Module 2 : Signals in Frequency Domain
Lecture 20 : Properties of Fourier Transform

Objectives

In this lecture you will learn the following

Behaviour of the Fourier Transform w.r.t. differentiation and integration

Behaviour of the Fourier Transform w.r.t. scaling of the independent variable by a real constant a.
Behaviour of the Fourier Series w.r.t. time shifting

Behaviour of the Fourier Series w.r.t. differentiation

Behaviour of the Fourier Series w.r.t. scaling of the independent variable

Behaviour of the Fourier Series w.r.t. multiplication by t

Differentiation/Integration
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Scaling of the independent variable by a real constant a
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Hence the scaling of the independent variable is a self-dual operation.
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Hence, x(t) and |a|1/2 x(at) have the same energy. Therefore such scaling is called energy normalized scaling of the independent
variable.

Properties of Fourier Series.

Using the properties we just proved for the Fourier Transform, we state now the corresponding properties for the Fourier series.
Time-shift

Recall, that if x(t) is periodic then X(f) is a train of impulses.

x(§) =T X(f) where X(f) =3¢, 8(F - k)

We know: x(f =) —2—s g 1380 ¥y

Thus if x(t) is periodic with period T , x( t - tg) has Fourier series coefficients ﬁx;.f
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Differentiation

If the periodic signal is differentiable then
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Thus if x(t) is periodic with period T , x'(t) has Fourier Series coefficients 2 - j'E Ck .
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Scaling of the independent variable
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If a > 0, x(at) is periodic with period ( T / a ) and now ¢y becomes Fourier coefficient corresponding to frequency
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If a < 0, x(at) is periodic with period ( T / -a) and now cy becomes Fourier coefficient corresponding to frequency

Multiplication by t

Multiplication by t of-course will not leave a periodic signal periodic. But what we can do is, multiply by t in one period, and then consider
a periodic extension. i.e: x(t) is periodic with period T, we see what the Fourier series coefficients of y(t), defined as follows is:
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This idea is not of much use without knowledge of E(f:l



Conclusion:

In this lecture you have learnt:

Properties of the Fourier Transform w.r.t. differentiation and integration

Properties of the Fourier Transform w.r.t. scaling of the independent variable by a real constant a.
Properties of the Fourier Series w.r.t. time shifting

Properties of the Fourier Series w.r.t. differentiation

Properties of the Fourier Series w.r.t. scaling of the independent variable

Properties of the Fourier Series w.r.t. multiplication by t

Congratulations, you have finished Lecture 20.



