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1 Introduction

It is well known that prime factorization, i.e., factorisation of a large composite number

to its prime factors is computationally a hard problem requiring exponential time and

memory. Shor’s factorisation uses built in parallelism of a quantum computer to speed

up this process so that the task can be achieved to a high degree of probability in a

polynomial time. The execution of the algorithm requires implementation of a fast Fourier

transform to determine period of a function using a quantum computer. We begin our

discussion with an introduction to a few mathematical tools required for implementing

Shor’s factorisation algorithm. First, we introduce the concept of an integral transform of

a function of a discrete variable. We are familiar with integral transforms, such as, Fourier

transform and Laplace transforms of functions of continuous variables. The primary use

of such transforms is to convert a complicated problem into a relatively simpler one. For

instance, we could, using such technique, convert a differential equation for an unknown

function f into an algebraic equation for the transform f̃ of the function f . Once we have

solved for f̃ , we can apply an inverse transform to get a solution for f itself.

2 Discrete Integral Transforms

In quantum information theory we deal with discrete quantities rather than continuous

ones. Accordingly, we define discrete integral transforms (DIT). They are defined analo-

gously to that of transforms of functions of continuous variables. If n belongs to the set

of natural numbers N and Sn is a set of N = 2n integer {0, 1, 2, . . . , N − 1}, we define

the kernel K(x, y) to be a bivariate function (in general, complex) of discrete variables x

and y (x, y ∈ Sn). The discrete integral transform of a function f of a discrete variable is
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defined by

f̃(y) =
N−1∑
y=0

K(x, y)f(y) (1)

Since x and y are discrete, one can think of this as a matrix equation with f (and f̃)

being an N × 1 column vector and K(x, y) an N ×N matrix.

If K is unitary, i.e. if K† = K−1, an inverse transform also exists

f(x) =
N−1∑
y=0

K†(x, y)f̃(y) (2)

Proof of (2) is obvious, as using (1), we can write the rhs of the above as follows:

N−1∑
y=0

K†(x, y)f̃(y) =
N−1∑
y=0

K†(x, y)
N−1∑
z=0

K(y, z)f(z)

=
N−1∑
z=0

(
N−1∑
y=0

K†(x, y)K(y, z)

)
f(z)

=
N−1∑
z=0

δx,zf(z) = f(x)

Till now we have restricted ourselves to a set of numbers. We can extend the formalism

to define a unitary operator in the n− qubit space H = (C2)⊗n.

Let | x〉 =| xn−1, . . . , x1, x0〉 be a basis vector in the n− qubit space where xi ∈ 0, 1. Using

completeness, we have

U | x〉 =
N−1∑
y=0

| y〉〈y | U | x〉

=
N−1∑
y=0

U(y, x) | y〉 (3)

The matrix element U(y, x) is given by

U(y, x) = 〈y | U | x〉

Comparing (3) with (1) we see that if U is a unitary matrix such that

U | x〉 =
N−1∑
y=0

K(x, y) | y〉

then we can say that U computes the discrete integral transform. Moreover, as the process

is quantum in nature U can compute the DIT of functions of all the basis variables
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parallel. This is because, if we define a state
∑N−1

x=0 f(x) | x〉, then the action of U on this

superposition is as follows:

U
N−1∑
x=0

f(x) | x〉 =
N−1∑
x=0

f(x)U | x〉

=
N−1∑
x=0

f(x)
N−1∑
y=0

K(y, x) | y〉

=
N−1∑
y=0

[
N−1∑
x=0

K(y, x)f(x)] | y〉

=
N−1∑
y=0

f̃(y) | y〉

=
N−1∑
x=0

f̃(x) | x〉

where f̃(x) is the DIT of f(x). This shows that U computes the Integral transform of all

the 2n basis states by a single computation. Thus what the unitary operator U does is

to find the transform of the amplitudes of various components of a vector in a standard

basis.

3 Quantum Fourier Transform

We will now consider a particularly important integral transform, viz., the quantum

Fourier transform (QFT) in which the kernel K(x, y) is defined to be

K(x, y) =
1√
N
e2iπxy/N ≡ 1√

N
ωxyn (4)

where

ωn = e2iπ/N

is the N−th root of unity. Note that in the definition (4), x and y are usual numbers

of the decimal system and is not to be confused with a bitwise product. Example of the

kernel for n = 1 and n = 2 are as follows:

n = 1, i.e. N = 2 (x, y ∈ 0, 1), ω1 = −1 K =
1√
2

(
1 1

1 −1

)
Note that this is just the Hadamard transform defined in earlier lectures. Thus QFT in

C2 implements Hadamard transform

n = 2, i.e. N = 4 (x, y ∈ 0, 1, 2, 3), ω1 = eπi/2 = i
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K =
1

2


1 1 1 1

1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω8

 =
1

2


1 1 1 1

1 i −1 −i
1 −1 1 −1

1 −i −1 i


Thus we have

f̃(x) =
1√
N

N−1∑
y=0

e2iπxy/Nf(y) (5)

f(y) =
1√
N

N−1∑
x=0

e−2iπxy/N f̃(x) (6)

The process of finding QFT is to find the transform of the components of a vector in a

basis. note that K is unitary because

〈x | KK† | y〉 =
N−1∑
z=0

〈x | K | z〉〈z | K† | y〉

=
N−1∑
z=0

K(x, z)K†(z, y)

=
1

N

N−1∑
z=0

e2iπxz/Ne−2iπzy/N

=
1

N

N−1∑
z=0

e2πiz(x−y)/N

If x 6= y, the above is a finite geometric series of N terms having a sum

1

N

e2πiz(x−y) − 1

e2πiz(x−y)/N − 1

whose numerator is zero as e2πi = 1. If x = y, however, each term of the series is 1 and

there are N terms in the series. so that we have 〈x | KK† | y〉 = δx,y.


