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Instructional Objectives 
At the end of this lesson, the students should be able to: 

1. Distinguish between spatial and transform-domain image compression 

systems. 

2. State the objectives of transform coding. 

3. Write the general expressions for forward and inverse transforms.  

4. Define separable and symmetric transforms. 

5. Define basis images. 

6. Determine the covariance matrix of image block. 

7. Represent a covariance matrix in terms of its eigenvectors and 

eigenvalues. 

8. Define K-L transform. 

9. Show that K-L transform is optimal in terms of mean-square truncation 

error. 

10. State why K-L transforms are difficult to implement in practice. 

 
 
8.0 Introduction 
The lossy image compression techniques discussed in lesson-7 work in the 
spatial domain, since we are predicting the pixel values and the prediction errors 
also correspond to the pixels in the original space. It is seen that although the 
linear prediction mechanism essentially tries to exploit the inherent spatial 
redundancy, the compression ratios of Differential Pulse Code Modulation 
(DPCM) encoded images are not always very high. This is primarily due to the 
fact that in presence of sharp changes in intensity values, which are always 
expected in any natural image due to the presence of objects of varying 
intensities, prediction suffers and encoding large prediction errors in those 
regions lead to high consumption of bits. In terms of compression, performance 
is seen to be better in transform-domain approaches, in which the pixel 
intensities are first mapped into a set of linear, reversible transform coefficients, 
which are subsequently quantized and encoded. The transform coefficients are 
de-correlated and tend to pack most of the energy within few coefficients only. 
Thus, it is possible to achieve significant compression by either discarding the 
coefficients which do not carry much of the energy or, at least coarsely 
quantizing them. 
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In this lesson, we shall first introduce the basic concepts of transform coding 
techniques in a generic sense. Subsequently, we are going to discuss Karhunen-
Loeve transforms (KLT) which is an optimal transformation in terms of the 
retained transform coefficients. We shall study that despite optimal performance, 
KLT is often not the preferred transform coding technique, since the process of 
transformation is heavily image dependent and the computational cost is high. It 
is for this reason that KLT has not been recommended in the international 
multimedia standards for image or video compression. 
 
8.1 Transform Coding 
The basic principle of transform coding is to map the pixel values into a set of 
linear transform coefficients, which are subsequently quantized and encoded. By 
applying an inverse transformation on the decoded transform coefficients, it is 
possible to reconstruct the image with some loss. It must be noted that the loss is 
not due to the process of transformation and inverse transformation, but due to 
quantization alone. Since the details of an image and hence it’s spatial frequency 
content vary from one local region to the other, it leads to a better coding 
efficiency if we apply the transformation on local areas of the image, rather than 
applying global transformation on the entire image. Such local transformations 
require manageable size of the hardware, which can be replicated for parallel 
processing. For transform coding, the first and foremost step is to subdivide the 
image into non-overlapping blocks of fixed size. Without loss of generality, we 
can consider a square image of size N x N pixels and divide it into n2 number of 
blocks, each of size (N/n) x (N/n), where n<<N  and is a factor of N.  
 

 
Fig 8.1:  Block Diagram of Transform Coding System Encoder. 

 
Fig.8.1 shows the block diagram of a transform coding system and fig.8.2 shows 
the corresponding decoder. Although transformation does not directly achieve 
any compression, it prepares the input signal to compression in the transformed 
domain.  
 

 
 

Fig  8.2:  Block Diagram of Transform Coding System Decoder 
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A transformation must necessarily fulfill the following properties – 
 

(i) The coefficients in the transformed space should be de-correlated. 

 
(ii) Only a limited number of transform coefficients should carry most of 

the signal energy (in other words, the transformation should 
possess energy compaction capabilities) and most of the 
coefficients should carry insignificant energy. Only then the 
quantization process can coarsely quantize those coefficients to 
achieve compression, without much of perceptible degradation. 

 
A number of transformation techniques, such as Discrete Fourier Transforms 
(DFT), Discrete Cosine Transforms (DCT), Discrete Wavelet Transforms (DWT), 
K-L Transforms (KLT), Discrete Haar Transforms, and Discrete Hadamard 
Transforms etc. exist that fulfill the above properties, although their energy 
packing capabilities vary. In terms of energy packing, KLT is optimal and we are 
going to study KLT in the latter part of this lesson. 
 
8.2 Generalized forward and inverse transforms 
Several transformation techniques are available, but the choice of the technique 
depends on the amount of reconstruction error that can be available and the 
computational resources available. 
 
Let us consider an image block of size n x n whose pixel intensities are 
represented by ( )21,nns  ( 1,1,0, 21 )−= nnn  where n1 and n2 are the row and 
the column indices of the array. Its general expression for transformation is given 
by 
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where  ( )21,kkS ( 1,1,0, 21 )−= nkk  represents the transform coefficients of the 
block with k1 and k2 as the row and the column indices in the transformed array  
and   is the transformation kernel that maps the input image pixels 
into the transform coefficients. Given the transform coefficients , the input 
image may be obtained as 
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In the above equation,  represents the inverse transformation 
kernel. 

( 2121 ,,, kknnh
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8.2.1 Separable kernel 
A transformation kernel is said to be separable if it can be expressed as a 
product of two kernels along the row and the column, i.e. 
 
( ) ( ) ( 2221112121 ,,,,, kngkngkknng = )

)

…………………………………………………(8.3) 
 
where g1(.) and g2(.) represent the transformation kernels along the row and the 
column directions respectively. By a similar way, the inverse transformation 
kernel too can be separable. Separable transforms are easier to implement in 
hardware, since the transformation can first be applied along the rows (or the 
columns) and then along the columns (or the rows).  
 
8.2.2 Symmetric kernel 
A separable transform is symmetric, if the kernels along the row and the column 
have the identical function, i.e. if   
 
( ) ( ) ( 2211112121 ,,,,, kngkngkknng = …………………………………………………(8.4) 

 
Most of the transformations that we deal with have separable, symmetric kernels. 
For example, the forward and the inverse transformation kernels of Discrete 
Fourier Transform (DFT) for n x n image block is given by  
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and 
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are separable and symmetric. The students can easily derive the row and the 
column transformation kernels by expressing the kernel of equation (8.5) as a 
product of two kernels. This is left as an exercise. 
 
8.2.3 Basis Images 
Equation (8.2) relates the pixel intensities of the image block on an element by 
element basis to the transformation coefficients ( )21,kkS  ( )1,1,0, 21 −= nkk and 
there are n2 number of similar equations, defined for each pixel element. These 
equations can be combined and written in the matrix form 
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where s is an n x n matrix containing the pixels of ( )21,nns  and  
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21 ,kkH is an n x n matrix defined for ( )21,kk . The image block s can therefore be 

realized by a weighted summation of n2 images, each of size n x n, defined by 
equation (8.8) and the weights are provided by the transform 
coefficients . The matrix is known as a basis image corresponding 
to ( . There are n

( 21,kkS )
)

)

21 ,kkH

21,kk 2 such basis images, each of size n x n, corresponding to 
each . Some examples of basis images for typical transforms will be shown 
later. 

( 21,kk

 
8.3 Covariance Matrix 

Since transforms are applied on a block-by-block basis, each block of an image 
may be treated as a random field. A block may be represented by a n2  -
dimensional random variable vector x, whose elements are composed by the 
lexicographic ordering of pixel intensity values. We define a vector b, such that 
 

[ ]xxb E−= …………………………………………………………………………(8.9) 
 
where, E[.] is the expectation operator. The expectation of x can be obtained 
from the  
mean of the random variable x over all the blocks present in the image. Thus, 
 

μ−= xb ……………………………………………………………………………(8.10) 
 
where, 
 

∑
∀

=
i

i
BN

x1μ ,……………………………………………………………………….(8.11) 

 
i is the block index and NB is the total number of blocks. 
The covariance matrix  computed over blocks of size n x n is defined by bR
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( )( )[ ] [ TT
b EE bbxxR =−−= μμ ]…………………………………………………(8.12) 

 
where, as before, the expectation is calculated by averaging over all the blocks. 
Since b is an n2  -dimensional vector, its outer product realizes an n2 x n2 –
dimensional matrix, which is the size of . The matrix  is real and symmetric 
and it is possible to find a set of orthonormal eigenvectors.  

bR bR
2n

Let and ie iλ , be the eigenvectors and the corresponding 
eigenvalues, arranged in non-increasing order, such that 

2,,2,1 ni =

1+≥ jj λλ  for 

.  1,,2,1 2 −= nj
By the basic definition of eigenvectors, 
 

jjj eeRb λ=  …………………………………………………………………..……(8.13) 
 
Pre-multiplying both the sides of equation (8.13) by  and noting that  
for orthonormal eigenvectors, it follows that 

T
je 1=j

T
j ee

 
jj

T
j λ=eRe b  …………………………………………………………..…………..  (8.14) 

 
We now compose a   matrix Γ of dimension , whose rows are formed 
from the eigenvectors of , ordered such that the first row of  is the 
eigenvector corresponding to the largest eigenvalue and the last row is the 
eigenvector corresponding to the smallest eigenvalue. Considering all the 
eigenvectors, we can write equation (8.14) in matrix form as 

22 nn ×

bR Γ
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bR  ……………………………………………….……………………….  (8.15) 
 
where, Λ is a diagonal matrix of ordered eigenvalues, defined as 
 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ

200

000
000

2

1

n
λ

λ
λ

 ……………………………………...………………. (8.16) 

 
Pre-multiplying equation (8.15) by TΓ , post-multiplying by Γ and noting the 
orthonormal properties of matrix Γ, i.e., 1−Γ=ΓT , we obtain 
 

ΛΓΓ= T
bR  …………………………………………………………………………(8.17) 
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8.4 K-L Transforms 
If we use the matrix  to map the block of nΓ 2  -dimensional  vector b into a 
transformed block of n2  -dimensional vector y, defined by 
 

by Γ= ……………………………………………………………………………… (8.18) 
 
the transformation is called Karhunen-Loeve transforms (KLT). 
  
The covariance matrix of the y’s is given by yR
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The pre-multiplication of  by bR Γ  and post-multiplication by TΓ diagonalizes   
into a diagonal matrix Λ of eigenvectors and the matrix can be written as 

bR

yR
 

Λ=yR ………………………………………………………………..……………(8.20) 
 
The covariance matrix  has the same eigenvectors and eigenvalues as that of 

, but its off-diagonal elements are zero, which signifies that the elements of 
the transform-domain vectors y are uncorrelated. Using equation (8.18), it is 
possible to recover vector b as 

yR

bR

 
yb 1−Γ= ………………………………………………………………………….…(8.21) 

 
Using equation (8.10) and orthonormality property ofΓ , it is possible to 
reconstruct the original block x as  
 

μ+Γ= yx T   ……........................................................................................... (8.22) 
 
The above equation leads to exact reconstruction. Suppose that instead of using 
all the  2n
eigenvectors of , we use only k eigenvectors corresponding to the k largest 
eigenvalues and form a transformation matrix 

bR

kΓ of order . The resulting 
transformed vector  therefore becomes k-dimensional and the reconstruction 

2nk ×
ŷ
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given in equation (8.22) will not be exact. The reconstructed vector  is then 
given by 

x̂

 
μ+Γ= yx ˆˆ T

k  ………………………………………………………………...…… (8.23) 
 
8.5 Optimality of K-L Transform 
To show that K-L Transform is optimal in the least square error sense, we first 
establish a relation between the variance of the original data vector x and the 
eigenvalues.  
 
If we project the mean-removed vector b, defined in equation (8.10) into any of 
the eigenvectors ( )2,,2,1 njj =e , the projection is defined by the inner 
product of the vectors b and  is given by je
 

beeb T
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TA == …………………………………………………………..………. 8.24) 
 
The variance of the projection is therefore given by 2σ
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By projecting the vector b into all the eigenvectors and using equation (8.14), 
we obtain the total variance as 
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By considering only the first k eigenvectors out of , the variance of the 
approximating signal in the projected space is given by 

2n

 

∑
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2 λσ ………………………………………………………….……………… (8.27) 

Thus, the mean-square error in the projected space by considering only the 
first k components can be obtained by subtracting equation (8.27) from equation 
(8.26)  

mse
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Since, the transformation is energy-preserving, the same mean-square error 
exists between the original vector x and its approximation x . It is evident from the 
above equation that the mean square error is zero when , i.e., if all the 
eigenvectors are used in the transformation. Since the 

ˆ
2nk =

jλ ’s decrease 
monotonically, the error can be minimized  by selecting the first k eigenvectors 
are associated with the largest eigenvalues. Thus, K-L transform is optimal in the 
sense that it minimizes the mean-square error between the original input vectors 
x and their approximations .  x̂
 
8.6 Practical limitations of K-L Transforms 
Despite the optimal performance of K-L transforms, it is rarely used in practice 
because of the following limitations: 
 

(i) The transformation matrix for a block of image is derived from the 
covariance matrix, which needs to be computed for every block. This 
makes the transformation data dependent and involves non-trivial 
computations. 

 
(ii) Perfect de-correlation in transform domain is not possible, since rarely, 

the image blocks can be modeled as a random field. 
 

(iii) No fast computational algorithms are available for its implementation. 
 

Other transform-domain approaches, such as DFT, DCT etc. on the other hand 
are not image dependent and work on fixed basis images. Moreover, fast 
computational algorithms and efficient VLSI architectures are available for these 
transforms. It is seen that the sinusoidal transforms, such as the DFT or the DCT 
more closely approximate the information packing capability of the optimal K-L 
transforms. 
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Questions 

 
NOTE: The students are advised to thoroughly read this lesson first and then 
answer the following questions. Only after attempting all the questions, they 
should click to the solution button and verify their answers.  
 

PART-A 
 
A.1. Distinguish between spatial domain and transform-domain compression 

approaches. 

A.2. State the basic objectives of transform coding. 

A.3. Write the general expressions for forward and inverse transforms. 

A.4. Define separable transforms with an example. 

A.5. Define symmetric transforms with an example. 

A.6. Define K-L transform and its inverse, applied on a block of image. 

A.7. Express the covariance matrix of a block in terms of its eigenvalues and 

eigenvectors. 

A.8. Show that K-L transforms are optimal in least square error sense when a 

limited number of non-decreasingly ordered eigenvalues and the corresponding 

eigenvectors are considered. 

A.9. Why are transforms like DCT, DFT etc. are preferred over K-L transforms 
from practical implementation considerations. 
 

PART-B: Multiple Choice 
In the following questions, click the best out of the four choices. 
B.1 A transformation kernel for an N x N image block, as given  
 
 

by ( ) ( ) ( )
N

kkknkn
N

kkknknkknng
2

22cos
2
1

2
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2
1,,, 212211212211
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−+−

+
+++

=
ππ  is 

 
 
 (A) neither separable, nor symmetric. 

 (B) separable, but not symmetric. 

 (C) not separable, but symmetric. 

 (D) both separable and symmetric. 
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B.2 The 2x2 basis images in an image transform are given by 
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       The transform-domain coefficients S(k1,k2) are given by 
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B.3 The inverse transformation kernel for a 2x2 image block is given by 
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B.4 A 2x2 block image is represented by the vector  [ ]T5225=x . The mean 
vector computed over the entire image is given by  [ ]T11113=μ . The 
covariance matrix for the given block is  
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(A)      (B)   
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B.5 Which of the following matrices can qualify to be a Λ matrix ? 
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 (A) Only matrix-(i) 

 (B) Only matrix-(iv) 

 (C) Matrices (ii) and (iv) 

 (D) All four of them. 

 

B.6 The number of eigenvalues of the covariance matrix for an 8x8 image block 
will be 
 
 (A) 8 

 (B) 64 

 (C) 512 
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 (D) 4096 

B.7 For an 8x8 image block, the number of elements in the Γ matrix will be 
 

(A) 8 

 (B) 64 

 (C) 512 

 (D) 4096 

B.8 The Γ matrix must necessarily fulfill the following condition: 
 
 (A)  1−Γ=ΓT

 (B) Γ=Γ  T

 (C)  1−Γ=Γ

 (D) It is a diagonal matrix. 

B.9 A 2x2 block image has the following eigenvalues for its covariance matrix: 
 

1,2,4,8 4321 ==== λλλλ  
 
 The eigenvector corresponding to the smallest eigenvalue is dropped while 
performing K-L transform. The ratio of mean-square reconstruction error to the 
signal variance is 
 
 (A) 1:15 

(B) 2:15 

 (C) 8:15 

 (D) 14:15. 

PART-C: Problems 
C-1.  
(a) Write a computer program to lexicographically order an 4x4 block into a 16-
dimensional vector and compute the mean vector and covariance matrix by 
considering non-overlapping 4x4 blocks over an image from the archive. 
 
(b) Apply K-L transformation on the image after retaining only top 4 eigenvalues 
and the corresponding eigenvectors of the covariance matrix. 
 
(c) Apply inverse K-L transformation on the above and reconstruct the image. 
Compute the PSNR of the reconstructed image. 
 
C-2.  
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(a) Consider the first six frames of the video sequence “Foreman”. Compose 6-
element vectors by picking up pixel values at the same spatial position over six 
consecutive frames.  
 
(b) Determine the mean of these 6-element vectors, considering all spatial 
positions. Compute the 6x6 covariance matrix and determine its eigenvalues and 
the corresponding eigenvectors. Retain only top two of these eigenvalues and 
the corresponding eigenvectors  
 
(c) Obtain the top two principal component images by projecting the vectors 
(obtaining dot-products) on the two principal eigenvectors and display the results. 
 
(d) Apply inverse K-L transformation and obtain the reconstructed frames. 
Compute the PSNR of each reconstructed frame. 
 

 
 
 
 
 
 

 
SOLUTIONS 

 
A.1

A.2 

A.3

A.4

A.5

A.6 

A.7

A.8

A.9 

 
 

B.1 (D) B.2 (B) B.3 (A) B.4 (C) B.5 (C) 

B.6 (B) B.7 (D) B.8 (A) B.9 (A). 

 
C.1

C.2 
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