
Lecture 52

Testing Embedded Cores in NoC

• Reuse of On-Chip Network for Testing

• Test Scheduling

• Test Access Methods and Test Interface

• Efficient Reuse of Network• Efficient Reuse of Network

• Power-Aware and Thermal-Aware Testing

Network-on-Chip

Interconnection schemes:

CPU

U
se

r
D

ef
in

ed
 L

o
gi

c

Memory

Self-test
Control

Interface

Core A Core C

Shared bus

Current Design Methodology: System-on-Chip (SoC)

U
se

r
D

ef
in

ed
 L

o
gi

c

Legacy
Core

Memory
Array

IP Hard
Core

Interface
Control

Embedd-
ed RAM

DSP
Core

Core DCore B

Core A

Core D

Core C

Core B

Dedicated
connection

Need for Network-on-Chip (NOC)
Current Design Methodology: System-on-Chip (SoC)

Design

 Communication infrastructure
is becoming new bottleneck
 Wire delay

 Signal integrity

Test

 Test of SoC has been well understood

 TAM, wrapper

 Test scheduling

 IEEE 1500

 Test needs dedicated hardware Power dissipation

 Area vs. speed

 New interconnection schemes
needed.

 Test needs dedicated hardware

 Hardware for mission-mode
communication can not be reused for
testing

tester

SoC

NOC-based System

core core core

corecorecore

NOC-based System

Design

 High performance

 High bandwidth

 Low signal delay

Reasonable overhead

Test

 Test of NoC has not received much
attention

 Core testing

 Router and interconnection

Possible next-generation SoC paradigm: Network-on-Chip (NoC)

 Reasonable overhead

 Suitable for large number of cores

 Network design is versatile

 Methodology of next generation VLSI
design

 Router and interconnection
testing

 Test wrapper design

 Test scheduling

 No need for dedicated TAMs

 Network can be reused for testing

NoC-based System
d695 from ITC’02 benchmark

 Packet-switching

 Bidirectional channel

 2-D mesh, XY routing

router router router

router router router

1

105 2

 Channels, routers used as
TAM

 Input/output ports
associated with cores

 Ports, channels are
assigned a time tag

router router router

router router router

router router router

Input

Input

Output

Output

3 6 4

9 8 7

Test Scheduling Using Dedicated
Routing Path: Non-preemptive

 Each core is associated with
a routing path

 All resources are reserved
until test completed

 Test pipeline maintained

No complex logic

router router router

router router router

1

105 2

 No complex logic

 Similar to a circuit switching

 Efficiently assign I/Os and
channels to core

router router router

router router router

router router router

Input

Input

Output

Output

3 6 4

9 8 7

Lecture 53Lecture 53

Test Scheduling: Problem Formulation

In an NoC system using dedicated routing path, given NC cores, NI inputs,
N outputs, routing algorithm and the network topology, determine an

How to assign I/Os and channels to each core for testing such that the
overall test time is minimized?

NO outputs, routing algorithm and the network topology, determine an
assignment of cores to input/output pairs and a schedule such that the
total test time is minimized.

 Equivalent to the resource-constrained multi-processor scheduling problem

 If the number of input/output pairs 2, NP-complete

Test Scheduling: Optimal Solution
Using ILP

 Problem can be solved exactly using an ILP model

 Large number of none-zero constraints

 CPU time is prohibitive

 Can be simplified using enumeration Can be simplified using enumeration

 Enumerate the assignment of cores to I/O pairs

 Number of constraints reduced

 A few seconds for small instances with smaller number of I/Os

 For large instances, or larger number of I/Os, CPU time is still
prohibitively high

 Not suitable for large systems

Test Scheduling: Heuristic Algorithm

 Sort cores and I/O pairs in decreasing order of testing time

 Permute cores and I/O pairs

 Assign cores with higher priority to free I/O pairs

 Check resource conflicts using time tag: I/Os, channels, cores

 Complexity: O(NC
M)

CPU time: a few minutes for all benchmarks
C

 CPU time: a few minutes for all benchmarks

Test Access Method and Test
Interface

Problems targeted:

• Test access scheme for testing routers at NoC level
• Possible hardware overhead
• Efficient test scheduling that can handle both routers and embedded • Efficient test scheduling that can handle both routers and embedded

functional cores

Test Access Method

Reuse the network resources for test access
Test data and test control delivered in packet
Responses can be processed by ATE or on-chip

3 4 5 5 5 63 4 5

2 3 4

1 2 3

1 2 3

Input
1

Input
2

Output
1

Output
2

Multicast

5 5 6

4 4 6

1 2 3

1 2 3

Input
1

Input
2

Output
1

Output
2

Unicast

Test Responses
Can be handled on-chip

Wrapper

Router

Wrapper

Router

Wrapper

Router

Wrapper

Router

Minimum overhead
Probability of aliasing

MISR MISR Comparator

Similar to prior work
Faster, with aliasing

Lecture 54Lecture 54

Test Wrapper

On top of the 1500 compliant wrapper
Can wrap both router and core
Packing/unpacking mechanism reused from mission mode

1500 compliant

Router

Core

Unpacki
ng

packi
ng

From adjacent
cores

To
adjacent
cores

1500 compliant

Test mode

Test Wrapper

Router
Unpacki packi

From adjacent
cores

To
adjacent
cores

Router

Core

Unpacki
ng

packi
ng

Mission mode

Based on network reuse and dedicated routing path

 Permute cores in the order of test time

 Permute all input/output pairs

 For each permutation

 Find free I/O pair

 Check for resource conflicts

Integrated Test Scheduling

 Check for resource conflicts

 schedule a core

 Routers on a path should be all tested before functional cores on that
path to be tested

 Routers can be tested concurrently with cores

 At least one I/O pair should be used for router testing at any time

Integrated Test Scheduling

3 4 5

2 3 4

1 2 3Input Output

6 7 8

4 5 9

1 2 3Input Output1 2 3

1 2 3

Input
1

Input
2

Output
1

Output
2

1 2 3

1 2 3

Input
1

Input
2

Output
1

Output
2

After these routers are tested, one of the two I/O pairs can be
used for core testing

Fixed channel width, not fully utilized

Efficient Channel Width Utilization

Cores # of packets

Channel width = 16 Channel width = 32

flits/packet test cycles flits/packet test cycles

1 24 2 38 1 25

2 146 13 1029 7 588

3 150 32 2507 32 25073 150 32 2507 32 2507

4 210 54 5829 54 5829

5 220 109 12192 55 6206

6 468 50 11978 41 9869

7 190 43 4219 34 3359

8 194 46 4605 46 4605

9 24 128 1659 64 836

10 136 109 7568 55 3836

Variable on-chip test clocks

 Use faster wrapper test clocks on cores with idle channel width

 Channel width w, wrapper scan chain w’, n flits can be transported in parallel to
core in one clock

n =

Utilization of Idle Channel Width

w
w’

 Additional cores can be selected to further reduce test time

w

Utilization of Idle Channel Width

Tester

Test data

Slower tester clock

PLL

wrapperwrapper

faster on-chip clock

Core
B

routerrouter

NoC

Core
A

4

4

Network
channel

Variable on-chip test clocks

 Use slower wrapper test clocks on cores with high power dissipation

 No change on wrapper design

 Physical channel is viewed as n virtual channels

Channel Width Utilization Under
Power Constraints

A B C A B C
Tester clock

Packets in channel

Test clock on core A

Test clock on core B

Test clock on core C

Variable on-chip test clocks in NoC-based system

 N cores, tester clock fT

 Faster on-chip clocks 2fT, 3fT, …

 Slower on-chip clocks fT /2, fT /3, …

 Determine a clock for each core, such that

 No network resource conflicts

Power-Aware Test Scheduling

 No network resource conflicts

 System test application time is minimized

 Power constraints are not violated

 Each core associated with a set of on-chip clocks {…3fT, 2fT, fT, fT /2, fT /3, …}

 Each clock corresponds to a power P(i,j), and the corresponding test time T(i,j)

 Selection of clock for each core controlled by a priority calculated from P/T

 More than one cores use slower clocks to utilize virtual channels

 Use dedicated routing path

 Power constraints are evaluated

Power-Aware Test Scheduling

Lecture 55Lecture 55

Thermal-Aware Test Scheduling

• Existence of hot spots may increase test time because of
thermal unbalance

• Layout redesign is impossible

• Layout not optimized for test

High power density causes hot spots

30w

10w

9w 8w

• Higher power generation

• Larger thermal variation

• Removal of hot spots can lead to thermal balance and reduced
test time

5w

10w 8w 5w

40w 55w 15w

5w 13w 18w

Variable Clocking in Test Session

• Still rely on using multiple variable clocking for thermal management
• Clock assigned to each core can be varied during test application
• A more flexible scheme
• More efficient thermal management
• Extra test control

Variable Clocking in Test Session

Clock

Core 1

Core 2

Core 3

Clock

Core 1

Core 2

Core 3

Thermal safe constraints are not violated
Test time reduced

Core 2

Time t1

Core 2

Time t2

t1t2 <

Variable Clocking in Test Session

Clock

Core 1

Core 2

Core 3

Clock

Core 1 Core 3

Thermal safe constraints guaranteed
Test time not compromised

Core 2

Time t3

t4t3 =

Core 2

Time t4

Clock

Test

f/4

Clock Selection

f/2 f 2f 4f

PLL

Router

Test
packet

Unpack reused
Test control can be carried in packet
Clock varies only when the test of a core finished or started

Unpack Core

 Test set information of core set C

 NC cores, NI inputs, NO outputs,

 Set of on-chip variable-rate clock CLK

 Set of thermal parameters Pthermal

 Chip floorplan, and maximum temperature TTH

 Determine: (1) clock variation of each core during test application, (2) test scheduling of

Problem Formulation

Determine: (1) clock variation of each core during test application, (2) test scheduling of
cores on I/Os and channels, such that:

 Test application time is minimized

 Maximum temperature not over TTH

On-Chip Network Testing

• Testing of interconnect infrastructures

• Testing of routers

• Testing of network interfaces and integrated system • Testing of network interfaces and integrated system
testing

• Unless on-chip network of an NoC has been completely
tested, it cannot be used to test the embedded cores.

Testing of Interconnect Infrastructures

.

 Interconnect testing has been discussed in many papers.

 This discussion is mainly based on the well-known maximal aggressor fault (MAF)
model.

 Apply identical transitions to all wires except the victim line to create maximal
integrity loss in the victim line.

 Contains six crosstalk errors in victim line: rising/falling delay, positive/negative
glitch, and rising/falling speed-up.glitch, and rising/falling speed-up.

 For an interconnect structure with N lines, totally 6N faults are to be tested using
6N two-vector test patterns.

Self-Test Structure

• A pair of test data generator (TDG) and test error detector
(TED) is inserted to each set of interconnects between two
routers (switches).

TDG TEG

• This is called point-to-point MAF self-test.

• Test patterns are launched before line drivers, and sampled
after receiver buffers.

• Highly parallel testing if power consumption is within the
power budget.

s
w

it
ch

s
w

it
ch

s
w

it
c
h

Lecture 56

Test Application by Unicast

• MAF test patterns can be broadcast to all interconnects by
test packets with only one TDG.

• Only one set of interconnects between a pair of routers
can be tested for each test pattern broadcast.

• A global test controller (GTC) and many TEDs are required.

Test Application by Multicast

• Test packets are broadcast to interconnects of different pairs of
routers to achieve maximum parallelism.

• Multicast is a good compromise between test application time and
hardware overhead.

• Point-to-point (unicast) test method has the smallest (largest) test
application time but the largest (smallest) hardware overhead.

Testing of Routers

• Routers are used to implement functions of flow control,
routing, switching and buffering of packets.

System-on-Chip

NoC

a
c

e
s

core
1

core
6

core
2

s
 o

f
th

e
 C

h
ip

ts
 o

f
th

e
 C

h
ip

R R R

• Router testing can be treated as sequential circuit testing by
taking its special property of regularity.

• Test pattern broadcasting can be applied to reduce test time.

channels

in
te

rf
a

routers

core
5

core
4

core
3

P
ri

m
a

ry
 i

n
p

u
ts

P
ri

m
a

ry
 o

u
tp

u
t

RR R

Testing A Router

• Testing a router consists of testing the control logic (routing,
arbitration, and flow control modules) and first-in first-out (FIFO)
buffers.

switch

IP

OP

OP

OP

OP

in
p

u
ts

 o
f

th
e
 R

o
u

te
r

y
 o

u
tp

u
ts

o

f
th

e
R

o
u

te
r

IOs of the NoC and the Router

Local port

FIFO

FIFO

IP

FIFO

IP FIFOinput port

• Control logic can be tested by typical sequential circuit testing
methods such as scan testing.

• A smart way to test FIFO is to configure the first register of FIFO
as scan register, and others can be tested by the scan register.

routing/
arbitration

IP
output

port

P
ri

m
a

ry

P
ri

m
a
ryFIFO

Testing All Routers

• Since all routers are identical, all can be tested in parallel by
test pattern broadcasting.

NoCrouter 0 router 1

• Comparator is implemented by XOR gates. It can also support
diagnosis.

SI0 = SO0

router 2
Se0..4

router 3

Router Test wrapper Design and Test

• IEEE-1500 compliant test wrapper is designed to support test
pattern broadcasting and test response evaluation.

NoC

sc1 [0:n]

sc0 [0:m]

=

=

router 0

router n

Si[0:2] So[0:2]

co0

se[0..r]
diagnosis

control block

=

20

modifications required for the test wrapper

Din_R0
[0:19]

control ports

special_in test wrapper

sc1 [0:n]

sc0 [0:m]

router n

Din_Rn
[0:19]

Dout_R0
[0:19]

Dout_Rn
[0:19]

ci0

ci19

co19

..
.

..
.

F
u

n
c
ti
o

n
a

l
in

p
u
ts

F
u
n

c
ti
o

n
a

l o
u

tp
u
ts

=

[0]

functional ports router n

functional ports router 0

[19]

[0]

[19]

[0]

[19]

[0]

[19]

Router Test Wrapper Design and Test (Contd.)

• For example, all SC1 chains of these routers share the same set
of test patterns.

• Similarly, all Din[0] (i.e., Din-R0[0], …, Din-Rn[0]) data inputs of
these routers share the same set of test patterns.

• The wrapper also supports test response comparison for scan
chains and data outputs.chains and data outputs.

• Diagnosis control block can activate diagnosis.

• Small hardware overhead (about 8.5%) and small number of
test patterns (several hundreds) due to test broadcasting. Small
test application time (several thousands test cycles) using
multiple, balanced scan chain and test broadcasting. The
method is scalable.

Concluding Remarks

• State-of-art techniques for SoC testing have been described.

• Modular test techniques for digital, mixed-signal, and
hierarchical SoCs must be developed further to keep pace with
technology advances.

• Test data bandwidth needs for analog cores are very different
from digital cores, and unified top-level testing of mixed-signal
SoCs remains a major challenge.SoCs remains a major challenge.

• Research is also needed to develop wrapper design techniques
and test planning methods for multi-frequency core testing.

• Revolutionary RF interconnect technology might emerge to
address future SoC testing.

Concluding Remarks (Contd.)
• Advances in testing NoC-based systems have been discussed.

• Key point: how to utilize on-chip network as a TAM without
compromising fault coverage or test time.

• Research on NoC testing is still premature when compared to
industrial needs, and future research and development are
needed.

• Wrapper design techniques for SoC testing can be adopted by • Wrapper design techniques for SoC testing can be adopted by
NoC-based systems.

	Lecture 52
	Testing Embedded Cores in NoC
	Network-on-Chip
	Need for Network-on-Chip (NOC)
	NOC-based System
	NOC-based System
	NoC-based System
	Test Scheduling Using Dedicated Routing Path: Non-preemptive
	Test Scheduling: Problem Formulation
	Test Scheduling: Heuristic Algorithm
	Thermal-Aware Test Scheduling

