Lecture 29: Vortices and their interactions

In the last lecture on linearized superfluid hydrodynamics, we saw that a
phase difference once established remains static according to the equations
of motion of the linearized (harmonic) theory and drives a steady super-
current as long as there is no chemical potential gradient. This is perfect
superfluidity, with no possibility for the current to degrade. How can the
current degrade in a real superfluid? The answer involves a study of excita-
tions that are not captured by this harmonic theory, which only captures the
superfluid sound waves. These additional excitations are vortices, which we
now discuss.

Vortices are the most dramatic manifestation of the fact that ¢ is an angle,
i.e. physical observables are written in terms of exp(i¢) and only care about
the value of ¢ modulo 27. This is something we left out of our linearized
(harmonic) treatment in the last lecture. As a result, our treatment only took
into account the effects of small-amplitude, long-wavelength oscillations in
¢, not topological defects in which the O(2) vector n

ng +in, = exp(i¢) (1)

winds around by 27.

Ind =1atT = 0, these are space-time vortices in the time-evolution of ¢.
In d = 2, they are point-like vortices centered at a particular spatial point.
They can be thought of as particles with their own classical or quantum
dynamics. In d = 3, we can have vortex lines or rings in space, with their
own time-evolution. In the remainder of this course, we will consider finite-
temperature properties in d = 2. As discussed in the last-but-one lecture,
this reduces to a two dimensional classical theory for the zero matsubara
frequency mode of the full theory. Interpreting one of these two dimensions
as imaginary time, all our calculations can also be used to describe the physics
of space-time vortices in a d = 1 theory at T'= 0. From now on, we will use
the language of the finite-temperature d = 2 classical theory, with effective
energy

Ps 2 A\
Hg = ?/d z(Vn) (2)

and partition function

Z = /mexp (—2”—}/Ad2x(wz)2> , (3)

1



where the path integral is over all configurations of the O(2) vector field 7n(x)
and the subscript on the spatial integral reminds us that the theory is defined
with an upper cutoff in momentum space given by A ~ a™!.

One example of a configuration with a unit vortex centered at the origin
in this d = 2 theory is

A(x) = — . (4)

Clearly, such vortex configurations are singular at the core of the vortex.
This is where the lattice spacing a (or upper-cutoff in momentum space A)
enter our discussion: Since we are actually modeling the long-wavelength
behaviour of a lattice system, this short-distance singularity is cutoff at the
lattice-scale a, and such a vortex configuration has a finite “core energy” that
depends on this lattice-regularization.

With this in mind, let us calculate the energy of such vortex configura-
tions. To do this for an m-fold vortex, it is convenient to rewrite the vortex
configuration in terms of the polar angle §(x) corresponding to the spatial
position vector x:

n(x) = (cos(mb),sin(md)) . (5)
and note that
(VA)? = ’% (6)

This gives

Hyg = 7T,03m/ dr—
= mpsm?log R/a), (7)

where R is the linear size of the sample (assumed for convenience to be a
disk). In other words, the energy cost of a single vortex is infinite in the
thermodynamic limit. Note that this divergence is not due to the singular
nature of the vortex at short distances. As we have already discussed, this
is not a problem since it is regulated by the non-zero lattice spacing a, and
merely leads to a finite core energy F,. Instead, this divergence arises due
to the far-field contribution of the kinetic energy of circulating supercurrents



that exist even very far away from the vortex core (remember, p;V¢ is the
supercurrent).

This is the energy, “calculated by hand”, of a single vortex at the origin.
A general configuration can be thought of as a “gas” of vortices of various
strength at various positions. Clearly, it will be cumbersome to repeat this
calculation in such a general case. To address the energetics of such general
configurations, we need to think in somewhat more general terms. To this
end, we first make a more general definition of the vorticity m enclosed by a
countour C":

7{ ePnoval - dl = 2wm . (8)
C

A key role is thus played by the so-called “superfluid velocity”
Vo = €Pn9,nt . (9)

An advantage of working with the superfluid velocity is that it has no sin-
gularity across any “cuts” at which the phase angle ¢ jumps from 27 back
to zero, since such cuts are a matter of our coordinate convention and have
no invariant meaning. Of course, the superfluid velocity does get very large
as one approaches the core of the vortex, but that is a physical effect that is
cut off at the lattice scale or short-distance cutoff in the theory. The above
equation is of course equivalent to the statement that V x ¥ is concentrated
at the positions of the vortices:

Vxi = 212Y md* (7 —7) (10)
Next, we note that H.g can be written in terms of ¥ as
_ Ps 2 2
Heff - E d“zv ) (11>

so long as we split up ¢ into a curl-free contribution from sound-wave like
fluctuations and a singular part that arises due to vortices, and has a curl
but no divergence:

T = 17a(nalytic) +17s(ingular)- (12>
with
V.7, =0,
V X @, 0, (13)



and

Vxi, = 21 mid*(F— )

= 2mm(f)Z (14)
where m is the vortex-density field. Now, since
V% = 0, (15)
we may write
7, = Vxa. (16)
This implies
Vx(Vxa2) = 2rm(f)z, (17)
or, equivalently,
—Via = 2mm(7). (18)
On the other hand, since
Vxid, =0, (19)
we may write
Ua = Véa, (20)
with
Vo = V7. (21)

Thus, we have split ¢ into pure vortex part v, and pure phase part v,
specified by vector and scalar potentials which can be determined from the
gradient and curl of the original velocity field v.

We are now in a position to calculate the energy E of a general configu-
ration including the effects of both the spinwave modes and the vortices. To
do this, we first note that contributions of ¥, and ¥, decouple completely at
the level of our discussion since

/ Pat, T, = / P2 (V x a2) - Ve,
= 0 by integration by parts. (22)
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The role of the spinwave contribution has already been discussed at length,
and it leads of course to the destruction of true long-range order, but al-
lows for quasi-long-range order (as we have seen in previous lectures). Since
the two decouple, we focus exclusively on the vortex contribution for the
remainder of this lecture, and write

Evortex = %/dQQ;(6 X (12)2

= %/dzx(ﬁa)Q by integration by parts. (23)

We now use
—V2a = 27mm(x) (24)

and Fourier transform to rewrite this in Fourier space as

_ @m)ps [ dPq m(@m(-q)
Evortex 9 /(27T)2 (jQ
= Wps/dedzx'm(:E)G(f— 2)ym(z') , (25)

where G(Z — 2') is the Green function of two dimensional electrostatics:
d2q _eizj‘-g’c’
G = 2 —
) 7T/ (27)* ¢
qdqd@

zqa: cos(0)

— /dq /Qﬂ- qucos
= 2T
— / _q/ d@ zqcos(@ (26)

(I |)_3/2

where C' depends on the choice of short-distance cutoff @ and R is the linear
scale that sets the size of the system.

which gives

G7) — 1og(f) (111 |)+c+0 | (27)




This allows us to write the vortex contribution to the energy as

@) vol . (28)

R
Evorex = TpPs Uz log(—) —lo
' pmeJ{ a(—) — log(
)
Of course, this expression has a problem for all the terms with ¢ = 5. This is
related to the fact that we are not really in the continuum, and this divergence

is actually cut off by the lattice scale to give a finite core energy E.(m;) for
vortex ¢ with vorticity m;. Therefore, we may write

|z — ;]
B = <zm) o (¢ ) = 7. 3 mim o 2 4, 3 o

i#j

So for a system of vortices with “charge” {m;}, the energy cost scales as log —
a
unless Zmi = 0, implying that this “plasma” must obey a global charge-

[
neutrality condition in the thermodynamic limit. Finally, we note from our
earlier single-vortex calculation that E.(m;) must scale as m?. Therefore, we
may write

Elortex = Tps (Z mz> log ( ) — TPs Z m;m;log ———= [z + TPs€e Z m; .

i#£]

In the next couple of lectures, we will study the statistical mechanics of
this gas of logarithmically interacting vortices using renormalization group
ideas. But here, it is worth making one qualitative point about superfluidity
and vortices before concluding this lecture: In the absence of vortices, a
superfluid current can never degrade (as we saw in the last lecture). Now
imagine such a superfluid current set-up in the y direction. And ask what
happens if a vortex “crosses its path”, moving from the left edge of the
sample to the right edge of the sample. Clearly, this process changes the
phase difference between the top and the bottom of the sample by 27 (draw
a picture and this will be clear!). This means that a vortex current from
left to right will induce a steady change per unit time in the phase difference
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between the top and the bottom of the sample. But this rate of change of
phase difference is related to the voltage dropped from the top to the bottom
of the sample. Thus, mobile vortices are responsible for producing a finite
voltage drop, i.e. a non-zero resistance!

Therefore, if vortices proliferate and move around freely, we expect su-
perfluidity to be destroyed. Whereas if they remain bound in pairs with
zero net vorticity, the system remains superfluid. The understanding of the
vortex plasma that we develop in the next two lectures will therefore lead nat-
urally to a theory for superfluid-normal fluid transitions in two dimensional
superfluids.



