
Lecture 3: Conceptual overview

In the last lecture, we reminded ourselves that the statistical approach to
macroscopic systems is not just a technical tool that allows us to apply the
laws of classical and quantum mechanics to large systems—instead, it rep-
resents a conceptual advance since many concepts like heat and temperature
which are well-motivated by everyday experience cannot even be defined in
a precise scientific way using just the equations of motion of classical and
quantum mechanics. Instead, these properties are given a precise character-
ization starting from Gibb’s statistical approach which says that a system
can be in any allowed state with a particular equilibrium probability.

Now, does this mean that one can replace the equations of motion of
Newton and Schrodinger by the probability distribution of Gibbs, and simply
“turn the crank” to back out all the physics of macroscopic systems? Even
a moment’s reflection should convince you that this cannot be the case.
Consider the following phenomenological facts, again drawn from everyday
experience:

• Matter exists in several different phases:

For instance, water exists in several different crystalline ice phases, a
liquid phase, and gaseous phases. Likewise some metals exist in both a
low temperature ferromagnetic phase and a higher temperature para-
magnetic phase. Others become superconducting at very low tempera-
tures. Helium exists as a gas, ordinary liquid, superfluid, and at higher
pressures, even a so-called “supersolid” phase, although the last has not
been fully confirmed as there is some disagreement between different
experimental groups pursuing its study.

• These phases are separated by phase transitions, accessed by changing
pressure, temperature, magnetic field etc.

• Some of these phases are “distinctly” different from other phases:

Atoms in a crystal have a very “ordered” arrangement. This is clearly
not so in a liquid. Some phase transitions are “first order” with la-
tent heat of phase change, like the familiar melting transition of ice.
Other transitions, for instance, the transition of helium from an ordi-
nary liquid to a superfluid, or the transition of water from its liquid to
gaseous phase near the “critical end-point” of the liquid-gas transition,
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are accompanied by large scale fluctuations which are at the root of
the experimentally well-known phenomenon of “critical opalescence”

Faced with this list of phenomena, we must naturally ask: Where is all
this “hiding” inside Gibb’s “master-formula”

Z =
∑
n

exp(−βEn) ? (1)

(here and henceforth in this course of lectures, β ≡ (kBT )−1 unless I warn
you that this is temporarily not the case).

Indeed, in the first few decades of the twentieth century, it was by no
means clear even to experts whether phenomena such as phase transitions
and critical end-points could be captured by Gibb’s statistical approach.
This question motivated the study of simple lattice models of interacting
many-body systems, starting with the thesis of Ising, who was a student
of Lenz, who asked him to explore the question of phase transitions in a
simple lattice model in which there are two states at each site. We now
know this model as the “Ising model”. Ising was able to show that such a
model, when treated using the principles of Statistical Mechanics, does not
exhibit any phase transition phenomena in one spatial dimension. This was
an important and correct negative result.

Perhaps influenced by the prevailing uncertainty about the ability of this
statistical approach to describe things like phase transitions, Ising went ahead
and also conjectured that the same is true in higher dimension, i.e. the
Ising model, when treated using the Gibb’s statistical approach, does not
exhibit a phase transition in any dimension. It was more than a decade
later that Onsager explicitly solved for the properties of the two dimensional
Ising model using the Gibb’s approach and demonstrated that the statistical
approach does indeed predict a sharp phase transition, but only in the limit
of infinite volume.

Why were these questions difficult to answer before the work of Onsager?
The answer is that the phenomena we have just described do not emerge
in an “automatic” manner from the formalism of Gibbs without introducing
some new ways of thinking and another layer of new concepts, which are
needed to think about these macroscopic phenomena. In this lecture, we
will try to provide a preview of these new ideas, which will be fleshed out in
considerable detail in the rest of this course.
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Consider then, the phenomenon of crystallization of a liquid. What is
the distinction between water in its liquid phase, and a block of ice? At an
intuitive level, one might say that water flows and assumes the shape of its
container, while ice is rigid. Digging slightly deeper, we would ask: What is
it that allows water to flow, but requires that ice be rigid? After all, both are
made of the same water molecules, so why the distinction? The answer comes
from a study of the internal arrangement of water molecules in ice: Water
molecules in ice (and there are actually many different ice-phases of water,
but that is a matter of detail that need not concern us here) are arranged
in a regular array. On the other hand, the positions of water molecules in
liquid water bear no particular relationship with each other.

This regular arrangement of molecules breaks a symmetry of the under-
lying equations of motion, namely the symmetry of translations in three
dimensional space. To understand this symmetry breaking better, we can
assume that the positions of all other water molecules are fixed once the
“first” water-molecule decides where it will sit. But since all points in space
are equivalent, there is an infinite choice of positions for this “first molecule”.
These choices are connected by translational symmetry. This translational
symmetry, at least in idealized experiments, is broken “spontaneously”. In
other words, no external force tells the water molecules which of the symme-
try equivalent set of positions they should choose.

This notion of spontaneous symmetry breaking is at the heart of our
present day understanding of a large class of phase transitions in which it
is possible to make a sharp symmetry distinction between the high and low
temperature phases.

In such cases, the two phases are distinguished by the presence of “long-
range order” which is present in one phase and absent in the other—in our
example above, this long-range order is simply the statement that the relative
position of two far away water-molecules is fixed in the crystalline ice phase,
but not in the liquid water phase.

The notion of an “order parameter” provides a sharp characterization of
the presence of long-range order, and the spontaneous breaking of symmetry.
In the case of a crystal, the order parameter is the Fourier component of the
mass density at wavevectors corresponding to the reciprocal lattice vectors of
the crystal lattice (familiar from your elementary solid state physics course).

Whenever a continuous symmetry is broken and there is long-range order,
there is an associated “rigidity” property that goes hand in hand with this
symmetry breaking. In the case of a crystal, this rigidity corresponds closely
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to our intuitive, colloquial usage of the term, as well as to the notion of a
“rigid body” in solid mechanics. In other examples like a ferromagnet or a
superfluid, it is a generalization of the notion of rigidity familar from solid
mechanics.

To illustrate this, let us consider the example of an insulating antiferro-
magnet made up of localized magnetic moments (spins) with anti-aligning
interactions on a bipartite lattice (whereby every spin points anti-parallel to
its neighbours). In the low temperature phase, the magnetic moments thus
spontaneously choose a common axis ~n so that each A sublattice spin points
along this axis, which all its B sublattice neighbours point antiparallel to
this axis. This spontaneously breaks the symmetry of simultaneous rotation
of all the spins in tandem in spin space.

This symmetry breaking is associated with long-range order of the spins:
two A-sublattice spins point in the same direction even if they are located
very far away from each other. This long-range order can be characterized
by a non-zero value for the order parameter, which, in this case, is the anti-
ferromagnetic order parameter ~m defined as

~m =
∑
~r

η(~r)〈~S(~r)〉 (2)

where η(~r) is +1 (−1) for ~r belonging to the A sublattice (B sublattice).
As in the case of crystal formation, the spontaneous breaking of sym-

metry is accompanied by the development of rigidity. In the case of the
antiferromagnet, the rigidity has to do with the fact that a gradient ∇~m in
the order parameter costs nonzero energy per unit volume—the net energy
cost is then proportional to

∆E ∼ ρn

∫
ddx(∇~m)2 . (3)

Here ρn is the rigidity or stiffness parameter.
Whenever a continuous symmetry (such as the symmetry of translations

or the symmetry of rotations in spin space) is spontaneously broken by the
establishment of long-range order, one always has “gapless” elementary ex-
citations which cost arbitrarily low energy to produce if the wavelength as-
sociated with the excitation is allowed to become arbitrarily long.

These excitations are similar to the “Goldstone modes” familiar to par-
ticle physicists. The reason for their existence is quite simple and general.
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Since the symmetry that is spontaneously broken is a continuous symmetry,
there is no energy cost to performing a global symmetry operation that ro-
tates all the spins of the system, and thereby rotates the order parameter ~m
rigidly. Upon doing so, one obtains a new state that is symmetry equivalent
to the original state. Now, one can introduce a small and very slow spatial
dependence in ~m by performing slightly different rotations at different points
in space. Clearly, the energy cost for making this excitation goes to zero
as the wavelength of the spatial dependence goes to infinity. And therefore,
there are gapless low energy modes whose excitation energy goes to zero as
their wavelength goes to infinity.

This brings us to the final and most subtle aspect of spontaneous sym-
metry breaking: Namely, how do we reconcile

~m 6= 0 (4)

with

~m = Tr
∑
i

η(r)~S(r)e−βH (5)

when H is symmetric under a global spin flip ~S(r)→ −~S(r) which sends ~m
to −~m, and therefore seems to imply

~m = 0 (6)

The answer follows if we ask: Once the system has settled into an equi-
librium state with order parameter ~m, how long does it take to reorient the
order parameter vector to point in a different direction? If this time is very
large, then the statistical prescription for calculating ~m from the Gibbs dis-
tribution is not appropriate, since it assumes in effect that the system has had
time to explore all available states on time scales less than the experimental
timescale.

What is it that actually prevents the order parameter from exploring on
the experimental timescale all the symmetry related choices available to it?
For instance, what prevents the antiferromagnetic order parameter ~m from
rotating to point in a different direction in spin space on the time scale of a
neutron scattering experiment? It is this question that goes to the heart of
the matter, and the answer to it is actually quite simple: The point is that
the order parameter does rotate, but on a timescale that diverges with the
size of the system.
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This is in effect due to the fact that the order parameter is, in a certain
well-defined sense which we make precise below, a “heavy” “classical” vari-
able with very slow dynamics. How does this actually come about? The
answer is obvious if we ask the corresponding question for the case of a crys-
tal. Assuming a perfectly rigid crystal, in which the relative positions of all
the molecules in the crystal is fixed, the only remaining low energy degree of
freedom is the center of mass coordinate qCM . The conjugate variable is of
course Ptot, the total momentum of the crystal as a whole. Thus, a system
that has spontaneously broken translational symmetry to form a crystal will
have a “tower” of very low energy states corresponding to the center of mass
degree of freedom. The corresponding effective Hamiltonian is

Heff =
P 2
tot

2Mtot

(7)

The ground state is of course the state with Ptot = 0, i.e. the state whose
wavefunction Ψ(qCM) is uniformly spread out over all space. A system in this
state corresponds to the crystal order parameter sampling all its symmetry
equivalent values without prejudice. However, since the mass Mtot goes to
infinity in the thermodynamic limit, a wavepacket localized at a particular
location qCM = r0 with a spread of δr, will remain stable over a time-scale
δt ∼ ~/δE, where the spread in energy δE can be estimated as

δE ∼ ~2

2Mtot(δr)2
(8)

This gives

δt ∼ 2Mtot(δr)
2

~
(9)

The main thing to notice in this formula is that the time over which the
wavepacket remains stable, i.e. the time over which the order parameter
remains well-defined, scales with the total mass of the system, which means
it diverges in the thermodynamic limit of infinite volume and constant finite
density.

This is the key point. Quite generally, the order parameter variable has
its own dynamics, which, in a finite system allows it to explore all symmetry
equivalent choices—in other words, there is no spontaneous symmetry break-
ing, and no sharp phase transition in finite volume. However, as the system
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volume becomes large, this dynamics slows down because the corresponding
degree of freedom becomes “heavy” and “classical”—in other words, there
is always some analog of Mtot which diverges in the thermodynamic limit,
leading to the possibility that the symmetry broken state has infinite lifetime
in this limit.

All of this will be quite explicitly demonstrated in the examples we take
up later in the course, and I suggest you come back and re-read this chapter
midway through the course—this will allow you to correlate what you have
learnt, with the general comments made here.
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