Lecture 21: Spin wave theory for quantum ro-
tor model

In the last three lectures, we have introduced a simple model for a system
of interacting bosons in a lattice potential, and developed caricatures for the
superfluid and insulating states of this systems, as well as sketched the deriva-
tion of an effective theory that is designed to correctly reproduce the low-
energy physics of both phases as well as the intervening superfluid-insulator
transition. We have also discussed how this theory can be used to calculate
observable quantities like the superfluid stiffness and the conductivity.

These developments are closely analogous to our earlier discussion of spin
systems with antiferromagnetic exchange interactions, for which we derived
an effective O(3) quantum rotor Hamiltonian which is expected to correctly
capture the low-energy physics of such quantum antiferromagnets, and dis-
cussed how experimentally relevant quantities such as NMR relaxation rates
and inelastic neutron scattering cross-sections may be computed within such
an effective theory.

In the next ten lectures or so (including this one), we will discuss the
low-energy physics of both these effective theories in some detail. In each
case, we will start by developing a systematic expansion about the ordered
state in order to characterize the universal low-energy physics of the long-
range ordered antiferromagnetic state and the superfluid state. Then we will
identify instabilities that cause a breakdown of order, and develop so-called
“renormalization group” ideas that help us understand how these instabilities
eventually produce a disordered state in terms of the properties at the largest
length-scales and lowest energy scales. In the bosonic case, the disordered
state is a Mott-insulating state of the original Bose-Hubbard model, while
in the case of quantum antiferromagnets, the disordered state is a quantum
paramagnet in which quantum fluctuations succeed in destroying long-range
antiferromagnetic order. As a by-product, we will also end up learning how
to think about properties of a “critical point” separating the ordered and the
disordered phases.

With this general orientation in mind, let us write down the effective
Hamiltonian corresponding to the quantum rotor model:
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with moment of inertia I, nearest-neighbour exchange interactions J.g and
canonical commutation relations

[na(41), Lg(d2)] = i0j jo€apy0y (2)

In other words, E, being the angular momentum of the rotor, rotates n which
is the coordinate of the rotor.

If I — oo, then the first term has a negligible effect on the physics,
and the problem becomes that of a classical system of unit vectors with
aligning nearest neighbour interactions. Clearly, this orders by spontaneously
choosing a common axis and aligning all the unit vectore n along that axis,
since this is the configuration that gives the minimum exchange energy. Once
I is finite, the kinetic energy of each rotor favours the [ = 0 state individually
for each rotor. Since the wavefunction of the [ = 0 state of each rotor is
uniform on the corresponding unit-sphere labeled by the rotor coordinate n,
the kinetic energy competes with this tendency of the exchange interaction
to line up the rotors.

Therefore, our task in this lecture is to understand the stability of this or-
dered state to the effects of this kinetic energy term. The arguments and cal-
culations we use to answer this question make up what is generically termed
“spin-wave theory”, since a crucial part of this analysis has to do with de-
termining the nature of wave-like excitations of this ordered state. We begin
by assuming that all the rotors line-up, except for small deviations, along a
spontaneously chosen axis, which we take without loss of generality to be the
z axis. From the equations of motion, we know that [_;j is proportional to
n; x Oy, and is therefore expected to lie predominantly in the zy plane if all
the n; are nearly aligned with the 2 axis. Indeed, thinking in terms of small
deviations from the perfectly aligned static configuration, we see that the x
and y components of n, and the x and y components of L are the leading
effects of any departure from this static solution, while the z component of
L is a second-order effect.

This can be made precise by writing down the Hamilton equations of
motion corresponding to H,.o and systematically keeping only leading order
deviations from the static state with all n lined up along the 2z axis. These
equations read:
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where we have dropped the site-label j in the intermediate steps to avoid no-

tational clutter, but reinstated it in the final expression, which only contains

terms that are first-order in smallness. Similarly, we obtain to linear order
dny(j) _ La(j)

= I (4)

To the same leading order, we have

dn.(j)
dt

S (5)

Similarly, one can work out the leading order equations of motion for
L,(j) and L,(j) (remember, L,(j) is only non-zero at second-order, and can
therefore be consistently ignored in our discussion):
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In the above, the sum over k£ € j refers to all neighbours k£ of a given site
j. Let us now parameterize the small deviations from the perfectly aligned
state in terms of variables ¢,(j) and ¢,(j) by writing
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where, in the last line, we have emphasized the fact that n,(j) plays no role
in the linearized theory that only includes terms that are first order in the
¢(j). From the linearized equations derived above, it is clear that —L,(j)
plays the role of the linear momentum that is canonically conjugate to ¢,(j)
(with I playing the role of the mass), while +L,(j) plays the role of the
linear momentum canonically conjugate to ¢,(j). Furthermore, as far as the
linearized equations are concerned, L, the commutator of L, with L,, plays
no role. Therefore, the linearized theory can be thought of as being a theory
of two independent canonically conjugate pairs: ¢,.(j) and its canonically
conjugate momentum

e (1) = Ly(j) (8)
and ¢,(j) and its canonically conjugate momentum
my(J) = —La(j) (9)
with the only non-zero commutators being
[gba(i)? 71-5(])] = 5@']'6&5 (1())

In order to reproduce the linearized equations of motion, we must use
these commutation relations in conjunction with the following Hamiltonian
for the linearized theory:
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This linearized Hamiltonian leads to the following wave-equations for ¢,
and ¢,, which are seen to follow by differentiating both sides of one of the
Hamilton equations of motion again and invoking the other equation:
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These are wave-equations characteristic of a system of coupled harmonic
oscillators. The underlying decoupled harmonic oscillator eigenmodes can be
exposed by working with Fourier transformed operators:
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where 7; is the coordinate of the site j on a d-dimensional hypercubic lat-
tice with lattice spacing a. The commutation relations among these Fourier
transformed operators follow from the original commutation relations among
the ¢ and the 7 at each site:
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It is easy to see that the linearized Hamiltonian can be written as a sum
of independent harmonic oscillators, one for each ¢, when expressed in terms
of these Fourier transformed operators (please check this on your own):
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Rescaling to bring it in standard form, we write
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We may now define creation and annihilation operators for each ¢ to write
the Hamiltonian explicitly as a sum of independent oscillator Hamiltonians
at each ¢
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Since w(q) = w(—¢), these definitions imply the following canonical commu-
tation relations:

[aa(@), ab(@)] = dgz0as (19)

Thus, each (a.(q), al () gives an independent set of creation and annihi-
lation operators, one for each ¢ and «. The corresponding number operators

na(@) = al(Qaa(q) (20)

keep track of the number of quanta of the corresponding harmonic oscillator
mode, and can be thought of as counting the number of spin-wave particles
(sometimes called magnons) propogating with polarization o in momentum
eigenstate ¢. In terms of these number operators, the linearized Hamiltonian
reads:

Hiased = (@) (o) + 5 1)
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Clearly, the ground state of the linearized theory is the vacuum for all
magnons, i.e.

n.(q) =0 (22)

for all ¢ and o = z,y, and each magnon excitation (n.(q) — n.(q) + 1)
corresponds to an excitation energy of w(q) (in all our analysis, i has been
set to zero at the very outset). Clearly the vacuum state corresponds to the
perfectly aligned state with all 72(j) pointing along the Z direction

What does it mean to excite one of these magnons? From the equations
of motion, it is clear that these quanta correspond to wave-like modes pro-
pogating at wavevector ¢ and oscillating in time at frequency w(q). These
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modes disturb the perfect alignment of all n(j) along the Z axis. Magnons
with polarization o = x correspond to waves with n oscillating in the zz
plane with corresponding angular momentum along the £y direction, while
those with polarization @ = y correspond to waves with n oscillating in the
yz plane with corresponding angular momentum along the +2 direction.

These magnon excitations of our rotor model are like phonons in a solid,
or photons in a microwave cavity. Any external perturbation that couples en-
ergetically to the system can create these magnons. Like phonons or photons,
the total number of magnons is therefore not conserved, and as a result, they
obey Bose statistics with chemical potential p set to 0. In the next lecture,
we will see these facts emerge from a more formal analysis, and we will look
more closely at the internal consistency of the assumptions that went into
this linearized theory for the spectrum of low-lying states above the ordered
ground state with long-range order for the n(j).



