Lecture 14: Probes of quantum antiferromag-
netism

In this lecture, our main goal is to understand the physics behind some
standard probes of antiferromagnetic Mott insulators. It is important to
discuss this since, insulators, unlike good or bad metals or superconductors,
cannot be studied by applying voltages and measuring currents.

We begin by quickly reviewing the interpretation of standard thermody-
namic measurements like specific heat and susceptibility before focussing on
two techniques: Nuclear Magnetic Resonance (NMR) and Inelastic Neutron
Scattering (INS). Given any material, the most basic thermodynamic mea-
surement (which is not necessarily the easiest to make with good accuracy)
is a measurement of its specific heat (heat capacity C' divided by volume L¢)
as a function of temperature. To interpret the results of such a measurement,
we note that

as
cC =T a7 (1)
Thus, a measurement of C'(7') immediately gives us information about the
entropy of the system by integrating C'(7')/T up (numerically) from the low-
est temperatures at which measurements are possible. It is important to go
to low temperature because the integration constant can then be fixed by
using the Third Law of Thermodynamics, which tells us that

S(I'—-0) — 0. (2)

However, one needs to remember that the magnetic system we are study-
ing may contribute only a small fraction of the total C—the rest could very
well be a crystal effect, i.e. contributed by the phonon modes of vibration
of the crystal. Therefore, ideally, one should compare the heat capacity of
the magnetic material with that of a homologous material with very similar
crystal structure and magnetic ion replaced by a non-magnetic ion, and use
this comparison to “subtract out” the phonon contribution.

Let us say we have done this, and we obtain a magnetic contribution to
the specific heat that is a power law T? at low temperature. What does
this tell us? Well, it basically says that the magnet has low energy bosonic
gapless modes. To see this, let us take a gas of free bosons with dispersion

e(k) ~ k° (3)
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and work out the temperature dependence of the specific heat. To do this

we remember that
E _ / d'y _ e(q) @
Ld ) (2m)defla) — 1

Here, we have assumed that these bosons can be created and destroyed, like
phonons in a crystal, so that their number is not fixed, and have therefore
used the Bose-Einstein distribution without a chemical potential. At very low
temperature, the integral is dominated by ¢ near zero, and has the following
temperature dependence:

E a
7i ™ Tatl (5)
Therefore, the specific heat has the temperature dependence
C 4
i~ T (6)

Thus, the specific heat is a power law controlled by the spatial dimension-
ality and the power a. For instance, a two dimensional system with lineary
dispersing gapless excitations will have a T2 specific heat. In the magnetic
system, one obvious candidate for such bosons are the Goldstone modes we
introduced earlier in this course. Therefore, one very plausible interpretation
of such power law specific heat is that it is the result of spontaneous breaking
of a continuous symmetry in the ground state, and the concomitant existence
of gapless Goldstone bosons.

On the other hand, if the magnetic specific heat dies away exponentially
at low temperature, i.e. if

O~ exp(—A/T) @

then this signals the lack of low energy excitations below an energy gap of
A. In other words, the ground state is separated from all other excited
states by a gap. This is typically a signature of a phase in which long-range
antiferromagnetic order has been destroyed by quantum fluctuations, and we
will see examples of this later in these lectures.

Measurements of the thermodynamic suscepbitility, defined as the ratio
of the induced magnetization per unit volume M/L? in response to a very
small external magnetic field B, i.e.

— i lim (®)
Xtot = LdBlg%JB’
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can also be interpreted in a similar way. If the suscepbilitity decays exponen-
tially below a temperature scale of A, this signals the fact that the ground
state carries no spin, and further, that there are no spin-carrying magnetic
excitations below an energy gap of A. On the other hand, a power law
susceptibility implies the presence of gapless spinful excitations.

A more detailed probe of the system is provided by the response of the
system to an A.C. (oscillatory) magnetic field that oscillates with frequency
w in time and wavevector ¢ in space, for instance

—

B(r,t) = ZBcos(q-7— wt) 9)

If B is small enough, such a perturbation leads to a linear response in the
system magnetization

—

M(7t) ~ zZMcos(q-7— wt) 4+ ZMssin(q- 7 — wt) (10)

From our earlier lectures on linear response theory, we know that M; and
M, can be interpreted in terms of the real and the imaginary parts of the
corresponding linear response function x(¢,w) in the following way:

(Tw) ~ e lim
XZZ q7w LdBliIl)O B

1 M,
Vi — .

To interpret the measured real and imaginary parts x’,, (¢, w) and x7. (¢, w),
we can now go back to their spectral representations derived in the earlier
lectures on linear response theory:

im 1

XL@w) = T SIS @lm) e (5w — Byw) — 5+ Be)
R < dw X7 (W
Xoo(w) = Pr/ —X,—()

oo T W —w

(12)

This is written in terms of exact eigenstates |m) with eigenenergies £, and
the matrix elements are those of the operator

SHq) = Y expliq- ) S (7)) (13)
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which represents the Fourier component of the spin density at wavevector g.

Thus, a measurement of the frequency, wavevector and temperature de-
pendence of the dynamic susceptibility provides, through its imaginary part,
pretty detailed information on the spectrum of spin-carrying excitations that
are connected to the ground state by the action of S(7). Compared to spe-
cific heat and thermodynamic susceptibility measurements, this is a more
detailed way of probing the low-lying spectrum.

In this respect, NMR and inelastic neutron scattering provide even more
detailed information, and we will now go through a “theorist’s caricature”
of these important measurements and their interpretation. Let’s first discuss
NMR measurements: In the conceptually simplest setting of so-called “con-
tinuous wave” or CW measurements of the so-called “Knight-shift”, NMR
experiments basically have the following set-up: A constant uniform external
magnetic field B is applied along the 2z direction. This results in a polariza-
tion of the nuclear spins along the Z direction. To a first approximation, one
can ignore the dipolar interactions between nuclear spins, and treat each nu-
clear spin as a free moment polarized by an external field. Now, one applies
a perturbing magnetic field 0 5,, in the zy plane at frequency w. At a con-
ceptual level, it is simplest to imagine sweeping this frequency w (although
in actual practice, it is quite common to sweep the magnitude of the static
field B).

Now, when the frequency w equals the resonance frequency wi.s, energy
Iwies is absorbed from the the source of the oscillatory perturbing field 05,
and the nuclear spins make a transition that changes the value of the m,
quantum number by 1. Clearly, this resonance frequency is determined by
the the Zeeman splitting of the nuclear spin levels as

hwres = gN,uNB_I'ABex (14)

where gy is the nuclear gyromagnetic ratio, py is the nuclear magneton, and
A B,y represents the magnetic field created at the site of the nuclear spins
by the nearby electronic spins (i.e. the magnetic moments of the localized
electrons of our antiferromagnetic Mott insulator) which are hyperfile coupled
to the nuclear spins by the hyperfine interaction familiar from your Atomic
Physics lectures

A-Bex - Ahyperﬁne<sz>loc (15>

where (S%)),. represents the local equilibrium spin polarization of the elec-
tronic magnetic moments in response to the static external field B.
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Since gn, pin, and Apyperfine are known from other measurements, mea-
surements of the “Knight shift” of the resonance frequency w,es away from its
“bare” value gyunB allows us to probe the local magnetization of the elec-
tronic spin system at a nuclear site as a function of B. In other words, one
obtains the local magnetic susceptibility xi.. at a given site by such Knight
shift measurements:

i li ABex
oc m A B
B—=0 hyperfine

(16)

Thus, NMR can provide information of the local susceptibility of the sys-
tem. This is particularly useful in cases where the system is inhomogenous,
and the local environment of each nuclear spin is therefore different. In such
cases, the resonance line broadens due to so-called “inhomogenous broaden-
ing”, which can basically be thought of as representing a histogram of local
susceptibilities of the electronic spins in various parts of the inhomogenous
sample.

There is another quantity that is readily accessed in NMR measurements,
and this is the relaxation rate conventionally denoted by 1/T;. To understand
what this quantity is, it is again useful to consider a “theorist’s caricature”
of the corresponding measurement protocol: One again starts with a steady
external field BZ that polarizes the nuclear spins to lie along the Z axis. Then,
one applies a so-called 7 pulse, which is pulse of a field in the zy plane of
exactly the right duration to rotate all the nuclear spins to the —Z2 direction.
In other words, we prepare the nuclear spins in a excited state which costs
Zeeman energy gnunB = hwy for each isolated nuclear spin (apart from the
Zeeman energy contribution from the exchange field, which we ignore since
it will only contribute at higher orders in the Ayypersine to the rate calculation
we do below).

Now, we simply watch the relaxation of these excited spins back to their
ground state by monitoring the recovery of the polarization along the +2
direction. This recovery is characterized by a rate 1/7} which is directly
measured by fitting the nuclear polarization as a function of time.

With this background, let us now ask: What does this rate measure? To
answer this, let us work out the Fermi’s Golden rule formula for this rate. In
order to do this, we must remember that that transitions from this excited

-

state to the ground state of say the nuclear spin /(%) of the magnetic ion at



7o must be caused by the hyperfine coupling

thperﬁne = Ahyperﬁne Z f(ﬁ]) . ‘5_:(7?]) (17)
J

that couples each nuclear spin to the corresponding ionic (electronic) spin.
Since each such transition decreases the nuclear Zeeman energy by hwy, it
must increase the electronic energy by the same amount. Furthermore, in
this idealized example with a rotationally invariant hyperfine coupling, the
z components of the coupling term cannot cause any transitions since they
commute with the nuclear Hamiltonian.

Putting all this together, we obtain the Fermi’s Golden Rule expression

=

for the transition rate of the nuclear spin I(7%):

1 27| Anypertine|” - .
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(18)
where S~ = S¥ —iSY, the |m) denote exact eigenstates of the electronic spin

system with eigenenergies F,,, and we have gone back to setting A = 1.

We can rewrite this expression in terms of the +— component of the
Fourier transform of the local spin density correlation function to wavevec-
tor and frequency space, ¢.e. in terms of the +— component of the dy-
namic structure factor of the spins, which is defined as in our lecture on the
fluctuation-dissipation theorem:

2

STqw) = %Ze’m\(mIS’@!n)W(w—(Em—En)) (19)

where S7(q) = >_; exp(iq - 7)S™ (7). Clearly, the required formula is

L _ 4 R 20
N = (20)

Thus, the measured NMR relaxation rate 1/77 directly probes the mo-
mentum integral (over the full Brillouin zone) of the dynamic spin structure
factor at frequency w = wy, the nuclear Larmor frequency (in this simple
case of an isotropic hyperfine Hamiltonian, it probes the +— component of
the structure factor, but more generally, there can be a contribution from
the zz component of the structure factor as well).
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Finally, let us quickly understand how inelastic neutron scattering can
serve as a probe of magnetism. The basic idea is quite simple: A beam
of neutrons (from a reactor typically) with a definite energy E (how such a
mono-energetic beam is created is a subject for another course on experimen-
tal techniques) is directed to the sample-holding station in which a sample is
placed in equilibrium with a heat-bath at temperature 7' (cryostat). These
neutrons scatter off the sample, since they interact both with the nuclei
(mainly via short-range nuclear forces) as well as with the electronic mag-
netic moments in the sample via the magnetic dipole interaction between the
magnetic dipole moment of the neutron and the magnetic dipole moment of
the electronic spins.

There are experimental techniques that allow one to focus exclusively
on the magnetic part of the neutron scattering (in effect by “subtracting
out” the scattering from the nuclei). By Fermi’s Golden rule, the magneti-
cally scattered intensity for neutrons with momentum transfer g and energy
transfer hw is proportional to the modulus square of the matrix element of
the magnetic dipole interaction between the initial and final states. Using
initial and final plane-wave states for the neutron beam, and a formal ex-
pansion in terms of the exact eigenstates of the electronic spin system for
the final states of the electronic system (the initial state is assumed to be
an equilibrium state), and the form of the magnetic dipole interaction, this
modulus square of the transition matrix element can be related to the equi-
librium dynamic structure factor of the electronic spin system at wavevector
q and frequency w (in a manner completely analogous to our earlier Fermi’s
Golden Rule analysis of 1/7}).

Thus, a measurement of the inelastic neutron scattering intensity 1(q,w)
over a range of energy transfers and momentum transfers provides a sort of
map of the frequency and wavevector dependence of the dynamic structure
factor:

[(@w) o Y (bag = ads) S™ (G, w) - (21)
af

Here, 4, = q./|q], and this prefactor’s dependence on the direction of the mo-
mentum transfer is completely dictated by the form of the magnetic dipolar
interaction.



