Lecture 15: Many-particle quantum mechan-
ics: Algebraic preliminaries and wavefunction
description

In the last module, we have seen how a simple perturbative calculation of
the effective Hamiltonian for the one-band Hubbard model in the limit of
large U/t at half-filling already presents difficulties for our standard single-
particle quantum mechanics formalism because of the many-body nature
of the system, in which the number of particles can vary, and where the
many-particle states acquire statistical phases when fermionic particles are
exchanged. Indeed, if you recall our derivation of the Heisenberg exchange
Hamiltonian in this limit, keeping track of these minus signs “by hand” in
the exchange term was crucial—without this, it was not possible to obtain
the correct rotationally invariant (in spin-space) effective Hamiltonian.

Although the basic framework of quantum mechanics remains essentially
unchanged and is perfectly capable of handling such many particle systems,
we need a better language to keep track of such statistical phase factors
and the variations in particle number. This is the formalism of “second-
quantization” (the terminology is largely a legacy of history, and there is
no real sense in which there is an additional quantization being postulated
or performed). In this lecture, we will introduce this convenient formalism,
and then revisit our derivation of Heisenberg exchange Hamiltonian to see
how the new language allows us to “automate” considerations related to the
statistical phase picked up by the wavefunction under interchange of particles.

With this motivation in mind, let us begin with a mathematical prelimi-
nary: Suppose we had two operator a, a' (where a' is of course the hermitean
conjugate of a) satisfying

la,a’]=1. (1)
What can we say about about the eigenvalues of the Hermitean operator
adla=n? (2)

The first statement we can of course make is that the eigenvalues are real
since the operator is Hermitean.

A little thought also convinces us that the eigenvalues must be positive
(but not necessarily positive definite). For if

nlg) = ¢lo) (3)
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where |®) is a normalized eigenvector. Then

¢ = (¢ln|¢)
= lalo)|?
> 0. (4)

Thus eigenvalues of n are real and positive. What else can we say? Well,
another easy-to-see property is that

alg) < | —1) . (5)
To see this, we note that
nalp) = ¢alg) + [n,dll¢) (6)
and observe that
[a'a,a] = a'[a,a] + [a', dla
- —a )
Therefore, we have
halg) = (6 — 1)alg) . (8)
In a completely analogous manner, we see that
a'lg) o |p+1) . (9)

Thus, if ¢ is an eigenvalue, so are ¢ =1, ¢ £ 2--- so long as the state
in question does not have zero norm. Therefore, if ¢ is an eigenvalue, so is
¢ — m for every positive integer m such that ||(a)™|®)|| > 0. Now, since all
eigenvalues of 1 are positive, it must therefore be true that |[(a)™|¢)|| = 0
for m such that ¢ — m is negative.

Let |¥) be the normalized eigenvector corresponding to the smallest eigen-
value W. If U is the smallest eigenvalue, it must be true that ||a|¥)|| = 0.
But ||a|¥)||> = ¥. Therefore,

U=0. (10)

Thus, eigenvalues of n are 0,1,2,3...00. If we denote the normalized eigen-
state with eigenvalue 0 by |0), and that with eigenvalue m as |m). Then we
have

Im) oc aflm — 1) . (11)
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To fix the normalization, we note that

la'lm = 1)* = (m —1]aallm 1)
= (m—1la'a+1jm —1)
m (12)
Therefore, we have
1
|m) = —alflm —1) . (13)

vm
This allows us to write

m)

1
=10 (14)

As a consequence, we have the basic relations

a'ln) = Vn+1ln+1)
aln)y = Vnjn—1). (15)

With an eye to using this formalism to describe multi-particle states of
bosons with variable numbers of particles in various single-particle eigen-
states, we refer to a as the particle-annihilation operator, a' as the creation
operator and n as the number operator.

What about Fermions? Well, it turns out that the simplest way to cap-
ture the fact that Fermions obey the Pauli exclusion principle to work with
creation and annihilation operators that satisfy a different algebra, in which
their anticommutator plays a key role:

{CL, CLT} -
{a,a} = 0
{a",a'} = 0 (16)

What can we now say about the corresponding fermionic number operator
ala = n? Well, we proceed again in a similar way: If |¢) is a normalized
eigenvector, we note that

lalg)|* = ¢ . (17)
Therefore, ||a|¢)|| = 0 if and only if ¢ = 0. But

nalg) = a'a®|g)
0. (18)



. Therefore, we must either have ||a|¢)|| = 0 and ¢ = 0 or a|p) o |0). There-
fore, one eigenvalue is ¢ = 0, and we denote the corresponding normalized
eigenvector by |0).

Next, we note that

la'[@)|* = (glaa’|¢)
= (¢lg) — (¢la’ale)
= (1-9). (19)

Therefore, we must have ¢ < 1. Finally, we note that

na'|l0) = a'aa’|0)
= a'(1—a'a)|0)
= a'l0) (20)

Therefore, another eigenvalue is ¢ = 1, and the corresponding normalized
eigenvector, which may label by |1), is proportional to af|0). Since any
eigenvalue with ¢ # 0 must satisfy a|¢) o |0), and since

aa'|0) = (1—a'a)|0)
= 10}, (21)

we conclude that the only other eigenvector is |1). Indeed, we have

all) = 10,
a'lo) = 1),
al0) = 0,
atllly = 0. (22)

Thus, this algebra captures the fact that Pauli exclusion limits the occupation
of any single-particle level to exclude two identical fermions ever occupying
the same level.

After this algebraic prelude, let us turn to the description of systems
with many identical particles, either bosonic or fermionic in nature. If we
had n distinguishable particles and the 1st particle was in quantum state
|11), second in state |i5) and so on- - -, we would write

) = [¢1) @ |iha) @ -+ i) (23)
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where the tensor product notation reminds us that the first slot corresponds
to the Hilbert space of the first particle, the second to that of the second
particle and so on. But if particles are indistinguishable, no observable should
be affected if we make the “lst” particle and “kth” particle switch roles. |1)
written above does not have this property. One obvious way of guaranteeing
this is to consider the symmetrized version of the above

1
b)s = N XP: [Ypa) @ [¥p@) © -+ [Ppm) (24)
where P is a permutation of the labels 1,2,3.... Now, we can no longer say

a definite particle has a definite quantum state, just that we have n particles
that occupy states (¢; - - - y,).

It seems to be a fact of nature that the only allowed states of systems
made up of many identical bosonic particles are constructed from various
linear combinations of different |¢)s. For systems made up of many iden-
tical fermionic particles, indistinguishable particles, the states that describe
physical reality seem to also take into account their fundamental indistin-
guishability, but in a different way. This difference is linked to the fact that
fermions obey the Pauli exclusion principle, and leads to the presence of mi-
nus signs that keep track of whether a given term corresponds to an odd
permutation:

Ya fz DP[pm)|vp@) - - rm) (25)

It appears to be a basic fact of nature that the only allowed states of many-
fermion systems are linear combinations made up of various |¢),.

It is instructive to restate this in coordinate-space wavefunction language:
For distinguishable particles, we would have constructed many-particle basis
states in which the i*® particle is at position x;:

|[z1)]x2) - - |n) (26)

However, for indistinguishable bosons, we now see that we must instead use
the symmetrized version

Z [Zpa)|zpe) - [Tp@m) (27)



while for fermions we must use
|z) s g Y lzpa)|zee) - |2pm) (28)
/— (n)

Any correctly symmetrized bosonic state |1) s or antisymmetrized fermionic
state |1), can be expanded in terms of these basis states. The coefficients
(x]|Y)s and (x|}, have compact expressions in terms of permanents and de-
terminants of the matrix

(z1lihn) - - (1 [ehn)
(x|)e = : ¢ = +1lors
(@nlthn) -+ (@n|tbn) ¢

= —1]1 ora

where

Ale =Y T AipyAapa) -+ Awpin). (29)
P

Here, the expression with ( = —1 is the standard determinant of A, while
that with ¢ = +1 is called the permanent.
The proof of this claim is straightforward. We note that

1
(zly) = gZCP€Q<$P(1)|¢Q(1)><37P(2)|1/’Q(2)>“‘ (30)
122

Changing variables in the first sum over P, we may rewrite this as

(ald) = - 33 P aaligr) (malgr-i)
1 4%
— %ZZCQP_I<”'><"'>"'
P Q
= %ZZCR<‘%1|¢R(1)>

— |l . (31)

as claimed above.



Now, if the {|a)} form a complete set of orthonormal single particle states,
then all n particle bosonic states can be written in terms of |ay, ag, -+, o )¢
where we take some subset of the a: a1 < ap < az--- < «,. If we are
to construct n particle fermion states, we must take a set of a without any
repetitions: a; < ap < ag - - -y, So as to satisfy the Pauli exclusion principle.

In the fermionic case, the state |ay, oo, -+, ap)c——1 is already normal-
ized. However, in the bosonic case, it is not normalized. To figure out the
normalization, we begin by writing

o anlar o) =Y (onlap)) -+ {amlapm). (32)
P

where the sum over permultations on the left has been cancelled off against
the overall denominator of n! coming from the normalization used for the bra
and the ket. Now, let the sequence «; - - - a,, be made of ny repetitions of oy,
no repetitions of as and so on - - -, with the final entries being n; repetitions
of ay. Then there are (nq!)(ng!)(ns!)--- (ng!) permutations that contribute
to this overlap. So, to normalize the bosonic state, we must introduce a
corresponding prefactor and write

(33)

o

1
v e

In terms of the |ay - - - o, )¢, we have the obvious completeness relation in the
n-particle sector of the many-particle Hilbert space

S far ) @] = 1 (34)

{al"'an}

where the sum is over single-particle quantum numbers satisfying a; < ap <
-+, for bosons and oy < s - - - ay, for fermions. To describe a varying num-
ber of particles, we may simply superpose states from sectors with different
number of particles thus:

)¢ = D¢ + [pW)e -+ [ (35)

where [¢°)c = |0) is the vacuum state with no particles. is appropriate n
particle state. Clearly, we require any (™ |yp)™). = 0 for m # n. So we
have

50@51 e 50&15u

<¢|¢>C = 5nm 5an61 . 5an,6’n

(36)

¢
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for many-particle states constructed from orthonormal single particle states.
Finally, for any fixed n, the completeness relation can also be rewritten
as

1 n
= > laran)clanan| = 1 (37)
a1,02,a3,0n

where the sum over the single-particle quantum numbers is now an unre-
stricted sum. To see this, we simply note that going from Za1§a2-~ to the
unrestricted sum introduces an additional degeneracy of n!/(nylny!---). Al-
lowing for superposition of states with different numbers of particles, the
general completeness relation can thus be written as

1
ST faradcclor ol = 1 )

a1,02,,0m

Thus, we now understand how Bose and Fermi statistics are to be en-
coded in the properties of multi-particle states of a system of many indis-
tinguishable particles, allowing for the possibility of quantum mechanical
superposition of states with different number of particles. Although this lan-
guage provides a complete and precise description of the relevant physics, it
is not the most convenient one when it comes to calculations [the one excep-
tion is variational wavefunction studies, where one works directly with these
multi-particle states and optimizes them to lower the energy so as to best
approximate the ground state].

A much better description results from constructing these multi-particle
states starting from the vacuum |0) using creation and annihilation opera-
tions whose algebra will turn out to be the same as the algebra of the a and
a' operators we have studied earlier in this lecture. This is what we will turn
to in the next lecture.



