Lecture 16: Many-body physics in second-quantized
language

In the last lecture, we went over two sets of algebraic preliminaries: One hav-
ing to do with the abstract algebra of creation and annihilation operators for
fermions and bosons, with defining relations consisting of anticommutators
in the case of fermions and commutators in the case of bosons, and the other
having to do with the nature of the many-boson and many-fermion Hilbert
spaces, which consist of states which are totally symmetric under particle
interchange for bosons and totally antisymmetric under particle interchange
for fermions. That the latter is true is a fact of nature as far as anybody has
been able to tell, and thus a basic physical input one must provide for the
ensuing discussion.

Now, we define operations that add or remove particles from one of these
many-particle states. The algebraic properties of these operations will be
seen to follow the abstract operator algebra defined in the previous lecture,
allowing one to represent the physics of many-body systems using the lan-
guage provided by these operators.

First, we define an operation a'(¢) that adds a particle in a single-particle
state |¢) to the many-body state [¢; - - - 1,)¢ that originally has n indistin-
guishable particles (fermions if ( = —1, bosons if ( = +1)

al (@)1, -+ hu)e = b, b1+ ) (1)

For consistency, we also postulate that the single particle state |¢) itself
can be obtained from the vacuum state |0); by the action of this creation
operator:

[¢) = a’(#)]0) (2)

We now ask: What is the adjoint of this operation? To answer this,
denote the adjoint as usual by a(¢) and note that

wrzpala(@)r - tne = (v dalad @)z 20-1)0)
= (- nld, w0 (3)

From the previous lecture, we know that this can be written as

(Wilg) Wnlz) - (Wnlza-a) |7
V1 nld,xrTp1)E = : : (4)

(Gal®) (Galer) -+ (nlzns) |,



For ( = —1 (fermions) we may expand this in terms of minors along the first
column to get

(Wi|o) (rlar) -+ (Wrlap—) [* n

= 3O (- by (00 ) 1)

Wal) Wlor) - Wlon ) |+

Moreover, by working directly with the definition of the many-boson state
given in the previous lecture, it is easy to see that the same final expression
also holds for bosons, so we may use the same final expression for either sign
of . Since this is true for arbitrary |zy - --x,_1), we can write

a(@)r - n) = D TR -+ (00 ) -+ ) (6)
k=1

So a(¢) removes one particle from among those occupying the single particle
state |¢) and attaches a sign (for fermions) that depends on the convention
used for ordering single-particle states.

From this it is now clear that

[a(é1), a(¢2)]c = 0. (7)

where [A, Blc—11 = AB — BA, while [A, B|.—_1 = AB + BA.
Moreover, from the original definiton

a (Ot n) = |6, 901 ) (8)

it is also clear that
[a¥(61),a’(¢2)]c = 0 (9)

These commutation/anticommutation properties are identical to those of
the algebra of creation and annihilation operators we studied in the previous
lecture (in the previous lecture, we studied only one pair of operators a and
a', but the discussion in that lecture clearly generalizes to many independent
pairs, where by independent we mean things that commute in the case of
bosons and anticommute in the fermionic case). Indeed, that was the reason
for choosing to study it. To complete the connection, we need to work out

()



[a(¢1),at(¢2)]¢. To do this, note that
a(¢)at (G- n) = ald1)|gathr - )

n

= ch@lwkﬂ@,djl 00 Y Up) + (Br|d) [y - )

. (10)

Likewise

n

al(g2)a(@) - n) = a'(d2) Y CFHorlh)|or - (0o W) -+ hy,)

k=1
= CF M [0r) | 2, 1 -+ - (0 g) -+ - )
k=1
= Y o) |pa, o1 -+ (no by) - aby) (1)
k=1

So we have

(a(¢1)al (¢2) = Cal(d2)a(d)Wr - - vhn) = (Grldo) b+ th)  (12)

Since this holds for an arbitrary state, we have the operator equation

[a(¢1), a(¢2)]c = 85,0 (13)

since we are using orthonormal single particle states with (¢1]p2) = 04, .-

At this point, it is important to recognize that the many-particle states
|1 - - -1 )¢ used in the above are un-normalized in the Bose case since more
than one particle can occupy the same single particle state (as discussed in
the previous lecture).

From now on, we normalize these states to unit norm as in the previous
lecture, and denote the corresponding normalized n-particle states by the
notation |nq, ng, - - )¢, where ny +nq - - - = n is the total number of particles,
and the integers n; tell us how many times a given single particle state ¢,
appears in |1 ---¢y,)¢, 4.e. how many particles occupy this single particle
state. In terms of these normalized states, it is easy to use the foregoing to
conclude that

aL|n1,n2,--',na,'--) = Vna+1’n17n27”'7na+17"'>
aa|n17n2a Nyt > = na|n17n2a N — 17' ' > (14)
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From this, and the commutation/anticommutation relations obtained
above, it is clear that the integers n, are in fact eigenvalues of the “number
operator”

ne = alaq (15)

defined in the previous lecture in our study of the abstract algebra of creation
and annihilation operators. Thus, this operator is really the number of parti-
cles in single-particle state v, and we simply need to use many copies of this
abstract algebra (one for each ) to have a complete language for describing
the quantum mechanics of many-particle systems. In this context, it is again
important to note that these copies are “independent” of each other, where
independence means that things commute for different a in the bosonic case,
and things anticommute for different « in the fermionic case.

In using this formalism, one typically uses a complete set of position
or momentum eigenstates as the single-particle basis. In other words, one
typically works either with operators a, and al satisfying

[z, al)]c = 8(a — ') (16)

(d is the spatial dimension) and all other commutators (anticommutators)
equal to zero for bosons (fermions), or with operators a, and a;) satisfying

[ap, al]e = (plp') = (2m)*5%(p — p) (17)

with all other commutators (anticommutators) equal to zero for bosons (fermions).

Therefore, one question that arises immediately is: What is the relation
between these two sets of operators? To answer this, it is useful to first
define creation operators that create a particle in a linear superposition of
two single-particle states: If

IX) = alv) + Bl¢) (18)

then we define

al = aa:rp + ﬁa;) (19)

T
X
This immediately implies that

ay = o"ay + frag (20)



With this in hand, we may use the fact that
) = [dteera @
to write
aL = /ddxeipxal

ddp —ipxT
al = /(%)de Pal (22)

In other words, these two sets of operators are operator-valued Fourier trans-
forms of each other.

With this background, let us ask how we may represent typical terms in
the Hamiltonian of a system of interacting particles. Typically, particles are
subjected to a external potential, which we term a “one-body operator” in
this context for obvious reasons. In addition, they feel the effects of other
particles due to the presence of inter-particle interactions between any pair
of particles. For obvious reasons, such interactions are classified as “two-
body operators”. In addition, one can have three-body interactions present
in certain effective models of strongy-correlated electronic systems, although
the basic non-relativistic Coulomb interaction between electrons is a pair-
wise interaction, and therefore a two-body term in the Hamiltonian.

How do we represent a one-body operator in this formalism? To answer
this, we write a general one body operator as

A= Z A(4) (23)

where the argument ¢ reminds us that the i*" term acts only on the Hilbert
space of the i particle. An example is an external potential V' that all
particles feel

vV o= ZV(:EZ-) (24)

In this case, the operator acting in the Hilbert space of the i*" particle is
written in the position basis, and z; is the d-dimensional coordinate of the
ith particle.



Next, we suppose for the time being that each A(i) has a very simple
form |a)(B| where |o) and |5) are orthonormal basis states in the Hilbert
space of the i*" particle. Then

Al)e = (Bl e, Yo - Pn) H(Bl2) [P, - - bu) et (Bln) [ - - - b1

(25)
Now, we compare this with the action of al as:
alaslv)e = Y € HBlUw) s (0 i) <)
k=1
= Z<5|¢k>|¢1 -+ (o instead of ¢y) - - y)¢

k=1

(26)
Comparing the two, we see that in this special case

A=adlas. (27)

Since any A can be written as a sum of terms of this form, with coefficients
A,p that are up to us to specify, we may write

A= ZAaﬁaLag (28)
ap

for a general single particle operator.
To fix this in our minds, let us consider again the case of the external
potential V' (z). Since this is diagonal in the x basis, we have the expression

V= /dde(x)alam. (29)
Another useful-to-note example is a one-body operator

N=>"1, (30)

where 1; is the identity in the Hilbert space of the i*" particle. This just
measures the total number of particles, and clearly has the representation

N = /ddasal,ax (31)
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Similarly, the total momentum operator is most conveniently represented as
dp

P, = /(QW)dpua;ap (32)

With this in hand, let us now turn to two-body operators, focusing on

the example of a pair-wise interaction U. Clearly, it is convenient to work

in the position basis. In this basis, we want a operator U that acts on the n
particle state in the following way

Uler+aa)e = S UG a)lan -zl

i<j

1
l’]

How do we mimic this action using an expression made up of creation
and annihilation operators? The obvious (by now) guess is an expression of
the type

1
5 /ala;ayaxU(:ﬂ, y)dzdty. (34)

I leave it to you to work through the simple algebra involved and check that
this is indeed true. This concludes our discussion of many-body formalism.

With this formalism, the effective Hamiltonian for the tight-banding one-
band representation of the Cu-O plane of cuprate superconductors can now
be written compactly as

H=—t Z(c;rgcjg + C}Ucw) +U Z MM (35)
(ig) ‘

where (ij) denote links connecting nearest neighbour points i and j of the
square lattice, ¢ =7, are the two spin polarizations of the electron along
some quantization axis, and ¢;, annihilates an electron at site ¢ with spin
polarization o.

Using this language, it is possible to now repeat the perturbative deriva-
tion of the Heisenberg antiferromagnet Hamiltonian in the U > t limit at
half-filling without introducing any “fermionic” minus signs by hand every
time particles are interchanged. Similarly, it is possible to study bosonic ver-
sions of the above, of possible relevance to the physics of ultra-cold bosonic
atoms with two degenerate hyperfine states in an atom-trap experiment. I
leave both to you as self-assessment exercises, detailed separately.



