
Module 3 : Wave Model
Lecture 3.1 : Wave Model - I

   Objectives
   In this lecture you will learn the following

Analysis of cylindrical waveguides

Characteristic Equation (Eigen Value Equation)

Modes of optical fiber

 MODAL PROPAGATION INSIDE AN OPTICAL FIBER (WAVE MODEL-I)
1. Basics
1. There are certain limitations to ray model.

2. The ray model does not predict correctly that even after total internal reflection there will
be some field in the cladding
Also it does not predict that rays can be launched at only discrete angles in an optical fiber.

3. For an accurate and complete description of light propagation inside an optical fiber we
have to go in for a more
rigorous model, called the WAVE MODEL. Here we shall discuss the propagation of light
inside an optical fiber, treating light as an electromagnetic wave.

4. Inside a fiber core the optical energy gets guided i.e. the energy propagates along the axis
of the core and the fields
exponentially decay in the cladding away from the core-cladding interface.

5. In a practical fiber the cladding is surrounded by a protective layer. Generally, by the time
the field reaches that layer, it

 

dies down significantly so that the protecting layer does not affect the propagation of the
wave significantly. That is, the whole propagation of light is governed by the core cladding
interface and the interface between the cladding and other protecting layers does not affect
the propagation. In other words, we can take the cladding to be of infinite size in our
analysis, without incurring significant error.

  
2. Analysis of cylindrical waveguides (Optical Fiber)

 

   
Figure (1)



1.
As shown in Figure 1, the core of the optical fiber is a cylinder of radius , and of refractive
index . The refractive index
of cladding is and the cladding is of infinite radius.

2.
The appropriate coordinate system to analyze this problem is the cylindrical coordinate
system, . The wave
propagates in the direction and the fields have definite distributions in the cross sectional
plane, defined by . Any radial direction from the center of the fiber is denoted by and

the azimuthal angle measured from a reference axis (x-axis) in the cross-sectional plane is
denoted by .

3. To investigate an electromagnetic problem we start with the Maxwell's equations. Here we
investigate the propagation of
light in the fiber without worrying about the origin of the light inside the fiber. In other
words we assume that the Maxwell's equations which govern the electromagnetic radiations
inside the fiber are source free .

4. Maxwell's equations for a source-free medium (i.e., the charge density and the conduction
current densities in the
medium are zero):

(a)                 (1)

(b)                 (2)

(c)     (3)

(d)    (4)

where is the electric displacement vector, B is the magnetic flux density, E is the electric
field, and H is the magnetic field intensity.

 

We have two more equations, called the constitutive relations, as

where is the permeability of the medium and is the permittivity of the medium.

 
Now we have to decouple the equations (3) & (4).

For this, we take curl of equation (3) as

Substituting for and interchanging the space and time derivatives, we get

(Since we assume a homogeneous medium, is not a function of space).



 
Now substituting from eqn.(4) we get

From vector algebra we have the identity

 

so the above equation can be simplified to

For a homogeneous medium is not a function of space. Eqn (1) then gives 
.

          

Substituting in above eqn.

we get

(5)

This equation is called the Wave Equation .

If we do the similar analysis for the magnetic field we get the same wave equation for the
magnetic field

(6)

To analyse the propagation of light inside an optical fiber, we have to solve the wave
equation with appropriate boundary conditions.

5. Since we have chosen the cylindrical coordinate system , we

 write the wave equation for the electric field (and magnetic field) in the cylindrical



coordinates as:

 (7)

1.
The electric field, is a vector quantity having three components and the magnetic filed, 

is a vector quantity

also having three components. So we have total 6 field components. However all these
components are not independent of each other since are related through the
Maxwell's equations. We can take two components as independent components and express
the remaining four components in terms of the independent components. Since in this case
the wave propagates along the axis of the fiber i.e., in the direction, generally the two
components, (also called the longitudinal components) are taken as independent
components and the other four transverse field components i.e., are expressed
in terms of these two components.

The wave equation is solved for the two longitudinal components and the transverse
components can be obtained by substitution of the longitudinal components in the Maxwell's
equations.

7.
(a) The transverse components are related to the longitudinal components as

 

where ( is the propagation constant of the wave along the axis of the fiber.
This parameter is defined subsequently)

b)
The wave equation is to be solved for and which are scalar quantities. So in general
the wave equation is

solved for a scalar function , where represents either or .

Writing the above wave equation in terms of the scalar function we get

 

________ (8)

8. For a general solution of the wave equation we apply separation of variables. We assume
the solution as



 

Let us assume that the fields are time harmonic fields, that is, all electric and magnetic field
components have time variation . That is,

                    

Equation (8) then becomes

a) Since the energy has to propagate along the axis of the fiber, the solution should be a
traveling wave type solution

along the axis, that is, the direction. If a wave travels in direction then its z-variation
should be . That is to say that

b)
Now to fix the variation we can use the following argument . From Figure1 we can note
that, if we move only in the 

 

direction i.e., in the azimuthal direction in a cross sectional plane, after one complete
rotation we reach to the same location. In other words, the function is periodic in over 

. In direction, the function is a harmonic function that is,

where is an integer. This functional form represents a field which will repeat itself after
one rotation or when changes by multiples of .

Substituting for the in the wave equation the only unknown function remains
to be evaluated is .

The wave equation therefore becomes

   (9)

Since as was defined earlier, the final wave equation will be



 

_________ (10)

This equation is the Bessel's equation and solutions of this equation are called the
Bessel functions .

Field variation in the transverse plane in the radial direction will be governed by the Bessel's
equation and the field distributions would be Bessel functions. 

9. We have a variety of solutions to the Bessel's equation depending upon the parameters

 

and . is an integer and a positive quantity. 
Depending upon the choice of i.e., a) real, b) imaginary, c) complex, 
we get different solutions to the Bessel's equation. So to choose the proper solution we
must have the physical understanding of the field distribution.

Here we use the physical understandings gathered from the ray model of the light
propagation.

 

           
Figure (2)

 



                        Figure (3): Wave Interference

  

a) We have seen from the ray model that the rays can be launched at discrete angles inside an
optical fiber. For a

 

particular launching angle all the rays which lie on the surface of a cone are equip-probable
rays. Basically the ring of rays is simultaneously launched inside the optical fiber (as shown
in the figure 2). Each ray has a wave front associated with it. The wave fronts
corresponding to the rays will interfere. Somewhere the interference is destructive and
somewhere it is constructive. So when the wave fronts move inside the core of the fiber
they exhibit field distributions which have maxima and minima (see fig.3).

  

(b) When total internal reflection takes place, the field must decay away from the core cladding
boundary. If the field does

 
not decay, then the energy is not guided along the fiber axis and the energy is lost. Here,
since we are interested in the guided fields, we accept only those field distributions which
decay away from the core-cladding interface.

 

So the physical understanding of the problem suggests that a solution which has an
oscillatory behavior inside the core and decaying behavior inside the cladding is the
appropriate choice. Any other solution is not acceptable because it is not consistent with the
physical understanding of the modal propagation.

10. Let us now look at the plot of the Bessel functions for various possibilities of (argument).
There are three different types

of Bessel functions depending upon the nature of .

(a) If is real then the solutions are

Bessel functions

Neumann functions



The quantity is called the order of the function and is called the argument of the
function. Plots of the two functions as a function of their arguments are shown in the Figure
4-5.

 

Figure (4) Figure (5)                                                     

 

We can see from figure 4 that except , all the other Bessel functions go to zero as the
argument goes to zero. Only approaches as its argument approaches zero. All Bessel
functions have oscillatory behavior and their amplitude slowly decreases as the argument
increases. 
Figure 5 shows the behavior of the Neumann function as a function of its argument, .

The important thing to note is, the Bessel functions are finite for all values of the
argument, whereas the Neumann functions are finite for all values of argument except zero.
When the argument tends to zero, the Neumann functions tend to .

(b ) If is imaginary, we get solutions of the Bessel's equation as

 These are called the Modified Bessel functions of first and second kind respectively.

Note: Since is imaginary, is a real quantity. So the argument of the modified
Bessel functions is real.

 



           Figure (6) Figure(7)

 

The modified Bessel functions are shown in the figures 6 and 7. The functions are

monotonically increasing functions of , and functions are monotonically

decreasing functions of .
(c) If is complex

Then the solutions are

Hankel function of kind

Hankel function of kind

In our analysis, will either be real or imaginary. Therefore we have to deal with Bessel,
Neumann and Modified Bessel functions only. The Hankel functions are needed for
analyzing propagation in a lossy medium.

(d)
Now , where is the propagation constant of the wave along the direction.
If we assume the

situation is lossless i.e. when the wave travels in the direction, its amplitude does not
change as a function of , then should be a real quantity.

If becomes imaginary, the function becomes an exponentially decaying function, and
there is no wave propagation.

(e) For wave propagation inside an optical fiber we assume that the material is lossless.

Then the dielectric constant is a real quantity. This makes

a real quantity.

Also for a propagating mode is a real quantity.

 

Hence, is also a real quantity albeit it can be positive or negative. In other
words, can be real or imaginary depending upon whether is greater or lesser than 

. Hence for a lossless situation, solution cannot be given by the Hankel functions.

For a lossless case, we have a solution which is a linear combination of either Bessel and
Neumann functions or modified Bessel functions of first and second kind.

  

(f) As far as guided wave propagation is concerned, the fields should have oscillatory behavior
inside the core, and in

cladding the field must decay monotonically. Therefore it is obvious that inside the core the
Modified Bessel functions is not the proper solution. Only Bessel function or Neumann
function could be solutions inside the core.

Let us take dielectric constant for the core. Then we have



For oscillatory type of solution inside the core, is positive. Therefore for a guided mode
we must have

i.e., 

Where is the wave number in the free space and is nothing but the wave

number in an unbound medium of refractive index .

 
(g) Let us denote by u inside the core, giving
 

(h )Let us now re-look at the two functions, Bessel functions (fig.4) and Neumann functions
(fig.5), and make following

 observations.

 

Bessel function: The functions are finite for all values of .

Neumann Function: The functions start from at and have finite value for
all other values of r.

For the core represents the axis of fiber. Therefore if Neumann function is chosen as a
solution, the field strength would be at the axis of the fiber which is inconsistent with the
physical conditions. The fields must be finite all over the cross section of the core. So the
Neumann functions cannot be the solution if point is included in the region under
consideration.

Therefore we conclude that only is the appropriate solution for the modal
fields inside the core of an optical fiber.

11. Field distribution in the cladding is of monotonically decaying nature. We therefore must
have imaginary in the

 

cladding. We hence should have

where is the refractive index of the cladding. 

Since is negative, let us define a real quantity such that 

.

Let us now look at the modified Bessel's functions, as shown in figures 6 & 7. For modified
Bessel's functions of the kind, as increases, that is, as we move away from the axis of
the fiber the field monotonically increases and when field goes to infinity. Since the
energy source is inside the core, the fields cannot grow indefinitely away from the core. The
only acceptable situation is that the field decays away from the core i.e., for larger values of

. This behavior is correctly given by the Modified Bessel function of second kind, . 
So we conclude that the modified Bessel function of 1 st kind is not
appropriate solution in the cladding. The correct solution would be only Modified
Bessel function of 2 nd kind, .



12
(a)

In all then, the fields inside the core are given by and in the cladding are given by 
.

(b) For a guided mode, the propagation constant lies between two limits and .

 
If then a field distribution is generated which will has an oscillatory behavior in
the core and a decaying behavior in the cladding. The energy then is propagated along fiber
without any loss.

(c) Field distribution: From the solution of the wave equation we get the longitudinal fields
inside the core and the

 

cladding as

Inside Core 

Electric field:

(11a)

Magnetic field:

(11b)

In Cladding 

Electric field:

(11c)

Magnetic field:

(11d)

 
Where are arbitrary constants which are to be evaluated from the boundary
conditions.

(d) Once we get the longitudinal components of the electric and magnetic fields, we can find
the transverse field

 

components inside the core and the cladding way the relations given above.

Applying the boundary conditions i.e., the tangential components of electric field and the
tangential components of magnetic field are continuous along the core cladding boundary,
we get what is called the characteristic equation of the mode.

(e) The tangential components at the core cladding boundary are the and the components.

The boundary conditions are then given as:

At  ,

1. 

2. 



 
3. 

4. 

The boundary conditions give four equations in terms of arbitrary constants, and
the modal phase constant, .

(f)
We find the equation for the propagation constant, of the wave, by eliminating the
arbitrary constants. Elimination of

 the arbitrary constants gives the characteristic equation of mode inside an optical fiber as

 

Characteristic Equation (Eigen Value Equation)

       (12a)

where denotes derivative with respect to the argument i.e.,

.

The characteristic equation contains three unknowns namely . However, there are two
more equations

          (12b)

         (12c)

So using the equations (12a), (12b) & (12c) we can find the modal propagation constant .

(h) If is real, the mode propagates and if is imaginary the mode is evanescent.

  

(i) We have to use numerical techniques to solve the characteristic equation for a given value
of . We get multiple

 
solutions to the problem and each solution gives one mode for a given value of . So
depending upon the fiber radius, different number of modes propagates inside an optical
fiber.

3. Modes of optical fiber
1. A mode can be characterized by two parameters, and the solution number.
  
2

(a)
If we take , all field components are expressed in terms of and whatever fields we
get, they do not have any

 

magnetic field component in the direction of propagation. We call this mode the
Transverse Magnetic mode (TM mode).

Similarly if , the mode is called the Transverse Electric mode (TE mode).



(b)
If both the longitudinal components of the fields ( and ) are non-zero then we call the
mode the Hybrid mode.

 This mode is a combination of TE and TM modes.
(c) So inside an optical fiber we have three types of modes
1. TE modes
2. TM modes
3. Hybrid modes

(d)
For a hybrid mode, if we calculate the contribution by and to the transverse fields,
one of them i.e. or would

 

dominate. Depending upon which of them contributes more, we can sub-classify the Hybrid
modes. 
If Dominates EH mode 
If Dominates HE mode

  

4. Each of the above three modes are characterized by two indices, and (solution number).
The mode are therefore

 designated as & 
  

5. What do these two indices physically mean?

 
In a rectangular wave guide, they represent the number of half cycle variations and the
number of zero crossings in the x direction and in y directions. The same thing is applicable
in this case also.

(a) If , the function is constant and the field distribution is circularly symmetric.

(b)
For we get the one cycle variation in direction, if we get two cycle variation in
the direction, and so on.

(c) The first index of the mode therefore gives the zero crossings in the azimuth of the cross
section of the optical fiber.

 

The second index tells us how many zero crossings the field distribution has in the radial
direction. So if we fix all other parameters and just move radially outwards, how many zero
crossings the field variation would see is essentially given by the second index. If we don't
have any zero crossing then we have , if we have one zero crossing then , and
so on.

6. For the characteristic equation (12a) becomes

 
    (13a)

So either of the brackets could be equal to zero.

(a) If we take first bracket equal to zero, the equation gives the characteristic equation of the
transverse electric mode.

 Similarly, the second bracket equal to zero, gives the characteristic equation of the
transverse magnetic mode.

  
Since represents transverse electric and transverse magnetic modes, the and 



(b)
modes have field

 distributions which are essentially circularly symmetric.

 
If then we always get a field distribution which is hybrid. So the transverse electric and
transverse magnetic fields have only radial variation, and they do not have any variation in
the direction.

  
(c) If we take the first bracket equal to zero, we get

 

________ (2-13b)

This is the characteristic equation for mode.

We get multiple solutions for this equation because function is an oscillatory Function.

Using recurrence relation for the Bessel function, we have and 
.

 

The characteristic equation for the mode therefore becomes

Similarly the characteristic equation for the mode is

.

Important: Inside an optical fiber a finite number of modes propagates. Also a particular
mode propagates if the frequency of light is greater than certain value. For a given optical
fiber it is then important to find the frequency range over which a particular mode
propagates. This aspect is discussed in the next module.

   Recap

   In this lecture you have learnt the following

Analysis of cylindrical waveguides

Characteristic Equation (Eigen Value Equation)



Modes of optical fiber

  

 

 

Lecture 3.2 : Wave Model - II

 

   Objectives
   In this lecture you will learn the following

Cut off frequency of a mode

V Number of Optical Fiber

E-field distributions for various modes

Cut off conditions for various modes

Objective of Modal Analysis

Weakly Guiding Approximation

Linearly polarized modes

 MODAL PROPAGATION INSIDE AN OPTICAL FIBER (WAVE MODEL-II)
1. CUT OFF FREQUENCY OF A MODE

 
As seen earlier, has to be real for a propagating mode. The frequency range over which 

remains real therefore is important information. It can be shown that for to be real the
frequency of the wave has to be greater than certain value, called the cut-off frequency.

1 . Cutoff frequency is defined as the frequency at which the mode does not remain purely
guided. That is, when a guided

 mode is converted into a radiation mode.
2. The cut-off is defined by (and not as is usually done for the metallic waveguides)

 

where, , and is propagation constant in cladding .

If is real we get the guided mode



and if is imaginary we get radiating mode

3. At cut off frequency

 

since ,

       

which means that the propagation constant of the wave approaches the propagation
constant of a uniform plane wave in the medium having dielectric constant .

2 . V Number of Optical Fiber

1. The V-number is one of the important characteristic parameters of a step index optical fiber.
V-number of an optical fiber

 
is defined as 

(1)

 

Now since

and 

we have 

If we multiply both sides by we get

(2)

At the cutoff when , we have number.

The V-number provides information about the modes on a step index fiber. As can be seen,
the V-number is proportional to the numerical aperture, and radius of the core, and is
inversely proportional to wavelength .

 E-field distributions for various modes:



 

Mode (fig 1)

Mode (fig 2) 

Mode (fig 3)

 

Mode (fig 4)

 

It can be noted from the table that for the mode at cut-off . That is, 
mode does not have any cut off.

 

mode is a special mode as it always propagates. This mode does not have a cutoff.

From table, we note that, mode shows cutoff when . The cut off for 



and modes is given by . Hence we note that the cutoff frequencies of 
and is the same. Since (first root of Bessel function), below 

only mode propagates.

Important: (i) The lowest order mode on the optical fiber is the mode.

(ii) The fiber remains single mode if its V-number is less than 2.4.

 

For modes we have

since it is the maximum value of for guided wave propagation.

For single mode propagation,

, 

For a typical fiber the numerical aperture = 

This gives

(3)

So the effective radius is very small for single mode optical fiber which is why the normal
light source will not become the source. Only LASERS type source is essential to launch light
inside single mode optical fiber and the cross section becomes so small that it accepts only
one ray corresponding to mode.

3. CUT OFF CONDITIONS FOR VARIOUS MODES

 

The table gives the value of at cut off for different modes

MODES CUTOFF



where is the root of the Bessel function.

  

4. Objective of Modal Analysis

a. Primarily we are interested in velocity of different modes since this information helps in
obtaining the amount of the

 pulse spread, i.e., dispersion.
b. The phase and group velocities of a mode are given as

 

Phase velocity 

Group velocity 

c. Variation of as a function of frequency is the primary outcome of the model analysis.

 

From equation (1) we note that V number 

(4)

 

For a given fiber, the radius is fixed and the numerical aperture is also fixed. We

therefore get

(V number is proportional to the frequency of the wave).

Since V is proportional to , instead of writing variation of in terms of , we can obtain
variation of as a function of V-number of an optical fiber. The V-number hence is called
the Normalized frequency.

d. For a guided mode we have

The value of can vary over a wide range depending upon the fiber refractive indices and

the wavelength.



Let us therefore define the Normalized propagation constant as

(5)

always lies between 0 and 1.

 
We can see from the above equation that if mode is very close to cutoff, then  and 

.

 

On the other hand when a mode is very far from cutoff then and .

A plot of v/s V is called the diagram (fig.5). The diagram is the characteristic
diagram for propagation of modes in a step index optical fiber.

 

Diagram (fig 5)

 Explanation of b-V diagram :

(a)
The plot for every mode is a monotonically increasing function of the V-number. Every
plot starts at and

 
asymptotically saturates to . That suggests that the modal fields get more and more
confined with increasing .

(b) The mode propagates for any value of .

(c) modes propagate for .

(d) All the mode which have cut-off V-number less than the V-number of the fiber, propagate
inside the fiber.



  
5. Weakly Guiding Approximation

 

For a practical fiber, the difference is the refractive indices of the core and the cladding is
very small. This justifies certain approximation in the modal analysis. This approximation is
called the ‘weakly guiding approximation'. The characteristic equations then can be
simplified in this situation. The approximate but simplified analysis can provide better insight
into the modal characteristics of an optical fiber. In weakly guiding situation there is
substantial spread of fields in the cladding. The optical energy is not tightly confined to the
core and is weakly guided.

  

a.
For weakly guiding fibers, all the modes which have same cutt-off V-numbers degenerate,
that is, their curves

 

almost merge. For example, for a weakly guiding fiber, the three modes 
would degenerate. These modes then have same phase velocity. The modal fields
corresponding to the three modes the travel together with same phase change.
Consequently the three modal patterns are not seen distinctly but we get a super imposed
field distribution.

  

b. The superimposed field distributions are linearly polarized in nature. That is, the field
orientation is same every where

 

in the cross-sectional plane. Since the fields are linearly polarized, the modes are designated
as the Linearly polarized (LP) modes.

As an example we can see that (see Fig. 6)

c. If mode superimposes on to mode, the field distribution is horizontally polarized.

d. If mode superimpose on to mode the field distribution is in vertically polarized.

 

Fig-6



  
6. LINEARLY POLARIZED MODES

1.
Modes are not the fundamental modes like the and hybrid modes of an optical

fiber. However, since we are

 

unable to distinguish the fundamental modes inside a weakly guiding fiber, we get a field
distribution which looks like a linearly polarized mode. The modes also have two indices.
Consequently the modes are designated as modes. The mapping of fundamental
modes to modes is given in the following:

 

(6a)

(6b)

, (6c)

2. The total number of modes propagating inside a fiber is approximately given as

 
The relation is approximate and is useful for large V-numbers. The approximations are
reasonably accurate for .

  
 Conclusion :

 

The light propagates in the form of modes inside an optical fiber. Each mode has distinct
electric and magnetic field patterns. On a given fiber, a finite number of modes propagates
at a given wavelength. Intrinsically the model fields could be or Hybrid, however for
weakly guiding fibers modal fields become linearly polarized. The diagram is the
universal plot for a step index fiber. The diagram provides information regarding the cut-off
frequencies of the modes, and the number of propagating mode, phase and group velocities
of a mode. As will be seen in the next module, the modal analysis provides the base for
estimating dispersion on the optical fiber.

   Recap
   In this lecture you have learnt the following

Cut off frequency of a mode

V Number of Optical Fiber

E-field distributions for various modes

Cut off conditions for various modes



Objective of Modal Analysis

Weakly Guiding Approximation

Linearly polarized modes

  
  
  

 Congratulations, you have finished Module 3. To view the next lecture select it from the
left hand side menu of the page
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