Lecture 4: Linear response theory-I (Deriva-
tion of response kernel)

As we have already argued in the first lecture, when dealing with a macro-
scopic system, i.e. a system whose volume V' tends to infinity, V — oo, with
the density p remaining a constant, it doesnt make sense for us to follow
the tracks of each constituent particle (thinking classically, in regimes where
quantum effects are not important), nor does it make sense for us to attempt
to follow the unitary time evolution of the full many-particle wave function
of the system as a whole.

As we reminded ourselves in the very first lecture, the standard solution
to this difficulty is to adopt a statistical approach, and take recourse to the
language of probabilities and expected values for physical observables. From
this point on in my lectures, this is the point of view we adopt without
further comment. In other words, everything from now on flows from the
“master-formula”

Z = Ze_ﬁE"ETr e B (1)

Here, the idea is that

Z

is the probability with which the system is in a particular eigenstate n with
energy FE, when it is in equilibrium.

This probability is to be used to make experimentally verifiable predic-
tions for the expected value of any observable A. The self-evidently correct
prescription for this is:
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From the usual analysis of the relative size of fluctuations in large systems,
we expect that this gives an asymptotically exact prediction for the measured
value of A in the V' — oo limit, as long as A is an extensive variable, i.e.
a variable which gets additive contributions proportional to their volumes
from different subsystems of the full system.



What we have just described is the so-called “canonical ensemble” of sta-
tistical mechanics in which the number of constituents and the volume are
fixed (we are implicitly imagining a system of interacting particles in a “box”,
i.e. a gas or a liquid in a container). As we know from elementary courses on
Statistical Physics, and as we reminded ourselves in the first lecture, there
is another alternative we can use, if we need to obtain predictions for fluc-
tuations in the number of particles, or for quantities like the compressibility.
This is the “grand-canonical” approach. In this approach, we work in an
extended hilbert space with varying numbers of particles
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Again
6_5(En _#Nn)
Zac

is probability to be in particular state with energy £, and number N,,.

The expected number of particles, which will correspond to the result,
Nieasured, 0f @ measurement of the number of particles present in the ther-
modynamic limit, is of course given as
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At this point, it is important to quickly remind ourselves how the size
of the system enters the discussion, i.e. just why is it that this statistical
approach is expected to become asymptotically exact for extensive quantities
in the thermodynamic limit of a large system size.

A measurement of an extensive quantity A gets contributions from all
regions of the sample, with the contribution of a given region proportional to
its size. In other words, we expect it to have a well-defined density a, such

that
A= Z Qg

What is our expectation for the mean-square fluctuations of the actual, mea-
sured value of A from the expected value (A) computed by our statistical



prescription using the partition function? Clearly the answer is:
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In the above (. ..) denotes the expected value as computed from our statistical
prescription.

Now , a, and a, will not “know about” each other if |z — z'| > ¢ where
¢ is the so-called “correlation length”. Since the notion of a correlation
length is crucial in some of our later discussion, this is perhaps a good time
for a brief digression: As we know from studies of Brownian motion and
associated phenomena, equilibrium systems are not static systems. In fact,
there exist fluctuations about the mean in all equilibrium systems. These
fluctuations are cooperative in nature, in the sense that regions of order the
correlation volume £? fluctuate in tandem (here d is the spatial dimension).
A good strategy to get a handle on the correlation length £ is to measure
some quantity whose value depends on the so-called “connected correlation
function”
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For |z — 2’| > €, we expect

/
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and the connected correlation function vanishes.

It is this correlation length ¢ that determines how quickly fluctuations
become unimportant (compared to the mean values computed from our sta-
tistical prescription). To see this, we begin by noting that

G) ~ P /9) (7)

with F(r/€) ~ exp(—r/€) for r > € and F(r/&) ~ (§/r) 2 fora < r < €
(where a is a microscopic length scale like the lattice spacing), provides a
good description of the long-distance properties of the connected correlation
function both in a phase and at a phase transition between two phases. In



a phase, £ is finite, while at a second-order phase transition, £ diverges,
reducing the above form to a power-law with power parameterized in terms
of the dimensionality d and “anomalous exponent” 1 (we will be studying
such critical exponents in some detail later in this course). Now, the expected
mean-square fluctuations in a sample of size L? can be estimated as
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As a result, the relative strength of fluctuations, i.e the ratio of the root-
mean-square fluctuations and the average value, scales as
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as long as ¢ is finite (£ enters this formula in the prefactor, which is not
displayed explicitly). Thus, our statistical prescription (A) for the measured
value Ajeasured becomes asymptotically exact in the L — oo thermodynamic
limit. What happens at a critical point, when ¢ diverges? Revisiting the
above analysis, it is easy to see that the (A) continues to become asymptot-
ically exact in the L — oo—however, flucutations are more important than
in a phase, since

(A) = [(d-2tm)/2 (10)
With this digression out of the way, let us move on by noting that fluc-
tuations in every globally conserved quantity can be studied by using a gen-
eralized ensemble in which that quantity is allowed to fluctuate, but a “con-
jugate” Lagrange multiplier variable is held fixed—we have already seen an
example of this in our review in the first lecture. This Lagrange multiplier
variable plays the same role as the chemical potential. For example, later in
this course we will have occasion to study the cooperative behaviour of mag-
netic moments in an insulating solid. In this case, it is not natural to work in
an ensemble in which the total magnetization is held fixed, since conventional
experimental protocols do not allow one to establish such conditions in the
laboratory. The conjugate chemical potential-like variable in this case is the
external magnetic field. And it is therefore much more natural to work in
an ensemble in which the external magnetic field is held fixed—this is indeed
what we will do later in this course.



Now, the total magnetization M or the total number of particles N are
what one usually calls “thermodynamic quantitites” or “static observables”.
However, experimental measurements are of course not restricted to such
static properties. Many of the most useful experiments involve “dynamical”
measurements. A typical measurement of this type can be modeled as follows:
A system initially in equilibrium is weakly disturbed with an external “field”
which is turned on at some time. This field is left on (possibly with some
oscillatory behaviour) for some time, taking care that its strength remains
low enough that the perturbation felt by the system remains within the
realm of linear behaviour. A probe measures the response of the system by
monitoring the value of some physical observable.

How are such dynamical measurements to be thought about within the
framework of Statistical Physics? This is somehow not as well known as
it should be, since it “falls in the crack” between a conventional Classi-
cal or Qauntum Mechanics course, and a conventional Statistical Physics
course. Since it plays a key role in connecting theoretical insights of Statisti-
cal Physics to the results of experimental measurements, we will summarize
here the so-called “linear-response formalism” for dynamical measurements.

Such a description is quite straightforward to set up: One starts with a
system initially in equilibrium, i.e. in an initial eigenstate |n) with probabil-
ity e #Fn /Z. The subsequent time evolution is described by the Schrodinger
equation of motion (we will not bother to put in factors of & unless we want
to emphasize dimensional aspects of our final answer) for the state of the
System:
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Here, H is the Hamiltonian of the system of interest, and b(¢) B is the external

perturbation (B is the operator to which the external classical field b(t)

couples).
Next, we write this equation in terms of 1, = (m|¢)
b (1)
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where By, = (m|B|m'). Now, it is useful to “factor out” the time-evolution
that would anyway occur in the absense of the external perturbation b(t)B.



To this end, we write ¥, (t) = e Pmt), (t), and in terms of 1, (t), we have
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when b = 0, i.e. &m(t) = &m(to), the state of the system at time ¢y in the
distant past.

The evolution equation is now in a form that allows for a straightforward
iterative solution. We need to carry this out only to linear order in b. To
this order, we can write

U(t) = Gnlto) =) /t dt'D(t") By € En =B a0 (1), (15)

Now, let us choose U, (to) = dmn, i.e. choose the initial state to be |n). let
us call this solution @y, (t). For this solution, we have
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From this, we can calculate [¢)(t)) to first order by noting that
W) = > am(t)lm)
= D el () |m) (17)



In this manner, we obtain
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Now, we can use this to compute (A),, the value of A at time ¢ when the
initial state was |n) at time ¢, far in the past:
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In the absence of the perturbation, a system that was in state |n) at time
to far in the past would have remained in that state and had a value A,,
for the observable A at all future times t. Therefore, §(A), the change in A
due to the action of the perturbation, can be computed by subtracting out
this part and averaging over all initial states |n) with the Gibbs probability
distribution exp(—(FE,)/Z:
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This can be written in a more compact and basis independent way in the
following way:
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This is conventionally represented by defining a response function, R4p(t—
t') which, by definition, gives 0(A)(t) via the relation

SA)(t) = /_ T A Ras(t— )01 (22)

[e.9]

This response function clearly has the compact formula

o 10t —1t) _sH ,
Here, the Heaveside step function #(¢ — ¢') has been included to ensure the
proper limits of integration, which make sure that the external field at time ¢
can only affect values of A at later times, as is of course required by causality,
and as is clear already from the expression we have derived above.
In Fourier (frequency) space, we can write this expression more compactly
as

SA) (W) = /_ " doRap(w)b(w) | (24)
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where Rap(w) is the Fourier transform of Rap(t). Not surprisingly, within
the present linear approximation, an external perturbation at frequency w
produces a response at the same frequency w. Higher order nonlinear terms
would also involve components at higher harmonics of w.

In the next lecture, we will discuss the validity of this linear response
treatment, and analyze the properties of the response function R(w) in fre-
quency space, and see what one can learn from the real and imaginary parts
of this function.



