
Week 4: Course MaterialWeek 4: Course Material

Test GenerationTest Generation
Lecture 17

1
EE141

TestTest
Generation

D IntroductionD Introduction
D Random Test Generation
D Theoretical Foundations
D Deterministic Combinational ATPG
D Untestable Fault Identification
D Simulation-based ATPG
D ATPG for Delay and Bridge Faults
D Other Topics in Test Generation
D Concluding Remarks

3
EE141

IntroductiIntroducti
on

D Test generation is the bread-and-butter in VLSI
Testing
• Efficient and powerful ATPG can alleviate high costs of DFTp g
• Goal: generation of a small set of effective vectors at a low

computational cost

D ATPG is a very challenging tasky g g
• Exponential complexity
• Circuit sizes continue to increase (Moore’s Law)

– Aggravate the complexity problem furthergg p y p
• Higher clock frequencies

– Need to test for both structural and delay defects

4
EE141

Conceptual View of ATPG
D Generate an input vector that can distinguishD Generate an input vector that can distinguish

the defect-free circuit from the hypothetically
defective one

5
EE141

FaultFault
Models

D Instead of targeting specific defects,
fault models are used to capture the
logical effect of the underlying defectlogical effect of the underlying defect

D Fault models considered in thischapter:
• Stuck-at fault• Stuck-at fault
• Bridging fault
• Transition fault
• Path-delay fault

6
EE141

Simple illustration ofSimple illustration of
ATPG

D Consider the fault d/1 in the defective circuitD Consider the fault d/1 in the defective circuit
D Need to distinguish the output of the defective

circuit from the defect-free circuit
D Need: set d=0 in the defect-free circuitD Need: set d 0 in the defect free circuit
D Need: propagate effect of fault to output
D Vector: abc=001 (output = 0/1)

7
EE141

A Typical ATPGSystem

D Given a circuit and a fault model
• Repeat
• Generate a test for each undetected fault
• Drop all other faults detected by the test using

a fault simulator
• Until all faults have been considered

D Note 1: a fault may be untestable, in which no
test would be generated

D Note 2: an ATPG may abort on a fault if the y
resources needed exceed a preset limit

8
EE141

Random TestRandom Test
Generation

D Simplest form of test generation
• N tests are randomly generated

L l f fid d t t t TD Level of confidence on random test set T
• The probability that T can detect all stuck-at

faults in the given circuitg
• Quality of a random test set highly depends on

the underlying circuit
• Some circuits have many random resistant faults• Some circuits have many random-resistant faults

9
EE141

Weighted Random TestWeighted Random Test
Generation

D Bias input probabilities to target random
resistant faults

D Consider an 8-input AND gate
• Without biasing input probabilities, the prob of generating a

logic 1 at the gate output = (0.5)8 = 0.004
• If we bias the inputs to 0.75, then the prob of generating a

logic 1 at the gate output = (0 75)8 = 0 100logic 1 at the gate output = (0.75) = 0.100
D Obtaining an optimal set of input probabilities

a difficult task
D Goal: increase the signal probabilities of hard-to-D Goal: increase the signal probabilities of hard-to-

test regions

10
EE141

Probability of FaultProbability of Fault
Detection

D Given a circuit with n inputs
D Let Tf be the set of vectors that can f

detect fault f
D Then is the prob that f can be

detected by a random vector
D Let be the prob that a random

vector cannot detect f

11
EE141

Prob of Fault DetectionProb of Fault Detection
(Cont.)

D Then, is the prob that N
random vectors do not detect f

D Thus, the prob that at least one out ofN
random vectors can detect f is

12
EE141

Minimum DetectionMinimum Detection
Probability

D The min detection prob of any detectable fault actually does not p y y
depend on n, the num of PIs

D Instead, it depends on the largest primary-output cone that it is
in

D This is because any detectable fault must be excited and y
sensitized to a primary output

13
EE141

LemmaLemma
1

D In a combinational circuit with multiple
outputs, let nmax be the number of
primary inputs that can lead to a primary
output. Then, the detection probability
for the most difficult detectable faultfor the most difficult detectable fault,
dmin, is:

14
EE141

Exhaustive TestExhaustive Test
Generation

D Exhaustive Testing
• Apply 2n patterns to an n-input combinational circuit under

test (CUT)
• Guarantees all detectable faults in the combinational circuitsGuarantees all detectable faults in the combinational circuits

are detected
• Test time maybe be prohibitively long if the number of inputs

is large
• Feasible only for small circuitsFeasible only for small circuits

D Pseudo-exhaustive Testing
• Partition circuit into respective cones
• Apply exhaustive testing only to each cone
• Still guarantees to detect every detectable fault based on

Lemma 1

15
EE141

Week 4: Course Material

Test Generation (Contd)Test Generation (Contd.)
Lecture 18

Theoretical Foundations: Boolean
Difference

D The function for the circuit is
D Let the target fault be y/0, then the function for the faulty circuit

is f’ = f(y=0)
D Goal of test generation: find a vector that makes f XOR f’ = 1D Goal of test generation: find a vector that makes f XOR f = 1

16
EE141

Boolean DifferenceBoolean Difference
Continued

D f XOR f’ = 1 iff f and f’ result in opposing
logic values

D Thus, any vector that can set f XOR f’=
1 is able to produce opposing values at
the outputs of the fault-free and faulty
circuits respectively

D Definition:

17
EE141

Boolean DifferenceBoolean Difference
Example

D To excite the fault y/0,y=1
D Thus,

xyz= 110 or 011 can
detect the fault

18
EE141

AnotherAnother
Example

D Let target fault bew/0

xyz=001, 101
can detect w/0

But:

19
EE141

A ThirdA Third
Example

D Fault:z/0

This fault is untestable!

20
EE141

Wrap Up on BooleanWrap Up on Boolean
Difference

D Given a circuit with output f andfault
D The set of vectors that can detect this

fault includes all vectors that satisfy

21
EE141

DeterministicDeterministic
ATPG

D In general, we don’t need an entire set of vectors
that can detect the target fault

D Instead, we just want to compute one vector quickly
D Rather than using Boolean Difference that can

obtain all vectors
• Simply use a branch-and-bound search to find one vector

i klquickly
D Deterministic ATPG has two main goals

• Excite the target fault
P t th di f lt ff t t t t• Propagate the corresponding fault effect to an output

22
EE141

5 valued Algebra for5‐valued Algebra for
Comb. Circuits

D Instead of using two circuits (fault-free and
the faulty)
• We will solve the ATPG problem on one singleWe will solve the ATPG problem on one single

circuit
D To do so, every signal value must be able to

capture fault free and faulty valuescapture fault-free and faulty values
simultaneously

D 5-Value Algebra: 0, 1, X, D, D-bar
• D: 1/0
• D-bar: 0/1

23
EE141

Boolean Operators on 5‐Valued
Algebra

24
EE141

Decision Tree for Branch-and-Bound
Search
D The ATPG systematically and implicitly searches theD The ATPG systematically and implicitly searches the

entire search space

25
EE141

BacktrackinBacktrackin
g

D The ATPG searches one branch at a time
D Whenever a conflict (e.g., all D’s disappeared)

i t b kt k i d i iarises, must backtrack on previous decisions

If d 1 l fli b k kIf d=1 also causes a conflict, backtrack
to c=0

26
EE141

Basic ATPG for Fanout FreeBasic ATPG for Fanout‐Free
Circuits

27
EE141

The JustifyThe Justify
Routine

28
EE141

ExamplExampl
e

Fault: g/0

The recursive calls to JustifyFanoutFree():

29
EE141

The PropagateThe Propagate
Routine

30
EE141

Week 4: Course Material

Test GenerationTest Generation
Lecture 19

ExampleExample
Continued

Propagate fault-effect
from g to z

31
EE141

DD
Algorithm

D Can handle arbitrary combinational
circuits, with internal fanout structures
M i id l i t i tD Main idea: always maintain a non-empty
D-frontier and try to propagate at least a
fault effect to a primary outputfault effect to a primary output

D Initially, all circuit nodes are X, except
for the fault cite, where a fault effect (D , (
or D-bar) is placed.

32
EE141

D Frontier and JD‐Frontier and J‐
Frontier

D D-Frontier: All gates whose outputs are
X but has at least one D or D-bar at the
input of the gates
• Initially, the D-frontier consists of only 1

gate (output of the fault site)gate (output of the fault-site)
D J-Frontier: All gates whose outputs are

specified by are not justified by the inputspecified by are not justified by the input
assignments

33
EE141

D-Frontier Example

D The D-frontier contains 2gates

34
EE141

J-Frontier Example

D The J-Frontier contains 2gates

35
EE141

Idea Behind D Algorithm
D To advance the fault-effects in the D-frontier, ,

add nodes to the J-frontier to justify

36
EE141

DD
Algorithm

37
EE141

D Algorithm Exampleg p

Target f stuck‐at‐0

Initialize all gates to XInitialize all gates to X
Places D on line f
Propagate fault effect to z
Places a=1 in J‐frontier, followed by
h 0h=0
Fault effect has reached primary output
Try to justify entries in J‐frontier
a is already justified as it is primary inputy j p y p
For f=D, d = 0, making c=0
For h=0, either e=0 or b=0 is sufficient
Test found.

D AlgorithmD Algorithm
Example

D Target fault: g/1
D Initially, D-Frontier: {h}, J-Frontier={g=D-bar}

T d D f ti dd f 1 d 1 t JD To advance D-frontier, add f=1 and c=1 to J-
frontier

38
EE141

D Algorithm ExampleD Algorithm Example
(Cont.)

N j tif l i J F ti iD Now justify every value in J-Frontier via
branch-and-bound search
• Must not make D-frontier empty or conflict

with other J frontier valueswith other J-frontier values
• Otherwise backtrack

D Result: g/1 is untestable
39

EE141

PODEPODE
M

D Also a branch-and-bound search
D Decisions only on PIs

• No J-Frontier neededNo J Frontier needed
• No internal conflicts

D D-frontier may still become empty
• Backtrack whenever D-frontier becomes• Backtrack whenever D-frontier becomes

empty
• Backtrack also when no X-path exists from

any D/D-bar to a POany D/D bar to a PO
D Decisions selected based on a backtrace

from the current objective
40

EE141

XX‐
Path

D The D in the circuit has no path of X’s to any
PO

i e the D is blocked by every path to any PO• i.e., the D is blocked by every path to any PO

41
EE141

Getting theGetting the
Objective

42
EE141

Backtrace to Select aBacktrace to Select a
Decision

43
EE141

Week 4: Course Material

Test GenerationTest Generation
Lecture 20

PODEMPODEM
Example

Target fault: f/0

D 1st Objective: f=1in order to excite the target faultD 1 Objective: f 1in order to excite the target fault
D Backtrace from the object: c=0
D Simulate(c=0): D-Frontier = {g}, some gates

have been assigned {c=d=e=h=0, f=D}have been assigned {c d e h 0, f D}
D 2nd Objective: advance D-frontier, a=1
D Backtrace from the object: a=1
D Simulate(a=0): Fault detected at z

44
EE141

D Simulate(a 0): Fault detected at z

Another PODEMAnother PODEM
Example

Target fault: b/0

D 1st Objective: excite fault: b=1
D Backtrace from objective: a=0
D Simulate(a=0): b=D c=0 d=0: empty D frontierD Simulate(a=0): b=D, c=0, d=0: empty D-frontier.

Must backtrack
D Change decision to a=1

Si l (1) b 0 1 d 1 D f i illD Simulate(a=1): b=0, c=1, d=1, D-frontier still
emtpy
D Backtrack, no more decisions. Fault untestable.

45
EE141

FAN

D Extend PODEM for an improvedATPG
D Concept of headlines to reducethe p

number decisions
D Multiple Objectives to reducelater j

conflicts

46
EE141

HeadlineHeadline
s

D Output signals of fanout free conesD Output signals of fanout-free cones
D Any value on headlines can always be

justified by the PIs

We only need to
backtrace to thebacktrace to the
headlines to
reduce the

b fnumber of
decisions

47
EE141

MultipleMultiple
Objectives

D Objectives: {k=0, m=1}
D Backtrace from k=0 may favor b=0 butD Backtrace from k=0 may favor b=0, but

simulate(b=0) would violate the second
objective m=1!

D Makes backtrace more intelligent to avoid
future conflicts

48
EE141

Static LogicStatic Logic
Implications

D Can help ATPG make betterdecisions
D Avoidconflicts
D Reduce the number ofbacktracks
D Idea: what is the effect of asserting aD Idea: what is the effect of asserting a

logic value to a gate on other gates in
the circuit?

49
EE141

DirectDirect
Implications

D Direct implications for f=1:
• {d=1, e=1, g=1, j=1, k=1}

D Direct implications for j=0:
• {h=0, g=0, f=0, w=1, w=0, z=0}

50
EE141

IndirectIndirect
Implications

D Direct implications for f=1:
• {d=1, e=1, g=1, j=1, k=1}

D Indirect Implications for f=1 obtained byp y
simulating the direct implications of f=1:
• {x=1}

D This is repeated for every node in the circuit
51

EE141

Extended BackwardExtended Backward
Implications

D Direct and indirect implications for f=1:
• {d=1, e=1, g=1, j=1, k=1, x=1}

E t B k I li ti bt i d bD Ext. Back. Implications obtained by
enumerating cases for unjustified gates
• Unjustified gates: {d=1}

52
EE141

Extended BackwardExtended Backward
Implications

D In order to justify d=1, need either a=1 or b=1
• Simulate(a=1, impl(f=1)) = Sa
• Simulate(b=1, impl(f=1)) = Sb

D Intersection of Sa and Sb is the the set of ext. back. Implications
for f 1for f=1

• f=1 implies {z=0}
D This is repeated for every unjustified gate, as well as for every

node in the circuit

53
EE141

Dynamic LogicDynamic Logic
Implications

D Similar to Static Logic Implications, but has
some signals already assigned values
S 1 h l d b i dD Suppose c=1 has already been assigned
• Then to obtain z=0, b must be 0
• This is the intersection of having either d=0 orThis is the intersection of having either d 0 or

e=0 in the presence of c=1

54
EE141

Another Dynamic Implications
Example

D Suppose b=D
D In order to propagate the fault-effect to z, f = 1

is a necessary condition [Akers 76, Fujiwara
83]

D To take this further, the intersection of all the
necessary assignments for all fault-effects in
the D-frontier can be taken [Hamzaoglu99]

55
EE141

Evaluation Frontiers
D If two faults have the same E-frontier with at

least one fault-effect, then the values on the
unassigned PIs can be the same [Giraldi 90]unassigned PIs can be the same [Giraldi 90]

56
EE141

Fast Untestable FaultFast Untestable Fault
Identification

D Untestable faults are:
• Those that could not be excited, or

Th th t ld t b t d• Those that could not be propagated, or
• Those that could not be simultaneously excited

or propagated
D ATPG can spend a lot of time trying to

generate a test for an untestable fault
F t id tifi ti f t t bl f lt• Fast identification of untestable faults can
allow the ATPG to skip those faults

62
EE141

FIRE [IyerFIRE [Iyer
1996]

D Based on conflict analysisD Based on conflict analysis
D S0 = set of faults that are untestable when

signal s=0
These fa lts m st req ire s 1 to be detectable• These faults must require s=1 to be detectable

D S1 = set of faults that are untestable when
signal s=1

Th f lt t i 0 t b d t t bl• These faults must require s=0 to be detectable
D Intersection of S0 and S1 are definitely

untestable
• They require s=1 and s=0 simultaneously to

be detectable!

63
EE141

FIRE Example

D Impl[b=1] = {b=1, b1=1, b2=1, d=1, x=0, z=0}
D Faults unexcitable when b=1: {b/1 b1/1 b2/1D Faults unexcitable when b=1: {b/1, b1/1, b2/1,

d/1, x/0, z/0}
D Faults unobservable when b=1: {a/0, a/1, e1/0,

e1/1, y/0, y/1, e2/0, e2/1}, y , y , , }
D Faults undetectable when b=1: {a/0, a/1, b/1,

b1/1, b2/1, d/1,e1/0, e1/1, e2/0, e2/1, x/0, y/0,
y/1, z/0}

64
EE141

FIRE ExampleFIRE Example
(Cont.)

D Impl[b=0] = {b=0, b1=0, b2=0, e=0, e1=0, e2=0,
y=1}y=1}
D Faults unexcitable when b=0: {b/0, b1/0, b2/0,

e/0, e1/0, e2/0, y/1}
D Fa lts nobser able hen b 0 {c/0 c/1}D Faults unobservable when b=0: {c/0, c/1}
D Faults undetectable when b=0: {b/0, b1/0, b2/0,

c/0, c/1, e1/0, e2/0, y/1}
65

EE141

FIRE ExampleFIRE Example
(Cont.)

D Now that the two sets of faults undetectable
when b=0 and b=1 have been computedwhen b=0 and b=1 have been computed

D The intersection of the two sets are those
faults the require b=1 AND b=0 for detection,
thus untestable:thus untestable:
• {b2/0, c/0, c/1, e/0, e1/0, e2/0, y/1}

66
EE141

Week 4: Course Material

Test GenerationTest Generation
Lecture 21

Generalization ofGeneralization of
FIRE

D Conflict on a single line: b=0 ANDb=1
D Conflict on any illegalcombinationy g

• Suppose FFs x=1, y=0, z=1 is illegal, then
any fault that require x=1, y=0, and z=1 for
d t ti ill b t t bldetection will be untestable

• This can be generalized to any illegal value
combination in the circuitcombination in the circuit

67
EE141

Multi LineMulti‐Line
Conflict

D Consider the AND gate
D {a=0, c=1} is illegal (but this is captured by

single-line conflicts)g)
D Likewise {b=0, c=1}
D But, {a=1, b=1, c=0} is a multi-line conflict not

captured by single-line conflictcaptured by single-line conflict

Intersection of S0, S1, S2 will be untestable faults due to this
multi-line conflict

68
EE141

Multi Line ConflictsMulti‐Line Conflicts
(Cont.)

D Can extend the previous concept further
D Consider multi-line conflict {h=1, g=1, z=0}
D We can extend these values as far as

possible: {f=1 c=1 d=0 e=0 z=0} is a multi-possible: {f=1, c=1, d=0, e=0, z=0} is a multi-
line conflict as well

69
EE141

Summary on Untestable Fault
Identification

D First compute static logic implications
D Compute untestable faults basedon p

single-line conflicts
D Compute untestable faults basedon

multi-line conflicts
D Remove all identified untestablefaults

from the fault list

70
EE141

Simulation BasedSimulation‐Based
ATPG

• D Random and weighted‐random TPGare the
simplest forms of simulation‐based ATPGsimplest forms of simulation based ATPG

• D Challenge: how to guide the search to
generate effective vectors to obtain high faultgenerate effective vectors to obtain high fault
coverage, low computation costs, and small
test sets?test sets?

71
EE141

Genetic Algorithms for Sim‐based
ATPG

D A GA made up of
• A population of individuals (chromosomes)

– Each individual is a candidate solution
• Each individual has an associated fitness

Fit th lit f th i di id l– Fitness measures the quality of the individual
• Genetic operators to evolve from one

generation to the nextgeneration to the next
– Selection, crossover, mutation

72
EE141

Illustration of GAIllustration of GA
process

73
EE141

Pseudo Code forPseudo Code for
GA

74
EE141

The SelectionThe Selection
Operator

D Roulette WheelSelection

D TournamentSelection

75
EE141

The CrossoverThe Crossover
Operator

D One-pointcrossover

D Two-pointcrossover

76
EE141

Uniform Crossover

D The crossover is performed whenevera
mask bit is set

77
EE141

The MutationThe Mutation
Operator

D Random flip of a bit position
D Need to keep mutation rate small,so p

that the search will not seem
randomized

78
EE141

GA PopulationGA Population
Size

D Should be a function of the individual size
D Larger individuals require larger populations

to allow for reasonable diversityto allow for reasonable diversity
D Individual size depends on the number of PIs

in the circuit
• In sequential circuits, an individual may be

a sequence of vectors
D Generation Gap: some individuals may be p y

carried over from one generation to the next

79
EE141

Number of GANumber of GA
Generations

D Related to the populationsize
• Larger populations usually demand more

generations
• Generation gap also will affect the number

of generations needed to reach aof generations needed to reach a
satisfactory solution

80
EE141

The FitnessThe Fitness
Function

D Measures the quality of the individual
D Essential for a GA to converge on a solution
D Example fitness functions:

• Number of faults detected by the individual
• Number of faults excited by the individual• Number of faults excited by the individual
• Number of flip-flops set to a specified value (in

seq ckts)
• A weighted sum of various factors

81
EE141

