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1 Introduction

In the last lecture we discussed Shor’s algorithm for integer factorization of a large com-

posite number. It was remarked that there are several classical algorithms to do this

job though they are not fast enough. The most elementary algorithm is the one due to

Euclid which requires of the order of
√
N operations, as if there exists a factor, one of

them has to be less than or equal to
√
N . Euclid algorithm is inefficient for handling

large numbers. There are faster classical algorithms, the best among them requiring

exp
(
(logN)1/3(log logN)2/3

)
steps, which is still slow. We discussed Shor’s algorithm

which solves the equivalent problem of finding the period of a number co-prime with the

given number N mod N. The essential steps in Shor’s algorithm are as follows:

1. Take a random number m < N which is co-prime with N . This may be done by

finding the G.C.D. of m,N by some standard algorithm, such as Euclid algorithm

and checking if it is equal to 1.

2. Define a function fN : N → N such that fN(a) = ma mod N . We need to find the

smallest P ∈ N such that mP = 1 mod N . This is called the period of fN This step

(period finding) requires a quantum computer. If N is large, a classical computer

may require Ø(N) powers of m while in a quantum computer all powers of m would

be simultaneously calculated by the oracle.

3. If P is odd, the method fails and we must return to step 1 to choose a different m

and start all over.
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4. if P is even, then, we can factorize mP − 1

mP − 1 = (mP/2 + 1)(mP/2 − 1)

Since by definition mP = 1 mod N , mP−1 = 0 mod N . If Now, (mP/2−1) 6= 0 mod

N because P is the smallest integer which satisfies mP − 1 = 0. If mP/2 + 1 = kN

for some integer k, then again the problem is not solved and we need to go back to

step 1 and select a different m. If, however, mP/2 + 1 is a not a multiple of N then,

mP/2 ± 1 must contain factors of N .

5. The challenge is to find P with a high degree of probability of success.

1.1 Implementation of Quantum computation part of the algo-

rithm

Assume N = pq with p and q primes. We first find l ∈ N such that N2 ≤ 2l ≤ 2N2.

We will also denote Q = 2l. (Some authors recommend the size to be taken larger

2N2 ≤ 2l ≤ 3N2. The reason for taking the size of the registers to be a power of 2 is to

make calculation of quantum Fourier transform easier. We define a quantum computer

with Q2 = 22l quits, plus extra quits for work space. The two registers contain vectors of

length l

| Reg1〉 | Reg2〉 =| an−1 . . . a0〉 | bn−1 . . . b0〉 ≡| a〉 | b〉

where a =
∑

j 2jaj and b =
∑

j 2jbj any time the state of the computer is given by

| ψ〉 =

Q−1∑
a=0

Q−1∑
b=0

Cab | a, b〉

where Cab ∈ C.

We now follow the following steps.

1. Set both the registers to n qubit null states: | ψ0〉 =| 0〉⊗l | 0〉⊗l.

2. Apply QFT on the first register to get

| ψ1〉 =
1√
Q

Q−1∑
x=0

| x〉 | 0〉

For instance, if Q = 22 = 4, we have

| ψ1〉 =
1

2
[| 00, 00〉+ | 01, 00〉+ | 00, 10〉+ | 11, 00〉]

Since the states are initialized to null, this is done by passing all qubits of the register

through Hadamard gates.
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3. For a randomly chosenm, apply an oracle which calculates f = mx modN . Suppose

Uf realizes the action of f on x such that (oracle)

Uf | x〉 | 0〉 =| x〉 | f(x)〉

This makes the states entangled

Uf | ψ1〉 =| ψ2〉 =
1√
Q

Q−1∑
x=0

| x〉 | f(x) = mxmod N〉

4. Measure the second register only. The second register, before measurement, was

in a linear combination of various possible base states which are obtained by the

modular exponentiation. As a result of measurement, it will be found to be in one

of the base states | k〉 where k is some power of m mod N . We write

| ψ2〉 =
1√
M

∑
x∈A

| x, k〉

where A is the set of all x < Q such that mx mod N is k

A = {x0, x0 + r, x0 + 2r + . . . , x0 + (M − 1)r}

and M ≈ Q

r
� 1.

The following numerical example with small number will illustrate the steps (1) to

(4) above. Let N = 55. We have N2 = 552 = 3025, 2N2 = 6050. We choose Q = 2l

such that 3025 < Q < 6050, which gives l = 12, yielding Q = 4096. Let us choose

m = 13 (arbitrary number which is co-prime with 55). Various powers of 13 mod

55 are listed below:

131 = 13 132 = 4 133 = 52 134 = 16 135 = 43

136 = 9 137 = 7 138 = 36 139 = 28 1310 = 34

1311 = 2 1312 = 26 1313 = 8 1314 = 49 1315 = 32

1316 = 31 1317 = 18 1318 = 14 1319 = 17 1320 = 1

Our initial state, | 000 . . . 0, 000 . . . 0〉 ≡| 00〉 , after passing the first register through

Hadamard gate becomes

| ψ1〉 =
1√

4096
(| 0, 0〉+ | 1, 0〉+ . . .+ | 4095, 0〉)

This is now subjected to the oracle which computes the modular exponentiation of

13, as shown in the table above. Note that since 1320 = 1 (mod 55), the second

register will repeat with a periodicity of 20. The last state, for instance can be

calculated as follows:

134095 = 13204×20+15 ≡ 1315 = 32 mod 55
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The oracle gives

| ψ2〉 =
1√

4096

[
| 0, 1〉+ | 1, 13〉+ | 2, 132mod 55 = 4〉+ . . .+ | 20, 1320 ≡ 1〉

+ | 21, 13〉+ . . .+ | 204× 20 = 4080, 1〉+ | 4081, 13〉+ . . . | 4095, 32〉]

We now measure the second register. We would then get a random value and we

can use any one of the possible values to do our calculation.Suppose this gives the

state of the second register to be | 9〉. Looking at the table above, we find that the

smallest power of 13 which gives 9 is 6. Thus the same value will be repeated for

26, 46, etc and will end at 4086 = 204× 20 + 6. the state of the system is then

| ψ3〉
1√
205

[| 6, 9〉+ | 26, 9〉+ . . .+ | 4086, 9〉]

(Since the periodicity is 20, there are 205 states with the second register being | 9〉).
Quite generally, the state at this stage is

| ψ3〉 =
1√
M

M−1∑
d=0

| x0 + dP, k〉

where mx+dP = mx = k mod N . Clearly P is the period and d is the number

of terms within a period. Here M is the number of states in the second register

corresponding to a given value in the first register.

5. If we now apply QFT on the first register once more on ZQ, we would get

| ψ4〉 = (UQFT )⊗ I) | ψ2〉

=
1√
QM

Q−1∑
y=0

M−1∑
d=0

exp2πiy(x0+dP )/Q | y, k〉

=
1√
QM

Q−1∑
y=0

e2πiyx0/Q ×
M−1∑
d=0

e2πiydP/Q | y, k〉

=
1√
QM

Q−1∑
y=0

e2πiyx0/Q × [
M−1∑
d=0

zd] | y, k〉

where z = e2πiyP/Q.

6. We now measure the first register. It will be in a state | y〉 with a probability
1

QM
|
∑M−1

d=0 zd |2. The sum over d is done by observing the series to be a geometric

one which gives the sum to be

| 1− zM

1− z
|2= | z

−M/2 − zM/2 |2

| z−1/2 − z1/2 |2
=

sin2(πyPM/Q)

sin2(πyP/Q)
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If yr/Q is not close to an integer, the powers of z will nearly cancel out, i.e., the

probability is small except where z ≈ 1. If yr/Q is an integer, say n, Pr(y) =

M/QM = 1/Q. Thus the observed probability of distribution of y is concentrated

around values such that
y

Q
≈ n

r
, where n is an integer. In the next lecture wewill

see how we are able to extract the value of P from this measurement.


