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1 Introduction- Summary of Shor’s Algorithm so far

In the last lecture we discussed Shor’s algorithm for integer factorization of a large com-

posite number. Today we will discuss how exactly this algorithm is implemented. The

essential part of the algorithm is to find period of a function which can be very efficiently

done by a quantum computer. We begin by recapitulating the essential points of the

algorithm, which are as follows:

1. Take a random number m < N which is co-prime with N .

2. Define a function fN : N → N such that fN(a) = ma mod N . We need to find the

smallest P ∈ N such that mP = 1 mod N . This is called the period of fN This step

(period finding) requires a quantum computer. If N is large, a classical computer

may require Ø(N) powers of m while in a quantum computer all powers of m would

be simultaneously calculated by the oracle.

3. If P is odd, the method fails and we must return to step 1 to choose a different m

and start all over.

4. if P is even, then, we can factorize mP − 1

mP − 1 = (mP/2 + 1)(mP/2 − 1)

Since by definition mP = 1 mod N , mP−1 = 0 mod N . If Now, (mP/2−1) 6= 0 mod

N because P is the smallest integer which satisfies mP − 1 = 0. If mP/2 + 1 = kN

for some integer k, then again the problem is not solved and we need to go back to

step 1 and select a different m. If, however, mP/2 + 1 is a not a multiple of N then,

mP/2 ± 1 must contain factors of N .
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5. The challenge is to find P with a high degree of probability of success.

The quantum part of the algorithm is implemented by the following steps:

Assume N = pq with p and q primes. We first find l ∈ N such that N2 ≤ 2l ≤ 2N2.

We will also denote Q = 2l. (We define a quantum computer with Q2 = 22l quits, plus

extra quits for work space. The two registers contain vectors of length l

| Reg1〉 | Reg2〉 =| al−1 . . . a0〉 | bl−1 . . . b0〉 ≡| a〉 | b〉

where a =
∑

j 2jaj and b =
∑

j 2jbj any time the state of the computer is given by

| ψ〉 =

Q−1∑
a=0

Q−1∑
b=0

Cab | a, b〉

where Cab ∈ C.

We now follow the following steps.

• Set both the registers to n qubit null states: | ψ0〉 =| 0〉⊗l | 0〉⊗l.

• Apply QFT on the first register to get

| ψ1〉 =
1√
Q

Q−1∑
x=0

| x〉 | 0〉

Since the states are initialized to null, this is done by passing all qubits of the register

through Hadamard gates.

• For a randomly chosenm, apply an oracle which calculates f = mx modN . Suppose

Uf realizes the action of f on x such that (oracle)

Uf | x〉 | 0〉 =| x〉 | f(x)〉

This makes the states entangled

Uf | ψ1〉 =| ψ2〉 =
1√
Q

Q−1∑
x=0

| x〉 | f(x) = mxmod N〉

• Measure the second register only. The second register, before measurement, was

in a linear combination of various possible base states which are obtained by the

modular exponentiation. As a result of measurement, it will be found to be in one

of the base states | k〉 where k is some power of m mod N . We write

| ψ2〉 =
1√
M

∑
x∈A

| x, k〉
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where A is the set of all x < Q such that mx mod N is k

A = {x0, x0 + r, x0 + 2r + . . . , x0 + (M − 1)r}

and M ≈ Q

r
� 1.

The following numerical example with small number will illustrate the steps (1) to

(4) above. Let N = 55. We have N2 = 552 = 3025, 2N2 = 6050. We choose Q = 2l

such that 3025 < Q < 6050, which gives l = 12, yielding Q = 4096. Let us choose

m = 13 (arbitrary number which is co-prime with 55). Various powers of 13 mod

55 are listed below:

131 = 13 132 = 4 133 = 52 134 = 16 135 = 43

136 = 9 137 = 7 138 = 36 139 = 28 1310 = 34

1311 = 2 1312 = 26 1313 = 8 1314 = 49 1315 = 32

1316 = 31 1317 = 18 1318 = 14 1319 = 17 1320 = 1

Our initial state, | 000 . . . 0, 000 . . . 0〉 ≡| 00〉 , after passing the first register through

Hadamard gate becomes

| ψ1〉 =
1√

4096
(| 0, 0〉+ | 1, 0〉+ . . .+ | 4095, 0〉)

This is now subjected to the oracle which computes the modular exponentiation of

13, as shown in the table above. Note that since 1320 = 1, the second register will

repeat with a periodicity of 20. The last state, for instance can be calculated as

follows:

134095 = 13204×20+15 ≡ 1315 = 32 mod 55

The oracle gives

| ψ2〉 =
1√

4096

[
| 0, 1〉+ | 1, 13〉+ | 2, 132mod 55 = 4〉+ . . .+ | 20, 1320 ≡ 1〉

+ | 21, 13〉+ . . .+ | 204× 20 = 4080, 1〉+ | 4081, 13〉+ . . . | 4095, 32〉]

We now measure the second register. We would then get a random value and we

can use any one of the possible values to do our calculation.Suppose this gives the

state of the second register to be | 9〉. Looking at the table above, we find that the

smallest power of 13 which gives 9 is 6. Thus the same value will be repeated for

26, 46, etc and will end at 4086 = 204× 20 + 6. the state of the system is then

| ψ3〉
1√
205

[| 6, 9〉+ | 26, 9〉+ . . .+ | 4086, 9〉]

(Since the periodicity is 20, there are 205 states with the second register being | 9〉).
Quite generally, the state at this stage is

| ψ3〉 =
1√
M

M−1∑
d=0

| x0 + dP, k〉
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where mx+dP = mx = k mod N . Clearly P is the period and d is the number

of terms within a period. Here M is the number of states in the second register

corresponding to a given value in the first register.

• If we now apply QFT on the first register once more on ZQ, we would get

| ψ4〉 = (UQFT )⊗ I) | ψ2〉 =
1√
QM

Q−1∑
y=0

e2πiyx0/Q × [
M−1∑
d=0

zd] | y, k〉

where z = e2πiyP/Q.

• We now measure the first register. It will be in a state | y〉 with a probability
1

QM
|
∑M−1

d=0 zd |2. The sum over d is done by observing the series to be a geometric

one which gives the sum to be

| 1− zM

1− z
|2= sin2(πyPM/Q)

sin2(πyP/Q)

If yP/Q is not close to an integer, the powers of z will nearly cancel out, i.e., the

probability is small except where z ≈ 1. If yP/Q is an integer, say n, Pr(y) =

M/QM = 1/Q. Thus the observed probability of distribution of y is concentrated

around values such that
y

Q
≈ n

P
, where n is an integer. In this lecture we will see

how we are able to extract the value of P from this measurement.

Let us return to our example to illustrate this last step. We had, after measurement

of the second register,

| ψ3〉 =
1√
205

[| 6, 9〉+ | 26, 9〉+ . . .+ | 4096, 9〉]

On applying Fourier transform to the first register, this becomes

| ψ4〉 =
1√

839680

4095∑
y=−0

e2πi×6y/4096(
204∑
d=0

zd) | y, 9〉

The denominator arose because 839680 = 4096× 205 Recalling that P = 20, we have,

z = e2πi×20y/4096

The probability of the first register to be in a particular state | y〉 is

1

839680
× |

204∑
d=0

zd |2

Suppose our measurement gave the state to be y = 2048. We have z = e2πi×20×2048/8096 =

e20πi = 1, so that the probability becomes (205)2/839680 ≈ 0.05, i.e. about 5%. There
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are 20 states in the second register. The coefficient of each vector becomes sizable when

y becomes a multiple of 205. Thus we may infer the period P by repeated measurement.

As N becomes large, the number of measurement required becomes large and the method

becomes inefficient. In the following we discuss the method of continued fraction, which

is more efficient.

2 Method of Continued Fraction

Let us define ceiling and floor functions as

dxe = inf{n ∈ Z | x ≤ n}

bxc = sup{n ∈ Z | x ≥ n}

For example,

d2e = 2, d2.6e = 3, d−4.5e = −4, d−5e = 5

Thus the ceiling function evaluates to the nearest integer greater than or equal to the

argument of the function. Similarly,

b4.5c = 4, b2.6c = 2, b−4.5c = −5, b−5c = −5

Thus the floor function is the nearest integer less than or equal to the argument of the

function. If the argument is positive, the floor function is just the integer part of the

argument. Continued function expansion of a rational number is obtained as follows:

Example:

17

47
= 0 +

1

47/17
= 0 +

1

2 +
13

17

= 0 +
1

2 +
1

17/13

= 0 +
1

2 +
1

1 +
1

13/4

= 0 +
1

2 +
1

1 +
1

3 +
1

4

≡ [0, 2, 1, 3, 4]
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The steps to find the continued fraction are as follows:

1. First find the integral part a0 of the argument x. In our case the integral part is zero.

2. Find the fractional part by x− a0 = r0.

3. Find integral part of r−10 . b 1

r0
c = a1

4. r1 =
1

r0
− a1 and a2 = b 1

r1
c

5. Let m = 1, we have am = b 1

rm−1
c and rm =

1

rm−1
− am. The process is continued till

rM = 0. M always turns out to be finite and we get

x = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .

Given x = [a0, a − 1, . . . aM ], the expansion in continued fraction [a0, a1, . . . , aj] with

j ≤M is the j−th convergent of x is x itself. Suppose we got as a result of measurement

of the first register y/Q = 408/4096. We can write this as a continued fraction as

y

Q
=

408

4096

= 0 +
1

10 +
16

408

= 0 +
1

20 +
1

25 +
1

12

Various convergence are as follows:
1

20

1

20 +
1

25

=
25

251

0 +
1

20 +
1

25 +
1

12

=
408

4096



c©D. K. Ghosh, IIT Bombay 7

We stop when the denominator of the approximated fraction exceed the number N ; in

this case in the first convergent itself, i.e. r = 10. The period is then a multiple of 10,

which can be 10, 20, 30, 40 or 50. We now calculate aP for each of these and confirm it

to be 20 in this case.


