
Lecture 5: Linear response theory-II (Proper-

ties of response kernel)

In the last lecture, we derived the formula for the linear response kernel that
relates the response of an observable to the action of a perturbing field at pre-
vious times in a system initially in equilibrium. When is this linear response
treatment valid? Unfortunately, there is no simple, general prescription for
the validity of the linear approximation. All one can say is that if the per-
turbation is “weak enough”, the leading behaviour is captured by the above
linear response treatment. In any case, experimentalists usually have good
ways of deciding via independent measurements whether they have perturbed
the system beyond its linear regime, and are able to extract the linear re-
sponse coefficients by careful measurements. It is such careful linear response
measurements that the linear response formalism attempts to describe.

An important special case of all of the foregoing is when the perturbation
couples to an operator A, which is the same as the observable being measured.
For instance, one can imagine appling a spatially varying external potential
and measuring the response of the density of the system. Or one can imagine
applying an external magnetic field to a system of magnetic moments, and
measuring the resulting change in the magnetization density of the system.
In this special case, we have

RAA(t− t′) = −
iθ(t− t′)

Z
Tr(e−βH [AH(t), AH(t

′)]) (1)

At this point, one must remember that this formula is deceptively simple
looking—that this is the case becomes clear upon remembering that AH(t)
does not commute with AH(t

′) unless A is a conserved quantity and itself
commutes with the system Hamiltonian H .

Before we move on to discuss the properties of the linear response function
in more detail, it is perhaps important to first highlight the following subtlety:
When B = A is a conserved quantity, the linear response is predicted to be
zero by the foregoing formula, since the commutator is zero. However, we
know that a uniform external field, that couples to the total magnetization
(which is a conserved quantity), does change the magnetization of the system
by an amount proportional to the field, i.e. within linear response. So what
goes wrong with the formalism developed here? The answer has to do with
the fact that we have assumed that the initial state of the system at time t0
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far in the past is drawn from an ensemble governed by the Gibbs probability
for the system with Hamiltonian H . And since the quantity to which the
external perturbation couples is conserved, there is no way for the system to
change this “incorrect” probability distribution and replace it by a slightly
perturbed probability distribution that takes into account the linear effect of
the uniform field that couples to the conserved magnetization. This makes
sense: If the magnetization were truly conserved on the time scale of the
experiment, and if the external field was truly uniform, then it would indeed
be impossible for the external field to change the magnetisation. A better
description of the real experimental conditions is therefore to take a slightly
non-uniform external field varying in time at some low frequency ω, and
measure the linear response at the corresponding small wavevector q and
frequency ω. Then, the linear response formalism developed here will give
a sensible result, which should be extrapolated to the uniform d.c. limit by
first sending the frequency to zero keeping the wavevector non-zero, and then

send q to zero.

With that in mind, we turn to the focus of this lecture, namely the special
case in which A = B. This is often the case of interest in experimentally
relevant examples—for instance B could be the uniform magnetic field in
the z direction, and A could be the z component of the total magnetization
operator of the system. Another example that crops up often is the case
when B is an external potential oscillating at wavevector q in space, and A
is the component of the total density of the system at the same wavevector
q.

As in the analysis of many other time-dependent phenomena in Physics,
much insight can be gained by going over to frequency space and analyzing
the properties of RAA(ω). To this end, we define

RAA(ω) =

∫

∞

−∞

dteiωtRAA(t) (2)

Recalling the expression for RAA(t) in terms of a commutator of AH(t) with
AH(0), and the definition of AH(t) as

AH(t) ≡ exp(iHt)A exp(−iHt) , (3)

we may expand this in terms of the exact eigenstates |m〉 of H and the
corresponding eigenenergies Em.

Indeed, if we recall the derivation in the previous lecture, it is from such
an expansion that we had derived the compact expression for RAA(t) in terms
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of the commutator of AH(t) with AH(0), and by going back to the definition
of AH(t) and expanding in terms of the complete set of states |m〉, we are
merely going back to the corresponding intermediate step in our derivation
of the result for RAA(t). This is nevertheless useful, since we can do the
Fourier transform from RAA(t) to RAA(ω) by doing the Fourier transform of
each term in this expansion. In other words, we can write

RAA(ω) = −
i

Z

∫

∞

−∞

dtθ(t)eiωt
∑

m,n

|Anm|
2e−βEn(e−iEmnt − eiEmnt) , (4)

and take the integral inside the summation sign to obtain:

RAA(ω) = −
i

Z

∑

m,n

|Anm|
2e−βEn

[
∫

∞

−∞

dtθ(t)ei(ω−Emn)t −

∫

∞

−∞

dtθ(t)ei(ω+Emn)t

]

(5)

Here and henceforth in this lecture, we are using the compact notation Emn =
Em −En and Enm = En −Em.

We now note that this can be written as a linear combination of the
Fourier transform of the Heaveside step function at two different frequencies:

RAA(ω) = −
i

Z

∑

m,n

|Anm|
2e−βEn

(

θ̂(ω −Emn)− θ̂(ω + Emn)
)

Thus, we need to only ask:
What is θ̂(ω)?
and the answer will lead us to the expression for RAA(ω).
To answer this question, we make a guess, and then check that it is

correct. The guess is

θ̂(ω) = lim
η→0+

i

ω + iη
(6)

To check this, we compute the inverse Fourier transform

lim
η→0+

∫

∞

−∞

dω

2π

i

ω + iη
e−iωt (7)

by contour integration as follows: The initial contour is an open contour
from −∞ to +∞ along the real axis in the ω plane, and because η is a small
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Figure 1: Completing the contour to calcuate the inverse Fourier transform
of i/(ω + iη)

positive real number that is sent to zero at the end of the calculation, we
are allowed to close this contour by adding a large semicircle “at infinity” so
long as it gives a zero contribution to the contour integral. For t > 0, this is
guaranteed if the semicircle at infinity is in the lower half-plane. The closed
contour then encloses the pole at ωpole = −iη, and the integral then equals
+1 (see Fig 1). On the other hand, for t < 0, the semicircle at infinity must
be in the upper half-plane if it is to not contribute, and therefore the contour
gets closed in the upper half-plane without enclosing any pole. As a result,
the original integral is 0. Thus we have

lim
η→0+

∫

∞

−∞

dω

2π

i

ω + iη
e−iωt = θ(t) (8)

which proves that our guess was correct.
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Figure 2: Contour deforms in response to the pole E− iη being “pushed up”
to the real axis

So we have

RAA(ω) =
1

Z

∑

m,n

|Anm|
2e−βEn

(

1

ω −Emn + iη
−

1

ω + Emn + iη

)

(9)

Here, the limit limη→0+ is implicit. To explicitly take this limit, we need
to remember the following fact from our Complex Analysis or Mathematical
Methods course:

lim
η→0+

1

ω − E + iη
= Pr

1

ω − E
− iπδ(ω − E) (10)

In case you haven’t seen this before, let me give you a quick way to
understand this formula: Consider doing the integral

∫

∞

−∞

dω
f(ω)

ω −E + iη
(11)
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where again the limit limη→0+ is implicit, and will be taken at the end, and
f is any “good” real-valued function of the real frequency ω, i.e. smooth
enough and falling off rapidly enough at infinity. To do this integral, we may
again use the method of contour integration: The initial contour is an open
contour along the real ω axis from −∞ to +∞. To evaluate this integral, we
note the following: As η is sent to 0+, we can deform the contour continuously
so that it develops a little semicircular bump above the real axis, centered at
E (see Fig 2).

The full integral can thus be obtained as a sum of two contributions. The
first contribution is a sum of two parts: The first part is the integral along
the real axis from −∞ to E−η, and the second part is the integral along the
real axis from E+ η to +∞. This is a purely real contribution, and the limit
η → 0+ of this first contribution is precisely what we mean by the Cauchy
principal value Pr in the mathematics of singular integrals. The second is
the contribution of the little semicircle in the upper half-plane of radius η
centered at E. This give a purely imaginary contribution equal to half the
residue from the pole of the integrand at E − i0+.

Clearly, the first term in the quoted formula yields the Cauchy principal
value contribution, while the secod term that involves a delta function is
precisely what is needed to give the second residue contribution which is
purely imaginary.

With this in mind, we see that we can now write

RAA(ω) =
1

Z

∑

m,n

|Anm|
2e−βEn

(

Pr
1

ω − Emn

− Pr
1

ω + Emn

)

−
iπ

Z

∑

m,n

|Anm|
2e−βEn (δ(ω −Emn)− δ(ω + Emn))

Writing RAA(ω) = R′(ω) + iR′′(ω) and comparing with the above, we thus
obtain formal spectral representations for the real and the imaginary parts
of R.

With this in hand, we now establish a very general, and at first sight
somewhat surprising connection between the real and the imaginary parts
of RAA(ω). This connection is usually referred to as the “Kramers-Kronig”
relations.

One half of this connection—the part that expresses R′ in terms of an
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integral over R′′ can be established by inspection and reads

R′

AA(ω) = Pr

∫

∞

−∞

dω′

π

R′′

AA(ω
′)

ω′ − ω
(12)

To see that this is true, simply plug in the spectral representation of R′′

AA

on the right hand side, and do the ω′ integral (which is straightforward since
the integrand contains a delta function).

Let me now pose a question: Can you find inverse relation, i.e a formula
that expresses R′′

AA as an integral over R′

AA times something? The answer to
this question is considerably less obvious, at least at first sight.

One way to see how it goes is to begin by noting that RAA(ω), analytically
continued to complex frequency plane, i.e. defined by replacing ω+ iη in the
spectral representation for RAA by the complex number z, has no poles in the
upper half plane—this is clear from the spectral representation of RAA(z),
and is actually a consequence of causality, i.e the fact that any perturbation
can only affect the behaviour of the system at later times and not before it
is applied. Therefore, the contour integral

∮

C

dz
RAA(z)

z − ω + iη
(13)

taken over a contour C, that travels from −∞ to +∞ along the real z axis
and then return along a semicircular path in the upper half-plane, must give
zero by the residue theorem, since it encloses no poles either of R(z) or of
1/(z − ω + iη), where η is a positive real number, and ω is a real frequency
(again, the η → 0+ limit is implicit, and will be taken at the end).

Thus we have the equation

∮

C

dz
RAA(z)

z − ω + iη
= 0 (14)

Now, on physical grounds, namely, the fact that a system cannot respond to
an arbitrarily high-frequency perturbation because the response time cannot
be arbitrarily short, we expect RAA(z) to decay rapidly at large |z| in the
complex plane. Therefore, the contribution of the semicircle at infinity in
the upper half plane must be zero. Therefore, we obtain the equation

∫

∞

−∞

dω′
RAA(ω

′)

ω′ − ω + iη
= 0 (15)
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We may now take the real and the imaginary parts of this complex equation
(complex because RAA is complex even for real arguments, and because the
η → 0+ limit of the denominator yields both a real and an imaginary part,
as seen earlier).

The imaginary part of this equation gives back the first Kramers-Kronig
relation that relates the real part of RAA to an integral over the imaginary
part of RAA. But now, we have an additional relation, obtained by taking
the real part of this equation. This gives the required representation of the
imaginary part of RAA in terms of an integral over the real part of RAA:

R′′

AA(ω) = −Pr

∫

∞

−∞

dω′

π

R′

AA(ω
′)

ω′ − ω
(16)

These are the Kramers-Kronig relations. They are very useful if one has
limited experimental data, and wants to draw some conclusions about parts
of the response that have not been measured. In the next lecture, we will
explore another aspect of the frequency dependent response by understanding
just how the imaginary part of the response function signals dissipation of
energy into the system from the source of the external field applied to the
system, and how the amount of energy dissipated is intimately connected
with the frequency spectrum of equilibrium fluctuations in the system.
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