Lecture 2: Review and preview

Let us begin with a review of undergraduate statistical physics, looking back
at what you have already learnt in your first course on statistical physics.

Both Newtonian mechanics and its quantum counterpart, the Heisenberg-
Schrodinger wave-mechanics are inherently deterministic theories. Consider
for instance, the Hamiltonian formulation of Newton’s laws
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In these equations, knowing the initial condition (p(t = 0),q(t = 0)) fixes
behaviour for all ¢ > 0. The situation is similar in quantum mechanics.
Consider Dirac’s formulation of Schrodinger’s equation

dy(t))
dt

Knowing initial state |1)(t = 0)) fixes behaviour for all ¢ > 0 given the system
Hamiltonian .

Now, given the success of Newtonian mechanics (or its relativistic gener-
alizations) in treating the behaviour of classical few-body systems and the
corresponding success of the Schrodinger equation in the quantum realm,
it might perhaps be natural to implicitly assume that the behaviour of
large macroscopic bodies—their macroscopic properties, internal structure
and dynamics—could all be understood at least in principle by an applica-
tion of these deterministic laws to all the ~ 10** atoms that make up the
macroscopic body.

However, the great insight which forms the foundation of Statistical Physics
is that such an approach is neither feasible nor relevant! The first point is that
it is simply not feasible to follow trajectories of ~ 10?® electrons in a crystal
or ~ 10 atoms in a gas. The second, more fundamental point is that this in-
formation on the trajectories of all the particles, or the time evolution of the
many-body wavefunction, does not help us understand the microscopic sig-
nificance of macroscopic notions like “temperature”, “hotness” vs “coldness”
etc, which are key ingredients in our description of macroscopic systems.

These key ingredients are assembled to form the science of thermodynam-
ies: As we know, thermodynamics starts with operational definitions for a
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few key quantities, the so-called “thermodynamic variables” that characterize
the state of a macroscopic body. These include the degree of “disorder” and
quantity of heat, quantified by the thermodynamic entropy S, the hotness or
coldness of macroscopic bodies, characterized by the absolute temperature
T, the quantity of “available” energy, characterized by the free energy F', the
internal energy U, and so on.

The predictive power of thermodynamics derives from a few simple prop-
erties these thermodynamic variables are postulated to satisfy. For instance,
heat always flows from body A to B when in contact if Ty > Tpg. S either
increases or remains constant with time. And S goes to zero as T" — 0, and
SO on.

Now, as remarked earlier, it is by no means obvious at all where these
properties like entropy and absolute temperature are “hiding” in the the
trajectories of ~ 10?* atoms in a gas, or the evolution of the many-body
wavefunction in a hilbert space of dimension ~ 10%. And the central insight
of statistical physics is the realization that these thermodynamic properties
are emergent and statistical in nature.

The emergent aspect has to do with the fact that it makes no sense to say
a single atom is “hot” or “cold”, or ascribe temperature 7" to it. But one mole
of the corresponding gas in equilibrium can be described by thermodynamics,
and does have a well-defined temperature at least in equilibrium. Likewise,
there is no precise sense in which there is a sensibly defined entropy for a
system of few atoms. Entropy, and the Third Law of thermodynamics both
reflects the properties and behaviour of macroscopically large collections of
atoms. Similarly, there is no sense in which a few atoms of Helium are in a
superfluid state. Superfluidity (and we will have much more to say about it
later) is a property of a macroscopically large collection of Helium atoms.

The statistical aspect is another facet which again reflects the key role
played by the “thermodynamic limit”, i.e. the limit of macroscopically large
system sizes (formally defined by keeping the density fixed and finite, but
sending the volume to infinity). It has to do with the fact that thermody-
namic laws can be violated by rare fluctuations in small systems. Thus, if
you insist on using the operational definitions of thermodynamics to measure
the entropy of very tiny systems, say a few dozen molecules bound together
to form a polymer chain, you will find that the third law of thermodynamics
can be disobeyed by rare fluctuations in the behaviour of the system.

Consequently, our microscopic understanding of thermodynamic proper-
ties has a statistical flavour that you are already familiar with. For the sake



of completeness, we provide a quick review: The basic idea is to start with the
Gibbs distribution function, which postulates that a a macroscopic system
of N particles in fixed volume V' is in eigenstate |m) with probability

P, — %exp(—Em(V,N)/kBT) where
Z = exp(=En(V,N)/kgT) (3)

Here, Z is the canonical partition function of the system. An interesting
aspect of this statistical description is that 7', an emergent property of a
macroscopic system, enters in the relative probabilities of various m.

With this starting point, one defines

U = > E.Pn (4)
F = (}n— TS = —kpTlog(Z) (5)

where F' is the Helmholtz free energy and U the internal energy. The tem-
perature 7', the internal energy U, the entropy S (defined implicitly in the
above by subtracting the first equation from the second) and the free en-
ergy F' defined in this manner are then argued to be posssessed of all the
properties one expects of the corresponding quantities defined operationally
in thermodynamics. This provides an a posteriori justification of the Gibbs
distribution function.

This framework generalizes readily if one wants a more general prescrip-
tion that allows for number fluctuations. One starts with a larger space of
states which considers all possible values of the total number N, and postu-
lates the grand-canonical distribution function

Pon = %exp(—(Em(V,N)— JN) /kpT)
GC
Zoo = 3 exp(~(EnlV,N) — uN)/ksT) (©)

Zac, the grand-canonical partition function depends on the chemical poten-
tial p, which can be thought of as the energy cost of adding a particle. Note
that p is an “intensive” variable, which can be thought of as a “Lagrange-
multiplier” that fixes the mean number of particles to equal what we expect



for a system of that average density. From the grand-canonical partition
sum, one obtains another thermodynamic potential

Q = —k’BT log ZGC (7)

known as the Gibbs Free energy.
If appropriate for the experimental situation at hand, one can also work
with a distribution function that allows for a variable volume

1
Poy = ——exp(=(En(V,N) + PV)/kpT)
P

Zr = Y [ aVesp (~(En(V.N) + PV) ki) (5

Here Zp is the partition function at fixed pressure P—again, the intensive
pressure variable can be thought of as a “Lagrange-multiplier” that fixes the
mean volume, and the corresponding thermodynamic potential

H = —kpTlog(Zp) (9)

is the thermodynamic enthalpy.

Thus, the Gibbs distribution provides a statistical way of “understand-
ing” the underlying rationale for the macroscopic laws of thermodynamics,
and provides a clear calculational prescription for macroscopic concepts like
temperature, free or available energy, entropy etc. Undergraduate treatments
of statistical physics thus end on the following triumphant note:

Macroscopic phenomena are governed by thermodynamics. Since statisti-
cal mechanics provides the rationale for thermodynamics, all these phenom-
ena can in principle be derived from statistical mechanics. At this point in
our discussion, it is therefore worth asking: Really? Is this really true?

More precisely, let us list some phenomenological facts, drawn from ev-
eryday experience and a study of undergraduate physics, and ask: Where is
all this lurking inside the Gibbs distribution function?

e Matter exists in several different phases:

Crystalline solid, liquid, gaseous phases of H,O; ferromagnetic and
paramagnetic metals, insulators...

These phases are separated by phase transitions, accessed by changing
pressure, temperature, magnetic field...
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e Some of these phases are “distinctly” different from other phases:

Atoms in a crystal have a very “ordered” arrangement. Not so in a
liquid

e Some phase transitions are “first order” with latent heat of phase
change.

e Other transitions are accompanied by large scale fluctuations

e.g. as evidenced by the phenomenon of critical opalescence at liquid-
gas critical point.

None of these follow in any automatic way from the basic prescription
of Gibbs. They are all emergent properties of macroscopic aggregates of
constituent particles, and require new ways of thinking to understand them
well. One actually needs another layer of new concepts needed to “efficiently”
think about these macroscopic phenomena. Here, we list them by way of
preview, and discuss them in some detail in the next lecture:

e Spontaneous breaking of symmetry.

Phases distinguished by long-range order.

Order parameters.

Rigidity.

Broken ergodicity.
e Gapless elementary excitations related to the underlying rigidity.

More on this in the next lecture...



