
Lecture 8: Path integral for spin systems

In the last lecture, we constructed the overcomplete basis of spin coherent
states and worked out the correct form of the resolution of identity and
representation of spin operators in this basis.

Now, we use this to develop the coherent state path integral for the quan-
tum statistical mechanics of spin systems. The first step is to note that

Tr(A) = (2S + 1)

∫
d ~N

4π
〈 ~N |A| ~N〉 (1)

for any operator A. This is actually a simple consequence of the resolution
of identity

11 = (2S + 1)

∫
d ~N

4π
| ~N〉〈 ~N | (2)

derived in the previous lecture. To see this, simply start with any orthonor-
mal basis

{|α〉} (3)

and use the resolution of identity in the coherent state basis to argue as
follows:

Tr(A) ≡
∑
α

〈α|A|α〉

=
∑
α

(2S + 1)

∫
d ~N

4π
〈α| ~N〉〈 ~N |A|α〉

= (2S + 1)

∫
d ~N

4π

∑
α

〈 ~N |A|α〉〈α| ~N〉

= (2S + 1)

∫
d ~N

4π
〈 ~N |A| ~N〉 (4)

We are now in a position to use this coherent state basis to construct
the spin path integral by following the strategy we outlined in the previous
lecture. To see how this goes more clearly, let us begin by considering a single
spin in a magnetic field, i.e. a Hamiltonian

H(~S) = − ~B · ~S (5)
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For this simple case, we write

Tr(e−βH(~S)) =
2S + 1

4π

∫
d ~N0〈 ~N0|e−βH(~S)| ~N0〉

=

(
2S + 1

4π

)M ∫
d ~N0

∫
d ~Nε · · ·

∫
d ~N(M−1)ε

M−1∏
k=0

〈 ~N(k+1)ε|e−εH | ~Nkε〉

with | ~NMε〉 ≡ | ~N0〉 and Mε = β

(6)

We now take the limit of large M , so that the corresponding ε is small, and
ask: For small enough ε, can we write

〈N(τ + ε)|e−εH(~S)|N(τ)〉 (7)

as the exponential of something tractable? If the answer is yes, then we
are “in business”, and we can go ahead and derive a “nice” path integral
representation of the partition function.

Let’s explore this question by expanding

〈N(τ + ε)|e−εH(~S)|N(τ)〉 (8)

to linear order in ε. To do this, we note that there are two sources of linear
terms in ε, namely the ε dependence of the bra, and the ε dependence of
exp(−εH(~S)). Putting these together, we obtain

〈N(τ + ε)|e−εH(~S)|N(τ)〉 = 1− ε
(
〈N(τ)| d

dτ
N(τ)〉+H(S ~N(τ))

)
+ . . .

(9)

In obtaining the second term of the above equation, we have used the fact
that the single-spin Hamiltonian is a linear function of the spin operator, and
its expectation value in a state | ~N(τ)〉 can therefore be calculated simply by

replacing (in H(~S)) the operator ~S with the vector S ~N(τ) . Of course, if we
were dealing with spin S = 1/2, this would not be a restrictive assumption,
since the square of a spin-half operator is anyway proportional to the identity
operator, and therefore the most general single-spin Hamiltonian for a spin-
half moment is always a linear function of the spin operator. However, it
is important to keep this restriction in mind when working with spin S >
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1/2 systems. For more general Hamiltonians in the spin S > 1/2 cases,

the expectation value of H(~S) in state | ~N(τ)〉 can still be represented as

a function of ~N(τ), but the function is not simply H(S ~N(τ)). Before we
proceed further with the derivation of the path integral, a small aside on this
question is perhaps necessary to clarify this point: Consider for instance a
single-spin Hamiltonian of the form Hzz = S2

z , for a spin S > 1/2 moment.
Such a single-ion anisotropy term in the Hamiltonian represents the effects of
the coupling of spin and orbital degrees of freedom of a magnetic ion via spin-
orbit interactions familiar from atomic physics. To compute the expectation
value of such a term in the state | ~N(τ)〉, we need to take recourse to the
integral representation of the spin operator, which we mentioned without
proof in the previous lecture:

~S = (S + 1)(2S + 1)

∫
d ~N1

4π
~N1| ~N1〉〈 ~N1| (10)

From this, we can deduce the following representation of S2
z :

S2
z = (S + 1)2(2S + 1)2

∫ ∫
d ~N1

4π

d ~N2

4π
N z

1N
z
2 | ~N1〉〈 ~N1| ~N2〉〈 ~N2|

(11)

Using this, we can write

〈 ~N(τ)|S2
z | ~N(τ)〉 = (S + 1)2(2S + 1)2

∫ ∫
d ~N1

4π

d ~N2

4π
N z

1N
z
2 〈 ~N(τ)| ~N1〉〈 ~N1| ~N2〉〈 ~N2| ~N(τ)〉

(12)

which defines a somewhat complicated function of S and ~N(τ) but poses
no conceptual difficulty in the proceeding further with our derivation of the
path integral.

With this out of the way, we proceed further by observing that we can
equally well write

1− ε
(
〈N(τ)| d

dτ
N(τ)〉+H(S ~N(τ))

)
+ . . .

(13)
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as

exp

[
−ε
(
〈N(τ)| d

dτ
N(τ)〉+H(S ~N(τ))

)]
(14)

to linear order in ε, and therefore we have the approximate equality

〈N(τ + ε)|e−εH(~S)|N(τ)〉 ≈ exp

[
−ε
(
〈N(τ)| d

dτ
N(τ)〉+H(S ~N(τ))

)]
(15)

Thus, we have the following representation of the partition function

Z = Tr(e−βH(~S)) =(
2S + 1

4π

)M ∫
d ~N0

∫
d ~Nε · · ·

∫
d ~N(M−1)ε

M−1∏
k=0

exp

[
−ε
(
〈N(τk)|

d

dτk
N(τk)〉+H(S ~N(τk))

)]
with τk = kε

(16)

In the limit M → ∞ and ε → 0, keeping Mε fixed equal to β, this defines
the path integral representation of the partition function, and we write

Z =

∫
~N(β)= ~N(0)

D ~N(τ) exp

(
−
∫ β

0

dτ

[
〈 ~N(τ)| d

dτ
~N(τ)〉+H(S ~N(τ))

])
(17)

with the understanding that H(S ~N(τ)) is to be replaced by a more compli-

cated function of S and ~N(τ) if the Hamiltonian is not linear in the spin

operator ~S.
This completes our derivation of the coherent state path integral for a

single spin. What about generalizations to more realistic d dimensional sys-
tem made up of Ld spins interacting with each other via some couplings?
While this may seem to involve a big additional step in terms of complexity,
in actual fact we have already done all the hard work, and the generaliza-
tion is rather straightforward, at least for a large class of useful and real-
istic Hamiltonians. To see this, we consider any “multilinear” Hamiltonian
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H(~S1, ~S2, . . . ~SLd) which is linear when considered a function of any individ-

ual ~Si. For any such Hamiltonian, the procedure outlined in the foregoing
derivation goes through essentially unchanged. This is because we can work
with multi-spin coherent states | ~N1, ~N2 . . . ~NLd〉 constructed analogously to
the single-spin case:

| ~N1, ~N2 . . . ~NLd〉 =

exp(−iθ1 ~M1 · ~S1 − iθ2 ~M2 · ~S2 . . .− iθLd
~MLd · ~SLd) |ẑ〉1|ẑ〉2 . . . |ẑ〉Ld

where θi = θ( ~Ni) , ~Mi = ~M( ~Ni)

(18)

Now, since the expectation value of any “multilinear” HamiltonianH(~S1, ~S2, . . . ~SLd)

in a coherent state | ~N1(τ), ~N2(τ) . . . ~NLd(τ)〉 can be written as

〈 ~N1(τ), ~N2(τ) . . . ~NLd(τ)|H(~S1, ~S2, . . . ~SLd)| ~N1(τ), ~N2(τ) . . . ~NLd(τ)〉 =

H(S ~N1(τ), S ~N2(τ) . . . S ~NLd(τ))

(19)

the foregoing single-spin derivation goes throught without any real change.
Thus, for the case of a d dimensional “Heisenberg Antiferromagnet” with
Hamiltonian

H = J
∑
〈ij〉

~S(~ri) · ~S(~rj) (20)

where 〈ij〉 denote nearest neighbour bonds of the d dimensional lattice and
~ri are the lattice positions, we have

Z =∫
D ~N(~ri, τ) exp

−∫ β

0

dτ

∑
i

〈 ~N(~ri, τ)| d
dτ

~N(~ri, τ)〉+ JS2
∑
〈i,j〉

~N(~ri, τ) · ~N(~rj, τ)


with constraint ~N(~ri, 0) = ~N(~ri, β) ∀i

(21)

Again, the generalization to Hamiltonians which are not separately linear
in each spin operator ~S(~ri), for instance due to the presence of single-ion
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anisotropy terms, is conceptually straightforward, and involves replacing
H(S ~N(~ri, τ)) by a more complicated function of S and the ~N(~ri, τ).

We conclude this lecture with one final observation: If it were not for
the first term involving the overlap of | ~N(τ)〉 with its own derivative, the
weight of a path would have been precisely the classical Boltzmann weight
of a classical model of unit-vectors ~N interacting with a classical exchange
energy JS2. This is a major advantage of the present path integral repre-
sentation, since this means that the classical energy of a configuration of the
{ ~N(~ri)} plays an important role in determining which paths dominate the
path integral representation of the quantum problem, and this allows us to
bring to bear all our intuition about the behaviour of the classical system to
learn something about the corresponding quantum problem.

Of course, it is still true that the first term contains all the important
information about the quantum dynamics of the system, and clearly, we
need to come to grips with this term to fully understand the behaviour of a
quantum antiferromagnet—this is precisely what we will focus on in the next
lecture.
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