 0 1 0 1 1 1 1 0 0 1 0

g 0 0 0 1 1 1 1 0 0 0 1

FF 1 1 0 0 0 0 0 1 1 0 0

P3 f 1 1 0 0 0 0 0 1 1 0 0

g 1 1 0 0 0 0 0 1 0 0 1
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Pro and Con

D Advantages
• A large number of faults are detected by each  

h i l i h b i i fpattern when simulating the beginning of test  
sequence

D Disadvantages
• Only applicable to the unit or zero delay models
• Faults cannot be dropped unless all (w-1) faults  

are detected
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Parallel Pattern Fault Simulation

P ll l tt i l f lt tiD  Parallel pattern single fault propagation  
(PPSFP)

D  Parallel pattern
• With a w-bit data width, w test patterns are packed  

i t d d i l t d f th f lt finto a word and simulated for the fault-free or  
faulty circuit

D Single faultD  Single fault
• First, fault-free simulation
• Next for each fault fault injection and faulty circuit• Next, for each fault, fault injection and faulty circuit  

simulation
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start

Algorithm Flow
F  collapsed fault list

no new w
patterns?

yes
end

yes
1. apply next  w patterns
2. Ogood  good circuit outputs

next  
fault?

yes

F
empty?

yes

no

delete f from F
1 remove last fault

endget next fault f from F

y

1. remove last fault
2. inject fault f

f goodO == O ? Of  faulty circuit outputs  
f tt

yes
no

61
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Example
A H

G2f: A stuck-at 1

B

L
KG4

g: J stuck-at 0

Input Internal Output

B  
C E F J

G3G1

g: J stuck at 0

p p

A B C E F L J H K

Fault  
Free

P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 1 0 0

f

P1 1 1 0 1 1 1 0 1 0

P2 1 0 1 1 1 1 0 1 0

P3 1 0 0 0 0 0 1 0 0

g

P1 0 1 0 1 1 1 0 0 1

P2 0 0 1 1 1 1 0 0 1

P3 1 0 0 0 0 0 0 0 1
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Pro and Con

D Advantages

• Fault is dropped as soon as detectedpp

• Best for simulating test patterns that come later,  

where fault dropping rate per pattern is lowerwhere fault dropping rate per pattern is lower

D Disadvantages

• Not suitable for sequential circuits

363
EE141



Deductive Fault Simulation

B d l i i th thD  Based on logic reasoning rather than  
simulation

D  Fault list attached with signal x denoted as Lx
• Set of faults causing x to differ from its fault-free  

lvalue

D  Fault list propagation
• Derive the fault list of a gate output from those of  

the gate inputs based on logic reasoning
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Fault List Propagation Rules

Z stuck‐at c XOR i
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Algorithm Flow

start

F  collapsed fault list

no next  
pattern?end pattern?

yes

apply next pattern

1. fault-free simulation
2. propagate fault list

no
delete detected faults  

from F F empty? end
yes

no
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Example

PD P1

JHKL  L  L  K / 0 by first Eq.

A
G2

LA = {A/1}

0

{A/1, H/1}  
H

K

2

G4

0

L {B/0}

0 1

1 L
{B/0, E/0, L/0}

{A/1, H/1, B/0,  
E/0 F/0 J/1 K/0}

B  
C F

G3G1

B

1
L = {B/0}

0

1 1 0

{ , , }

E J

E/0, F/0, J/1, K/0}

0
LC = {C/1}

{B/0, E/0} {B/0, E/0, F/0} {B/0, E/0, F/0, J/1}
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Example (cont’d)

PD P2

A H

K

G2

G4

0

0 1

B

4

LB = {B/1}  
0

1 1 0

1 L
{C/0}

{C/0}

B  
C G3G1

1
LC = {C/0}

1 1 0

E
{C/0}

F
{C/0}

J
{C/0}
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Example (cont’d)

PD P3
LK   (LJ  LH )K /1 by second Eq.

A
G2

LA = {A/0}

1

{B/1, C/1, E/1, L/1}  
H

K

2

G4

1

L = {B/1}

0 0

0 L
{B/1, E/1, L/1}

{F/1, J/0, K/1}

B  
C F

G3G1

0

LB = {B/1}  
0

0 0 1

{ , , }

E J
0

LC = {C/1}
{B/1, C/1, E/1} {B/1, C/1, E/1, F/1} {B/1, C/1, E/1, F/0, J/0}
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Pro and Con

D Advantages
• Very efficient

• Simulate all faults in one pass

D DisadvantagesD Disadvantages
• Not easy to handle unknowns

O f• Only for zero-delay timing model

• Potential memory management problem
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Concurrent Fault Simulation

D  Simulate only differential parts of whole circuit
D  Event-driven simulation with fault-free and  

faulty circuits simulated altogether

D Concurrent fault list for each gateD  Concurrent fault list for each gate
• Consist of a set of bad gates

– Fault index & associated gate I/O valuesFault index & associated gate I/O values

• Initially only contains local faults

• Fault propagate from previous stageFault propagate from previous stage
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Good Event and Bad Event
D Good eventD  Good event

• Events that happen in good circuit
• Affect both good gates and bad gatesAffect both good gates and bad gates

D  Bad event
• Events that occur in the faulty circuit of  

corresponding fault
• Affect only bad gates

D DivergeD Diverge
• Addition of new bad gates

D ConvergeD Converge
• Removal of bad gates whose I/O signals are the  

same as corresponding good gates
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Algorithm Flow start

F  collapsed fault list

nonext  
pattern? endpattern?

yes

apply next pattern

1. analyze events at gate inputs
2. execute events
3 compute events at gate outputs3. compute events at gate outputs

yes

yes more  
events?

3

delete detected faults  
from F

F
empty?end

yes
no

no

73
EE141



Example

PD P1
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Example (cont’d)

PD P2
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Example (cont’d)

PD P3
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Pro and Con

D Advantages
• Efficient

D Disadvantages
• Potential memory problem• Potential memory problem

– Size of the concurrent fault list changes at run time
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Differential Fault Simulation

[Ch 1989]D  [Cheng 1989]
D  Combines the merits of two techniques

C t f lt i l ti• Concurrent fault simulation
• PPSFP

D IdeaD Idea
• Simulate in turn every fault circuit
• Track only difference between faulty circuit and• Track only difference between faulty circuit and  

last simulated one
• Inject differences as events
• Easily implemented by event-driven simulator
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Simulation Sequence

P1 P2 … Pi Pi+1 … Pn

Good G1 G2 … Gi Gi+1 … Gn1 2 i i+1 n

f1 F1,1 F1,2 … F1,i F1,i+1 … F1,n

f2 F2,1 F2,2 … F2,i F2,i+1 … F2,n, , , , ,

. . . … . . … .

fk Fk,1 Fk,2 … Fk,i Fk,i+1 … Fk,n

fk+1 Fk+1,1 Fk+1,2 … Fk+1,i Fk+1,i+1 … Fk+1,n

. . . … . . … .

fm Fm,1 Fm,2 … Fm,i Fm,i+1 … Fm,n
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start

Algorithm Flow F  collapsed fault list

no next  
pattern?

yes

end

restore good circuit state

1. apply next pattern
2. Ogood  good circuit outputs

next  
fault? F empty?

yes

no

g

no

end

1 t f lt i it t t

get next fault fdelete f from F

yes yes

1. restore faulty circuit state
2. remove last fault
3. inject fault f
4. Of  fault circuit outputs
5 t t diff

Of == Ogood?
yes

no
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Pro and Con

D Advantages

• Suitable for sequential fault simulationq

D Disadvantages
O d f t d b f lt it i NOT th• Order of events caused by faulty sites is NOT the  

same as the order of the timing of their occurrence
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Logic and Fault Simulation (contd.)

Lecture 16



Fault Detection

D  Hard detected fault
• Outputs of fault-free and faulty circuit are different

– 1/0 or 0/1

– No unknowns, no Z

D  Potentially detected fault
• Whether the fault is detected is unclearWhether the fault is detected is unclear
• Example: stuck-at-0 on enable signal of tri-state  

bufferbuffer
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Fault Detection (cont’d)

D  Oscillation faults
• Cause circuit to oscillate
• Impossible to predict faulty circuit outputs

D  Hyperactive faultsyp
• Catastrophic fault effect

– Fault simulation is time and memory consuming

• Example: stuck-at fault on clock

• Usually counted as detected

3

y
– Save fault simulation time
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Comparison of Fault Simulation Techniques (1)
D SpeedD Speed

• Serial fault simulation: slowest
• Parallel fault simulation: O(n3), n: num of gates

D d ti f lt i l ti O( 2)• Deductive fault simulation: O(n2)
• Concurrent fault is faster than deductive fault simulation
• Differential fault simulation: even faster than concurrent fault  

i l ti d PPSFPsimulation and PPSFP
D Memory usage

• Serial fault simulation, parallel fault simulation: no problem
• Deductive fault simulation: dynamic allocate memory and  

hard to predict size
• Concurrent fault simulation: more severe than deductive fault  

i l tisimulation
• Differential fault simulation: less memory problem than  

concurrent fault simulation
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Comparison of Fault Simulation Techniques (2)

D M lti l d f lt i l ti t h dlD  Multi-valued fault simulation to handle  
unknown (X) and/or high-impedance (Z)
• Serial fault simulation concurrent fault simulation• Serial fault simulation, concurrent fault simulation,  

differential fault simulation: easy to handle
• Parallel fault simulation: difficult

D  Delay and functional modeling capability
• Serial fault simulation: no problem
• Parallel fault simulation, deductive fault simulation:  

not capable
C t f lt i l ti bl• Concurrent fault simulation: capable

• Differential fault simulation: capable
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Comparison of Fault Simulation Techniques (3)

D  Sequential circuit
• Serial fault simulation, parallel fault simulation,  

concurrent fault simulation, differential fault  
simulation: no problem

• PPSFP: difficult
• Deductive fault simulation: difficult due to many  y

unknowns
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Comparison of Fault Simulation Techniques (4)

PPSFP d t f lt i l tiD  PPSFP and concurrent fault simulation are  
popular for combinational (full-scan) circuits
Diff ti l f lt i l ti d tD  Differential fault simulation and concurrent  
fault simulation is popular for sequential  
i itcircuits

D  Multiple-pass fault simulation
• Prevent memory explosion problem

D  Distributed fault simulation
• Reduce fault simulation time
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Summary

F lt i l ti i i t t fD  Fault simulation is very important for
• ATPG
• Diagnosis
• Fault grading

D  Popular techniques
• Serial, Parallel, Deductive, Concurrent, Differential

D  Requirements for fault simulation
• Fast speed, efficient memory usage, modeling  

functional blocks, sequential circuits

95
EE141



Logic and Fault Simulation

I t d tiD Introduction
D  Simulation models

L i i l iD  Logic simulation
D  Fault simulation
D  Concluding remarks
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Conclusions

L i d f lt i l ti t f d t lD  Logic and fault simulations, two fundamental  
subjects in testing, are presented

D  Into the nanometer age, advanced  
techniques are required to address new  
issues
• High performanceHigh performance

• High capacity
• New fault modelsNew fault models
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