Lecture 57

Typical RAM Production Flow

Post-Bl Test | Burn-in (Bl)
Final Test —|Visual Inspection ~1 QA Sample Test |—

Full Probe Test Packaging

Pre-Bl Test

Off-Line Testing of RAM

D Parametric Test;: DC & AC

D Reliability Screening
* Long-cycle testing
« Burn-in: static & dynamic Bl

D Functional Test
* Device characterization
— Failure analysis
* Fault modeling
— Simple but effective (accurate & realistic?)

 Test algorithm generation

— Small number of test patterns (data backgrounds)
— High fault coverage
— Short test time

DRAM Functional Model

Address Refresh
Address latch I” Column decoder il Refresh logic
T | A
Row Memory
* . . <—
decoder a:':real; <_l Write ?wer
Sense amplifiers I_»' Data register il
t |
- Dataflow]
Data Data Read/write

——p Control flow out in &

chip enable

ample

F X

DRAM Functional Model |

15

Data—COut Registers |

——————

| IDara-In Registers

- -

Mooy

EATTrasw

1M

\
v

#| Column Decoder |

1

A

Lo L

Refraesh
Controller
Titnings
Controller

T

15p03a(] A0y
0
" -
SIRyjng Swng
SSATpY UMY | SSAIpY A0Y
0/ A
v
i
e
"¢

——

T

=R AS
xS
=

WA

Functional Fault Models

D Classical fault models are not sufficient to
represent all important failure modes in RAM.

D Sequential ATPG is not passible for RAM.

D Functional fault modelsare cemmonly used
for memories:

* They define functional behavior of faulty
memories.

D New fault models are being proposed to
cover new defects and failures in modern
memories:

* New process technologies
 New devices

Static RAM Fault Models: SAF/TF

D Stuck-At Fault (SAF)
* Cell (line) SAO or SA1

— A stuck-at fault (SAF) occurs when the value of a cell or
line is always 0 (a stuck-at-0 fault) or always 1 (a stuck-
at-1 fault).

— Atest that detects all SAEs guarantees that from each
cell, a 0 and a 1 must be read.

D Transition Fault(TF)

« Cell fails to transit from O to 1 or 1 to O in specified
time period.

— A cell has a transition fault (TF) if it fails to transit from 0
to 1 (a <T/0> TF) or from 1 to 0 (a <J/1> TF).

Static RAM Fault Models: AF

D Address-Decoder Fault(AF)

* An address decoder fault (AF) is a
functional fault in the address decoder that
results in one of four kinds of abnormal
behavior:

— Given a certain address, no cell will be
accessed

— A certain cell'is never accessed by any address

— Given a certain address, multiple cells are
accessed

— A certain cell can be accessed by multiple
addresses

Static RAM Fault Models: SOF
D Stuck-Open Fault(SOF)

* A stuck-open fault (SOF) occurs when the
cell cannot be accessed due to, e.g., a
broken word line.

* Aread to this cell will produce the
previously read value.

RAM Fault Models: CF

D Coupling Fault (CF)

A coupling fault (CF) between two cells occurs
when the logic value of a cell.is influenced by the
content of, or operation on, another cell.

« State Coupling Fault (CFst)

— Coupled (victim) cell'is forced to 0 or 1 if coupling
(aggressor) cell is'in given state.

* Inversion Coupling/Fault (CFin)

— Transition.in coupling cell complements (inverts) coupled
cell.

» |[dempotent Coupling Fault (CFid)

— Coupled cell is forced to 0 or 1 if coupling cell transits
fromOto1o0r1to0.

Intra-Word & Inter-Word CFs

intra-word coupling

Word A

inter-word coupling

Word B

RAM Fault Models: DF

D Disturb Fault(DF)

* Victim cell forced to 0 or. 1 if we
(successively) read or write aggressor cell
(may be the same cell):

—Hammer test

* Read Disturb, Fault (RDF)

— There is a read disturb fault (RDF) if the cell
value will flip when being read (successively).

RAM Fault Models: DRF

D Data Retention Fault(DRF)
- DRAM

— Refresh Fault
— Leakage Fault &

« SRAM

—Leakage F Q
- Stati ses---defective pull-up

Test Time Complexity (100MHz)

Size N 10N NlogN N N*

1M 0.01s 0.1s 0.2s 11s 3h

16M 0.16s 1.6s- 39s 11m 33d
64M 0.66s 6.6s 17s 1.5h 1.43y
256M 2.62s « 26s 1.23m 12h 23y
1G 10.5s. 1.8m 5.3m 4d 366y
4G 42s m 224m 32d S7cC
16G 2.8m 28m 1.6h 255d 915¢C

RAM Test Algorithm

D Atest algorithm (or simply test) is a finite
sequence of test elements:
« Atest element contains a number of memory

operations (access commands)

— Data pattern (background) specified for the Read and
Write operation

— Address (sequence) specified for the Read and Write
operations

D A march testialgorithm is a finite sequence of
march elements:

« A march element is specified by an address order
and a finite number of Read/\Write operations

March Test Notation

D

D

D

:address sequence is in the ascending
order

:address changes in the descending order
{l : address sequence is either or

r. the Read operation

« Reading an expected 0 from a cell (rO); reading an expected
1 from a cell (r1)

w: the Write operation
« Writing a 0 into a cell (w0); writing a 1 into a cell (w1)

Example (MATS+): {c(w0); (#O,wl); (r1,w0)}

Lecture 58

Classical Test Algorithms: MSCAN

D Zero-One Algorithm [Breuer & Friedman 1976]

 Also known as MSCAN

« SAF is detected if the address decoder is correct
(not all AFs are covered):

— Theorem: A test detects all AFs if it contains the march
elements (ra,...,wb)and (rb,...,wa), and the memory

is initialized to the proper value before each march
element

« Solid background (pattern)
« Complexity is 4N

(w0 8(0)E(wl) (r1)}

Classical Test Algorithms: Checkerboard

D Checkerboard Algorithm

« Zero-one algorithm with checkerboard pattern
« Complexity is 4N

* Must create true physical checkerboard, not
logical checkerboard

 For SAF, DRF, shorts between cells, and half of

the TFs
— Not good for AEs, and some CFs cannot be detected
1701
01 0
1,01

Classical Test Algorithms: GALPAT

D Galloping Pattern (GALPAT)

« Complexity is 4N**2—only for characterization

» A strong test for most faults: all AFs, TFs, CFs, and
SAFs are detected and located

1. Write background O;
2. For BC =0 to N-1
{ Complement BC,;
For OC = 0to N-1, OC '=BC;
{ Read BC; Read OC,; }
Complement BC; }

3. Write background 1;
4. Repeat Step 2;

Classical Test Algorithms: WALPAT

D Walking Pattern (WALPAT)

« Similar to GALPAT, except that BC is read only
after all others are read.

« Complexity is 2N**2.

Simple March Tests

D Zero-One (MSCAN)

D Modified Algorithmic Test Sequence (MATS)
* OR-type address decoder fault

{T (w0): T (rO, W)l (1)}
* AND-type address decoder fault
{§ ;T (ke 0):8 (r0) }

D MATS+
* For both OR- & AND-type AFs and SAFs

* The suggested test for unlinked SAFs
(¢ w0y T (r0.wh): U (r1,w0)}

March Tests: Marching-1/0

D I\/Iarchlng 1/0

« Marching-1: begins by writing a background of Os,
then read and write back complement values (and

read again to verify) for all cells (from cell O to n-1,
and then from cell n-1 to 0), in 7N time

» Marching-0: follows exactly the same pattern, with
the data reversed

* For AF, SAF, and TF (butonly part of the CFs)

 Itis a complete test, i.e., all faults that should be
detected are covered

It however is a redundant test, because only the
first three march elements are necessary

{ (w0); ((r0,wl,rl); (r1,w0,7r0);
(wl); (r1,w0,r0); (»0,wl,rl)}

March Tests: MATS++

D MATS++
Also for AF, SAF, and TF

Optimized marching-1/0 scheme—complete and

iIrredundant

Similar to MATS+, but allow for the coverage of TFs

The suggested test for unlinked SAFs & TFs
(§ (wO): W 0owl): U (#1,w0,70))

March Tests: March X/C

D March X

e Called March X because the test has been used
without being published

 For AF, SAF, TF, & Cfin
(8 011 (0, Wl W1, w0). T (10))

D March C

* For AF, SAF, TF, & all CFs, but semi-optimal
(redundant)

(T (w0): 1T (70, wD); 1T (r1,w0);
§ (r0): U (r0,w): U (11, w0): 0 (10)}

March Tests: March C-

D March C-

 Remove the redundancy in March C
« Also for AF, SAF, TF, & all CFs
« Optimal (irredundant)

({800 01T (11, w0)l (Ol U (11, w0):§ (10) }

D Extended March C-
 Covers SOF in addition to the above faults

(E 00O, 1) m0) U r0ud) U (1, w0): L (0))

Lecture 59

Fault Detection Summary

Name Faults detected
Algorithm

MATS++ SAF/AF
0 (w0): 1 (0,154 1, w0, 0)

March X AF/SAF/TF/CFin
0 (#0):) (10, w1): 4 (13;0): §r0)

March ' Y AF/SAF/TF/CFin
0 (#0): (0, whsrl)adb (71, w0,70): § (0)

March C— SAF/AF/TF/CF
T (wO); A (PO, w1); 4 (r1,w0); 4} (PO, w1);J) (#1,w0); 3 (#0)

Comparison of March Tests

MATS++ March X MarchY March C-

SAF
TF
AF))))
SOF))

CFin)))
CFid)
CFst)

N N o N

Word-Oriented Memory

D A word-oriented memory has
Read/Write operations that access the
memory cell array by a word instead of
a bit.

D Word-oriented memaries can be tested
by applying a bit-oriented test algorithm
repeatedly with a set of different data
backgrounds:

* The repeating procedure multiplies the
testing time

Testing Word-Oriented RAM

D Background bit is replaced by background
word

« MATS++: {{] (wa);ﬂ (ra, wh) (rb,wa,ra)}
D Conventional method is to use logm+1
different backgrounds for m-bit words

« Called standard backgrounds

- m=38: 00000000, 01010101, 00110011, and
00001111

* Apply the test algorithm logm+1=4 times, so
complexity is 4*6N/8=3N

Note: b is the complement of a

Cocktail-March Algorithms

D Motivation:

* Repeating the same algorithm for all
logm+1 backgrounds is redundant so far as
intra-word coupling faults are concerned

« Different algorithms target different faults.
D Approaches:

1. Use multiple backgrounds in a single
algorithm run

2. Merge and forge different algorithms and
backgrounds into a single algorithm

D Good for word-oriented memory

March-CW

D Algorithm:
* March C- for solid background (0000)

« Then a 5N March for each of other standard
backgrounds (0101, 0014): {{} (Wa, wh,rb,wa, ra) }

D Results:

« Complexity is (10+8logm)N, where m is word length
and N is word count

« Test time is reduced by 39% if m=4, as compared
with extended March C-

* Improvement increases as m increases

Multi-Port Memory Fault Models

D CellFaults:

 Single cell faults: SAF, TF, RDF

» Two-cell coupling faults
— Inversion coupling fault (CFin)
— State coupling fault (CFst)
— ldempotent coupling fault (CFid)

D PortFaults:
« Stuck-open fault (SOF)
» Address decoder fault (AF)
* Multi-port fault (MPF)

2-Port RAM Topology

BL, BL, BL, BL4
A A A A

Wa™r N1y Y
A N AN AN A Wp

Interport WL shopt +——=r+ | .

A O\ /1\’ 2202
A N AN AN Wig
— Interport BL short
A N AN AN WL

WA= N Y Y D
AN AN AN S WLy

v
BLg BLg BLg BLg

v

v

v

Inter-Port Word-Line Short

Fault-Free Faulty
Port A | Address1 o o Cell 1 Address'1 o o Cell 1
Address 2 o Cell 2
Port B | Address?2 o o Cell2 \
Address 3 o Cell 3

* Functional test complexity: O(N3)

Inter-Port Bit-Line Short

Fault-Free Faulty
Address a o Cell o
Port A | Address o © oCell o \
Address B o Cell B
Address o o Cell «
Port B | Address B o oCell B /
Address B o Cell B

* Functional test complexity: O(N?)

Why Memory Fault Simulation?

D Fault coverage evaluation can be done

efficiently, especially when the number of
fault models is large.

D In addition to bit-oriented memories, word-
oriented memories can be simulated easily
even with multiple backgrounds.

D Test algorithm design and optimization can
be done in a much easier way.

D Detection of a-test algorithm on unexpected
faults can be discovered.

D Fault dictionary can be constructed for easy
diagnosis.

Sequential Memory Fault Simulation

D Complexity is N**3 for 2-cell CF
For each fault /* N**2 for 2-cell CF */

Inject fault;

For each test element /* N for March */

{
Apply test element;

Report error output;

}

Parallel Fault Simulation

D RAMSES wu, Huang, & Wu, DFT99 & IEEE TCAD 4/02]
« Each fault model has a fault descriptor

S/1

AGR :=w0

SPT = @ [* Single-cell fault */
VTM := r0

RCV :=w1

CFst<0;s/1>

AGR :=v0

SPT :=* /* All other cells are suspects */
VTM :=r0

RCV :=w1

RAMSES
D Complexity isN**2

For each test operation

{

If op is AGR then mark victim cells;
If op is RCV then release victim cells;

If op is VTM then report error;
}

RAMSES Algorithm

for each operation begin
set_op_flags;
if (AGR C op_flags) begin
for each victim cell begin
set victim flags;
set aggressor address;
end-for
end-if
if (OP eq RCV) begin
clear victim fHag;
clear aggressor entry;
else if (OP eq VTM) begin
mark detected,;
end-if
end-if

end-for

RAMSES Example for CFin<i;t>

Address

Value

Status

AO:ROWI1 Al:RO Al:Wl A2:RO
140 1 |G 1 |1 1 {1
= -
00 010 0 (0 010
ALY A |D VI A AV
- -
VIV VIV V|V DV

Coverage of March Tests
MATS++ March X MarchY March C-

SAF 1 1 1 1
TF 1 1 1 1
AF 1 1 1 1
SOF 1 002 1 002
CFin 15 1 1 1
CFid 375 ko D 1
CFst ko 625 625 1

= Extended March C- has 100% coverage of SOF

Test Algorithm Generation Goals

D Given a set of target fault models, generate a
test with 100% fault coverage

D Given a set of target fault models and a test
ength constraint, generate a test with the
nighest fault coverage

D Priority setting for fault models
« Test length/test time can be reduced

D Diagnostic test generation
* Need longer test to distinguish faults

Test Algorithm Generation by Simulation(TAGS)

DMarch template abstraction:

P (w0); 1 (ro,w1); | (r1,w0,r0)
| |
P (w) 1 (rw); v (rw,r)
4

(w)(rw)(rwr)

Template Set

D Exhaustive generation: complexity is very
high, e.g., 6.7 million templates when N=9

D Heuristics should be developed to select
useful templates

TAN) (W)

TN [ww)] [ww)

TEN) |[(www) | [(Www)(W)] |(W)(Ww)

(wwi) | | (wrw) | [wnow) | (GG -

TAGS Procedure

. Initialize test length as 1N, T(1N) = {(w)};
2. Increase test length by 1N: apply generation
options;
3. Apply filter options;
Assign address orders and data
backgrounds;
. Fault simulation using RAMSES;
6. Drop ineffective tests;

Repeat 2-6 using the new template set until
constraints met;

Lecture 60

Template Generation/Filtering

D Generationheuristics:
* (r) insertion
e (...r), (r...) expansion
* (W) insertion
e (...w), (w...) expansion
D Filteringheuristics:
« Consecutive read: (...rr...)
* Repeated read: (r)(r)
* Tailing single write: ...(w)

D Target fault models (SAF, TF, AF, SOF, Cfin,

Cfid, CFst), time constraints oo:

T{N] Name Marchalgorithm
1N MI 1 (w0)
fr (w0 1t (70)
Tt (0] 1 (wrl) fpr1)
1r (0] {1 (70, l)
fr (0] (wrl) 11 (1)
ft (0] J (0,201
i (0] U (vO, 1) ff (v1)
1 CarD) J (v, el w1
fr {wrQ) 1 {rl) fr (71, w0) 11 (70)
r L] (70, w0l 1 (r1, wl)
fr (0] 1t (wl) fr (71, w0, v0)

28
RABSREARAREREREN

8V T (o) 1 (meel) 1 (1, we) J (70, 12l)
8N ft (er0) b (7D, 02l 1} (71, w20Q) {f (70)
&N fr {w0) 1r (7O, 021) 1t (71, 0] f (70
&N 1t (D) 11 (r0, wel) 11 {v1, e, vD)

&N fr (ar®) b (PO, weel) 1y (7, e, v0)

T 1 oD {1 (PO, wel) f rl, D)) (70, 1rl)

TAGS Example (2/2)

TN M fr (w0) fr (7O, wl) f (v1,w0) § (rO, wl)
N 5 & (0) 1 (wl) & rl, w0) f (r0, wl,r1)
N ft (w0) § (7O, wl) ff (+1, w0, v0) ft {(+v0)
IN M (w0 fr (70,) 6L, w0, v0) fr (O)
aN h w 7O, wl v1,wD v, wl
MP fr (@0) fr (7O, w) ft (F1yw0) & (rO, i)

vl

BN M (wc)i) fr G0, wl) 1t (r1, w0)
U 70, wl, rl)

oON MP fr (wO)ff 7O, wl) 1 (r1,wD) § (vO, wl)
J (71, w0)

oN MP (@) At (rO,wl) fr (r1,wD)
J 0, wl,rl) ff (v1)

10N M}O ft {20) f (vO,wl) 1t (v1,w0) § (+O, wl)
4 (r1,w0) {f (+0)

10N MI% (w0 ft (7O, wl) f (r1,w0) § (vO, wl)
U (rl,w0,v0)

11N MY (w0) ft (7O, wl) fr (1, w0) § (vO, wl)
U 71, w0,v0) ft (+0)

RAMSES Simulation Results

0.8 -
v

g
® 0.6

Fault Coverag
= =
= b .
I I
—— 1
N | |

SR R A A A

Test

FC Spectrum for 6N Tests

ng [

ne [~

na

Faull Coverage

n2r

1)

T

Faull Coverage

0.3

0.4

0.4

a2

Construct bit-oriented test algorithms

Generate initial Cocktail-March: Assign each data background
to the test in Step 1—a cascade of multiple March algorithms

Optimize the Cocktail-March (!IP4) /* non-solid backgrounds */
Onptimize the Cocktail-March (P,) /* solid backaround */

| I |
CFiu I
- R AR R AT O M JT T = -
| I—

I 12 13 1 15 16 17 13 o1 20 21 22 023 24 25
Test Lengih (M}

3. Cocktail March Optimization (!P,)

For each non-solid data background P (P != P,)

a) Generate a new Cocktail-March test by
replacing the March algorithm having P as
its background with a‘shorter one from the
set of algorithms generated in Step 1.

b) Run RAMSES for the new Cocktail-March.

c) Repeat 3(a) and 3(b) until the FC drops and
cannot be recovered by any other test
algorithm of the same length.

d) Store the test algorithm candidates used in
the previous step.

a)

Generate a new Cocktail-March test by
replacing the March algorithm having P, as
its background with a shorter one from the
test set generated in Step 1. Repeat with
every test candidate for other backgrounds.

Run RAMSES for the new Cocktail-March.

Repeat 4(a) and 4(b) for all candidate test
algorithms from 3(d) until the FC drops and
cannot be recovered by any other test
algorithm of the same length or by selecting
other candidates.

Cocktail March Example (m=6)

TABLE VI
8-B1T DATA BACKGROUNDS

p; babghsbabsbybiby

Po 00000000
P 01010101
py 00110011
py 00001111
TABLE VII

INITIAL COCKTAIL-MARCH TEST

Background | po | 1 | p2

[Lz
Candidates | MIZ | MIT | MIT | M

TABLE VlII
COCKTAIL-MARCH ALGORITHM DURING OPTIMIZATION

Background | po P P2 p3
‘Candidates | M{* | M3 M3 | M3 M} | M3 M

TABLE IX
FINAL COCKTAIL-MARCH ALGORITHM

Background Test

Po(00000000) 1 (wa) ft (ra,wa, ra) 1 (1@, wa, ra)
U (ra,wa) | (g, wa) 1t (ra)
pi(01010101) 1 (wa) ft (wa@) 1t {rd, wa, ra)
p2(00110011) 1 (wa) ft (w@) 1 (ra3, wa, ra)
ps(00001111) 1 (wa) 1 (wa) 4 (G, wa, ra)

What Can BIST do?

D What are the functional faults to be covered?

« Static and dynamic
» QOperation modes

D What are the defects to be covered?
« Opens, shorts, timing parameters, voltages, currents, etc.
D Can it support fault location and redundancy repair?

D Can it support BI?

D Can it support on-chip redundancy analysis and
repair?

D Does it allow eharacterization test as well as mass
production test?

D Can it really replace ATE (and laser repair machine)?

 Programmability, speed, timing accuracy, threshold range,
parallelism, etc.

Typical RAM BIST Approaches

D Methodology

* Processor-based BIST
— Programmable

« Hardwired BIST

— Fast
— Compact

* Hybrid
D Interface

« Serial (scan, 1149.1)

» Parallel (embedded controller; hierarchical)
D Patterns (address sequence)

* March & March-like

* Pseudorandom

* Others

Typ/cal RAM BISTArch/tecture

BIST Module

RAM Controller

Data—Out Registers |

—=|

Memory

aArray

1Mb

‘ Data-In Registers

.t‘ Column Decoder |

V &

16

RPOY(M0Y

Refresh
Conuoller
Timing
Controller

siang sieng
SSOIpPY UUINO). | - SSAIpPY M0y

A

lb—f-
_J\
4Mb Embedded EDO DRAM

Address
xR AS
xCAS
xWE

D
18-bit

EDO DRAM BIST Example

Memory BIST

DRAM Paqge-Mode Read-Write Cycle

xRAS

xCAS

Addr

iWE

DQ

xOFE

‘rp

- —-
Vig- J(
Ml

RASP

- o
.} |

o RCD ... CAS lop|e—
fAsC J/_\ H /7

" —fcal
W % Column / %Cnhﬂﬁﬁ% %Cnlumn%

¢ S ICWD ¢
AWl = WP

Vin-
ViL-

Vin-

¥ii—

Vin-
Y-

BIST Architecture

o B g-s-g(.;l;;;—;;m“-”-"_"-”““-”“—““-““-"-“"“-"“-“_"”-u“-”-"-““-““-_“““"—? .
c 16
- EOR, OMPATRIOr i T’I ! o Data—-0Out Registers - lf’
BRD* i ¥ D 16, 16
: = I’ g 7 ™ Data-In Registers
: B Row Address Counter [® : 8 | Column Decoder
: ! 18-bit | &
! Address | < i %
ﬁ“ Column Address Counter [™] g < P ittt fiefielei it -
f | E % | | Sense Amplifiers h A
- ! 2@ !]
1 Sequence - e Control Counter é E S _J\\: gl i
Controller & | 5| | 1Mb E
: - -~ Timing Generator R ! P L !
i o | = 1o | 2| & Memory !
, N ZSZs 2~ g s a | & |
[T— —— e e e e &8 i l/' TS = !
BSO_, T : g | P 2 | Array ;
gyt g o i o iy Zapugng E : 2 i :
i — BIST Scan Path |
i [T] i ; E ! 1 T\ a= :
A Burn—In Commands — L o | e R !
i . ! Refresh
BSI i [[T —\ i a : Coit:ce)-?ler
+—®— March Commands/Data : ; : *
! i [—) i = : - xRAS -
. S Diagnosis Information — i : xCAS
: L : : - - Timing
BCK E — Test Mode Selection i I : ; xWE Controller
— B T TR | i I L
_|> Decode Logic :
BCS ; 4 %
BAC =: BIST Controller Memory BIST 4Mb Embedded EDO DRAM
ERSAEAN ' Controller I
- ‘R

BIST External I/0O

D MBS (Memory BIST Selection): controller test collar
(normal/test mode selection)

MBC (Memory BIST Control): Controller input
MCK (Memory BIST Clock)
MBR (Memory BIST Reset)

MSI (Memory BIST Sean In): for test commands and
scan test inputs

D MSO (Memory BIST Scan Out): for diagnostic data
and scan test outputs

D MBO (Memory BIST Output): error indicator

D MRD (Memory BIST Output Ready): BIST completion
flag

O O O O

BIST I/O Summary

Name 10| External 10 Descriptions
MBS | Yes Memory BIST Selection

MBC I Yes Memory BIST Control

MCK I Yes Memory BIST Clock

MEBR | Yes Memory BIST Reset

MSI | Yes Memory BIST command/data seral in
MSO 0 Yes Memory BIST command/data serial out

MBO 0 Yes Memory BIST Output
MRD 0 Yes Memory BIST Output Ready

ADDR 0 No Address Signals
D 0 No Memory Data In
Q | No Memory Data Out
CS 0 No Chip Select
OE 0 Mo Output Enable
WE 0 No Write Enable

Controller and Sequencer

D Controller
* Microprogram

* Hardwired V
 Shared CPU core @
 |EEE 1149.1 TAB&

« PLD
D Sequencer ?Qern Generator)

« Counter
« LFSR
o LUT
 PLD

Controller

BCS=0
g o 7 Initial freset state: all BIST cutputs retain
I Initial safe values.
¥
[7 Test mode selection.
Test_Mode_In 1
- -
) o
0 '_ e i o .
e] Command deccding.
————— Decode ""—\ﬁ
I
g 7 Data scan: shift in test inputs and
Data_In_Cut /1 shift out resulis.
i 0
0 8 h Scan test applicaticn and BIST activation
Apply
- e
IE
8 & Memory functien test, BI, AC test, ete.
P Execute 1
e
8 A 0 Pause for observation,. or exit the
Exit execution phase.
- o~
I
0 B E Shifting out results,
N~ .
Probe!Pause 1 or pause for retention test.

_ - Py _

Sequencer

BIST
Controller

F»[Combination Logic #0

{ Combination Logic#1

Row Address Counter

Column Address

Counter

i—b
|
|
>
|
|
|

|

Control Counter

Comparator

j \ Ll
N :
i !
- !
J i pa !
> P !
sl | i
1! s :
" pa] |
—> : Q]
- | i P> i
| 1eDRAM |
' i control !
“a !
1. Signal
.
l
: MCK
|
)

¢eDRAM

Disable
BIST_EN=low
SEQ_EN=low
All outputsand
flags are high-z

Ildle& Wait
BIST_EN-=high
SEQ_EN=low
All outputsand

flags are in

precharged
state

Reset/Initiate
BIST_EN=high
SEQ_EN=high
All outputsand
flags seted to
known state

Sequencer States

CBR Refresh

L L AV
A A v v Y y ¥ y ¥ L 4
f N N f N
NON_EDO NON_EDO Self
A B EDO_ROW EDO_ROW EDO_ROW Rofresh
W D RDW D'
- 7 - 7 " i 7
- l = ™ l)
EDO_COL EDO_COL EDO_COL
0 1 2
W D RDWD' RDWD'RD’
" v v
] i 1| i i

BIST Test Modes

1. Scan-Test Mode
2. RAM-BIST Mode

1.Functional faults
2. Timing faults (setup/hold times, rise/fall times,
etc.)

3.Data retention faults

3. RAM-Diagnesis Mode
4. RAM-BIl Mode

BIST Controller Commands

Bit4 Bit3 Bit2, Bit 1, Bit0
Addressingorder | Datatype Operations
l: (increas-ing) 1:d=DB |000: EOT (Endoftest)
0: (decreasing) [0:d=~DB |001: Rd (READCycle)
010: Wd (Early WRITECycle)
011: RdW~d (READ-WRITE)Cycle
EDO-PAGE-MODE
100: 'Wd (Early WRITECycle
101: RdW~d (READ-WRITE)Cycle
110: RdW~dR~d (READEarly WRITECycle)
111: Refresh

BIST Control Sequence
sex UMMM .. TV

BAC Normal Mod BIST Mode |

BRS*/SCAN % Controller Test \

BCS % Scan Test Contmz\ Reset Sequenqé Scan Test X BIST Control Sequence W
BRD* | [2
BGO) [comoco [
BS]] Testpatems [ScanTn \CommandsDaty

BSO | TestOupuss | [Sean Ou | \Observel

Concluding Remarks

D BIST is considered the best solution for
testing embedded memories:

 Low cost
« Effective and efficient

D Further improvements/can be'expected to
extend the scope of RAM BIST:

» Timing/delay faults and disturb faults
« BISD and BISR

« CAM BIST and flash BIST

« BIST/BISD/BISR compiler

 Wafer-level Bl and test
— Known good die

	Lecture 57
	Typical RAM Production Flow
	DRAM Functional Model
	Functional Fault Models
	Static RAM Fault Models: AF
	RAM Fault Models: CF
	RAM Fault Models: DF
	Test Time Complexity (100MHz)
	March Test Notation
	Classical Test Algorithms: MSCAN
	Classical Test Algorithms: GALPAT
	Simple March Tests
	March Tests: MATS++
	March Tests: March C-
	Fault Detection Summary
	Word-Oriented Memory
	Cocktail-March Algorithms
	Multi-Port Memory Fault Models
	Inter-Port Word-Line Short Fault-Free Faulty
	Why Memory Fault Simulation?
	Parallel Fault Simulation
	RAMSES Algorithm
	Coverage of March Tests
	Test Algorithm Generation by Simulation (TAGS)
	TAGS Procedure
	Template Generation/Filtering
	TAGS Example (2/2)
	FC Spectrum for 6N Tests
	3. Cocktail March Optimization (!P1)
	Cocktail March Example (m=8)
	Typical RAM BIST Approaches
	EDO DRAM BIST Example
	BIST Architecture
	BIST I/O Summary
	Controller
	Sequencer States
	BIST Controller Commands
	Concluding Remarks

