Lecture 17: Path integral description of many-
body physics

In the last lecture, we have seen that the formalism of “second-quantization”
in which various terms in the Hamiltonian of many-body systems are de-
scribed in terms of creation and annihilation operators, provides a economi-
cal language in which simple leading order perturbation theory calculations
can be formulated. Later in this course, we will also see that this formal-
ism also suggests simple mean-field theory type approximations that yield an
amazingly good description of interesting phenomena like superconductivity
and superfluidity.

In other contexts, for instance the study of phase transitions at which
superfluidity is lost, an alternative description in terms of path integrals is
also very useful. In this lecture, we will therefore develop such a description,
focusing on the bosonic case for simplicity, since the fermionic path integral,
although simple to set up, involves somewhat unfamiliar mathematics.

As a preliminary, consider a single pair of bosonic creation and annihila-
tion operators satisfying the commutation relation

[a,a'] =1, (1)

and let us construct eigenstates |¢) of the annihilation operator a.
To do this, we assume

DEDI A (2)

and fix C,,(¢) by requiring
alg) = ¢|¢) (3)

lallowed eigenvalues are of course those values of ¢ for which we can find
C,(¢) that satisfy this requirement]. Since

alg) =Y Cu(¢)Vnln — 1) (4)

this involves comparing with ¢C,,(¢) the coefficient of |n) in the above, i.e.
Chi1vn + 1, and demanding that the two be equal for each n. This gives
the recursion relation
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which has solution
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where Cy(¢) controls the overall normalization of the state, and may be
chosen equal to 1. With this choice, we write the un-normalized eigenstate
as
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we may also write this as
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Clearly, there is no restriction placed on ¢ by any of the above, so there is
an eigenstate |¢) for every complex number ¢. If we consider the overlap
(¢'|¢) of two such states, it is easy to see that this has a simple closed form
expression:
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In addition, it is easy to see one can write the identity operator using this
basis of coherent states via the following completeness relation
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To verify this, one simply notes that
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And finally, setting r? = p, we obtain
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as claimed.
In some contexts, it is also useful to understand the action of a' on |¢).
This may be done by noting
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Thus, when acting on |¢), al acts in the same way as 96 Likewise:
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Now, any state can be written, using the resolution of identity developed
earlier, as an expansion
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Here

P(97) = (o) (16)
is the “wavefunction” corresponding to the state |i). Since
0 0 .
(Blal) = 5o (014) = 5 0() (17)
and
(Blal ) = ¢"(6"). (18)
we see that
0
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in the same sense in which
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when working with coordinate-space wavefunctions of ordinary single particle
quantum mechanics.

It is conventional in many situations to work with so-called “normal-
ordered” expressions A(a',a) in which all the creation operators are to the
“left of the annihilation operators. Such normal operators have the following
simple matrix elements between two coherent states:

(|A(al, a)|¢)) = A(¢*,¢)e? (20)

where A(¢*, ¢') is obtained from A(a', a) by replacing a' by ¢* and a by ¢'.
Also, the trace of such a normal ordered operator can be written as
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Clearly, all of this generalizes readily to a set of creation and annihila-
tion operators {a}, ax} that create We have a set of a,, where {|a;)} form
a complete orthonormal basis of single particle staqtes. Simultaneous eigen-
states of all the a,, are now labeled not by one complex number ¢, but by a
complex-valued function ¢(k) of the index k.
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For instance, if we use the position states {|z)} as the single-particle ba-
sis, then the corresponding simultaneous eigenstates of a, are labeled by a
complex valued function ¢(z) and given as

[¢(x)) = el ")) (22)

This concludes our discussion of the coherent state basis. Before we use
this basis to develop a path integral representation of the partition function,
it is useful to see how properties of these basis states play a role in actual
computations involving these states. To this end, we consider two examples:
First and most basic, let us ask what is the expected number of particles in
a coherent state. For concreteness, consider a system of bosons that lives
on a lattice with sites labeled by j. We have N = Zj n;, where n; = a;aj
denotes the particle number at a site 5. Now, one can transform to any other
orthonormal basis of single particle states, say {|ax)}, and as we have seen
earlier, > . n; transforms to ), ny, where n; = alkaak. Working in the basis
of coherent states {|p(k))} and suppressing the argument k of the function
¢(k) to avoid confusion, we have

N = =g
= S (Blal, 0 |6) (016)

= Y ¢ (k)g(k) (23)
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~ Next, we compute the expectation value of N2. To do this, we first express
N? in terms of the a,, by writing
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In the thermodynamic limit of a large number of particles at finite density,
this result tells us that although coherent states are eigenstates of a “phase
variable” ¢(k), they nevertheless have quite sharply defined particle-number.
In a certain well-defined sense that we will explore later, this phase variable is
canonically conjugate to the particle number, and from this perspective, our
coherent states are like the minimum-uncertainty wavepackets in which one
may have reasonably well-defined values for both position and momentum.

With this background, we now develop a path integral representation of
the partition function in the basis of these coherent states. To do this, it is
convenient to assume that the Hamiltonian H[a', a] is a “normal-ordered”
function of creation and annihilation operators, i.e., it is written in such
a way that all the creation operators are to the left of all the annihilation
operators in every term of the Hamiltonian. If the original expression for the
Hamiltonian is not of this form, it can always be put in this form using the
commutation relations, so this is not a real restriction. Also, for notational
convenience, we suppress the fact the ¢ is a function of the single-particle
basis label & and denote the function ¢(k) simply as ¢. This is useful since
¢(k) also acquires the usual additional “imaginary-time” dependence in our
derivation of the path integral, and keeping the k dependence explicit would
simply clutter our notation—thus, arguments or subscripts of 1 refer to this
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imaginary time dependence, and ¥*v,, = >, ¢r(k)dn(k) in our short-hand
notation.
With these two things in mind, we have

7 — Tr e PHlaa _ /[d¢3¢0]<¢0|6—61{[a*,a] ¢0>e—wawo
We now break up the exponential as
e_ﬁH[afva] — e_%H[aT7a] Ce e_%H[aJr7a] (26)

where there are M identical factors on the right hand side. Next we introduce
a resolution of identity between two consecutive factors on the right hand side
of the above expression. This gives

M-1
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with the understanding that ¢y, = 1)y. Thinking of e = /M as a time-step
along an imaginary time direction 7, this is equivalent to saying that (7)
is periodic with fixed period = Me. Next, we note that if H is normal-
ordered, the smallness to € guarantees that exp(—eH) is also normal ordered
to leading order in €. This allows us to write:
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valid to leading order in €. In the last line above, we have used the discrete
version of integration by parts and the periodic boundary conditions on
to transfer the finite difference on to v instead of ¥*, and it is understood
throughout that we are taking the limit M — oo, € — 0, such that Me = 3
remains fixed.



Formally, in this limit, the sum in the exponential can be thought of as
a Riemann sum whose limit gives an integral expression. In other words, we
may identify

M B
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In the same limit, the multiple integral can be thought of as defining an
integral over paths in the space of coherent states:

/ (dodvg)[dirdt] - [ adiy ] = / DU(r)Dy(r)  (30)

This path integral representation is somewhat analogous to the coherent state
path integrals for spins, which we developed in earlier lectures. Indeed, the
time derivative term in the exponential is clearly a pure imaginary quantity,
and therefore represents the analog of the Berry phase that we encountered
in the spin path integral.

This concludes our derivation of the coherent state path integral for
bosonic systems. In the next few lectures, we will explore the physics of
such systems using this and other tools.



