
Lecture 10: Introduction to quantum antifer-

romagnets

In the last two lectures, we have developed a nice path integral representation
of the d dimensional quantum Heisenberg antiferromagnet, with Hamiltonian

H = J
∑
〈ij〉

~S(~ri) · ~S(~rj) (1)

where 〈ij〉 denote nearest neighbour bonds of the d dimensional lattice. ~ri are

the lattice positions, and ~S(~ri) are quantum mechanical spins representing
the magnetic moments that reside on these lattice sites. Now, we ask: Where
does a Hamiltonian like this actually arise in practice, i.e., what real-life
systems are actually described by such an effective Hamiltonian?

To answer this, we start with the observation that spins are nothing
but electrons that have “lost the ability to move”. To see what I mean by
this, let us begin by reviewing some simple background material from your
Solid State Physics course. The first thing I would like you to recall is the
fact that energy eigenstates of non-interacting electrons in crystals organize
themselves into “energy bands” εµ(~k), where ~k is a momentum label that lies

in the first “Brillouin zone” (roughly speaking, the cell in ~k space needed
to completely specify a function with real-space periodicity corresponding to
that of the underlying crystal structure), and µ is a band index. For example,
for a simple cubic lattice with lattice spacing a in all three directions, the
Brillouin zone is the cubic cell defined by 0 ≤ kx ≤ 2π/a, 0 ≤ ky ≤ 2π/a,
0 ≤ kz ≤ 2π/a.

In materials where electron-electron repulsion (Coulomb interaction) can
be ignored, these bands control all the electronic properties of the crystal.
To obtain predictions, one has to know the number of electrons contributed
by each atom in a real-space unit cell of the crystal and then use the Pauli
principle and the resulting Fermi-Dirac distribution to decide on the Fermi
energy εF , and the average occupation of each single-electron energy eigen-
state εµ(~k). Properties of this free-electron gas can then be computed in the
standard way.

As you konw, in this free-electron, or band-theory picture, a material
in which all bands are either completely filled or completely empty at zero
temperature becomes an insulator, and a material in which there are some
partially occupied bands becomes a metal.
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All of this ignores electron-electron interactions. If their effects are “mild”,
then a more sophisticated version of this approach, called the “Landau Fermi
Liquid Theory”, can be used. In the Fermi liquid picture, one imagines that
each electron is “dressed” by its interactions with other electrons to form a
“Landau quasiparticle” which has the same spin and same charge as an elec-
tron. In principle, each energy band of these Landau quasiparticles needs
to be calculated by including the effects of the occupation of bands by the
quasiparticles, i.e. self-consistently. However, in practice, this does not mod-
ify the fundamental identification of partially filled band systems with metals
and fully filled and empty band systems with insulators. Thus, although de-
tails may differ, there is no qualitative change from the free-electron picture
in this class of materials that obey Fermi-liquid theory.

However, band-theory and Fermi-liquid theory both break down dramat-
ically in a class of materials called Mott Insulators. These are insulators
which should, according to the predictions of band-theory and Fermi-liquid
theory, have actually been excellent metals with half-filled bands. The reason
for this breakdown is that electron-electron interactions actually dominate
the physics of such materials and lead to a freezing of the electron motion.

Such localized electrons only have their spin degree of freedom as a dy-
namical variable, and form magnetic moments that live on individual ions
of the lattice. The low energy physics is dominated by these magnetic mo-
ments and interactions between them induced by virtual hopping of electrons
to nearby ions and back. It is these interactions that are encapsulated by
the Heisenberg Hamiltonian that we started this lecture with.

To put some flesh on this bare-bones outline, we now consider a specific
and very well-known example, which has been responsible for much of the
interest in quantum antiferromagnetism. This is the example of La2CuO4,
the parent compound of one family of high temperature superconductors.
For our purposes here, it is sufficient to focus on the Copper-Oxygen (Cu-O)
planes, in which the Copper ions form a square lattice, with the Oxygen at
the centers of the links of this lattice—those of you who remember your solid
state physics class well and would like some more detail on the actual crystal
structure should refer to Fig 1 for a somewhat more “realistic” portrait of
this compound. Nine electrons (or one hole) live in the 3d orbitals on each of
these Cu sites in the parent undoped compound, and there is a large Coulomb
energy cost Ud for reducing the number of electrons to eight (i.e. adding an
additional hole) at any Cu site. As a result, although the crystal-field split Cu
orbitals should have resulted in one half-filled d-band, and therefore metallic
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Figure 1: The La2CuO4 perovskite crystal structure. Note the octahedral
environment (formed by the four in-plane Oxygen neighbours along with
two out-of-plane Oxygen neighbours of each Copper ion) of each Cu2+ ion,
which dictates the main pattern of crystal field splittings (also shown) of the
Copper 3d orbitals, and the small distortion from perfect octahedral geometry
responsible for the final splitting between the two orbitals with eg symmetry
(in case, you haven’t studied this in your Solid State Physics course, don’t
worry—it is a detail that will not affect your understanding of what I am
saying in this lecture).

behaviour, the system is actually a very good ceramic insulator.
This “parent-compound” can be thought of as being the first member in

a series of compounds with varying Strontium doping, i.e. with the chemical
formula La(2−x)SrxCuO4. Due to differences in the nominal valence of La
and Sr (La3+ versus Sr2+), each Strontium atom results in one additional
hole added to the Copper-Oxygen plane. If the system conformed to the
expectations of band-theory, the x = 0 parent would have had a half-filled
d band, and for x > 0, the doped compound would have had a hole Fermi
surface of “size” proportional to 1+x (since each Sr contributes one additional
hole). However, as mentioned earlier, the x = 0 parent is actually an insulator
with no Fermi surface, and at small x, the system actually has a small Fermi
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Figure 2: Depiction of the Copper-Oxide plane in La(2 − x)SrxCuO4. The
arrows represent S = 1/2 moments on the Copper sites. On the left panel
is a depiction of a electron that has hopped to a neighbouring site costing
charging energy Ud (the subscript d denotes the nature of the orbital which
is doubly occupied) and leaving behind a hole. On the right is a depiction
of a system with x > 0 in which holes are created without the need for
double-occupancies.

surface of size x and behaves like a bad metal upon doping (see Fig 2).
With all of this background in mind, let us now ask just how and why

the low energy physics of such a Mott Insulator (at x = 0) is well-described
by the simple S = 1/2 Heisenberg antiferromagnet Hamiltonian we wrote at
the begining of this lecture.

To this end, consider a simple model that captures all the essential fea-
tures of the example at hand: In the simple model, we have electrons (instead
of holes, just to keep things familiar) that can live on sites of a square lattice
and hop from site to neighbouring site with hopping amplitude t without
changing the spin polarization of the electron (if the final state is allowed by
Pauli exclusion). The total number of electrons is equal to the number of
lattice sites (this models the x = 0 insulator described in the foregoing). Nat-
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urally, two electrons with the same spin state cannot simultaneously occupy
the same site (due to Pauli exclusion). However, two electrons with opposite
spin polarization (one pointing up along some axis and the other pointing
down) can occupy the same site simultaneously. To capture the most impor-
tant effects of the Coulomb repulsion between electrons, we postulate that
such double occupancy of a site costs “charging energy” U . (we drop the
subscript d since our analysis is more general than the specific example of
the cuprate Mott Insulator).

Our goal is to work out the energy spectrum approximately in the limit
of very small t/U at x = 0, i.e with exactly one electron per site on aver-
age. This is an exercise in massively degenerate perturbation theory. To
see what I mean, start with t = 0, i.e. set the electron kinetic energy to
zero. The problem now becomes one of classical electrostatics. The opti-
mum electrostatic energy, E0 = 0, is obtained when each site has exactly
one electron. Excited states are obtained if some sites are emptied out to
produce double-occupation of other sites. Each doubly occupied site costs
energy U .

How many states are there with energy E0 = 0? Clearly, the answer is
2L

2
, since each electron can have two possible spin polarizations along some

quantization axis, which we take to be the z axis—there is thus an entire
ground state manifold with energy E0. What is the leading effect of the
electron kinetic energy T̂ , which allows each electron to hop with hopping
amplitude t from a site to any of its neighbouring sites without changing the
spin polarization (if the final state is permitted by the Pauli principle)?

To answer this, note that to first order in degenerate perturbation the-
ory, the effect of the perturbation is obtained by diagonalizing the effective
Hamiltonian P0T̂P0 where P0 is the projector into the ground state mani-
fold. However, since every hop of an electron creates a doubly occupied site,
T̂ acting on any state in the ground state manifold takes the system out of
this manifold due to the creation of double occupancy at a site. Therefore
P0T̂P0 = 0, and there is no effect of the kinetic energy to linear order in t.

Therefore, we need to go to second order in degenerate perturbation the-
ory to understand the leading effects of the kinetic energy T̂ . The general
prescription for the effective Hamiltonian that determines the behaviour of
the system to second order is

Heff
g′,g = −

∑
e∈α ; α 6=0

〈g′|T̂ |e ; α〉〈e ; α|T̂ |g〉
Eα − E0
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(2)

where g and g
′

are states in the ground state manifold of the unperturbed
Hamiltonian which has energy E0, α 6= 0 labels all excited state manifolds
of the unperturbed Hamiltonian with unperturbed energy Eα, and |e ; α〉
denotes excited states in the excited state manifold α.

We now carefully apply this to the case at hand. In our example, ground
states can be labeled by their spin state, i.e. written as |σ1, σ2, . . . σLd〉, where
σi = ±1 denotes the spin state of the electron on site i. The kinetic energy
T̂ acting on any such state can produces a linear combination of excited
states by hopping any one electron to one of its neighbouring singly occupied
sites, if allowed by the Pauli exclusion principle. Each such excited state
is produced with amplitude t and has exactly one vacant site and a doubly
occupied site next to it. The doubly occupied site will have one electron on
it having σ = +1 and the other having σ = −1. All other sites remain singly
occupied. Any such excited state has unperturbed energy U (due to one site
being doubly occupied). The second action of T̂ needs to bring this excited
state back to the ground state manifold. This can happen in two ways: One
way is for the electron that had hopped to a neighbouring site to return to the
original site. The other way is for the other electron at the doubly occupied
site to hop to the empty site. The second way involves an exchange of the
two electrons, and therefore the amplitude for this process has an additional
minus sign due to exchange of fermions (fermion statistics).

The first way gives a diagonal term in the effective Hamiltonian since the
initial |σ1, σ2 . . . σLd〉 and the final |σ′1, σ′2 . . . σ′Ld〉 are the same. It acts on
every pair of nearest neighbour spins (σ1,σ2) which are anti-aligned: σ1 =
−σ2 and, by its action, lowers the system energy by 2|t|2/U (the factor of
two comes from the fact that there are two choices for the location of the
empty site in the intermediate state). In terms of spin-half operators, it can
be represented as

2|t|2

U

∑
〈ij〉

(2Szi S
z
j −

1

2
) (3)

where 〈ij〉 represents each nearest neighbour pair of sites i and j.
The second way gives an off-diagonal term, since it exchanges the spins

on the two neighbouring sites. It too acts on each pair of nearest neighbour
spins (σ1, σ2) which are anti-aligned, but, in contrast to the previous term,
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it flips these spins:

|σ′1σ′2〉 = |σ2, σ1〉 (4)

The amplitude for this spin-flip is +2|t|2/U . Here, the positive sign is the
result of the negative sign from the fermion exchange canceling the negative
sign in front of the second-order perturbation theory formula, and the factor
of two is again due to the fact that there are two possibilities for the doubly
occupied intermediate state.

In the language of spin-half operators, this second term can be represented
as

2|t|2

U

∑
〈ij〉

(S+
i S
−
j + S−i S

+
j ) (5)

where 〈ij〉 represents each nearest neighbour pair of sites i and j.
Putting both terms together, we obtain the effective Hamiltonian

Heff =
4|t|2

U

∑
〈ij〉

[Szi S
z
j +

1

2
(S+

i S
−
j + S−i S

+
j )− 1

4
]

(6)

where S+
i = Sxi + iSyi and S−i = Sxi − iS

y
i are the spin raising and lowering

operators at site i. Finally, this can be rewritten in a manifestly rotationally
invariant form as

Heff =
4|t|2

U

∑
〈ij〉

[~Si · ~Sj −
1

4
] (7)

In the next lecture, we will use this as starting point to discuss the spin
physics of Mott insulators in more detail.
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