
Lecture 19: Phases and excitations of the Bose-

Hubbard model

In this and the next few lectures, we will study a simple lattice model that
will serve as a concrete example within which we will explore the physics
of systems of bosons at very low temperatures. In this lecture, we will first
develop a very simple and intuitive description of the various T = 0 phases
of the system and the quantum phase transitions separating them. This will
serve as the foundation on which we will build in the next lecture using path
integral methods developed in the previous lectures to sketch a derivation
of the effective field theory that describes the low-energy, long wavelength
properties of the system in the vicinity of these quantum phase transitions.
Next, we will introduce external fields into the action of this effective field
theory and use our previously developed linear response theory formulae to
understand what controls the conductivity of the system by relating it to
certain correlators of the effective field theory via a ‘Kubo formula’. We will
also discuss the connection of the conductivity to the superfluid stiffness.

With this background, consider the Hamiltonian

H = −w
∑

〈ij〉

(

c†icj + c†jci

)

− µ
∑

i

ni +
U

2

∑

i

ni(ni − 1) , (1)

where ci and c
†
i are the usual boson annihilation and creation operators that

obey the commutation relations

[ci , c
†
j ] = δij , (2)

µ is the chemical potential (ni = c†ici is the number operator at site i), w ≥ 0
denotes the strength of the nearest neighbour hopping term, and U > 0 is
the magnitude of the on-site repulsion between the bosons. This Hamiltonian
defines our simplified Bose-Hubbard model.

We may think of this as the effective Hamiltonian of a regular array of
superconducting islands that are only weakly coupled to each other. The
bosonic operators then represent the Cooper pairs (pairs of opposite spin
electrons bound to each other to form a bosonic composite) of the system,
while the hopping term reflects the tunneling of these cooper pairs between
neighbouring superconducting islands. Of course, in such a description, we
are assuming that it is legitimate to ignore long-range Coulomb interactions
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as well as processes where a Cooper pair decays into the underlying fermions
of the original problem.

Another physical situation that is modeled by this bosonic Hubbard
model is a system of ultracold (at nano-Kelvin temperature) neutral atoms
trapped in a small region of space by the standing-wave fields produced by
counter-propogating laser beams. The effective potential produced by these
lasers can be modeled quite well by an overall slowly-varying harmonic confin-
ing potential with a periodic lattice potential superposed over this—in typical
situations, hundreds of periods of the oscillatory part of the optical poten-
tial fit into the overall harmonic envelope, and it is therefore a reasonable
first approximation to replace the harmonic confinement by more conven-
tional particle-in-a-box type boundary conditions, and focus on the periodic
potential by writing down a tight-binding type description of the motion of
particles in this potential (this is similar to the tight-binding model we write
down in our usual solid state physics courses for discussing electronic band
structure of solids in simple terms).

Let us begin by considering the limiting case w = 0. In this limit Eqn. (1)
reduces to a collection of decoupled single site problems. Thus, we need to
only solve a single site problem to determine the ground state of the entire
system. It is extremely straightforward to do this as the Hamiltonian is
diagonal in the n representation. Determining the ground state is simply
a matter of minimizing the energy as a function of n (allowing only integer
valued solutions, of course), and this gives us a many-body ground state that
is simply the product state with the same number of particles n0(µ/U) on
each site. Here, n0 is an integer valued function equal to zero for µ/U < 0,
and equal to m for all µ/U in the interval m−1 < µ/U < m (where m is any
positive integer). When µ/U is precisely equal to any non-negative integer
m, the system is free to choose from the states |m〉 and |m+1〉 independently
at each site, leading to a macroscopic degeneracy of 2M , where M = (L/a)d

is the number of sites in the system (L is the linear dimension of the system
and a is the lattice spacing).

Thus, as we increase µ/U at w = 0, we sweep through a series of phases in
which the number of particles at each site gets pinned at successive positive
integers. We may also determine quite easily the lowest lying excited states
of the system: Consider the phase in which the ground state density is pinned
at some positive integer m. For m − 1 < µ/U < m − 1/2, the lowest lying
excitations are hole-like and form a degenerate manifold composed of states
in which the occupancy of any one lattice site is decreased from m to m− 1.
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Similarly, for m − 1/2 < µ/U < m − 1, the lowest lying excitations are
particle-like, and consist of states in which the occupancy of a single site is
increased by 1 to m + 1. Note that both the particle and hole excitations
are separated from the ground state by a substantial gap as long as we stay
away from integer values of µ/U .

Let us now see what happens to these phases as we turn on a small
hopping amplitude w. To begin with, consider the degenerate points µ/U =
m. We can handle the effects of small non-zero w by working to lowest
order in degenerate perturbation theory. At this level, we merely have to
diagonalize the restriction of the hopping term to the degenerate manifold
of lowest energy states. Clearly, this problem maps on to a problem of hard-
core bosons hopping around at zero chemical potential. The ground state
of this problem is certainly a Bose-condensate, familiar from our elementary
solid-state physics course. Such a Bose-condensed state is generically also
a superfluid, in the sense that it supports the flow of current without any
hindrance or dissipation (we will have much more to say on this in the next
few lectures, so do not worry if the connection is not immediately obvious).
Thus our original system immediately turns superfluid upon turning on w
for µ/U = m. The situation is markedly different away from these points
of degeneracy. In this case, the unperturbed ground state is separated by a
gap Ep (Eh) from the lowest lying particle-like (hole-like) excitations. Since
the number operator commutes with the Hamiltonian (and is therefore a
conserved quantity), we may continue to label the exact eigenstates of the
system in the presence of the hopping term by the corresponding value of
the total number of particles in the state. As we turn on w, the energies
of the states in the m(L/a)d particle sector and the sectors with one more
or less particle will all evolve smoothly with increasing w. The presence of
the energy gap then ensures that the ground state remains strictly within
the sector with m particles per site for small w. In other words, the density

remains pinned at m as we turn on w.
Additional insight into the nature of the ground state for small w may be

obtained from a perturbative calculation of the amplitude for a boson initially
at site i to hop to site j. This may be estimated as follows: When the hopping
term acts on the unperturbed ground state, it creates a particle-hole pair in
which the particle and the hole are at adjacent sites. As a result, the the
amplitude for a boson to have moved by r sites is non-zero only at the rth

order of perturbation theory. Each successive order of perturbation theory
introduces an additional power of the ratio w/Eph, where Eph = Ep + Eh is
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Figure 1: Schematic phase diagram of the model defined by Eqn (1). The
lobes labeled by integers are Mott insulating phases with density pinned at
the corresponding integer. The system is in the superfluid phase (denoted
as S.F in the figure) for large values of w/U . The bold lines represent the
position of the phase boundary between the Mott insulating and superfluid
phases. Numerical analysis of the mean field theory described in the body
of this lecture indicates that the transition is second-order in the sense that
the superfluid order parameter goes continuously to zero as we cross over
from the superfluid to the Mott insulator. The dotted lines are a schematic
rendering of contours of constant density. The contours of constant integer
density are expected to hit the corresponding Mott insulating lobe at its tip,
and have horizontal tangent at the point of contact (see main text of lecture).
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the relevant energy denominator in the perturbative expressions.
The amplitude that a boson has hopped r sites is therefore ∼ exp(−r/ξ),

where ξ ∼ [ln(Eph/w)]
−1. The ground state for small w is now seen to be

insulating, in addition to having the the density pinned at m. Thus, the
phases we found at w = 0 extend to Mott-insulating lobes for small w. Of
course, as we crank up w, the extent of these Mott-insulating lobes along the
µ axis will become smaller and smaller since the gap to creating particle and
hole excitations continues to decrease, until finally, at a critical value of w,
the lobe pinches off and disappears completely, leaving us with a superfluid
phase. A schematic phase diagram that depicts these conclusions is shown
in Fig 1.

Now, we will be most interested in a situation in which the density of
the system is fixed at some integer in the superfluid phase and the transition
to the insulator is driven by tuning some parameter such as the strength of
the hopping w (in terms of the physical interpretation we have already dis-
cussed, this could represent the effects of reducing the Cooper pair tunneling
between adjacent superconducting islands, or adjusting laser beams in the
cold-atom context to reduce the overlap between lowest eigenstates localized
in successive minima of the periodic optical potential).

Our system will then cross the phase boundary along a contour of constant
integer density. It is therefore important for us to know where such an
equal density contour intersects the phase boundary. To begin with, let us
assume that the contour of constant integer density hits the boundary of
the corresponding Mott insulator lobe at some point slightly away from its
tip. The constant density contours corresponding to slightly higher or lower
densities all have to skirt around the lobe on either side, and finally hit one
of the degenerate points marking the boundaries of that particular insulating
phase on the w = 0 axis.

Now, it is easy to see that this requirement leads to a unphysical negative
compressibility in the vicinity of the intersection of the integer density con-
tour and the phase boundary. Thus, our original assumption is untenable,
and the constant integer density contour has to intersect the phase boundary
at the tip of the corresponding insulating lobe. Moreover, it is clear that the
contour has to come in horizontally at this point. We will see in the next
lecture that we can use our previously developed path integral description
and completely determine the basic form of the low energy theory that de-
scribes the system at this transition between a superfluid state and a Mott
insulating state at fixed integer density
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Here, we conclude by outlining a simple-minded mean-field theory that
can be used to back up the strong-coupling expansions and physical argu-
ments employed in our foregoing discussion. The basic idea of this mean-field
treatment is to recognize that a Bose-condensed state or a superfluid may
be thought of in second-quantized language as a phase in which the creation
and annihilation operators a and a† themselves acquire expectation values.

That this is the case can be argued as follows: Recall that in our pre-
vious lecture on bosonic coherent states, we have indicated how the phase
variable φ which labels a coherent state, is in a certain sense conjugate to
the number variable—roughly speaking, having a well-defined phase pre-
cludes the possibility of fixing the number variable to a single value, and
states with a well-defined phase are formed by superposing many different
states with different numbers of particles. Having such large fluctuations
in the number and well-defined phase allows current to flow in such a state
without dissipation—roughly speaking, the flow of current involves changes
in the local particle number, and this is greatly facilitated in states with
a well-defined phase. Therefore, superfluids are characterized by having a
well-defined phase variable.

With this in hand, we proceed to describe the mean-field theory: The full
Bose-Hubbard model Hamiltonian is replaced by a mean-field Hamiltonian:

HMF = −wz(ψc† + ψ∗c)− µn+
U

2
n(n− 1) , (3)

where z is the coordination number of the lattice, and ψ (ψ∗) represents the
expectation value of c (c†) averaged over all the neighbours of a given site.

As is usual in mean-field treatments, this Hamiltonian is supplemented
with an appropriate self-consistency condition, which, in this case, obviously
reads:

ψ = 〈b〉MF (4)

where 〈〉MF denotes expectation values in the ground state of the mean-field
Hamiltonian. Within this formulation, the system is superfluid for values of
µ, U and w for which the mean-field solution has a non-zero value of ψ, while
ψ = 0 corresponds to the Mott-insulator.

If you have access to some numerical package like Mathematica or can
write a small piece of code, you will easily be able to solve this self-consistency
equation for yourself and generate the phase diagram of the system, which
should look something like the sketch I have drawn in the figure that pre-
ceeded this discussion.
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