
Lecture 12: Expanding the Berry phase term

In this lecture, we will pick up the threads from where we left off last time,
and use the decomposition of ~N into an alternating Neel part n̂ and a uniform
part ~L to rewrite the Berry phase term in a more useful and transparent way.

In principle, we have to simply take

SB =

∫ β

0

dτ
∑
i

iS

∫ 1

0

du ~N(~ri, u, τ) · (∂
~N(~ri, u, τ)

∂u
× ∂ ~N(~ri, u, τ)

∂τ
) ,

(1)

insert the decomposition

~N(~rj, τ) = η(~rj)n̂(~rj, τ)

√
1− (ad/S)2~L2 +

ad

S
~L(~rj, τ) , (2)

and expand out the answer using the slowly varying nature of n̂ and the
smallness of ~L

However, at a formal level, we need to first understand how to “extend”
the n̂ and ~L defined at u = 1 (i.e. for the physical configurations) to the

entire interval 0 ≤ u ≤ 1. To understand this, we first note that ~N(u, τ) is

defined as the vector obtained by rotating ẑ by uθ( ~N(τ)) instead of the “phys-

ical” angle θ( ~N(τ)), but about the same axis ~M( ~N(τ)) (we have dropped the
~ri dependence for ease of notation). With this in mind, we can decompose
~N(~ri, u, τ) using the same prescription we used earlier for ~N(~ri, τ), i.e. by

coarse-graining a configuration of ~N(~ri, u, τ) over a length scale l of order a
few lattice spacings a to define a local direction n̂(~r, u, τ) and taking compo-

nents of ~N(~ri, u, τ) along and perpendicular to n̂(~r, u, τ). In other words, we
have the decomposition

~N(~rj, u, τ) = η(~rj)n̂(~rj, u, τ)

√
1− (ad/S)2~L2 +

ad

S
~L(~rj, u, τ)

with n̂(~rj, u, τ) · ~L(~rj, u, τ) = 0

(3)

With this in mind, we can go ahead with the expansion of SB. This
expansion will result in four kinds of terms, classified by the number of places
in which ~N is replaced by the alternating part (in the rest, it is replaced by
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the uniform part). Of these, the term with all ~N replaced by the uniform part

is clearly a higher order effect, given that it involves three powers of ~L. The
term with two ~N replaced by their uniform parts and one by its alternating
part has an overall factor of η(~ri) in front, and the oscillatory nature of this
factor implies again that this term is a small higher order effect which can
be neglected.

We are thus left with two kinds of terms. One is obtained by replacing
all three ~N by their alternating parts. To leading order, one can set the
magnitude of the alternating part to one, i.e. use the zeroth order term in
the expansion of the square-root in powers of ~L, to obtain

S ′B = iS
∑
j

η(~rj)Az(n̂(~rj, τ)) ,

(4)

i.e. the alternating sum of the signed areas Az subtended on the unit sphere
by n̂(~rj, τ) as τ is varied from 0 to β. This is a tricky term to handle due to
its oscillatory nature, and we will come back to it later.

The second set of terms that survive all have one field replaced by its
uniform part and two replaced by their alternating parts. No oscillatory
factors η(~rj) appear due to the even number of alternating parts. Apart
from a boundary contribution (see below) whose correct magnitude requires
us to keep track of the magnitude of the alternating part, we can again set
each square root to one, and write these terms as:

ad

S
iS
∑
j

∫ β

0

dτ

∫ 1

0

du

[
n̂ ·

(
∂~L

∂u
× ∂n̂

∂τ

)
+ ~L ·

(
∂n̂

∂u
× ∂n̂

∂τ

)
+ n̂ ·

(
∂n̂

∂u
× ∂~L

∂τ

)]
(5)

The second term in the square bracket above is zero because the cross product

∂n̂

∂u
× ∂n̂

∂τ

is a cross product of two vectors both of which are perpendicular to n̂(~rj, u, τ),

and therefore must lie along n̂(~rj, u, τ), i.e. perpendicular to ~L(~rj, u, τ).
The other two terms that survive can be rewritten as

ad

S
iS
∑
j

∫ β

0

dτ

∫ 1

0

du

(
∂

∂τ

[
n̂ · ∂n̂

∂u
× ~L

]
+

∂

∂u

[
n̂ · ~L× ∂n̂

∂τ

])
(6)
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Written in this form, it is clear that the first term, being a total derivative
with respect to τ , is zero due to the periodic boundary conditions in the τ
direction. The second term, being a total derivative with respect to u, can
be written in terms of the boundary contributions at u = 1 and u = 0:

iS
∑
j

∫ β

0

dτ

(
n̂ · ~L× ∂n̂

∂τ

) ∣∣∣u=1

u=0
(7)

Now, we note that the contribution from u = 0 vanishes to this order. The
argument is as follows: We observe that

~N(~rj, u = 0, τ) = ẑ (8)

since the rotation angle is zero. As a result, the magnitude of the alternating
part goes to zero as u→ 0. Therefore, we need to remember that our analysis
of this set of terms was performed under the assumption that√

1− (a2d/S2)~L2 (9)

remained close to 1, and go back and keep track of this factor more carefully,
especially in the step in which we rewrite the term as an integral of total
derivatives. This is a straightforward but notationally cumbersome exercise,
which tells us that the boundary contribution from u = 0 vanishes to this
order (you should check this!) since there is no alternating part at all at
u = 0.

Therefore, we are left with (in continuum notation)

−i
∫

Λ

ddx

∫ β

0

dτ ~L ·
(
n̂× ∂n̂

∂τ

)
(10)

Thus, we have shown that the Berry phase term SB can be rewritten to
leading order as a sum of two contributions:

SB = S ′B − i
∫

Λ

ddx

∫ β

0

dτ ~L ·
(
n̂× ∂n̂

∂τ

)
,

S ′B = iS
∑
j

η(~rj)Az(n̂(~rj, τ)) . (11)

Here, we have written the second term in continuum notation to emphasize
that lattice level details do not enter into its formulation, while the first term,
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which depends exclusively on n̂, is of course an alternating lattice sum that
cannot be coarse-grained without losing information.

Our partition function can now be written as a functional integral over
configurations of ~L and n̂, instead of over configurations of the original ~N .
In other words, we have

Z =

∫
n̂2=1

Dn̂D~Lδ(~L · n̂) exp

(
S ′B(n̂)−

∫ β

0

dτ

∫
Λ

ddx[
ρs
2

(∇n)2 +
~L2

2χ⊥
+ i~L ·

(
n̂× ∂n̂

∂τ

)])
(12)

At this point, let us temporarily ignore the presence of S ′B(n̂) and de-
velop some feeling for the rest of this functional integral expression, i.e. ask:
What system’s partition function is described by this formula in the absence
of S ′B(n̂)? To answer this, consider a spatial lattice with lattice spacing
Λ−1 ∼ l, the coarse-graining scale. At each point of this lattice, there is a
unit vector n̂. There is an energetic cost to neighbouring unit vectors being
out of alignment—this is captured by the stiffness ρs. This energy functional
is simply that of a classical ferromagnetic O(3) model, in which nearest neigh-
bour “spins” (unit 3-vectors) like to be aligned. Quantum mechanics enters
through the kinetic energy for these unit vectors. Thinking of each unit vec-
tor as the position of a fictitious particle of mass χ⊥ on the corresponding
unit sphere (in spin space), it is clear that the kinetic energy must be the
square of the corresponding angular momentum vector divided by two times
the mass of the partice. Since the Newtonian mechanics expression for ~L is

~L = χ⊥

(
n̂× ∂n̂

∂τ

)
(13)

and the kinetic energy is

1

2χ⊥
~L2 (14)

it is clear that ~L must be perpendicular to n̂, and that the phase space path
integral for the partition function of such a system would take on exactly the
same form as our path integral expression for Z if we ignore the S ′B term.
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Thus, without the S ′B term, our expression describes the partition function
of O(3) quantum rotors with moment of inertia χ⊥ and aligning interactions
controlled by ρs.

In other words, the Hamiltonian formulation of this system of quantum
rotors (ignoring S ′B(n̂)) is

Hrotor =

∫
ddx(

~L2

2χ⊥
+
ρs
2

(∇n̂)2)

[nα(~r) , Lβ(~r′)] = iδd(~r − ~r′)εαβγnγ(~r)
[Lα(~r) , Lβ(~r′)] = iδd(~r − ~r′)εαβγLγ(~r)

(15)

where the commutators listed above tell us that the ~L are now the angular
momentum operators that are canonically conjugate to the positions n̂.

With that in mind, we can write down the coordinate-space path inte-
gral for this quantum rotor model by integrating over the ~L in the earlier
phase-space path integral representation. This is straightforward to do by
introducing a Lagrange multiplier field λ to take care of the orthogonality
constraint: ∏

~r,τ

δ(~L · n̂) =

∫
Dλe−i

∫
ddx

∫ β
0 dτλ(~L·n̂) (16)

The ~L functional integral is now a simple Gaussian integral and can be per-
formed by completing the square in the exponential, after which the λ func-
tional integral can be done to enforce the orthogonality constraint:∫

Dλ
∫
D~L exp

(
−
∫
ddx

∫ β

0

dτ [
~L2

2χ⊥
+ i~L · (n̂× ∂n̂

∂τ
+ λn̂)]

)

= const.

∫
Dλ exp

(
−χ⊥

2

∫
ddx

∫ β

0

dτ(n̂× ∂n̂

∂τ
+ λn̂)2

)
= const. exp

(
−χ⊥

2

∫
ddx

∫ β

0

dτ (
∂n̂

∂τ
)2

)∫
Dλ exp

(
−χ⊥

2

∫
ddx

∫ β

0

dτ λ2

)
= const′ exp

(
−χ⊥

2

∫
ddx

∫ β

0

dτ (
∂n̂

∂τ
)2

)
(17)
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In other words, we have demonstrated that the low-energy effective theory
for a system with short range antiferromagnetic order can be written as:

Z ∝
∫
n̂2=1

Dn̂ exp

(
S ′B(n̂)− ρs

2

∫ β

0

dτ

∫
ddx((∇n̂)2 +

1

c2
(
∂n̂

∂τ
)2)

)
(18)

where we have introduced the velocity c

c ≡
√
ρs
χ⊥

∼ JSa (19)

which converts between space and imaginary time dimensions.
Rescaling τ → cτ and β → cβ, we can rewrite the action as

S = S ′B +
1

2g

∫ βc

0

dτ

∫
ddx((∇n̂)2 + (

∂n̂

∂τ
)2)

where g =

√
1

χ⊥ρs
∼ ad−1

S
(20)

As we will see later, although we do not know its value precisely, c is
really a velocity, in the sense that it controls the velocity of certain wavelike
excitations in the antiferromagnetic phase. Nor do we know the values of g
or Λ precisely, and of course they are not measurable quantities since both
depend on our choice of coarse-graining procedure.

How then are we to use such an effective theory? For concreteness, con-
sider the case in which the theory describes a gapped phase, with energy
gap ∆ separating the ground state from excited states—note that ∆ can be
measured via its effect on the specific heat, for instance. Now, the way one
can use the effective theory is to compute ∆ as a function of Λ, c and g. As
we shall see later, one can then calculate any other physical property and
remove all explicit mention of g and Λ in the final answer by re-expressing
the answer as a function of ∆, c, and T . In this way, we can use this effective
theory to get results for other observables in terms of the measured gap in
the spectrum—these are testable predictions.

To do any of these calculations, we need to know what quantity in the
effective theory plays the role of a particular microscopic observable.
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The answer is already clear from our derivation of this effective theory:
Namely, Fourier components ~S(~k) of the spin density operator at ~k = Q + ~q
and q small are represented by S times the corresponding Fourier components
n̂(~q) of the n̂ field, while the Fourier components ~S(~q) of the spin density
operator at small q near zero wavevector are represented by the corresponding
Fourier components ~L(~q) of the ~L field:

~S[Q + ~q] ∼ Sn̂(~q) , q small

~S[~q] = ~L(~q) , q small .

(21)

Here, Q is the antiferromagnetic ordering wavevector at which the Fourier
transform of η(~r) is concentrated, In the next class, we will quickly summarize
the effects of S ′B and then discuss experimental probes of antiferromagnets,
so that we have an idea of the types of quantities one would be interested in
calculating with such an effective theory.
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