Lecture 22: of Quantum rotor analysis of in-
stability of Néel state to quantum and thermal
fluctuations.

In the last lecture, we saw how one can expand about the fully ordered
state of the quantum rotor model to obtain a description of the low-energy
spectrum in terms of wave-like non-interacting magnon excitations with two
polarizations a = x,y and dispersion relation

w(q) = \/?\/%Z — 2cos(gza) — 2cos(gya) — - -+ d terms (1)

Each magnon excitation causes the rotors to deviate from perfect alignment
along some spontaneously chosen axis, which we have taken without loss of
generality to be the 2z axis. Now, the basic premise of our linearized theory is
that these deviations from perfect alignment (the perfectly ordered state) are
small. We used this assumption explicitly when we left out terms that were
second-order in smallness in the equations of motion, and it was this omission
that led us to the simple quadratic Hamiltonian Hijearizea for the magnons
excitations. If we were to go beyond the linearized equations of motion, we
would generate other terms that can be thought of as interactions between
the magnons, and these can also be studied using a more elaborate version
of the spinwave theory we have developed in the previous lecture.

Here we are concerned with a more basic question: Is our spinwave de-
scription consistent? In other words, if we calculate the mean value of ¢2(;)
at any site j in the ground state of Hjjearizea at T° = 0, or in the equilibrium
ensemble defined by e~ Hinearized/kBT gt nonzero temperature 7', do we get an
answer that is systematically small compared to 17 This is the question we
will try and answer in this lecture. As we will see below, the answer to this
question is somewhat delicate because w(q) — 0 as |¢g] — 0, and this means
that |¢] — 0 magnons are very easily excited by quantum and thermal fluctu-
ations. Furthermore, since this property of w(q) is a reflection of the general
principle that breaking of a continuous symmetry leads to gapless excitations
(these are “Goldstone modes” in the language of particle physics), the answer
to this question also tells us whether a continuous symmetry can be broken
in a given spatial dimension.

With this background, we turn now to a systematic calculation of <(52)
in the linearized theory, starting with the answer in the 7' = 0 ground state,




and then extending the calculation to 7" > 0. We want to evaluate
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within spin-wave theory. To do this, we write each factor of Q;( j) in terms of
its Fourier expansion, and express the Fourier coefficients in terms of creation
and annihilation operators:

1 " 1 1 L
¢2 ] spinwave ' et 2% ¢ q ¢ I: spin—wave
NSites Z< ( )> ’ Nsites Ns2ites ;q; < (_) ( )> v
1 o
= N2 2 :<’¢((f) ’2>Spinwave
sites -

q

- N2t 2[;;0(;) Z o (q) + a (—0)(aa(=q) + GL(CD»Spinwave

1 1
= al\™ «a 1 spinwave
2Nsiteslzw(®<n ( d)"‘” <®+ >P

—

)

This is our master-formula. In the rest of this lecture we will carefully analyze
the consequences of this result.
We begin by noting that as
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we may write
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where the integral is over the Brillouin zone corresponding to the d-dimensional
hypercubic lattice. Furthermore, as will be clear in what follows, none of our
conclusions will depend on the form of the upper cutoff in momentum space,
and we will therefore freely replace the integral over the Brillouin zone by
an integral over a ball of radius A centered at the origin of ¢ space, with



A chosen to best match the overall volume of the Brillouin zone. We will
denote the latter by
/A ddq (6>
(2m)d

Consider first the magnitude of the mean-square fluctuations at 1" = 0.
At T =0, the system is in the ground state, which is characterized by

na(q) = 0 (7)

for all a and ¢. Therefore we have
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We now use the explicit form of w(§) to rewrite this as
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If the integrand is convergent, our answer for the mean-square deviations
from perfect ordering is going to be a very small number because of the overall
prefactor of 1/v/Jegl. This is because /Jegl is large by construction—
indeed, our spinwave analysis of the previous chapter was an attempt to study
the stability of the ordered state that is expected to obtain in this regime.
Thus, if the integrand is indeed convergent, we can end our discussion right
here, and conclude that the quantum rotor model supports an ordered state
for large values of v/J.gl, whose low-energy properties can be consistently
described by spinwave theory.

However, and this is key, the integrand is not always convergent. The
source of potential difficulty is the vanishing of w(q) linearly as ~ |¢] when
¢ — 0. Since the convergence difficulties arise near the origin in ¢ space, the
shape of the Brillouin zone, and the detailed form of w(q) away from ¢ = 0
are not germane to any discussion of this issue. Therefore, we replace w(q)
by its small |g] form, and replace the integral over the Brillouin zone by that
over a ball of radius A centered at the origin, and study the behaviour of the
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Clearly, this integral diverges for d = 1, but converges for d > 2. Our
conclusion therefore is that our assumption of a long-range ordered state in
which the 7 spontaneously break O(3) rotational invariance is perfectly valid
in spatial dimensions d > 2 at T" = 0 for large enough J.g/, but such an
ordered state with spontaneously broken O(3) symmetry cannot exist even
at T' = 0 no matter how large one makes Jegl in d = 1. Since this arises
due to the divergent contributions of the zero-point motion, one may say
that quantum fluctuations destroy any tendency to long-range order even at
T = 0 (the most favourable case) in d = 1.

Once we state our conclusion in this way, we are immediately led to ask:
What about the effect of thermal fluctuations? To answer this, we go back
to our master-formula and evaluate it at 7" > 0. At nonzero temperature,
the magnon occupation numbers n,(q) clearly follow Bose-Einstein statistics
with chemical potential ¢ = 0. Therefore, we have the result

1 ™. 1 ddq 1 2
i - 7 1 11
Nsites ;<¢ (]))spmwave 1 /I;Z (27r)d W((D ( T ew(@)/T — 1) ( )

Again, if the integral is convergent, one can immediately conclude that spin-
wave theory is consistent and an ordered phase can exist for large enough
values of Jog and I. And again, the integral is not always convergent. Indeed,
the strongest divergence now comes from the effects of thermal fluctuations,
since the Bose function contributes an additional factor of 1/w(q) to the
integrand in the limit of small ¢.

In other words, at issue now is the convergence of the integral
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Clearly, this diverges in d = 1 and in d = 2, and is only convergent for d > 3.
Therefore, we conclude that thermal fluctuations preclude the possibility of
spontaneously breaking the O(3) symmetry at T > 0 for dimensions d = 1
and d = 2, but are not strong enough to destroy long-range order for d > 3.
The case of two spatial dimensions, d = 2, is thus very special. Quantum
antiferromagnets in two spatial dimensions can exhibit long-range Néel order
in their ground state, but heating the system to any nonzero temperature,
no matter how small, must destroy the long range order!

Of course, since our conclusions are based on the fact that the assumption
that the system is long-range ordered leads to inconsistent results in low di-
mensions, one may wonder if there is some way to reach the same conclusions
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in a rigorous way. The answer to this question is yes. In the next lecture, we
will in fact obtain the same results in a mathematically sound way—this is
the well-known Mermin-Wagner theorem which says that a continuous sym-
metry cannot be broken in d = 2 or lower at non-zero temperature, and
cannot be broken even at 7' = 0 in dimension d = 1.

Leaving that to the next lecture, let us turn to the question: What is the
ultimate fate of the system if J.s and [ are large, but quantum and thermal
fluctuations destroy long-range order? The full answer to this question is
very difficult, since one is in a parameter regime in which the system locally
likes ordered arrangements of 7, but long-wavelength fluctuations destroy this
short-range order. Indeed, we will spend nearly four lectures understanding
how this happens using the renormalizaton group approach.

Here, we answer a simpler question: What happens if J.g and I are both
very small? In this opposite limit v/I.J < 1, the kinetic energy of each rotor
will dominate. Therefore, to zeroth order, we just have each rotor in the
total angular momentum [ = 0 state, i.e.

[ = 0. (13)

The wavefunction of this state for each rotor is of course uniformly spread
out over the corresponding unit sphere. In other words, each n; is fluctuating
wildly, independent of even its nearest neighbours.

This is a quantum paramagnet, in which quantum effects (the kinetic
energy of the rotors) have overwhelmed the tendency of the rotors to align.
What are the lowest lying excitations in this limiting case? Clearly, the first
excited level is 3 Nges-fold degenerate, since one can take any one site j = 7o,
and promote the corresponding rotor to any one of the [ = 1 triplet states.
In this limit, the excitation energy is 1/1, i.e. very large. This large gap
indicates that this state is stable to corrections due to the nonzero value of
Joe. To leading, order, it is easy to see that the exchange term

- eﬂzﬁj'ﬁka (14)
(Jk)

when projected into the manifold of these 3 N5 degenerate excited states as
required by our standard prescription of first-order degenerate perturbation
theory, makes the triplet at j = jo hop with amplitude proportional to J.g
to each of its neighbours.

In other words, if we think of the site jo as hosting a triplet particle, which
is a gapped version of the gapless spinwave excitations found in the ordered



state, then this particle has no kinetic energy in the absence of the exchange
coupling. And the leading effect of the exchange coupling is to allow this
triplet particle to hop to neighbouring sites with amplitude proportional to
Jogr. Higher order terms in this perturbation series lead to further neighbour
hopping terms as well as two-particle interaction terms in the Hamiltonian
for these triplet magnons, while the ground state remains a singlet with
extremely short-ranged correlations for the n;. All of this can be worked out
quite explicitly using elementary perturbation theory, and I urge you to do
this as a homework exercise.

Here, I turn instead to a discussion of what we have learnt from all of the
foregoing about the original quantum antiferromagnet: Our basic conclusion
is that quantum antiferromagnets with short range Néel order can have two
phases. One phase, which is the quantum paramagnetic phase, can exist in
any dimension and has a featureless singlet ground state with a triplet of
gapped magnon excitations. The other phase has long-range Néel order with
a doublet of gapless spinwave excitations that are linearly dispersing near the
antiferromagnetic wavevector (which translates to linear dispersion in the
rotor model near ¢ = 0). However, the long-range Néel ordered phase cannot
exist in d = 1 even at T' = 0, and cannot exist in d = 2 for T" > 0.

Of course, all of this has been actaully worked out for the quantum rotor
model studied here. And this model is a faithful description of the low
energy physics of the original quantum antiferromagnet only if Berry phases
play no role. As we have argued earlier, Berry phases do not play a role in
d > 2 in the Néel ordered phase, nor do they play a role for integer values
of spin in d = 1. Therefore, our conclusions above, which are based on the
quantum rotor description, are valid in these cases for the original quantum
antiferromagnet. However, for half-integer spins in d = 1, Berry phases play a
crucial role, and the physics is therefore quite different (and beyond the scope
of this lecture course). In addition, when Néel order is destroyed by quantum
fluctuations in spin S = 1/2 antiferromagnets in d > 2, Berry phases do
play a role in determining the detailed spatial structure of correlations in
the quantum disordered phase, as well as in determining the nature of the
transition between the Néel ordered and quantum paramagnetic states, so
some of our conclusions need modifications in these cases. This is again a
subject that goes beyond the scope of these lectures. Here, we only note that
conclusions drawn on the basis of results for the quantum rotor model hold
whenever there is an integer spin per unit cell.



