Week 3: Course Material

Logic and Imulation

é@tu e 11

Logic and Fault Simulation

D Introduction

D Simulation models

D Logic simulation V
D Fault simulation &
p Concluding remQ

Logic Simulation

D Predict the behavior of a design prior to its physical
realization

: e : Specification
D Design verification
T }
Manual design or Testbench
via Synthesis Development
CII‘(?UIF Input Stimuli Expected
Description Responses
I o< |
yes Simulated B
Responses

A

Bug? I
no Responge
Next Design Analysis
Stage

Fault Simulation

D Predicts the behavior of faulty circuits

* As a conseguence of inevitable fabrication
process imperfections

D An important tool for test and diagnosis
e Estimate fault coverage
e Fault simulator
e Test compaction

« Fault diagnosis

Logic and Fault Simulation

D Introduction
= ' \/

D Logic simulation
D Fault simulation &
p Concluding remQ

Gate-Level Network

D The interconnections of logic gates

v

L !
B J
C Gl E d GS

Sequential Circuits

D The outputs dependon , __,

both the current and | Combinational
past input values X, —» Logic
» Y1 Y
> Y2 Y>
X;: primary input (PI) I I I I
z;: primary output (PO) Y Y|
yi: pseudo primary input (PPI)
Y;: pseudo primary output (PPO) 2 |
o
[T
=N
E &
A <

clock

A Positive Edge-Triggered D-FF

PresetB

Clock

ClearB

VresetB

Q

QB

-4

D —

Clock —

>

DFF

O— QB

ClearB J

Logic Symbols

D The most commonly used are O, 1, uand Z

D 1andO
 true and false of the two-value Boolean algebra

D U
« Unknown logic state (maybe 1 or 0)

D Z

* High-impedance state
* Not connected to V44 or ground

Ternary Logic

D Three logic symbols: 0, 1, and u

v

AND

NOT

[HEY
O O O o
C - O
cC K O
C - C

| O

Ol

Information Loss of TernaryLogic

D Simulation based on ternary logic Is pessimistic

D A signal may be reported as unknown when its value
can be uniquely determined as Owor 1

A 1 G\ - u
W G, K
B J
- éenu G >0—
0
1
A G\Oorl 0
) B ‘

High-Impedance State Z

D Tri-state gates permit several gates to time-share a
common wire, called bus

D Asignal is in high-impedanc If it Is connected
to neither V44 nor ground Q

Resolving Bus Conflict

D Bus conflict occurs if at least two drivers drive
the bus to opposite binary values

D To simulate tri-state bus behavior, one may
Insert a resolution functionfor each bus wire

« May report only the occurrence of bus conflict

« May utilize multi-valued logic to represent
Intermediate logic states (including logic signal
values and strengths)

Logic Element Evaluation Methods

D Choice of evaluation technique depends on
e Considered logic symbols

» Types and models of logic elements

D Commonly used approaches
e Truth table based
 Input scanning
 Input counting

» Parallel gate evaluation

Truth Table Based Gate Evaluation

D The most straightforward and easy to
Implement
* For binary logic, 2" entries for n-input logic
element
 May use the input value as table index
» Table size increases exponentially with the
number of inputs

D Could be inefficient for multi-valued logic

* A k-symbol logic system requires a table of 2mn
entries for an n-input logic element
—m =[log,k]|
— Table indexed by mn-bit words

Input Scanning

D The gate output can be determined by the
types of inputs

« If any of the inputs is the contrelling value, the
gate output is c®i

« Otherwise, If any of:the inputs is u, the gate output
IS U
« Otherwise, the gate output is c'®i

Table 3.2: The c (controlling) and
I (inversion) values of basic gates

C I
AND 0 0
OR 1 0
NAND 0 1
NOR 1 1

Input Scanning -cont’d

o

A\ 4
u_in «false %
——

return c’®i >

[yes
no no yes _
vV ==u? < vV ==C7? =< return c@®i >

Input Counting

D Keep the counts of controlling and unknown
Inputs
e c_count: the number of controlling inputs
e U_count: the number of unknown inputs

D Update counts during logic simulation

o Example:
One input of a NAND switches from O to u

— c_count --
— u_count ++

D Same rules as input scanning used to
evaluate gate outputs

Parallel Gate Evaluation

D EXxploit the inherent concurrency in the host computer
* A 32-bit computer can perform 32 logic operations in parallel

Logic and Fault Simulation (contd.)

Lecture 12

Multi-Valued Parallel Gate Evaluation

D Use ternary logic as example

e Assume

— w-bit wide word

— Symbol encoding: vy, = (00), v; = (11), v,= (01)
Associate with each signal X two words, X; and X,

— X, stores the first bits and X, the second bits of thew
copies of the same signal

AND and OR operations are realized by applying
the same bitwise operations to both words

— C=0R(A,B) ==>C,; = OR(A;,B,) and C, = OR(A,,B,)
Complement requires inversion

— C =NOT(A) ==> C,; = NOT(A,) and C,= NOT(A,)

Timing Models

D Transport delay
D Inertial delay

D Wire delay V
D Function element d

§2

Transport Delay

D The time duration it takes for the effect of gate input
changes to appear at gate outputs

A
B=1 G F
(a) Nominal delay A 1==p 2 '
dy=2ns = «— 2 >
|
(b) Rise/fall delay A 71—k 15 R
d=2ns ;
di=1.5ns F «— 2 >
> 2 —»
(c) Min-max delay A “ 1.5 > 1—
dnin=1ns .
dmax =2 NS
«—] —
< 2 —>

Inertial Delay

D The minimum input pulse duration necessary for the
output to switch states

A
B=1 G>7 F d =15ns,dy,=3ns
(a) Pulse duration less than d,
A «— 1 —> | |

F

(b) Pulse duration longer than d,

A

F

A

Wire Delay

D Wires are inherently resistive and capacitive

D It takes finite time for a signal twgate along a
wire

Functional Element Delay Model

D For more complicated functional elements like flip-
flops

Table 3.3: The D flip-flop 1/0O delay model

Present

Input condition state

Outputs | . Delays (ns)

D Clock PresetB ClearB q Q QB|to Q toQB |[Comments

X X 7 0 o [T V| 16 1.8 |Asynchronous preset
X X 0 \ 1944 T 18 1.6 |Asynchronous clear
1 7 0 0 o. |T V| 2 3 |Q:01

o T 0 0 1 [+ T 3 2 [Q:1-0

X S indicates donOtcare

Logic and Fault Simulation

D Introduction
D Simulation models

D Lodic simulation V
D Fault simulation /&

D Concluding remQ

Compiled Code Simulation

D Translate the logic (start >

network into a series of

[
»

machine instructions that

no
$ end >
model the gate functions

yes

and interconnections read in next input

vector v

A 4

run compiled code
with input v in host
machine

A 4

output simulation
results

Compiled Code Generation Flow

gate-level
description

@ avelization
v
\4

code generation

compiled
code

Logic Optimization

D Enhance the simulation efficiency

(@)

(b)

()

(d)

(€)

before optimization

D &

A

=

A o >0
4>

fter optimization

N
7

o

Logic Levelization

D Determine the order of gate evaluations

&=

\ 4

assign level 0 to
all PI's

\ 4

put all Pl fanout
gates in Q

no

pop next gate g

append g to Q

from Q

ready to
evelize g?

append g’s fanout
gates to Q

A

1. | = maximum of
g’s driving gate
levels

2. assignl+1ltog

A N
w3 G,
@ K
B O Table 3.4: The levelization process of circuit
C step BB C G G G3 Gs|[Q

t A

0 0O 0 0 <Gy, G1>
1 0O 0 0 <Gy, G>
2 0 0 0 1 <Gy, G3>
3 0 0 0 1 2 <G3, G4>
4 0 0 0 1 2 2 <G4>

5 0 0 0 1 2 2 3 <>

D The following orders are produced
° Glz> GZ:> GBZ> G4
° Glz> G3:> GZ:> G4

Code Generation

D High-level programming language source
code
e Easier to debug
« Can be ported to any target machine that has the
compiler
e Limited in applications due to long compilation
times
D Native machipne‘code
« Generate the target machine code directly
« Higher simulation efficiency
* Not as portable

Code Generation -cont’'d

D Interpreted code

* The target machine is a software emulator

 The codes are interpreted and executed one at a
time

» Best portability and‘maintainability

* Reduced performance

Logic and Fault Simulation (contd.)

Lecture 13

Event-Driven Simulation

D Event: the switching of a signal’s value

D An event-driven simulator monitors the occurrences
of events to determine whic Mevaluate

0->1
H:0->1

K;Ho

J:0

Zero-Delay Event-Driven Simulation

D Gates with events at their inputs are places in the

event queue Q
< start >

A\ 4

read in initial
condition
no Q yes
evaluate next gate $ no >
end
g from Q
yes
output no " read in new input
ange?) vector
yes
put g’'s fanout put active Pis’

gates in Q At fanout gates in Q

Nominal-Delay Event-Driven Simulation

D Need a smarter scheduler than the event queue
* Not only which gates but also when to evaluate

S ,\<<,\/

I - q. vy r, v . S, Vg*

Two-Pass Event-Driven Simulation

=

get next time
stamp t

A\ 4
retrieve current
event list Lg

L. = Event List

Example A Nk

G,
> O— K
B E J
C O Nominal delays
of G, G,, G, G,

Table 3.5: Two-pass event-driven simulation are 8, 8,4,6ns
Time | L La Scheduled events

2 1(C.0)} 161} {(E,1,10)}

8 {(A0),(H,1)} {G2,G4} | {(H,0,16),(K,0,14)}

10 [{(ED}
12 |{(E0)} {G»,G3} | {(H,0,20),(3,1,16)}
14 {(K,0)}
20 {(H,0)}
22 {(K,0)}

-

e -

]
e

*

+

¢
¥
P

S ——

L]
[]
?
-—-g——
I
I
i
i
]
L]
i

L]
[]
I
i
!
i
L]
Y
b

Example - cont'd

=< m

—_———g—————

--——————— - — ==

24

18

B . I|||||._4

— =1 - ——— -y

IIIIIIIIIIIIIIIIIIII b —

Compiled-Code vs. Event-Driven Simulation

D Compiled-code
* Cycle-based simulation
« High switching activity circuits
o Parallel simulation
* Limited by compilation times
D Event-driven
* Implementing gate delays and detecting hazards
« Low switching activity circuits
 More complicated memory management

Hazards

D Unwanted transient
pulses or glitches

INV delay = 3ns
Others = 2ns

Types of Hazards

D Static or dynamic

« A static hazard refers to the transient pulse on a signal line
whose static value does not change

« A dynamic hazard refers to the transient pulse during a 0-to-
1 or 1-to-0 transition

D 1or0O

Static 1-hazard Static 0-hazard Dynamic 1-hazard Dynamic 0-hazard

Static Hazard Detection

D Let V'=vivy-v, and Vi=vjvi--vi pe two
consecutive input vectors

D Add a new vector V*=v¥;...vhaccording to
the following rule

vl if vizvi2

V'+:{u if Vi V2

D Simulate the:ViV+V2 sequence using ternary
logic

D Any signal that is 1ul or OuO indicates the
possibility of a static hazard.

Multi-Valued Logic for Hazard Detection

D 6-valued logic for static hazard detection
D 8-valued logic for dynamic hazard detection
D Worst case analysis

Table 3.6: Multi-valued logic for hazard detection

Symbol | Interpretation 6-valued logic | 8-valued logic

0 Static 0 {000} {0000}

1 Static 1 {111} {1111}

R Rise transition {001,011}=0ul | {0001,0011,0111}

F Fall transition {100,110}=1u0 | {1110,1100,1000}

0* Static 0-hazard {000,010}=0u0 | {0000,0100,0010,0110}
1* Static 1-hazard {111,101}=1ul | {1111,1011,1101,1001}
R* Dynamic 1-hazard {0001,0011,0101,0111}
F* Dynamic 0-hazard {1000,1010,1100,1110}

Logic and Fault Simulation

D Introduction
D Simulation models

D Logic simulation @\/
5 it simulati

p Concluding remQ

Logic and Fault Simulation (contd.)

Lecture 14

Fault Simulation

Introduction
Serial Fault Simulation
Parallel Fault Simulation

D
D

D

D Deductive Fault Simulatien
D Concurrent Fault Simulation
D
D
D
D

Differential Fault. Simulation
Fault Detection
Comparison of Fault Simulation Techniques
Alternative to Fault Simulation
D Conclusion

Introduction

D What is fault simulation?

e Given
— Acircuit V
— A set of test patterns
— A fault model &

e Determine
— Faulty outpu Q

a

— Undetect
— Fault coverage

Time Complexity

D Proportional to
* n: Circuit size, number of logic gates
e p: Number of test patterns
e f: Number of modeled faults
D Since fis roughly proportional to n, the overall
time complexity.is, O(pn2)

Serial Fault Simulation

D First, perform fault-free logic simulation on the

original circuit \/

* Good (fault-free) resp

D For each fault, perform,fault injection and

logic simulatio
e Faulty circ nse

-

Algorithm Flow ‘,

F < collapsed fault list

A 4

fault-free simulation for
all patterns

<&
«

G

yes

1. get next fault f from F
2. reset pattern counter

next no
ttern?
yes

1. get next pattern p
2. fault simulation for p

no mis- yes
atch?

4
>@

delete f from F

Exampl
e

A >< H
f: A stuck-at 1 G2
B g: J stuck-at 0
C S E T E Gs]

Pat. # Input Internal Output
A | B | C E F L J | H | Kot | Ki | Kq
P1 0 1 0 1 1 1 0 0 1 0 1
P2 0 0 1 1 1 1 0 0 1 0 1
P3 1 0 0 0 0 0 1 0 0 0 1

Fault Dropping

D Halting simulation of the detected fault

D Example
 Suppose we are to simulate P, P,, P;in order
e Faultfis detected by P,
e Do not simulate f for P,, P4

D For fault grading

* Most faults.are detected after relatively few test
patterns have been applied

D For fault diagnosis
* Avoided to obtain the entire fault simulation results

Pro and Con

D Advantages
 Easy to implement \(
 Ability to handle a wid @ ault models
(stuck-at, delay, Br,&
D Disadvantage Q

e Very slow

Parallel Fault Simulation

D Exploit the inherent parallelism of bitwise

operations \/
D Parallel fault simulati

e Parallel in faults
D Parallel pattern

Q simulation

e Parallel In

Parallel Fault Simulation

D Assumption

e Use binary logic: one bit is enough to store logic
signal

 Use w-bit wide data word
D Parallel simulation

o w-1 bit for faulty circuits
e 1 bit for fault-free circuit

D Process faulty and fault-free circuit in parallel
using bitwise logic operations

Fault Injection

A ><

f: A stuck-at 1

Exa

Input Internal Output

Pat#
A | A L J H K
FF 0 m 1 0 ﬁ)\ 1
P, f | o0 1 1 0 (1 0
AKY o o o]
FF 0 0 1 0 0 1
P, f | 0 1 1 0 1 0
g 0 0 1 0 0 1
FF 1 1 0 1 0 0
P, f 1 1 0 1 0 0
g 1 1 0 1 0 1

Pro and Con

D Advantages

« Alarge number of faults aredetected by each
pattern when simulating the beginning of test
seguence

D Disadvantages

* Only applicable to the unit or zero delay models

» Faults cannot be dropped unless all (w-1) faults
are detected

Parallel Pattern Fault Simulation

D Parallel pattern single fault propagation
(PPSFP)

D Parallel pattern

o With a w-bit data width, w test patterns are packed
Into a word and simulated for the fault-free or
faulty circuit

D Single fault

e First, fault-free simulation

* Next, for each fault, fault injection and faulty circuit
simulation

-

Algorithm Flow ‘,

F < collapsed fault list

<&
<

R

yes

1. apply next w patterns
2. Ogood <— go0d Circuit outputs

4
4

get next fault f from F (end >

delete f from F J
% 1. remove last fault
2. inject fault f

no

\ 4

yes O. == - O; « faulty circuit outputs
L good of w patterns

Logic and Fault Simulation (contd.)

Lecture 15

Example

g: J stuck-at 0

N

f: A stuck-at 1

Output

Internal

a8

Input

Fault

Free

Pro and Con

D Advantages

» Fault is dropped as soon as detected
« Best for simulating test patterns that come later,
where fault dropping rate per pattern is lower
D Disadvantages

* Not suitable for sequential circuits

Deductive Fault Simulation

D Based on logic reasoning rather than
simulation

D Fault list attached withsignal X denoted as L,

« Set of faults causingx to differ from its fault-free
value

D Fault list propagation

* Derive the fault list of a gate output from those of
the gate inputs based on logic reasoning

Fault List Propagation Rules

¢ : controlling value
i :inversion value
I : set of gate inputs
7 : gate output

1

§ :inputs holding controlling value !
a All gate inputs hold n ﬁalling value
L = (UL /(c ®i))

< jel
s controlling value

AND 0 0
OR 1 0
ND

Z stuck-at ¢ XOR i
]

a At least one in

L =[(hSLj)—(.EJ_SLJ)]U{Z’FC @Di')

Algorithm Flow

-

\ 4

F < collapsed fault list

< end

apply next pattern

1. fault-free simulation
2. propagate fault list

no
v

delete detected faults E empty? yes end
from F P

Example

D P,
L, —LVULJ w {K/0} by first Eq.
L= {A/1} {H , H/1}
0
e
® K
A/1, H/1, BIO,
L, = {B/O} {B/0, E/O, L/C} E/0, F/0, J/1, K/O
1
B 1 I: 0
C @ E ¢ = Gs 3
0 {B/0,E/0} {B/O, E/O, F/O} {B/0, E/O, F/O, J/1}

LC = {C/l}

Example (cont’d)

D P,

Example (cont'd)

D Pj
L, = (LJVH)U {K/1} by second Eq.
L, = {A/O} { / , CI1, E/1, L/1}
. 0
< Jeoo A
s = {B/1}
0

G 0 0 A 1
1 E = 3 3

0 {B/1, C/1, E/} {B/1, C/1, E/1, F/1} {B/1, C/1, E/1, F/O, J/O}
LC = {C/l}

Pro and Con

D Advantages

* Very efficient

o Simulate all faults in one pass
D Disadvantages

* Not easy to handle unknowns
* Only for zero-delay timing model

e Potential memory management problem

Concurrent Fault Simulation

D Simulate only differential parts of whole circuit

D Event-driven simulation with fault-free and
faulty circuits simulated altogether

D Concurrent fault list for,each gate

e Consist of a set of bad gates

— Fault index & associated gate 1/0O values

e Initially only contains local faults

» Fault propagate from previous stage

Good Event and Bad Event

D Good event

* Events that happen in good circuit

» Affect both good gates and bad gates
D Bad event

e Events that occur in'the faulty circuit of
corresponding fault

» Affect only bad gates
D Diverge
« Addition of new bad gates

D Converge

« Removal of bad gates whose 1/O signals are the
same as corresponding good gates

Algorithm Flow

(end

no

-

\ 4

F < collapsed fault list

yes

mpty?

apply next pattern

1. analyze events at gate inputs
2. execute events
3. compute events at gate outputs

yes more

vents?
no

delete detected faults
from F

Example

D P,

N
-

-

7

Al

\

[}
!
1

\————
1

u—0

'
(o
2 \\Olf
= >\\ o) l—
\mf(> _- ...G —
\.\ ‘.d 4 ﬁ
R Y > ; S_
1 Mm \ fo ...
: i
] H -
Le=—=<l1 — ‘—,
> o
=
= @)
3
7
\\0 f¢ .I._of
’ s |
1 o 1 - |
1 = :
O
i
1S

cont’d)

Example (

Pro and Con

D Advantages

. Efficient \/
D Disadvantages &@@

* Potential memory prob
— Size of the c Qt fault list changes at run time

Differential Fault Simulation

D [Cheng 1989]

D Combines the merits of twe techniques
e Concurrent fault simulation
e PPSFP

D |dea

o Simulate Iin turn every fault circuit

« Track only difference between faulty circuit and
last simulated one

 Inject differences as events
e Easily implemented by event-driven simulator

Simulation Sequence

Py P, P; Pis1 Pn
Good G; G, G; Giiq G,
1:1 |:11 Ifl,Z : /gll Ffl,i+1 /gl,n
f2 |:21 /:2,2 /F2| yl:z,i+1 |:2,n
/ /1]
fi Fes [| [Fe |/ | Fu| |/ Fum Fer
1:k+1 |:k+1,1 / |:k+1,2 / |:k+1,i / |:k+1,i+1 |:k+1,n
/
v I / ' /
/ / I
1:m |:m 1 |:m,2 |:m,i |:m,i+1 |:m,n

-

Algorithm Flow *

F < collapsed fault list
C end

restore good circuit state
v

. apply next pattern

2. Ogo0q <— g00d circuit outputs

=

4
4

delete f from F get next fault f (end >
no 1. restore faulty circuit state
yes 2. remove last fault
Ot == Oggod? «— 3. inject fault f
4. O« fault circuit outputs
5. store gate difference

Pro and Con

D Advantages

o Suitable for sequential fault simulation

D Disadvantages

« Order of events caused by faulty sites is NOT the

same as the order of the timing of their occurrence

Logic and Fault Simulation (contd.)

Lecture 16

Fault Detection

D Hard detected fault

« Qutputs of fault-free and faulty circuit are different
—1/0 or 0/1

— No unknowns, no Z

D Potentially detected fault

 \Whether the fault is detected is unclear

 Example: stuck-at-O on enable signal of tri-state
buffer

Fault Detection (cont’d)

D Oscillation faults

« Cause circuit to oscillate
* Impossible to predict faulty circuit outputs

D Hyperactive faults

o Catastrophic fault effect

— Fault simulation is time and memory consuming

 Example: stuck-at fault on clock

o Usually counted as detected

— Save fault simulation time

Comparison of Fault Simulation Techniques(1)

D Speed
o Serial fault simulation: slowest
« Parallel fault simulation: O(n3), n: num of gates
» Deductive fault simulation: O(n?)
e Concurrent fault is faster than deductive fault simulation

o Differential fault simulation: even faster than concurrent fault
simulation and PPSFP

D Memory usage
« Serial fault simulation, parallel fault simulation: no problem

» Deductive fault simulation: dynamic allocate memory and
hard to predict size

e Concurrent fault simulation: more severe than deductive fault
simulation

« Differential fault simulation: less memory problem than
concurrent fault simulation

Comparison of Fault Simulation Techniques(2)

D Multi-valued fault simulation to handle
unknown (X) and/or high-impedance (2)

e Serial fault simulation, concurrent fault simulation,
differential fault simulation: easy to handle

» Parallel fault simulation: difficult

D Delay and functional modeling capabillity
 Serial fault simulation: no problem

e Parallel fault simulation, deductive fault simulation:
not capable

« Concurrent fault simulation: capable
 Differential fault simulation: capable

Comparison of Fault Simulation Techniques(3)

D Sequential circuit

« Serial fault simulation, parallel fault simulation,
concurrent fault simulation, differential fault
simulation: no problem

e PPSFP: difficult

e Deductive fault simulation: difficult due to many
unknowns

Comparison of Fault Simulation Techniques(4)

D PPSFP and concurrent fault simulation are
popular for combinational (full-scan) circuits

D Differential fault simulation-and concurrent
fault simulation is popularfer sequential
circuits

D Multiple-pass fault.simulation
* Prevent memory explosion problem

D Distributed fault simulation
 Reduce fault simulation time

Summary

D Fault simulation Is very important for
e ATPG
* Diagnosis
 Fault grading
D Popular techniques
« Serial, Parallel, Deductive, Concurrent, Differential

D Requirements for fault simulation

« Fast speed, efficient memory usage, modeling
functional blocks, sequential circuits

Logic and Fault Simulation

D Introduction
D Simulation models

D Logic simulation V
D Fault simulation &
D QQDMDQ.&Q;

Conclusions

D Logic and fault simulations, two fundamental
subjects In testing, are presented

D Into the nanometer age, advanced
techniques are required toraddress new
ISsues

e High performance
* High capacity
* New fault models

