
Lecture 30: Statistical mechanics of vortices—

consequences for superfluid density

In the last lecture, we have seen that the contribution to the energy of the
xy model coming from vortices can be rewritten as the energy of a plasma
of charges interacting with a two-dimensional (logarithmic) analog of the
Coulomb potential between charges in the real three-dimensional world. As
in real plasmas, opposite charges attract and charges of like sign repel each
other in this plasma.

This contribution to the energy adds on to another independent con-
tribution that can roughly be thought of as the contribution of spin-wave
modes which have no vorticity, being small-amplitude waves around an or-
dered state. We have already seen in the previous lectures that these small-
amplitude long-wavelength oscillations about an ordered state are responsible
for destroying true long-range order at any non-zero temperature in a two
dimensional system. However, in the absence of vortices, the resulting quasi-
long-range ordered phase with power-law spin correlations is stable at all
temperatures.

Nevertheless, superfluids and O(2) spin systems do undergo a finite tem-
perature transition in two dimensions to a disordered or paramagnetic phase
above a critical temperature Tc. This transition is a consequence of the
proliferation of vortices, and can be understood in terms of the statistical
mechanics of this “Coulomb gas” of vortices. We will devote these last two
lectures of our course to this topic, which will be the most difficult part of
this whole course, and one of its highlights.

Given that difficult terrain lies ahead, it is good to start with an overview
of what we expect before diving into details. To this end, we ask: When does
it pay to produce a single vortex in an otherwise vortex-free system? This
single vortex can be placed anywhere in the two dimensional sample, and
therefore there is a relative entropy of

∆S = 2 log(R/a) (1)

associated with such configurations (as compared with the entropy of con-
figurations without any vortex). However, all such configurations are sup-
pressed relative to vortex-free configurations by the additional energy cost of
producing a single vortex

∆E = πρs log(R/a) . (2)
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Here, as before, R is the linear-scale corresponding to the size of the sample.
Therefore, the free-energy cost of producing a vortex in a vortex-free sample
is

∆F = πρs − 2T log(R/a) , (3)

in units with kB = 1. This suggests that for T < πρs/2, the system prefers to
remain vortex-free, with power-law correlations and quasi-long-range order.
Whereas for T > πρs/2, the system prefers to produce vortices and destroy
the quasi-long-range order to go into a high-temperature paramagnetic phase.
In this picture, the transition from quasi-long-range order to paramagnetic
behaviour is basically driven by a “proliferation” of “free” vortices.

In the remainder of this lecture, and in the last lecture of this course,
we will go through a more detailed renormalization group analysis that will
confirm this basic conclusion, with one caveat: The value of ρs that deter-
mines the transition temperature will not be the “bare” or input value of ρs
that we start with when we write down the coarse-grained action, but the
“fully-renormalized” long-distance value that would actually be measured in
an experiment designed to probe the superfluid response of the system at the
largest scales. In other words, we will finally conclude that

ρmeasured
s (Tc)

Tc
=

2

π
(4)

in the units we are using.
Since this is a key and oft-quoted result, it is important to understand the

operational definition of ρmeasured
s , at least in terms of a theorist’s caricature

of the relelvant experimental set-up. The idea is simple: Consider a very long
pipe in the x direction with finite but large lateral extent Ly and Lx � Ly
[eventually, we will be taking the thermodynamic limit by first sending Lx
to infinity and then taking Ly to infinity]. Let there be a phase difference
of ∆φ between x = 0 and x = Lx. As we have seen from the equations of
motion for a superfluid, this will drive a super-current which we can write as

j = ρmeasured
s ∆φ/Lx . (5)

This supercurrent will lead to a free-energy cost, corresponding to the kinetic
energy of the moving superfluid

∆F =
1

2ρmeasured
s

∫
d2x~j2 , (6)
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which is precisely the form of the coarse-grained free-energy that we have
written down earlier, except that we have now replaced the bare ρs by the
“measured” value ρmeasured

s . In effect, this defines ρmeasured
s .

In the specific configuration described above, the right hand side simplifies
to give

∆F (Lx, Ly,∆φ) =
1

2ρmeasured
s

Ly(∆φ)2

Lx
. (7)

This gives us our definition of ρmeasured
s :

ρmeasured
s = lim

Ly→∞
lim

Lx→∞
lim

∆φ→0

2Lx∆F (Lx, Ly,∆φ)

Ly(∆φ)2
. (8)

Why do we insist that ρmeasured
s defined in this way is the physical, mea-

sured value? To see that this is the case, we first note that ρmeasured
s as

defined above is the density of the superfluid component that moves at a
steady velocity

vs = ∆φ/Lx (9)

in the x-direction relative to the valls of the pipe, while the normal component
of the fluid remains at rest with respect to the walls of the pipe. Now, this
situation is related by Gallilean transformation to another configuration in
which we move the pipe at a steady speed vs parallel to its axis. In this
latter configuration, the normal component of the fluid will move with the
pipe (i.e. remain at rest with respect to the walls of the pipe), while the
superfluid density ρmeasured

s remains at rest although the pipe is moving (i.e.
move with speed vs along the axis of the pipe with respect to the walls of
the pipe). Therefore, ρmeasured

s is, in this latter configuration, the density of
fluid that is “left behind” when the pipe is made to move at a steady speed.

This second interpretation of ρmeasured
s allows us to make contact with

a standard measurement protocol for ρmeasured
s , which goes by the name of

“Andronikasvilli Torsion Pendulum” measurement. The basic idea of this
measurement can be understood by imagining that we take our long pipe and
close it on itself to create a hollow ring which can undergo periodic angular
oscillations in some configuration in which the center is kept fixed and there
is an angular restoring force due to some supports that get twisted during the
angular motion. Then, the natural resonance frequency of this structure will

3



be determined by the total moment of inertia of the apparatus, which will
depend sensitively on how much of the fluid the pipe can “take along” with
itself during its angular motion, and how much is “left behind”. ρmeasured

s

can then be obtained directly from the reduction in the measured moment
of inertia below Tc. [Of course, the real measurement apparatus does not
use precisely the geometry we describe above, but something equivalent and
experimentally more tractable, but that is beyond the scope of our elementary
discussion.]

Thus, we see that ρmeasured
s does indeed encode the result of an experiment

that measures the density of the “superfluid component” of the system. In
a spin-system described by the same coarse-grained action, the same quan-
tity ρmeasured

s acquires a different operational significance, although there is
no superfluid current and no torsion oscillator set-up to measure ρmeasured

s .
To understand this, it is useful to remember that our vortex-free theory had
power-law long-distance correlations of n̂, with the power-law exponent con-
trolled by the bare value of ρs used in the coarse-grained free-energy density
we started with:

〈n̂(~x) · n̂(0)〉 ∼ 1

r
T

2πρs

(10)

In our earlier analysis of rotor models (Lecture 26 Equation 17), we obtained
this result from the scaling equation for the coupling constant g (= T/ρs
in our present notation) and the equation for the field-renormalization scale
factor ζ, both derived without considering vortex excitations.

It is perhaps instructive to see how this emerges from a direct calculation
in a vortex-free theory with partition function

Z =

∫
Dφ exp

(
− ρs

2T

∫
d2x(~∇φ)2

)
(11)

To see this, note that

〈n̂(~x) · n̂(0)〉Z = 〈eiφ(~x)e−iφ(0)〉Z
= e−

1
2
〈(φ(~x)−φ(0))2〉Z . (12)

The latter is readily evaluated to give

〈(φ(~x)− φ(0))2〉Z =
2T

ρs

∫
d2k

(2π)2

1

k2

(
1− ei~k·~x

)
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=
2

2π

T

ρs

∫ a−1

R−1

dq

q

∫ 2π

0

dθ

2π

(
1− eikx cos(θ)

)
∼ T

πρs
log(|~x|/a) as |~x| → ∞ , (13)

from which the claimed result follows directly.
How do vortices modify this result? The answer that will be established

by the RG analysis we sketch in the remainder of this course is intuitively
appealing: So long as vortices do not destroy the quasi-long-range order of
the O(2) rotors n̂, their correlation function remains a power-law at large
distances, with the measured value ρmeasured

s determining the power-law ex-
ponent in place of the bare value that appears in the expression above. In
other words, the RG analysis gives

〈n̂(~x) · n̂(0)〉 ∼ 1

r
T

2πρmeasured
s

(14)

With this long preamble in place, we are now ready to do the actual
work involved in establishing these results. As warmup, we begin with the
vortex-free partition function

Za =

∫
Dφe−

ρs
2T

∫
d2x(∇φ)2

with φ(x = Lx, y) = φ(0, y) + ∆φ (15)

Here, the boundary condition specified on the second line enforces the twist
of ∆φ across the length Lx of the sample in the x direction. Next, we define
φ̃(x, y) = φ(x, y) − ∆φ

Lx
x, so that φ̃ obeys conventional periodic boundary

conditions: φ̃(L, y) = φ̃(0, y). In new variables, the partition function can be
expressed as

Za =

∫
Dφ̃e−

ρs
2T

∫
d2x(∇(φ̃+~vext))2

=

∫
Dφ̃e−

ρs
2T

∫
d2x[(∇φ̃)2+~v2ext] (16)

where we have used the fact that ~vext = ∆φ
L
x̂ is a constant and integrated

by parts to obtain the second line. Computing Fa = −T log(Za) from the
above, we naturally find:

Fa = F0a +
ρs
2

(δφ)2.
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where F0a is the vortex-free free energy without the twist in the boundary
conditions (vext = 0). This simply says that our “measured” superfluid stiff-
ness ρmeasured

s will be be the same as the “bare” superfluid stiffness ρs if there
are no vortices.

With this in hand, we now try and incorporate vorticity into our calcu-
lations in a systematic way and see how this changes ρmeasured

s .
We begin by rewriting our starting point in the language of superfluid

velocities, as in the last lecture:

Z =

∫
Dn̂e−

ρs
2T

∫
d2x(~v+~vext)2

with ~v = εabn̂a∇n̂b

and ~vext =
δφ

L
x̂ (17)

This is merely a translation to the language of superfluid velocities of the
earlier equation for the partition function with twisted boundary conditions.
It allows us to separate the contribution of vortices from that of regular “spin-
wave fluctuations” by splitting the superfluid velocity ~v into its analytical
part (corresponding to spin-wave modes) and singular part (arising from
vortices):

~v = ~va(nalytic) + ~vs(ingular). (18)

with

~∇ · ~vs = 0 ,
~∇× ~va = 0 , (19)

and

~∇× ~vs = ẑ2π
∑
i

miδ
2(~r − ~ri)

= 2πm(~r)ẑ , (20)

where m is the vortex-density field as in the previous lecture.
Since these conditions imply that

∫
d2x~va ·~vext = 0, the partition function

with twisted boundary conditions now separates into two factors. One of
them is a pure spin-wave part involving ~va, and the other is a part that
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couples the vortex-part of the superfluid velocity to the external velocity
~vext:

Z = ZaZs (21)

where

Za = Z0ae
− ρs

2T
~v2ext (22)

and

Zs = Tr(e−
ρs
2T

∫
d2x~v2s+2~vs·~vext) (23)

The measured value ρmeasured
s is now related to the coefficient of theO(~v2

ext)
term in the expansion of F ≡ −T logZ in powers of ~vext. Expanding to
second order and assembling all the pieces, we get

F = F0a +
ρs
2

(∆φ)2 + F0s −
ρ2
s

2T

1

LxLy

∫
d2rd2r′〈vxs (~r)vxs (~r′)〉0s(∆φ)2

(24)

where 〈. . .〉0s denotes the expectation value in an ensemble of vortex config-
urations with partition function

Z0s = Tr(e−
ρs
2T

∫
d2x~v2s ) (25)

and F0s = −T log(Z0s), where

~vs = ~∇× aẑ , (26)

with

−∇2a = 2πm(~r) , (27)

and the trace is over different configurations of the vortex-density field m(~r).
Now, as noted in the previous lecture, Z0s can also be written as

Z0s =
∑
{mi}

e
− 1
T

(
πρs(

∑
imi)

2
log(Ra )−πρs

∑
i 6=j mimj log

|xi−xj |
a

+πρsεc
∑
im

2
i

)

(28)
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Further, we have ~∇ · ~vs = 0 and ~∇× ~vs = 2πm(~r), which allow us to write

vx(~q) =
−2πqym(~q)

i(~q2)
(29)

for the Fourier transform of vx(~r).
Using this, we can re-express the required correlator

1

LxLy

∫
d2rd2r′〈vxs (~r)vxs (~r′)〉0s

entirely in terms of a correlation function involving the vortex-density field
m(~r) by writing

1

LxLy

∫
d2rd2r′〈vxs (~r)vxs (~r′)〉0s = (2π)2 lim

qy→0
lim
qx→0

q2
y

~q4
〈m(~q)m(−~q)〉0s ,

(30)

where we have used the fact that Ly is sent to ∞ after Lx has been sent to
∞ to carefully specify the limits in ~q space.

Finally, we note that

m(~q = 0) ∝ 0 (31)

in the thermodynamic limit, since the plasma is forced to obey global charge-
neutrality due to the presence of a divergent energy-cost for configurations
with net charge in the thermodynamic limit. Therefore, we expect

〈m(~q)m(−~q)〉0s = C1~q
2 + · · · (32)

in the small q limit.
Putting all this together, we obtain

ρmeasured
s = ρs −

ρ2
s

T
(2π)2C1 (33)

Our goal, therefore, is to calculate C1. We will attempt to do this in the
next lecture, and this will lead us naturally to the idea of a scale-dependent
stiffness ρs and renormalization group flow equations.
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