Lecture 6: Fluctuation-Dissipation theorem and
introduction to systems of interest

In the last lecture, we have discussed how one can describe the response of a
well-equilibriated macroscopic system to some external probe, and how this
response encodes information about the excitations of the system. To do this,
we developed the spectral representation (in terms of exact eigenstates of the
system). We also saw how such formal spectral representations can lead to
considerable insight, for instance, an appreciation of the Kramers Kronig
relations that relate the real and imaginary part of the frequency dependent
response functions to each other. One thing we did not emphasize in the
previous lecture in this connection is the following: The real part of the
response function measures the in-phase part of the response to a sinusoidal
external field, while the imaginary part of the response function measures
the out-of-phase part of the response function.

Now, we consider the question of energy dissipation. Intuitively, it is
clear that some energy is dissipated into the macroscopic system if we drive
it with an external field (think for instance of Joule heating in response to
a current being driven in a system by an external potential). It is clearly
interesting to ask: What aspect of the response determines the amount of
energy dissipated into the system?

To answer this, we first demonstrate that the energy dissipated is inti-
mately connected with the imaginary part R) ,(w) of the response function
if an external field that couples to A drives the system. Why is this the case?
Well, let us start by recalling that the full time-dependent Hamiltonian of
the system in the presence of the driving field is

H =H+bHA (1)
and the energy in the system at time ¢ is therefore

E(t) = (@OH [)(t))n (2)
if the system was initially in energy eigenstate |n) of the system Hamiltonian
H—here, |t)(t)), denotes the state of the system at time ¢ assuming it was
in eigenstate |n) when the driving field was turned on, and, as usual, we will
finally sum over initial states with the statistical Gibbs weight exp(—SE,)/Z.
Next, we note that the rate of increase of F(t) may be written as
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In other words, the only contribution to the time derivative comes from
the explicit dependence of b(t) on ¢, since the contributions from the time
dependences of the bra and the ket cancel each other. We now average over
initial states |n) with the Gibbs distribution to get
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where the subscript now reminds us that (A)7(¢) denotes the response at
time t of a system that was initially in equilibrium at temperature T'. This
response can now be represented in terms of the response function R4:
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(A)r(t) = /_ dt' Raa(t —t')b(t") (5)
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(here, we are assuming without loss of generality that (A)r = 0 in equilibrium—
if this were not the case, one could simply redefine A to subtract out the
corresponding constant piece).

Therefore, we have
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Integrating this, we obtain the total increase AFE in the system energy:
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Now, we note that note



i.e the real part of Ra4(w) is an even function of the frequency. Therefore it
does not contribute to the integral in the last line above. On the other hand,
the imaginary part obeys

aalw) = —Ria(-w), (9)

i.e, the imaginary part of the response function is an odd function of the
frequency, and therefore contributes to the integral that gives the total energy
dissipated in the system.

Therefore, we obtain

AE = - / TR (10)

We can now recall spectral representation of Ry, and use this to check that
AFE, as obtained from the above expression, will always be positive.

Indeed, from the spectral representation, it is quite easy to give a Fermi’s
Golden Rule type interpretation for this formula that we have derived. By
inspection of the spectral representation derived in the last-but-one lecture,
we see that —R"(w)/m for positive w gives the Fermi’s Golden Rule prob-
ability for making a transition in which the energy of the system increases
by w due to the action of the perturbation. Multiplying this by the amount
of energy gained, which is w in our present units in which & is set to 1, we
immediately see how the formula derived above is indeed the correct result
for AFE, the energy dissipated in the system.

So R’(w) tells us about dissipation in the system in response to a probe
at frequency w. Now, a system in equilibrium has fluctuations even in the ab-
sence of any external drive. These equilibrium fluctuations have a spectrum,
and it is natural to ask if there is any simple and general connection between
the spectrum of fluctuations and the dissipative part of the response—the
intuition behind seeking such a connection is the idea that the external field
must be driving those fluctuations whose natural frequencies are in resonance
with the frequency of the external field.

To make this connection precise, we need to quantify what we mean by
the spectrum of fluctuations. This is done by defining the time-dependent
correlation function

S(t)
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The rationale for this definition is that it keeps track of the correlations
between the Heisenberg operator Ay (t) at different times. Such correlation
functions play a key role in our theoretical description and understanding of
collective behaviour of many-body systems both in and out of equilibrium,
and much of the machinery of statistical mechanics and many-body theory is
geared towards efficient and reliable calculations of such correlation functions.

However, experimental measurements always measure the response of the
system to some field that is turned on by the experimentalist, and we have
no “embedded observers” who can look inside the system and keep track of
correlations. Therefore, it is of great interest to relate such time dependent
correlations, at least in equilibrium, to the response of the same equilibrium
system to some perturbing field. This is the main motivation for the result
we are about to derive.

In any case, the next step is to write the trace as a sum over all exact
eigenstates, and introduce a resolution of identity between the two occurences
of A. In this manner, we can rewrite the expression for S(t) as
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Now, we may Fourier transform to define the frequency space density S(w),
which is usually referred to as the “dynamic structure factor”. In this man-
ner, we obtain the following spectral representation for S(w)
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Now, the idea is to compare this expression with that for the imaginary
part of the corresponding response function:
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The above expression has the inconvenient (for our purposes below) feature
that the two terms have two different delta functions. However, it is easy
to transform this into an expression made up of two terms, both of which
have the same delta function but different coefficients in front of the delta



function. This is achieved by interchanging the dummy indices m and n in
the second summation to obtain:
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where the last line is obtained by noting that FE,,, can be replaced by w in
the prefactor to §(w — Eyup ).

This is now in a form that allows direct comparison with the spectral
representation of S(w). And thus, we obtain the well-known fluctuation-
dissipation theorem of linear response theory:
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With all of this in hand, we now move on to a brief overview of the
physical systems of interest to us. Typically, statistical physics is used to
describe the behaviour of classical and quantum condensed matter systems.
The former are composed of atoms or molecules that interact weakly through
Lennard-Jones type potentials, and are typically classical because the tem-
perature at which they are studied is relatively large, and the fermionic or
bosonic statistics of the constituent particles plays little or no role in deter-
mining the macroscopic properties. In contrast, electrons in a solid at very
low temperature, or Helium-3 and Helium-4 at very low temperature, con-
stitute a quantum fluid because the temperatures are low enough that the
quantum statistics of the constituents plays an important role in determining
the macroscopic properties.

For instance, the behavior of ultra-cold bosonic atoms in atom-trap exper-
iments at very low temperature is determined to a reasonably large extent by
Bose-Einstein distribution function which determines the probabilities with
which the atoms occupy various plane-wave states. Similarly, electrons in a



metallic solid at very low temperature form a degenerate “fermi-liquid” whose
behaviour is largely controlled by the Fermi-Dirac statistics of the electrons.
Roughly speaking, the physics is determined by the spectrum of itinerant
(traveling) electron waves and the occupation of these traveling wave states
according to the Fermi-Dirac distribution.

This is however not the case when electron-electron interactions cause
the electrons to localize on to individual ions of an ionic insulator. In such
cases, the traveling wave picture of electronic states is not valid, and a much
better description is a local one whereby one imagines a lattice of ions, each
with an optimal charge on it. Movement of electrons is forbidden by the fact
that such motion involves transferring charge from one ion to another and
is energetically very “expensive” due to the large charging energy of these
little “ionic capacitors”. Such insulators are called “Mott insulators” after
Sir Neville Mott who first described the mechanism that forces the electron
fluid to make a transition to an insulating state.

In such Mott insulators, the charge of an electron is no longer an active
participant in the low temperature physics since it is “frozen out” by the re-
quirement that each ion have an optimal energetically favourable charge con-
figuration that minimizes the Coulomb repulsion energy between electrons.
However, in many such Mott insulators, the optimal number of electrons on
some ions can be odd. In such cases, the ion has a spin degree of freedom
(we are imagining that the orbital angular quantum number is quenched by
crystal field effects familiar from solid state physics). These spins are typ-
ically coupled antiferromagnetically to each other (we will see exactly how
in more detail later), and the low energy physics is thus determined by the
behaviour of a system of interacting quantum mechanical spins.

Thus, the principal players in our story are itinerant fermions and bosons,
and quantum mechanical spins which may be thought of as electrons that
have lost the ability to hop from ion to ion. Starting with the next lecture
we will introduce a very convenient path-integral formalism for working with
the partition function for bosons, fermions or spins, and computing various
properties of such systems in equilibrium. Then we will take up an example
and examine in more detail the issues of symmetry breaking and stability
associated with phases that develop long-range order when the equilibrium
state breaks some global symmetry of the underlying Hamiltonian.



