
Lecture 27: Renormalization group approach

to the quantum rotor model: Finite tempera-

ture properties

In this lecture, we will develop the renormalization group equations that will
allow us to understand the properties of systems at small non-zero tempera-
ture in the vicinity of a T = 0 quantum phase transition characterized by a
zero temperature fixed point. But before we get started, we have some loose
ends to tie up from the previous lecture—In the previous lecture, we derived
flow equations to leading order in ε ≡ D−2 in the vicinity of the O(ε) critical
fixed point gc. These can be used to compute predictions for the behaviour
of correlations at and near criticality to leading order in ε, and this is what
we focus on first:

Consider the correlation function at criticality. We have the equation

〈n̂(xµ) · n̂(0)〉gc = ζ(l)〈˜̂n(xµe
−l) · ˜̂n(0)〉gc , (1)

where ζ(l) is the solution to the equation for ζ at criticality:

dζ(l)

dl
= −N − 1

N − 2
εζ(l) . (2)

In other words, ζ(l) is given by

ζ(l) = e−
(N−1)εl
(N−2) (3)

We now choose l such that |xµ|e−l = 1. Then we may deduce

〈n̂(xµ) · n̂(0)〉gc =
1

|xµ|
(N−1)ε
(N−2)

. (4)

The critical exponent η is usually defined by writing the critical correlations
as

〈n̂(xµ) · n̂(0)〉gc =
1

|xµ|D−2+η
. (5)

Comparing this with our expression for the critical correlations, we obtain
our prediction for η, correct to O(ε):

η =
ε

N − 2
. (6)
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Next, let us consider the case in which g = gc + δ0, with δ0 positive and
small. In this case, the system is disordered at the longest length scales, al-
though the proximity to the critical point means that the correlation length
is large, since it must actually diverge as δ0 → 0 (in order for the expo-
nentially decaying short-ranged correlations characteristic of the disordered
phase to give way to the power-law correlators characteristic of the critical
point). An important property of such critical points is the manner in which
the correlation length diverges as one approaches the transition. In order
to obtain a prediction for this from our RG analysis, we now work with the
linearized off-critical flows we studied at the end of the previous lecture. As
we saw in the previous lecture, if we start with a small initial value δ(0) ≡ δ0,
then δ(l) at scale l is given by

δ(l) = δ0e
εl . (7)

Now, when δ(l) gets to be O(1), the corresponding problem will, in new
units, have an order one correlation length ξ0. Translated back to the original
units, the correlation length will actually be ξ0e

l∗ , where l∗ is the value of l
for which δ(l∗) = 1, i.e l∗ = ε−1 log(1/δ0). Thus, we predict

ξ(δ0) =
1

δ
1/ε
0

. (8)

Conventionally, one defines a correlation length exponent ν by the relation

ξ ∼ (g − gc)−ν . (9)

Comparing with our result, we see that our RG analysis predicts

ν =
1

ε
(10)

to leading order in ε.
Finally, let us analyse the physics on the other side of gc: g = gc + δ0

with δ0 negative. In this case, g flows to zero, and the system is ordered at
long length scales, albeit with a small ordered moment which goes to zero
as |δ0| goes to zero. To discuss this, we consider the off-critical flows of g(l)
and ζ(l) starting with a small negative value of δ. Since the linearized flow
for δ(l) reads

δ(l) = δ0e
εl , (11)
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where δ0 is now negative, we see that g renormalizes to zero within this linear
approximation at l∗ given by the solution to the equation:

|δ0|eεl
∗

= gc

=
ε

(N − 2)S2

. (12)

The renormalized theory corresponding to RG scale l∗ is expected to have
essentially perfect long-range order, i.e. the correlation function of the n̂
field in this theory will tend to an O(1) number in the long-distance limit.
For the correlations in our original theory, this implies

lim
|xµ|→∞

〈n̂(xµ) · n̂(0)〉gc+δ0 ∼ ζ(l∗) . (13)

Since the limit on the left hand side defines ~m2, the square of the order
parameter, this implies that

|~m| ∼
√
ζ(l∗) . (14)

We can work out ζ(l∗) by integrating the equation for the linearized off-
critical flow of ζ derived in the last lecture. This gives

ζ(l∗) ∼ |δ0|
N−1
N−2 , (15)

which implies

|~m| ∼ |δ0|
N−1

2(N−2) . (16)

The critical exponent β is conventionally defined by the relation |~m| ∼ |δ0|β.
Therefore, our leading order RG prediction for β reads

β =
N − 1

2(N − 2)
. (17)

One must remember that each of these predictions for the critical expo-
nents η, ν, and β are leading order results in an “ε-expansion” about D = 2.
Using more sophisticated field-theoretical reformulations of this idea, it is
possible to obtain higher order terms in this expansion, and these estimates
provide a good analytical guideline for the critical behaviour in the physical
D = 3 case.
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Next, we turn our attention to the T > 0 properties in the vicinity of this
critical point. In order to do this, we must rewind back to the last-but-one
lecture and remind ourselves that the flow equations we have been using were
derived at T = 0. As we have seen in the original derivation, this enters only
in the penultimate step of the derivation. Therefore we go back to that step
and now interpret the trace Tr~q over modes being eliminated in a different
way, as already indicated in that lecture:

Tr~q =
∞∑

ωn=−∞

∫ Λ

Λ−δΛ

ddq

(2π)d
, (18)

where ωn = 2πn
β

= 2πnT as usual. Using this formulation and repeating the
steps of the derivation in the last-but-one lecture, we obtain

1

g′
=

1

g
− N − 2

β

∑
ωn

∫ Λ

Λ−δΛ

ddk

(2π)d
1

ω2
n + k2

. (19)

Next, we redefine units of space and imaginary-time as before. The new fea-
ture now is that rescaling units of imaginary-time implies that the new theory
after renormalization has a different value of renormalized temperature T̃ ,
since the inverse temperature is the “size” of the system in the imaginary
time direction. We therefore have the two equations

1

g̃
=

e(D−2)δl

g
− (N − 2)

β

∑
ωn

∫ Λ

Λ−δΛ

ddk

(2π)d
1

ω2
n + k2

,

T̃ = eδlT , (20)

where D = d + 1 is the space-time dimension as usual. Doing the ωn sum-
mation explicitly (this can be done using contour integration techniques that
you must have studied in a mathematical methods course, and I urge you to
check my answer as a homework exercise), we obtain

1

g̃
=

e(D−2)δl

g
− (N − 2)

∫ Λ

Λe−δl

ddk

(2π)d

(
1

2k
+

1

k

1

ek/T − 1

)
,

T̃ = eδlT . (21)

Taking the limit of small δl as usual and iterating, we obtain the flow equa-
tions

dg

dl
= −(d− 1)g +

(N − 2)SdΛ
d−1

2
coth

(
Λ

2T

)
,
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dT

dl
= T . (22)

As an example of the use of these flow equations, let us try and answer
the following question in d = 2: From the Mermin-Wagner theorem, we
know that there can be no real long-range order and breaking of continuous
symmetry at T > 0 in spatial dimension d = 2. However, the ground state
can and does have long-range order for g < gc. The interesting question then
arises—What is the correlation length at very small but non-zero temperature
T > 0 above the ordered ground state? Clearly, this correlation length ξ(T )
must diverge as T → 0, since we are going from short-ranged correlations at
small T > 0 to long-range order at T = 0. And the question we are really
asking is: How does ξ(T ) diverge as we approach the ordered ground state
by lowering the temperature?

To answer this to leading order, we note that for g < gc, the flow of g is
dominated by the linear term that sends g(l) to zero exponentially quickly
in l. Therefore, we have

g(l) ≈ ge−l . (23)

On the other hand, we also have

T (l) = Tel . (24)

Thus, to leading order we have the approximate “constant of motion”

g(l)T (l) ≈ gT . (25)

To see what this implies, let us follow the flows from the initial small value
of T up to a scale l∗ at which T (l∗) = C, some O(1) number. In this new
theory, all ωn 6= 0 modes play a negligible role because their contribution
is suppressed in the path integral by a factor ∼ exp(−(2πC)2). Therefore,
the physics of this renormalized theory is controlled by the behaviour of
the ωn = 0 mode. Put another way, only configurations of n̂(x̃, τ̃) that are
independent of τ̃ matter for understanding the renormalized theory at scale
l∗. If we denote this ωn = 0 mode of the renormalized quantum statistical
mechanics problem by n̂(x̃) and write the path integral for n̂(x̃), we see
that the problem is effectively classical, with the correlations of n̂(x̃) being
controlled by the classical effective action

Seff =
1

2g(l∗)T (l∗)

∫
d2x̃(∇x̃n̂)2 , (26)
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where it is understood that T (l∗) takes on the value C. But we already know
that g(l∗)T (l∗) = gT within our approximate analysis of the flows. Therefore,
this action can be written as

Seff =
1

2gT

∫
d2x̃(∇x̃n̂)2 . (27)

We can now interpret this as the zero temperature theory for a one-dimensional
quantum problem, and use the results of the previous lecture that tell us that
this theory has a correlation length ξ̃ given by

ξ̃ = ξ0 exp(2π/(N − 2)gT ) . (28)

Translating this result back to the original units, we obtain the following
answer to the question we posed above:

ξ(T ) = el
∗
ξ0 exp(2π/(N − 2)gT ) , (29)

where we need to remember that el
∗

is fixed by the requirement that Tel
∗

= C.
Using this, we have the final result

ξ(T ) =
A
T

exp(2π/(N − 2)gT ) , (30)

where A is some order one constant that cannot be predicted by this analysis.
Now, the basic assumption that went into this result (apart from our

approximate treatment of the RG flows) is that it is legitimate to neglect
the ωn 6= 0 modes once the temperature becomes some O(1) number C. In
other words, we are assuming that the destruction of long-range order at
finite-temperature is an essentially classical phenomenon, although we are
looking at very small temperatures above the ground state of a quantum
problem. Is this correct? To reassure ourselves that this is indeed correct,
we can estimate the mean occupation of spin wave modes of wavevector
q ∼ ξ−1 [since the system looks ordered up to x ∼ ξ, and we know from
our earlier discussion of the Mermin-Wagner theorem that it is these spin-
wave modes that are responsible for the destruction of long-range order in
systems with continuous symmetries]. If this mean occupation is large, then
the corresponding mode can indeed be treated classically, and this would
then suggest that our RG analysis above is correct.

Now, the energy of a spin-wave with wavevector q ∼ ξ−1 is ε(ξ−1) ∼ cξ−1.
The mean occupation is simply the Bose-function evaluated at this energy:

n̄(ξ−1) =
1

ec/ξT − 1
. (31)
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To check if our RG results are consistent, we plug in the RG prediction for
Tξ(T ) into this formula to get

n̄(ξ−1) =
1

exp(ce−(2π/(N−2)gT )/A)− 1

∼ exp(2π/(N − 2)gT ) , (32)

which is indeed very large in the T → 0 limit. Therefore, our RG argument
and results are internally consistent and correct. This regime of behaviour
is sometimes called the “renormalized classical” regime, since the physics
at large length scales, of order the exponentially large correlation ξ(T ), is
effectively classical. Finally, we note for completeness that although our
overall logic is correct, our crude analysis of the flows causes us to miss a
multiplicative power-law prefactor to the exponential form of Tξ(T ). The
full answer (which one can derive by a more elaborate analysis along similar
lines) is

Tξ(T ) = A
(

(N − 2)gT

2π

) 1
N−2

exp(2π/(N − 2)gT ) . (33)

This concludes our discussion of the renormalization group theory for the
N -vector model, and its applications to quantum antiferromagnets. In the
next lecture, we switch gears and focus on the N = D = 2 case appropriate
for a study of superfluids at T > 0 in spatial dimension d = 2, or a study of
quantum liquids in their superfluid phase at T = 0 in d = 1.
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