Lecture 26: Renormalization group approach
to the quantum rotor model: Phases and phase
transitions

As we have already argued in the last but one lecture, to characterize the
g dependence of the large correlation length scale & beyond which a d = 1
dimensional quantum antiferromagnet “realizes” that it cannot order even
at T' = 0 no matter how small the value of g, one simply need to find [* such
that the renormalized coupling g(I*) becomes of order one starting from an
initial condition g(I = 0) = g. Once we do this, the correlation length of the
original theory with very small ¢ is proportional to /(9.

Therefore, as a first application of the renormalization group flow equa-
tion derived in the previous lecture, let us compute [*(g) now. Setting
D =d+ 1 =2, the flow equation becomes

dg

D = (N8, (1)

where Sy = % Integrating this from [ = 0 to [ = [*, with initial condition
g(l =0) = g gives

o= i (2)

For e!” this gives

* _ 27 27
" = T2 x e N-25 | (3)

The prefactor in the above is clearly some order one constant, and the phys-
ical correlation length is therefore

(g—=0) = &e® o, (4)

where & is a non-universal order one prefactor that cannot be predicted by
the foregoing analysis.

Thus, no matter how small one makes g, the correlation length remains
large but finite and the system is a quantum paramagnet at the largest length
scales as long as g > 0, although it looks ordered on small scales. Note that
the g dependence of ¢ derived above contains an essential singularity, and is
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not something that can be obtained by naive expansions in powers of g. It is
a perfect illustration of the power of the renormalization group approach that
such a non-trivial result can be obtained by a simple perturbative calculation
of the § function to second order in g. (The point of course is that we
are only using perturbation theory in g to compute the right-hand side of
the flow equation, and perturbation theory in g is quite reliable for this
purpose, although it fails spectacularly when we try and directly compute
long-distance, low energy properties in perturbation theory.)

For the original system, this leads to the following really interesting result:
Integer spin Heisenberg antiferromagnetic chains, whose low energy physics
is described by the d = 1 quantum rotor model without any additional Berry
phase effects, develop a finite correlation length and corresponding gap in
the spectrum no matter how large an antiferromagnetic exchange interaction
they possess, as long as it is a short-ranged interaction. Going back to
our derivation of the effective rotor model for a one-dimensional chain with
a nearest-neighbour exchange interaction, we see that ¢ = CS in d = 1,
where C = 1 if we take seriously all the prefactors in our derivation of the
long-wavelength coupling constant for the case of the one dimensional chain
geometry with nearest neighbour interactions.

Therefore, we predict from this renormalization group analysis that such
a spin chain has finite correlation length

€~ e27CS (5)
where C is an order one constant which can be estimated given microscopic
details of the model Hamiltonian. Note that the S dependence of this result
can be tested by doing a series of experiments on different spin-chain com-
pounds made up of magnetic ions with different S. Such experiments have
been done, and the results do indeed agree quite well with this renormaliza-
tion group prediction. The corresponding gap in the energy spectrum of the
one dimensional integer spin Heisenberg antiferromagnet is generally known
as the “Haldane gap” after F. D. M. Haldane, who first made the connec-
tion to the quantum rotor model and used it to predict the finite correlation
length and non-zero gap for integer spin chains.

With this application in hand, we return to the general framework and
add another ingredient: In the analysis of flows in the previous lecture, and in
the application discussed in the preceeding paragraphs, we have not needed
to worry too much about the precise connection between the n field of the



new theory (after one RG step) and the n field of the original theory. In other
applications, this connection plays an important role, and it is therefore useful
to keep track of it.

If we go back to our description of one step of the RG procedure in
Lecture 24, it is clear that we can write the following correspondence between
correlation functions of the new theory after one RG step, and correlation
functions of the old theory:

(i(z,) - 0oy = C(O1)(Alzue™) - 1(0))giat) - (6)

where ((67) keeps track of the magnitude of the slowly-varying piece of 7
(whose direction is represented by n):

—

¢l = 1—(¢), (7)

where the average is over the “fast-modes” 5 that are being integrated out

at this step of the RG procedure, and we have expanded to quadratic order

in qg since, as we have seen earlier, this suffices to get leading order results for

the right hand side of the differential equation for flows of various quantities.
Doing this average explicitly, we have for the first RG step

A D
o) = 1= - [ o
— 11— g(0)(N — 1)SD/A . dk:kk;l
= 1—g(0)SD(N — 1)AP7251 . (8)

When we repeat procedure at successive RG steps, and take the limit of very
small 0l as before, we obtain a flow equation that keeps track of ((I) as a
function of the RG scale [:

d¢(l)

== = —g()Sp(N = DAP(1). (9)

Solutions to this equation need to be supplemented by the obvious boundary
condition ((Il =0) = 1.

In D =2, i.e in spatial dimension d = 1 at T" = 0, we may integrate this
equation by using the explicit formula for g(I) derived earlier:

log (C(1)) = —(N—1)52/0 dl’g<0>_1_(1N_2)52l,. (10)
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Doing the integral on the right hand side for N > 2 gives

N -1 1
1 ) = 1 . 11
os(c0) = y—51¢ (y—aj51) (1)
This allows us to obtain the scale factor at [ = [* at which g(I*) = 1:
) = (g(o) (12)

Clearly, this is an innocuous prefactor that does not invalidate our earlier
identification of the correlation length with ¢ as long as N > 2. The
situation is quite different when N = 2 in D = 2. As we will see later in
this course, this describes the T = 0 physics of one dimensional quantum
liquids in their superfluid phase in an approximation that ignores the role of
space-time vortices.

For N =2 and D = 2, we have the flow equation

dg

i 0, (13)

and this gives
log (C(1)) = —Sag(0)0 (14)

In other words,
) = e (15)

Since ¢(0) = g, the bare value of the couping constant, and since g(I) = g(0),
this implies

() - 2(0))g = €2 (A(zue™) - 2(0)), - (16)
To see what this means, let choose a [ such that |z,le”" = 1. Then, this
implies
. . 1
(z,) 2(0))g = == - (17)
EMES

This is really interesting: It says that when N = D = 2, the system is
critical for all bare values of g, i.e. the correlators are neither long-ranged,
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nor are they decaying exponentially beyond some scale €. Instead, they are
power-law in form, with the power law exponent 7(g) depending continuously
on g. Our leading order prediction for n(g) is of course read off from the
above:
g 2

nlg) = 5-+0(g). (18)
As will be clear by the end of this lecture, this is an extremely unusual
situation. Usually, power-law correlators arise only at special critical points
and are characteristic of a system on the verge of a phase transition from
an ordered phase with long-range correlations to a disordered phase with a
finite correlation length and short-ranged correlations. In these more usual
instances of power-law behaviour, the power law exponent 7 takes on a value
that depends only on the symmetries and the spatial dimensionality of the
problem, and is usually independent of microscopic details such as the bare
cutoff and the bare value of the coupling constants.

Another way of saying this is to say that the d = 1 T = 0 physics of
the superfluid phase of quantum liquids is controlled by what is known as
a “line of fixed points”. Here, by a “fixed point”, we mean a value of g for
which 5(g) = 0. And our result above tells us that the N =2, D = 2 case
has a line of fixed points since ((g) is identically zero for any value of g,
at least within our treatment that leaves out space-time vortices from our
description. As we will see in the last few lectures of this course, this phase
survives the destabilizing effects of vortices below some critical g. (¢ < g.),
and for g < g., our analysis is essentially correct, although the dependence of
1 on the bare ¢ is different. For g > g¢. vortices disorder the system leading to
a disordered phase with short-range correlations and finite correlation length
€.

Leaving a more detailed discussion of this to the last part of this lecture
course, let us switch gears now and study the behaviour near the quantum
critical point in this N-vector model. As we already know, there is no ordered
phase even at T' = 0 in d = 1—equivalently, in space-time dimension D = 2,
there is no ordered state possible. However, for D = 3 and higher, we
expect an ordered state with long-range correlations of the n vector below
some critical value g. (¢ < g.) and a disordered phase with finite correlation
length for ¢ > g.. The question then is: Can we use our RG approach
and characterize exactly how order is lost as g approaches g. from below, or
characterize exactly how the correlation length grows and becomes infinite
as g approaches g. from above?



To answer these questions, let us return to the flow equation we have
derived to O(g?) in the previous lecture and use it for D > 2 and general
N > 2. Our T = 0 flow equation reads

% = —(D—2)g+ (N —2)SpAP2g%. (19)
From the structure of the right hand side, we see that g flows to 0 for
small starting values, since the first linear term dominates over the second
quadratic term. On the other hand, for large values of g, the second term
dominates and drives g to still larger values. Strictly speaking, such large
values of g are outside of the realm of validity of our derivation of the (-
function, and we should not trust the right hand side of the flow equation
when g gets much larger than O(1). Nevertheless, we expect that once g has
renormalized to an O(1) value, the fate of the system is already determined,
in the sense that the new Hamiltonian with this O(1) coupling constant has
a disordered ground state with some O(1) correlation length (in new units).

These two regimes are separated by a critical fixed point g = g. at which
the S-function vanishes. To understand the properties of the quantum phase
transition separating ordered and disordered ground states, we need to ana-
lyze the flows in the vicinity of this critical point and use properties of these
flows to deduce the behaviour of correlators.

Looking at the flow equation, it is clear that g. is given by the equation

_ (D —2)
Je = (N —2)SpAD—2"

(20)

However, we know that our flow equations cannot be trusted for g that is
too large, and the question therefore is: How reliable is this estimate of ¢.7”
The answer of course depends on the value of D. Indeed, if D — 2 is small,
then g. is small, and we will be in a position to trust our analysis. This leads
us to the idea that we can learn about critical properties in an expansion in
space-time dimensionality about the value D = 2.

To implement this expansion, we set D — 2 = ¢, and rewrite the result for

g to leading order in e:
€

e = m (21)

A system that starts with bare value g(0) = g. will be on the verge of a
transition from ordered to disordered phases. As we have seen earlier in this
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lecture, the long-distance behaviour of the correlation function at criticality
is controlled, within our RG approach, by the flow of the scale-factor (I).
At this O(e) critical fixed-point, we may obtain this flow-equation by using
the above O(e) result for g. in our earlier general flow equation for ¢ to get

L — 2. )

dl N -2
For g < g., g(I) will flow to g = 0 as [ — oo, and this implies that the
system will be ordered at the largest length-scales. On the other hand, for
g > ge, g(1) flows to ever-increasing values of g and the simplest interpretation
is that the system looks disordered at the largest length scales. If we represent
the deviation of g from g. by J, we can linearize the flow equation around
g = ¢., and obtain to leading order in € and ¢

dé
This can be solved to give the near-critical flow of § as
5() = 8§(0)e . (24)

The corresponding near-critical flow for ((I) then obeys the equation

%(ll) _ (m +5(0)ed) So(N = 1)¢(0) . (25)

These equations for ( at and near criticality, and the linearized flow
around the critical point contain all the information needed to deduce prop-
erties of the system in the critical region. This is what we will turn to in
the first part of the next lecture. Once we understand this, we will turn our
attention to using the corresponding flow equations at non-zero temperature
T > 0 to learn about the low-temperature properties of near-critical systems.



