
Lecture 25: Renormalization group for the quan-

tum rotor model: Details and the flow equa-

tion

In order to implement the renormalization group approach outlined in the
last lecture, it is useful to discuss some “geometric” preliminaries first. Since
the calculations involved are no harder for the general O(N) model compared
to the O(3) case we have been discussing thus far, we choose to work in this
more general setting for completeness.

We write the n̂ field of our original action as

n̂(~x) = ˜̂n(~x)

√
1− ~φ2(~x) + ~φ(~x) (1)

and let {ê1(~x), ê2(~x) . . . êN−1(~x)} be a local frame of unit vectors perpen-
dicular to ˜̂n. φ(~x) can be expanded in terms of this frame of unit vectors
as

~φ(~x) =
N−1∑
a=1

êa(~x)φa(~x) (2)

Further, since ˜̂n is a unit vector, any derivative ∂µ ˜̂n is perpendicular to ˜̂n,
and also admits an expansion in terms of this frame. We write

∂µ ˜̂n =
N−1∑
a=1

Qa
µêa (3)

Conversely, derivatives of any of the êa admit an expansion in a basis that
now includes ˜̂n:

∂µêa =
N−1∑
b=1

Aabµ êb −Qa
µ
˜̂n (4)

where the A are obviously antisymmetric in their upper indices and the same
object Qa

µ, makes its appearance in this equation and the equation for the

derivative of ˜̂n, with the sign in front being different (this is a reflection of
the fact that êa is a unit vector orthogonal to the unit vector ˜̂n at each point
in spacetime). Aabµ and Qa

µ are geometric properties of the way different
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frames are connected to each other at neighbouring points in spacetime.
Their specific values depend on the choice of frame perpendicular to ˜̂n at
each point in spacetime. Although the field ˜̂n is given to us, the frame of
unit vectors in the hyperplane perpendicular to ˜̂n is ours to choose, and this
freedom leads to a kind of “gauge-invariance” principle that we will be able
to exploit to drastically simplify our calculations.

To understand this gauge-invariance principle, we begin by noting that
any locally chosen (spatially varying) N−1 dimensional rotation matrix that
rotates in the N − 1 directions perpendicular to ˜̂n will give us a new and
equally valid N − 1 dimensional frame. Denote this rotation matrix by R.
Clearly, both φa and êa transform as a column vector under R. In other
words

φa →
N−1∑
b=1

Rabφb

êa →
N−1∑
b=1

Rabêb (5)

and of course, this leaves the physical ~φ =
∑N−1

a=1 φaêa unchanged. Further,
it is easy to check from their definitions that Q transforms quite simply as a
column vector, while A has a much more complex transformation law:

Qa
µ →

N−1∑
b=1

RabQb
µ

Aabµ → [(∂µR)RT + RAµR
T ]ab (6)

With this in mind, we ask the following question: When we expand S to
second order in ~φ and do the ~φ path integral to obtain an effective action for
˜̂n, what are the possible terms in this effective action? The answer of course
is that all “gauge-invariant” objects that respect translation and rotation
symmetry are possible. From Q, clearly the simplest term one can make is

N−1∑
a=1

D∑
µ=1

(Qa
µ)2 . (7)

If we rewrite it in more familiar language, this is nothing but

D∑
µ=1

(∂µ ˜̂n)2 (8)
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But what can we construct from the A? Instead of answering this up
front, let us instead ask: Can we exploit the gauge-invariance and set A to
zero for a given background field configuration ˜̂n? In other words, can we
find a R such that

(∂µR)RT + RAµR
T = 0 ∀~x ? (9)

This translates to looking for solutions of the equation

∂µR = −RAµ . (10)

Now, since

∂µ∂νR = ∂ν∂µR , (11)

a necessary condition for finding such a R clearly is

∂µ(RAν)− ∂ν(RAµ) = 0 . (12)

This translates to the requirement

∂µAν − ∂νAµ − [Aµ,Aν ] = 0 . (13)

The quantity on the left hand side of the above equation can be thought of
as a (non-abelian) “magnetic field” Bµν , defined as

Bµν = ∂µAν − ∂νAµ − [Aµ,Aν ] , (14)

and this condition then translates to the requirement that Bµν be zero.
Conversely, if this magnetic field is not zero, then one can construct gauge

and rotationally invariant terms out of this field, and these terms can then
appear in our expression for the effective action for ˜̂n. To construct such
terms, we note that Bµν transforms as a tensor under R:

Bµν → RBµνR
T . (15)

The simplest rotationally and gauge invariant quantity one can make out of
this is therefore ∑

µν

Tr(BT
µνBµν) (16)
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Now since Bµν itself involves two derivatives, this quantity is a term with
four derivatives.

After that digression, let us go back to the task at hand, which is inte-
grating out ~φ to leading order in g and obtaining an effective action for ˜̂n.
We begin by writing ~φ in terms of components along the frame êa and ex-
panding the square-root to quadratic order to obtain an expression in terms
of the fields Qa

µ and Aabµ . Next, we note that the smallness of g implies that
terms with additional derivatives and additional powers of various fields, are
both going to be strongly suppressed. Therefore, we use our analysis above
to leave out all terms involving A at this stage itself—the logic of course is
that these terms can only give rise to invariants composed of the magnetic
field B, and the lowest order such invariant that we have identified above
has four derivatives and will not matter for our leading order calculations at
small g. This leaves us with:

D∑
µ=1

(∂µn̂)2 =
D∑
µ=1

(
N−1∑
a=1

(∂µφa)
2 +

+
N−1∑
a,b=1

(Qa
µQ

b
µ − (

N−1∑
c=1

(Qc
µ)2)δab)φaφb +

+2
N−1∑
a=1

Qa
µ∂µφa +

N−1∑
a=1

(Qa
µ)2) (17)

Since

N−1∑
a=1

(Qa
µ)2 = (∂µ ˜̂n)2 , (18)

we may now write

e−Seff [˜̂n] = e−
1
2g

∫
Λe−δl d

Dx
∑D
µ=1(∂µ ˜̂n)2

∫
(Λe−δl,Λ)

D~φe−S1[~φ,Q] (19)

where the subscript in the spatial integral reminds us that ˜̂n is slowly varying,
and the subscript on the path integral reminds us that ~φ only has Fourier
content in a thin shell below the cutoff Λ. Since the Q have Fourier content
only at low momenta |~q| < Λe−δl, one can do this path integral over ~φ in an
approximation that treats the factors of Q as being constants. This is because
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corrections that go beyond this approximation will involve derivatives of Q,
and will therefore be subleading terms in our small g expansion. Likewise,
we can ignore the bilinear term that couples Q to a derivative of φ, since
this will be subdominant at small g due to the additional explicit derivative.
With these approximations, we can write the following expression for S1 in
q space

S1 =
1

2g

D∑
µ=1

∫ Λ

Λe−δl

dDq

(2π)D
φa((q

2
µ −

∑
c

(Qc
µ)2)δab + (Qa

µQ
b
µ))φb

(20)

where the overline on the expressions involving Q reminds us that we need
to average these expressions over all space since they are being treated as
being independent of ~x as far as doing the ~φ path integral is concerned.

We may now use the results on Gaussian integrals derived earlier in the
context of coherent state path integrals to do the ~φ path integral to obtain
Seff . We obtain

Seff =
1

2
Tr[log(P)] +

1

2g

∫
Λe−δl

dDx
D∑
µ=1

(∂µ ˜̂n)2 (21)

where the operator P is diagonal in q space but has non-trivial structure in
the N − 1 dimensional space of transverse components of the O(N) model:

Pab(~q) =
1

g

D∑
µ=1

(
δab(q

2
µ −−

N−1∑
c=1

(Qc
µ)2) + (Qa

µQ
b
µ)

)
(22)

We now expand P to quadratic order in the Q and then take the trace,
throwing out constant (Q independent terms) that only affect the overall
normalization of the path integral which is anyway ill-defined:

Seff =
1

2g

∫
Λe−δl

dDx
D∑
µ=1

(∂µ ˜̂n)2 +
(1− (N − 1))

2
Tr~q

N−1∑
c=1

D∑
µ=1

(Qc
µ)2 ,

(23)

where we have carried out the trace in the N − 1 dimensional space of trans-
verse components but left explict the trace over the D dimensional ~q.
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At this step, we have a choice: We could either work, as outlined in the
previous lecture, at T = 0 and treat all D = d + 1 directions in euclidean
spacetime as equivalent, imposing the same cutoff Λ isotropically in D di-
mensional spacetime, or we could work at T > 0, and allow all possible
imaginary frequencies ωn = 2πnT without any cutoff, but use a cutoff Λ in
the d spatial directions. This only changes what we mean by Tr~q in the above
formula. In the T = 0 formulation with isotropic cutoff in D dimensions, we
must use

Tr~q =

∫ Λ

Λe−δl

dDq

(2π)D

= SD

∫ Λ

Λe−δl
dqqD−1 (24)

where by SD we mean the area of the D − 1 dimensional unit sphere in D
dimensions, written in units of (2π)D. While in the T > 0 formulation with
strictly continuous imaginary time, we should use

Tr~q =
∞∑

ωn=−∞

∫ Λ

Λe−δl

ddq

(2π)d
(25)

Now, taking the trace is trivial in the limit of small δl, since

(Qc
µ)2 ≡

∫
Λe−δl

dDx(Qc
µ)2 (26)

has no ~q dependence. Using the T = 0 formulation appropriate for answering
questions about the ground state properties, we therefore obtain

Seff =
1

2g′

∫
Λe−δl

ddx

D∑
µ=1

(∂µ ˜̂n)2

1

g′
=

1

g
− (N − 2)SDΛD−2δl (27)

Now, we must of course change units and rewrite this effective action in
terms of an integral over x̃ = e−δlx, to finally obtain

S̃[˜̂n] =
1

2g̃

∫
Λ

ddx̃

D∑
µ=1

(
∂ ˜̂n

∂x̃µ
)2

1

g̃
=

1

g
(1 + (D − 2)δl)− (N − 2)SDΛD−2δl (28)
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to leading order in δl
Taking the limit of δl → 0 and iterating this procedure, we obtain the

promised flow equation for g(l):

dg

dl
= −(D − 2)g + (N − 2)SDΛD−2g2 (29)

In the next two lectures, we will use this and its T > 0 analog to answer
some of the questions we have raised in the last two lectures.
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