
Lecture 11: Long-wavelength expansion in the

Neel state—Energetic terms

In the last class we derived the low energy effective Hamiltonian for a Mott
insulator. This derivation is an example of the kind of analysis that is needed
when the single-particle picture breaks down. As we saw, keeping track of
many particles is very awkward using our elementary quantum mechanics
notation and formalism, and we need a better way of accounting for the
presence of many particles and their statistics under exchange—for instance,
it would be nice if there was some systematic formalism that would keep
track of minus signs in the amplitudes of various processes due to fermion
interchange and allow us to complete this kind of calculation without the
need to invoke such minus signs by hand at various steps.

In fact, the formalism of “second-quantization” is designed to do precisely
this. It provides an indispensible language and calculational tool for many-
particle systems, and in the next module, we will provide an introduction
to this tool. Before we do that however, we will spend this lecture and
the next couple of lectures on developing the low energy description of the
antiferromagnetic Mott insulator, starting from the effective Hamiltonian
derived in the previous class.

The first step is to start with nearest neighbour Heisenberg antiferromag-
net Hamiltonian Heff (and we will drop the superscript from now on, and
write it simply as H in what follows below), view it as a classical energy func-

tional for length-S vectors ~S, and ask about the classical minimum energy
configurations of these length-S vectors. This is a useful starting point be-
cause the weight of a path in the coherent state path integral for the system
has one factor proportional to

exp(−
∫ β

0

dτH(S ~N(~ri, τ))) . (1)

If this were the only factor in the weight, the path integral would be dom-
inated by classical time-independent minimum energy configurations of the
length-S vectors S ~N(~ri). Each such classical minimum energy configuration

is labeled by a unit vector n̂, since the vectors S ~N like to all point along or
opposite the common axis defined by n̂, such that each vector is anti-aligned
with all its neighbours on the square lattice. Any such configuration sponta-
neously breaks the global symmetry of rotations in spin space, and n̂ serves
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as the order parameter for this symmetry-broken state; this kind of antifer-
romagnetic ordering on bipartite lattices (decomposible into two sublattices
such that all neighbours of a site belong to the other sublattice) usually goes
by the name “Neel order” after the physicist Louis Neel.

Of course, this is not the only factor in the weight of a path, and all the
quantum mechanics is in the other factor SB, which we have not analyzed
in any detail yet. At a qualitative level, what is the effect of the quantum
dynamics encoded by SB? To get a feel for this, consider two spin-half objects
coupled by the Hamiltonian

H12 = J12
~S1 · ~S2 (2)

where the S are now spin-half operators. Viewed as a classical energy func-
tional, this is minimized by any configuration in which the two spins are
anti-aligned, say

| ↑, ↓〉 (3)

However, a state like this is not an eigenstate of the Hamiltonian, since the
action of the “transverse components” of the Hamiltonian, i.e.

J12

2
(S+

1 S
−
2 + S−1 S

+
2 ) (4)

sends this state to the spin-flipped state

| ↓, ↑〉 (5)

Thus, quantum mechanics leads to fluctuations about the classical mini-
mum energy configuration. The real difficulty then is to understand whether
such quantum fluctuations lead to small corrections to the classical Neel or-
dered picture of the low energy physics, or whether they can completely
overwhelm this tendency for nearest neighbour spins to anti-align and spon-
taneously break rotational symmetry by forming a Neel ordered state.

To address this question, we begin by parameterizing ~N(~rj, τ) in a way
that factors in this classical tendency towards Neel order, but allows for
fluctuations:

~N(~rj, τ) = η(~rj)n̂(~rj, τ)

√
1− (ad/S)2~L2 +

ad

S
~L(~rj, τ) (6)
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where

η(~rj) = +1 for ~rj ∈ A− sublattice

= −1 for ~rj ∈ B− sublattice

(7)

on a d-dimensional bipartite hypercubic lattice (which generalizes the two
dimensional square lattice example which is of interest to us from the point
of view of the cuprate Mott insulator discussed in the previous class).

The idea behind this parameterization is quite simple: n̂(~rj, τ) is the
“local” Neel order parameter, i.e. the axis along which the system devel-
ops alternating spin order on short timescales and short distance scales of
order a small number (say five to ten) of lattice spacings a. On the other

hand, ~L(~rj, τ) represents fluctuations in space and time, which disrupt this
alternating or short-range Neel ordered pattern of spin orientations. Since
n̂ is a unit vectors at all space-time points, fluctuations about it must be
orthogonal to it, i.e.

n̂(~rj, τ) · ~L(~rj, τ) = 0. (8)

Geometrically, one can imagine obtaining n̂ by the following coarse-graining
procedure. Take a region of size ld, where l is of order a few lattice spacings
a. Define n̂(~r, τ) at the center ~r of this region as being the unit vector in the

direction of the average of all ~N(~rj, τ) in this region. Now, decompose each
~N(~rj, τ) into a component parallel to and perpendicular to this unit vec-
tor n̂(~r, τ). This is precisely the decomposition written down in the above
formula—the perpendicular component is

ad

S
~L(~rj, τ) (9)

and the parallel component is

η(~rj)n̂(~rj, τ)

√
1− (ad/S)2~L2 (10)

This “operational definition” makes it clear that the decomposition we have
written down involves some coarse-graining or loss of information. We will
be a bit sloppy about this aspect of it for now and not worry too much about
whether we are defining n̂ on the original lattice, or a coarser lattice, or in
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the continuum with some restrictions on its momentum content, since this
will only reduce the upper cut-off in (momentum) Fourier space from the
Brillouin zone edge to a smaller value in different ways. The more important
thing to keep in mind about this decomposition is that one expects n̂ to be
a slowly varying function of space and imaginary time, and that one expects
~L to be small in magnitude in addition to being slowly varying.

The idea now is to “plug-in” this decomposition for ~N(~rj, τ) into our
earlier expression for the partition function:

Z =∫
D ~N(~ri, τ) exp(

∫ β

0

dτ [
∑
i

iS

∫ 1

0

du ~N(~ri, u, τ) · (∂
~N(~ri, u, τ)

∂u
× ∂ ~N(~ri, u, τ)

∂τ
)

− JS2
∑
〈i,j〉

~N(~ri, τ) · ~N(~rj, τ)])

with constraint ~N(~ri, 0) = ~N(~ri, β) ∀i (11)

and expand to leading order in the smallness of ~L and the smallness of space
and time derivatives of n̂.

We will handle the Berry phase term, and the energetic term separately,
since one contains all the information about the quantum dynamics, and
the other contains all the information about the classical energetics of the
interaction between spins.

In this lecture, let us take the energetic term

+JS2

∫ β

0

dτ
∑
〈i,j〉

~N(~ri, τ) · ~N(~rj, τ) (12)

and express each ~N in terms of n̂ and ~L, keeping in mind that they are
orthogonal to each other at each space-time point. This has three contribu-
tions: one obtained by using the n̂ piece of each ~N , the other obtained by
using the ~L part of each ~N , and the third being a cross-term in which one
uses the n̂ part of one ~N and the ~L part of the other ~N .

For the first contribution, we expand the square-roots to leading order
and note that

η(~ri)η(~rj) = −1 (13)
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for all nearest neighbour i and j to obtain

+JS2
∑
〈ij〉

(
(n̂(~ri, τ)− n̂(~rj, τ))2

2
− 1

)[
1− 1

2

a2d

S2
~L2(~ri, τ)− 1

2

a2d

S2
~L2(~rj, τ)

]

≈ JS2

2

∑
µ=x,y

∑
j

(∆µn̂)2(~rj, τ) +
2dJa2d

2

∑
j

~L2(~rj, τ)

Here and henceforth, we use the convenient notation (∆µn̂)2 =
∑

µ,α(∂µnα)2.
In the second contribution, one can completely ignore the spatial depen-

dence of ~L to leading order and write it as

Ja2d

S2
S2
∑
〈ij〉

~L(~ri, τ) · ~L(~rj, τ) ≈ 2dJa2d

2

∑
j

~L2(~rj, τ) (14)

And finally, in the third contribution, we note that the oscillatory spatial
dependence due to to one factor of η(~rj) causes this term to be even higher

order in smallness (assuming slowly varying n̂ and small ~L), and we may
therefore ignore it in our leading order expansion.

Collecting terms, and rewriting things in a continuum language by replac-
ing finite differences by derivatives and summations by integrations (with
suitable factors of the lattice spacing inserted to make this rewriting possi-
ble), we obtain

JS2

∫ β

0

dτ
∑
〈ij〉

~N(~ri, τ) · ~N(~rj, τ) =

1

2

∫
Λ

ddr

∫ β

0

dτ [ρs(∇µn̂)2(~r, τ) +
1

χ⊥
~L2(~r, τ)]

where ρs ≈ JS2a2−d χ−1
⊥ ≈ 4dJad

(15)

Here, the repeated index µ is summed over, and the subscript Λ reminds us
that although we have used a continuum notation, we are in fact working
with variables defined on a coarse-grained lattice with larger “lattice spacing”
l ∼ Λ−1, or equivalently, we are working with fields that have a momentum
cutoff of Λ which is somewhat smaller than the original linear dimension of
the Brillouin zone corersponding to the microscopic lattice.
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In the above, ρs is clearly the stiffness or rigidity parameter that controls
spatial fluctuations about the antiferromagnetic ordering. What is perhaps
less obvious from the above is that χ⊥ controls the macroscopic susceptibility
of the system to a uniform external magnetic field applied perpendicular
to the direction of the Neel vector. To see that the latter is indeed the
case, imagine applying a field ~B perpendicular to the Neel order. From the
decomposition of ~N into n̂ and ~L, it is clear that such a field couples directly
to ~L and induces an additional term

−
∫ β

0

∫
ddr ~B.~L(~r, τ) (16)

since the alternating part averages to zero. If the energy functional for ~L is
then minimized with respect to ~L, the minimum is realized for

~L( ~B) = χ⊥ ~B (17)

Of course, the numerical prefactors in the expressions for the stiffness
and uniform susceptibility should not be taken seriously, since they depend
on the coarse-graining procedure employed to write down the continuum
action. However, the qualitative dependence of ρs and χ⊥ on S, J , a and
dimensionality d is expected to be more robust.

Note that although ρs penalizes fluctuations of n̂ in space, there is no term
as yet that controls or penalizes fluctuations of n̂ in imaginary time. This is
not surprising, since all the quantum dynamics is in the Berry phase term
that we have not yet analyzed, and one should expect that such a penalty
for rapid temporal fluctuations of n̂ will arise naturally from the quantum
dynamics, since such rapid fluctuations should cost a large amount of kinetic
energy. A second, related point, is the following: ~L has the interpretation of
being the total angular momentum density since∑

i

S ~N(~ri, τ) = ad
∑
i

~L(~ri, τ) (oscillatory piece averages out)

≈
∫
ddr~L(~r, τ) (18)

However, the total angular momentum is the generator of rotations of all
system vectors, including n̂, and is therefore the conjugate variable to n̂ in
the Hamiltonian dynamics of this problem. However, there is, as yet, no term
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that “ties in” ~L to n̂ in this manner—again, such a term must arise from the
expansion of the Berry phase term whic encodes the quantum dynamics.

[Don’t worry if you don’t understand what is meant here—it will be clear
in the next lecture—this comment is more for people who are familiar with
the phase space path integral for a single particle, which has a term in the
action that reads

i

∫
dt p

dx

dt
(19)

and signals the fact that p is the generator of translations in x and is therefore
the conjugate variable in the Hamiltonian dynamics of the system]

In the next lecture, we will employ the same procedure to expand the
Berry phase term

SB =

∫ β

0

dτ
∑
i

iS

∫ 1

0

du ~N(~ri, u, τ) · (∂
~N(~ri, u, τ)

∂u
× ∂ ~N(~ri, u, τ)

∂τ
)

(20)

using this decomposition in terms of a slowly varying Neel component n̂ and
a uniform component ~L, and see that such a term tying in ~L to the time
derivative of n̂ does arise from this expansion, and does control the temporal
fluctuations of n̂.
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