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1 Introduction

In the last lecture we discussed the implementation of QFT for the case of one, two

and three qubits and provided a way to generalize to the case of n qubits. This was

an essential component in understanding Shor’s algorithm for integer factorization of a

large composite number. However, before we discuss the factorization algorithm, it will

be appropriate to make a few comments about the problem of factorization in classical

computation.

Consider a number N = pq where p and q are large prime numbers, though for the

purpose of illustration in this lecture, we will take these numbers to be small so that

a back of the envelop calculation can be done. There are several classical algorithms

to do this job though they are not fast enough. The most elementary algorithm is the

one due to Euclid which requires of the order of
√
N operations, as if there exists a

factor, one of them has to be less than or equal to
√
N . Euclid algorithm is inefficient

for handling large numbers. There are faster classical algorithms, the best among them

requiring exp
(
(logN)1/3(log logN)2/3

)
steps, which is still slow. A point which needs to be

appreciated is that multiplication of two numbers can be done in polynomial time though

the factorization cannot. To get an idea of the difficulty involved consider factorization

of a reasonably sized number such as 29803. To factorize this we may use, for instance,

Euclid algorithm. If you are manually doing this factorization, you may take a couple of

hours doing this. However, if we are told that this number is 229× 127, we can check it

by doing a multiplication in under a minute. Thus multiplication is easy but factorizaton

is hard. It is good to recollect Euclid algorithm, as is taught to us in schools.

Suppose we take two numbers a and b whose greatest common divisor is c. By definition,

c divides both a and b, where a > b. Let a = mc and b = nc, where m and n are integers.

When we divide a by b, unless b is a factor of a, a long division of a by b will leave a
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remainder. Let r = a − bq be the remainder of such a division. Clearly, since c divides

both a and b, it also divides r. Euclid algorithm works like this. We do a long division

of a by b. Let q1 =
[a
b

]
be the quotient where [ ] is the greatest integer function and let

r1 = a−bq1 be the remainder. We now divide b by this remainder r1, getting a quotient q2
and a remainder r2. We carry on like this till we find a zero remainder at the n-th stage of

the algorithm. The last divisor rn then is the greatest common divisor that we are trying

to find. The problem in this method is while this is a reasonably good algorithm to find

gcd of two numbers, it is not particularly useful in finding factors of a single number as

there is no suitable starting point and we must check numbers from 2 upward up to
√
N .

In this lecture we discuss an algorithm due to Peter Shor, which could be implemented

using a quantum computer to provide a fast factorization. This is done by solving an

equivalent problem of finding a period of a function.

2 Shor’s Algorithm

Shor’s algorithm for factorizing N has the following steps:

1. Take a random number m < N . Calculate G.C.D. of m,N by some standard

algorithm, such as Euclid algorithm. If GCD(m,N) 6= 1, we have found a factor!.

Very unlikely scenario. The number m that we choose is obviously co-prime with

N , i.e. m and n have no common factor. We will illustrate by choosing N = 799

whose factors are 17 and 47. Choose m = 7 whose GCD with 799 is 1.

2. Define a function fN : N → N such that fN(a) = ma mod N . We need to find the

smallest P ∈ N such that mP = 1 mod N . This is called the period of fN This step

(period finding) requires a quantum computer. It turns out that 7368 = 1 mod 799,

i.e. P = 368..

3. If P is odd, the method fails and we must return to step 1 to choose a different m

and start all over. (In the lecture a small number N = 21 is used to illustrate, which

can be worked out easily. We can choose m to be any number which is co-prime

with 21. Thus m ∈ {2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}. Choosing m = 2, various

powers of 2 are22 = 4, 23 = 8, 124 = 6, 25 = 32, 26 = 64of which the last number 64

is 1 mod 21. Thus in this case P=6).

Let us consider some results from linear algebra which we will only illustrate here

but not prove them (these can be found in any text book on discrete mathematics

at college level). Consider a quadratic equation, e.g. x2 = 1 mod N . Now if N

is an odd prime, one can show that this equation only has the trivial solutions,

viz., x = ±1. On the other hand, if N is a composite number, there are non-

trivial solutions of the type x = ±a. (Remember we are doing modular arithmetic

here which implies that to a we could add kN . )To illustrate consider an example.

Consider the equation x2 = 1 mod 41. This equation only has trivial solutions ±1.
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However consider N = 55, in this case x2 = 1 mod 55, in addition to having the

trivial pair has non trivial solutions x = ±21 as x2 = 441 = 1 mod 55 because

441 = 55 × 8 + 1. Since we have, by definition of a period, mP = 1 mod N , if we

choose x = mP/2, this equation would become equivalent to the quadratic equation

x2 = 1. In order that we may do it P should be even and we should then choose a

different m and repeat the algorithm.

4. if P is even, then, we can factorize mP − 1

mP − 1 = (mP/2 + 1)(mP/2 − 1)

Since by definition mP = 1 mod N , mP−1 = 0 mod N . If Now, (mP/2−1) 6= 0 mod

N because P is the smallest integer which satisfies mP − 1 = 0. If mP/2 + 1 = kN

for some integer k, then again the problem is not solved and we need to go back to

step 1 and select a different m. If, however, mP/2 + 1 is a not a multiple of N then,

mP/2± 1 must contain factors of N . One can find the factor by finding the GCD of

these two numbers. For the example given, P = 368 so that P/2 = 184. We then

have

(7184 + 1)(7184 − 1) = 799k

One can check that the factors are 17 and 47.

As an example which you can work out, let N = 21. choose m = 2 for which we

have seen that P = 6 Check that Thus

(23 + 1)(23 − 1) = 21k

Thus factors of 21 are contained in 9 and 7. (the factors are 3 and 7).

As yet another example consider N = 35. Choose m = 13 for which various even

powers (mod 35) are 13, 132 = 169 ≡ 29, 134 = 28561 = 13× 816 + 1 so that in this

case P = 4. So we get (132 + 1)(132−1) = 170×168, the former contains the factor

5 and trhe latter by 7.

We assume that N is not power of some prime for Shor’s algorithm fails in this case. (It

has been shown that the probabilities of these two things happening is greater than 1/2).

it is this order finding part which needs to be done by a quantum computer because such

a computer can calculate various powers of m simultaneously.


