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1 Introduction

In the previous lecture we discussed the role of quantum Fourier transform (QFT) in

determining the periodicity of a function. We found through an example that if we have

an oracle to determine a periodic function which has as its input the linear combination

of computational basis states in the first register and a null state in the second register,

the oracle would compute the function for each of the basis states and output it into the

second register. The two registers are therefore entangled. If after the oracle has output

the function, we subject the first register through a Fourier transform. After this if we

measure the first register, we would get a state in the second register which depends on

the period of the function, i.e., the periodicity determines the non-vanishing states of the

first register. We now ask the question as to whether a unitary operation exists which

performs the aforesaid task.

2 Unitary Operator Determining Fourier Transform

How does one carry this out? In other words, is there a unitary operation, which acting on

a given sate will create a new state whose expansion in terms of the basis has coefficients

which are Fourier transforms of the coefficients in the expansion of the original state in

the same basis?

Consider a state | ψ〉 =
∑

x αx | x〉. we wish to find U such that

| ψ′〉 = U | ψ〉 = U
∑
x

αx | x〉

=
∑
y

α̃y | y〉

1
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where

α̃y =
1√
N

N−1∑
x=0

ωxyαy

The operator U clearly exists and is given by

U =
N−1∑
y,z=0

e2iπyz/N√
N

| y〉〈z |

because,

U | ψ〉 =
N−1∑
y,z=0

e2iπyz/N√
N

N∑
x=0

α|y〉〈z || x〉

=
N−1∑
y,z=0

e2iπyz/N√
N

αz | y〉

=
N−1∑
y=0

α̃y | y〉

where

α̃y =
1√
N

N−1∑
z=0

e2iπyz/Nαz

Starting with the standard computational basis | x〉, we can now define a new basis

| x̃〉 = U | x〉
which has the following property

| 〈x̃ | y〉 |2 = 〈y | x̃〉〈x̃ | y〉
= 〈y | U | x〉〈x | U † | y〉

=
ωxy√
N
· ω
−xy
√
N

=
1

N

Thus, | x̃〉 is an equal superposition of all computational basis states as well. However,

this is different from the state obtained by application of the Hadamard transform on a

null vector as unlike in the case of Hadamard transformed state, the coefficients in this

case all complex.

2.1 Implementation

Before constructing a circuit which implements QFT, it is instructive to consider simple

case of n = 1 and n = 2.

Consider n = 1. Let | x〉 be a one qubit basis state. The Fourier transform is given by

| x̃〉 =
1√
2

∑
y∈0,1

e2iπxy/N | y〉 =
1√
2

(
| 0〉+ e2iπx/2 | 1〉

)
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Since x/2 can be written in a binary decimal formal as 0.x, we have

| x̃〉 =
1√
2

(
| 0〉+ e2iπ(0.x) | 1〉

)
Consider now QFT for n = 2. Let | x〉 =| x1x0〉. We can write x = 2x1 +x0 = x1 ·21 +x0.

Further, in the binary fraction representation, we can write

0.x1x0 = x1 · 2−1 + x02
−2

The QFT of | x〉 is a two qubit state

| x̃〉 =
1

2

∑
y

e2πixy/2
2 | y〉

Remember that xy is a normal product of two numbers x and y (and not bitwise product).

Thus we have

| x̃〉 =
1

2

∑
y0,y1

e2πix(2y1+y0)/2
2 | y〉

=
1

2

∑
y1∈0,1

e2πixy1/2 | y1〉 ⊗
∑
y0∈0,1

e2πixy0/2
2 | y0〉

=
1√
2

(
| 0〉+ e2πix/2 | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πix/2

2 | 1〉
)

Since x = 2x1 + x0,
x

2
= x1 +

x0
2

x

22
=
x1
2

+
x0
22

= 0.x1x0. This gives

| x̃〉 =
1√
2

(
| 0〉+ e2πi(0.x0) | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πi(0.x1x0) | 1〉

)
where in the first term we have used e2πix1=1.

One can easily generalize the above to n− qubit case. Let | j〉 =| jn−1jn−2 . . . j0〉. We

have j = jn−12
n−1 + . . . + j02

0 and 0.jn−1 + . . . + j0 = jn−12
−1 + jn−22

−2 + . . . + j02
−n.

Using these, we can write,

| j̃〉 =
1

2n/2
(
| 0〉+ e2πi(0.j0) | 1〉

) (
| 0〉+ e2πi(0.j1j0) | 1〉

)
. . .⊗

(
| 0〉+ e2πi(0.jn−1jn−2) . . . j0) | 1〉

)
Note that each term in the above can be realized by a Hadamard transform followed

by a rotation, the amount of rotation depends on the value of the other bits. Consider

the m+ 1-th term on the rhs of the above product,

| 0〉+ e2πi(0.jmjm−1...j0) | 1〉

If the m− th bit of j is zero, the term becomes

| 0〉+ e2πi(0.0jm−1...j0) | 1〉 =| 0〉+ e2πi(jm−1...j0)/2m+1 | 1〉
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On the other hand if the m− th bit is 1, this becomes

| 0〉 − e2πi(jm−1...j0)/2m+1 | 1〉

because e2πi(0.jm) = eπi = −1. The amount of rotation is given by

2π(jm−1 . . . j0)/2
m

Thus the m-th term is given by

| 0〉+ (−1)jme2πi(jm−1...j0)/2m+1 | 1〉 (1)

Returning back to the case of n = 2, we had,

| x̃〉 =
1√
2

(
| 0〉+ e2πi(0.x1) | 1〉

)
⊗ 1√

2

(
| 0〉+ e2πi(0.x1x0) | 1〉

)
Since 0.x1 = x1/2 and 0.x1x0 =

x1
2

+
x0
4

, we get

| x̃〉 =
1√
2

(| 0〉+ (−1)x0 | 1〉)⊗ 1√
2

| 0〉+ (−1)x1e

2πix0
4 | 1〉


The first term is the ordinary Hadamard transform since it gives | 0〉± | 1〉 depending on

whether x0 is 0 or 1. The second term is a little more complicated. This is a Hadamard

transform followed by an amount 2πx0/4, i.e., only if x0 = 1, there is a rotation of the

state | 1〉 by 2π/4. We define a controlled Bjk gate by

Bjk =

(
1 0

0 e2πi/2
k−j+1

)
with k > j, which gives a rotation of the state | 1〉 only if the control bit is 1,

Bjk | x, y〉 = eiθjkxy | x, y〉

= exp[
2πi

2k−j+1
xy] | x, y〉

In the circuit, the first state will be used as a control bit while the second as the target

bit. If x = 0, the action of the gate is identical to application of the identity. However, if

x = 1, the phase acts on | y〉 giving

exp(
2πi

2k−j+1
xy) | x, y〉 =

| y〉 if y = 0

exp[
2πi

2k−j+1
] | y〉 if y = 1

Returning to the case of n = 2,

| x̃〉 =
1

2
[| 0〉+ (−1)x0 | 1〉]⊗ [| 0〉+ (−1)x1e2πix0/4

=
1

2
[| 0〉+ (−1)x0 | 1〉]⊗B0

12[| 0〉+ (−1)x1 | 1〉]
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Figure 1: QFT for n=2

where B0
12 means a rotation by 2π/(22−1+1) = 2π/4 with x0 as the control. The above

state is entangled because the first term has (−1)x0 while the second has (−1)x1 . Note

that our input was | x1x0〉 while the order in which the result appears has a reverse order.

We can write

| x̃〉 =
1

2
[UH | x0〉]⊗B0

12[UH | x1〉]

=
1

2
(UH ⊗ I)B0

12(I ⊗ UH) | x0x1〉

=
1

2
(UH ⊗ I)B0

12(I ⊗ UH)USWAP | x1x0〉

Thus execution of Fourier transform requires swapping of the order of bits before

application of the Hadamard and controlled Bjk gates.

Generalization of the above to n− qubit gate is straightforward. In the next lecture

we will first explain this with reference to three qubits and then suggest a generalization.


