
Lecture 18: Calculating with the Bosonic path

integral.

In the last lecture, we have developed the coherent state path integral rep-
resentation for a system of many bosonic particles. As was clear from the
derivation, the path integral is defined as a formal limit of an infinitely fine
mesh in the imaginary time direction, and is usually written in continuous
time τ .

This formal representation suffices for most purposes, since the main role
of the path integral representation is to suggest new and physically well-
motivated approximation schemes and provide physical insight. For instance,
our derivation of the quantum rotor Hamiltonian as the low-energy effective
theory for an antiferromagnetic insulator with short-range Néel order relied
crucially on the physical intuition provided by the spin coherent state path
integral. The physical picture that emerged from our manipulations of the
formally defined path integral told us that the low temperature physics is
dominated by near-collinear configurations characterized by a Néel vector
that varies slowly in space and time, and that the Berry phase associated
with the time-evolution of the system within this class of configurations can
be thought of as the kinetic energy of a quantum rotor which points in the di-
rection of the Néel vector. In arriving at these conclusions, we never actually
needed to use the details of the time-discretization to calculate anything.

However, sometimes it is necessary to be able to go back to the more
precise time-discretized version to resolve ambiguities and be sure that we
know what we are doing. So in this lecture, we will try and do some very sim-
ple calculations with the bosonic path integral, keeping the discretization in
the time direction explicit, as a way of gaining familiarity with path integral
methods.

The first calculation we will do is that of the partition function Z0 of a
many-body system of non-interacting bosonic particles with single-particle
energy levels εα. Absorbing the chemical potential into the single-particle en-
ergies to define Eα = (εα−µ), we may write the non-interacting Hamiltonian
in second-quantized form as

H0 =
∑
α

Eαa
†
αaα (1)

From the previous lecture, we have the following expression for the par-
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tition function written as a path integral:

Z =
∏
α

(∫
[dψα(τ0)dψ

?
α(τ0)] · · · [dψα(τM−1)dψ

?
α(τM−1)]e

−ψ?α(τi)Sαijψα(τj)
)
(2)

where the Sαij is an M ×M matrix which we may construct based on our
derivation in the previous lecture (remember, Mε = β is held fixed and
the imaginary time spacing ε is sent to zero to formally define the “path
integral”):

Sα =



1 0 0 · · · −aα
−aα 1 0 · · · 0 0

0 −aα 1 · · · 0 0
0 0 −aα · · · 0 0
...

...
...

...
...

0 0 · · · −aα 1

 (3)

with aα = −εEα + 1
Thus evaluating the path integral reduces to doing a Gaussian integral

over many complex variables. While this is rather standard material in a
mathematical methods course, it is nevertheless useful to remind oneself of
the basic results before proceeding further in our discussion. To this end, we
first note that the Gaussian integral over one variable, namely∫ ∞

−∞
dxe−ax

2

=

√
π

a
, (4)

generalizes readily to the following n-fold Gaussian integral∫
dx1 · · · dxn

(2π)n/2
e−

1
2

∑
ij xiAijxj+

∑
i xiJi =

1√
detA

e
1
2

∑
ij JiA

−1
ij Jj (5)

which is valid for any positive definite matrix A.
The argument is straightforward at least for those A that can be diag-

onalized by an orthogonal transformation and proceeds by two changes of
variables. First, we shift the {xi} to eliminate the linear terms in the expo-
nent:

yi = xi −
∑
j

A−1ij Jj (6)

2



The Jacobian for this transformation is clearly unity since it only involves
a shift by a constant vector. Next, one transforms from the {yi} to the
eigenmodes of the A matrix:

zk =
∑
i

O−1ki yi (7)

where O is the matrix whose columns are the orthonormal eigenvectors of A
so that

OTAO =


a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 0 · · · 0
...

...
...

...
...

0 0 0 · · · an

 . (8)

where the ai are the eigenvalues of A. As a result of the orthonormality of
these eigenvectors, the matrix O is orthogonal, and therefore the Jacobian of
the second transformation is also unity. Therefore,∫

dx1 · · · dxn
(2π)n/2

e−
1
2

∑
ij xiAijxj+

∑
i xiJi =

∫
dy1 · · · dyn

(2π)n/2
e−

1
2

∑
i aiz

2
i (9)

and the required result follows from the answer for a Gaussian integral over a
single variable. Indeed, the final result is actually true for Gaussian integrals
involving a larger class of complex matrices with a positive definite hermitean
part: ∫ ∏

i

dRexidImxi
π

e−
∑
ij x

?
iKijxj+

∑
i J

?
i xi+

∑
i Jix

?
j (10)

for any K with +ve hermitian part.
This is the result we need to use to evaluate the discrete form of the path

integral. Using this result, we have

Z =
∏
α

1

detSα
(11)

We calculate detSα by expanding along the first row of Sα:

detSα =

∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0
−aα 1 · · · 0 0

0 −aα · · · 0 0
...

...
...

...
0 · · · −aα 1

∣∣∣∣∣∣∣∣∣∣
+ (−1)M−1(−a)

∣∣∣∣∣∣∣∣∣∣

−aα 1 0 · · · 0
0 −aα 1 · · · 0
0 0 −aα · · · 0
...

...
...

...
0 0 · · · −aα

∣∣∣∣∣∣∣∣∣∣
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= 1 + (−1)M−1(−a)M = (1− aM)

Now, it is straightforward to take the M →∞ limit

lim
M→∞

(
1−

(
1− β

M
Eα

)M)
= (1− e−βEα) (12)

to obtain the final result for the partition function

Z =
∏
α

1

1− e−βEα
(13)

Not surprisingly, this tallies exactly with the result for a non-interacting
bosonic system obtained by elementary means.

In many applications, it is useful to represent various response functions
(studied in our earlier lectures on linear response theory) in path integral
language. The basic building block of such a path integral representation
of these response functions is the so-called imaginary time ordered Green
function:

G(α1τ1|α2τ2) =
1

Z
Tr
[
e−βHT [aHα1

(τ1)(a
†
α2

)H(τ2)]
]

(14)

where the superscript H on the creation and annihilation operators indicates
that they are Heisenberg operators:

aH(τ) = eHτae−Hτ

(a†)H(τ) = eHτa†e−Hτ (15)

and the imaginary time ordering symbol T places Heisenberg operators at a
later time τ to the left of those at an earlier time τ ′. This is augmented by
the convention that we place a† to left of a for τ1 = τ2.

What is the path integral representation of this object? To work this out,
it is simplest to work through the two cases separately, one with τ1 > τ2 and
the other with τ2 > τ1. In the former case, the time-ordering produces the
expression

1

Z
Tre−βHeHτ1aα1e

−Hτ1eHτ2a†α2
e−Hτ2 =

1

Z
Tre−(β−τ1)Haα1e

−H(τ1−τ2)a†α2
e−Hτ2

(16)
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while in the latter case one has

1

Z
Tre−(β−τ2)Ha†α2

e−H(τ2−τ1)aα1e
−Hτ1 (17)

If we proceed as usual and introduce complete sets of states after splitting
the imaginary time evolution into infinitesimal bits of size ε, we see that in
both cases we obtain the same expression:

1

Z

∫
Dφ(τ)Dφ∗(τ)e−

∫
dτ[φ? ∂φ∂τ +H[φ?φ]]φ?α2

(τ2)φα1(τ1) (18)

Thus, the path integral automatically incorporates the imaginary time or-
dering. Also, at equal times τ1 = τ2, φ

?
α2

will still be calculated at τ2 + ε if
we go back to our discrete expression that underlies this formal path integral
formula.

To appreciate this formula better, we now calculate this quantity using
the explicit discrete form that we have been using thus far in this lecture.
But first a small digression: If we consider the integral

I =

∫ ∏
i

dRexidImxi
π

e−
∑
ij x

?
iKijxj+

∑
i J

?
i xi+

∑
i Jix

?
j (19)

we see that∫ ∏
i

dRexidImxi
π

x?ixje
−

∑
ij x

?
iKijxj+

∑
i J

?
i xi+

∑
i Jix

?
j =

∂2I

∂Ji∂J?j

∣∣∣
J=0

(20)

Using our earlier explicit formula for this integral, we see that this equals

1

detK
K−1ji (21)

Therefore, we see that
〈x?ixj〉 = K−1ji . (22)

where the angular brackets denote averaging with respect to the Gaussian
measure whose integral is I.

We may now use this result in conjunction with the discrete form of the
path integral expression for the imaginary-time ordered Green function to
obtain

G(α1τj|α2τi) = δα1α2(S
α1)−1ji (23)
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Now, we note that

(Sα)−1 =
1

1− aMα


1 aM−1α aM−2α · · · aα
aα 1 aM−1α · · · a2α
a2α aα 1 · · · a3α
...

...
...

...
...

aM−1α aM−2α aM−3α · · · 1

 (24)

For τj ≡ εj > τi ≡ εi, we have

(Sα)−1ji =
aj−iα

1− aMα
(25)

Taking the limit M →∞, ε→ 0 with Mε = β fixed, we therefore obtain
the following expression for for τj > τi:

(1− εEα)j−i

1− (1− εEα)M
=

(1− εEα)
τj−τi
ε

1− (1− εEα)
β
ε

=
e−(τj−τi)Eα

1− e−βEα

= e−Eα(τj−τi)
[
1 +

1

eβEα − 1

]
= e−Eα(τj−τi)(1 + nα).

On the other hand, for τj < τi, we have

(Sα)−1ji =
a
M−(i−j)
α

1− aMα
(26)

Taking the limit M →∞, ε→ 0 with Mε = β fixed, we now obtain

e−Eα(β−(τ
0
1−τj))

1− e−βEα
=

e−Eα(τj−τi)

e−βEα − 1

= e−Eα(τj−τi)nα (27)

Finally, for τj = τi, we need to take the expression for τi > τj and set the
two times equal.
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All of this is summarized in the expression

G(ατj|ατi) = e−Eα(τj−τi)[(1 + nα)θ(τj − τi − η) + nαθ(τi − τj + η)]

(28)

where η = 0+ is a positive infinitesimal quantity.
By taking repeated derivatives with respect to the sources in Eqn. (10),

we see that it is possible to relate 〈xixj . . . x∗kx∗l . . .〉 to a sum of products of
expectation values of the form 〈xix∗k〉. This property of averages taken in a
Gaussian probability distribution is called “Wick’s theorem” in the context
of many-body theory, and allows us to compute more complicated correlation
functions in terms of sums of products of Green functions. It is in this sense
that the Green functions are the basic building blocks of many computations
including those of response functions defined earlier.

This completes our discussion of path integrals for bosonic systems. In
the next couple of lectures we will discuss the possible phases of some simple
bosonic systems, as well as the nature of phase transitions between these
phases—this discussion will be greatly facilitated by thinking in the path
integral language developed here.
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