
Lecture 20: Effective field theory for the Bose-

Hubbard model

In the previous lecture, we have sketched the expected phase diagram of
the Bose-Hubbard model, and introduced a mean-field treatment that can in
principle calculate in a self-consistent way the value of the superfluid order
parameter ψ. The next question we must ask is: What is the effective field
theory that describes the low-energy properties of the phases and the phase
transitions between them? This effective field theory would be the analog of
the quantum rotor model, derived earlier as the effective field theory for the
low-energy properties of quantum antiferromagnets.

Clearly, this field theory should be written in terms of a bosonic field
ψ that represents, in some sense, the local superfluid order parameter as
discussed in the previous lecture. This is the analog of focussing on the Néel-
vector in the antiferromagnetic case. A convenient way to proceed is to begin
with the imaginary-time path integral representation of the partition function
corresponding to the Bose-Hubbard model Hamiltonian and introduce the
order parameter field ψ discussed in the previous lecture via a Hubbard
Stratanovich transformation.

Thus, we first write

ZBH =

∫
Dci(τ)Dc†i (τ) exp

(
−
∫ 1/T

0

dτ LBH

)
,

LBH =
∑
i

(
c†i
dci
dτ
−
[
µ+

U

2

]
c†ici +

U

2
c†ic
†
icici

)
− w

∑
〈ij〉

(
c†icj + c†jci

)
.

(1)

where we have departed from the convention used in the previous lectures
and used the same label c for the coherent states as we have used for the
annihilation operators, and we have introduced the standard convention of
making an analogy of the functional in the exponent with the action of clas-
sical mechanics, i.e. the time integral of the system’s Lagrangian (to be
precise, this is not the usual action since we are working in imaginary time,
but the analogy provides a convenient language that is commonly used).

Now, we “decouple” the hopping term by introducing an integral over
an auxiliary field ψi(τ) via the so-called “Hubbard Stratanovich transforma-

1



tion”, which gives the following alternate form for the action:

ZBH =

∫
Dci(τ)Dc†i (τ)Dψi(τ)Dψ†i (τ) exp

(
−
∫ 1/T

0

dτ L′BH

)
,

L′BH =
∑
i

(
c†i
dci
dτ
−
[
µ+

U

2

]
c†ici +

U

2
c†ic
†
icici − ψic

†
i − ψ

†
i ci

)
+
∑
i , j

ψ†iw
−1
ij ψj , (2)

Here w−1 denotes the inverse of the coupling matrix wij whose elements equal
w if i and j are nearest neighbours and 0 otherwise, and the correctness of
this alternate form can be easily checked by noting that we get back our
original expression if we do the integral over the auxillary field ψ.

The main utility of this alternate form is that we can now imagine solving
the single site problem exactly and expanding the result in powers of ψi.
This would give us an action solely in terms of various powers of ψi and
their time derivatives. The resulting expression can then be expanded in
spatial gradients to finally arrive at the long-wavelength description we are
interested in.

While it is possible in principle to carry this out explicitly (the coefficients
of various powers of ψ will just be products of various Green functions of
the single site Hamiltonian which is identical to the mean-field Hamiltonian
discussed in the previous lecture), we will not do such a careful job here. For
our purposes, it suffices to keep this general approach in mind, and directly
write down the first few terms so obtained, without explicitly determining
their coefficients in terms of the microscopic coupling constants. Thus, we
write

Z =

∫
Dψ(x, τ)Dψ†(x, τ) exp

(
−
∫ 1/T

0

dτ

∫
ddxL

)
L = K1ψ

†∂τψ +K2|∂τψ|2 +K3|∇ψ|2

+ r̃|ψ|2 +
ũ

3!
|ψ|4 + · · · , (3)

where Z differs from ZBH by an overall ψ independent factor, related to the
free energy of the single site Hamiltonian we have already analyzed in the
previous section, and the constants K1, K2, K3, r̃, and ũ can in principle be
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obtained in the manner outlined earlier. Here, we only note some restrictions
that can be placed on their values. First of all, we expect that K1, K2,
K3 and ũ are all positive while r̃ can have either sign. A more non-trivial
constraint can be placed on these constants by demanding that our expression
for
∫
ddxL respect the invariance property of L′BH under the following gauge

transformation:

ci → cie
iϕi(τ) ,

ψi → ψie
iϕi(τ) ,

µ → µ+ i
∂ϕi
∂τ

. (4)

Requiring that the quadratic terms in ψ retain their form under an infinites-
imal version of this transformation immediately gives us the important re-
striction

K1 = − ∂r̃
∂µ

. (5)

This constraint has a very important consequence for our analysis: We
wish to access the superfluid-insulator transition at fixed integer density. This
critical point occurs at the tip of the corresponding Mott insulating lobe.
Now, we expect that a small change in r̃ (keeping all the other couplings
fixed at their critical values corresponding to the tip of the Mott insulating
lobe) from it’s critical value r̃c at the tip of the Mott insulating lobe will
correspond to moving slightly along the contour of constant integer density.
Since this contour has to come in horizontally at the transition (as we have
just seen in the last section), we clearly must have

∂r̃

∂µ
= 0 . (6)

This implies that K1 = 0; in other words the effective theory for the universal
properties of the transition at fixed integer density does not have a quadratic
term with just one time derivative. Notice that the theory without this term
now has the additional ‘particle-hole symmetry’ corresponding to ψ → ψ†.
This suggests another way of understanding this result: As the transition
at integer density occurs precisely at the tip of the Mott insulating lobe,
the energy gaps to particle-like and hole-like excitations asymptotically close
to the critical point on the Mott insulating side of the transition are equal.
This reflects the particle -hole symmetry that is present in the theory at
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low-energies asymptotically close to the transition. The vanishing of K1 is
then required in order for L to also have this symmetry.

We may now rescale the remaining terms in L to rewrite it in more
standard notation as

L = |∂τψ|2 + c2|∇ψ|2 + r|ψ|2 +
u

3!
|ψ|4 , (7)

where we have left out the higher order terms as the long-wavelength, low-
energy, universal scaling properties of the transition may all be computed
from the Lagrangian density above.

If we now set ψ = (φ1 + iφ2)/2
1/2, where φ1 and φ2 are real fields, L

becomes the Lagrangian density of the O(2), version of the O(3) rotor action
that we derived as the low-energy description of quantum antiferromagnets.
In making this identification, we are being cavalier about the distinction
between a rotor with a fixed length, and a rotor whose length is controlled by
non-linear terms in the action—the basic idea being that this distinction only
affects some short-distance details and cannot influence the behaviour of the
system at large length-scales and low energy scales. Thus, the effective field
theory describing the universal properties of the system with fixed integer
density in the vicinity of the superfluid-insulator transition is precisely the
O(2), φ4 field theory.

In order to illustrate how this effective action may be used to calculate
quantities of physical interest, let us introduce external electromagnetic fields
into the Lagrangian density (7), so that we may discuss the response of
the system to external fields. This is done by ‘minimally’ coupling to the
external fields in the standard way. This represents the effect of the external
electromagnetic fields on the particles and holes that are the elementary
excitations of our low-energy effective Hamiltonian.

Since all our linear response analysis was of course formulated in real
time, it is convenient to first write down the minimally coupled Lagrangian
density in real time (as opposed to the imaginary time Lagrangian density
we have been dealing with so far in our path integral formulation of quantum
statistical mechanics). We therefore write

L = |(∂t + iQU)ψ|2 − c2|(∇− iQA)ψ|2 − r|ψ|2 − u

3!
|ψ|4 , (8)

where Q is the quantum of charge carried by the particles or holes; naturally,
when we use this theory to describe a superconductor-insulator transition,
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we set Q = 2e, where e is the electronic charge, since the bosonic Cooper
pairs have charge 2e, while in the cold-atom context, Q is really the particle-
number and not a charge, and the external vector and scalar potentials are
merely a theoretical device that allows us to define a convenient diagnostic
for the various phases of the system (the bosonic atoms that form a superfluid
state are neutral atoms and do not couple to the real electromagnetic field
except through induced dipole moments and other higher order effects).

We may now rewrite this in terms of the more familiar fields φ1 , 2 to
obtain

L =
1

2

(
∂tφα −QUεαβφβ

)2− c2
2

(
∇φα +QAεαβφβ

)2− r

2
φ2
α−

u

4!

(
φ2
α

)2
, (9)

where εαβ is the totally antisymmetric tensor with ε12 = +1, and repeated
O(2) indices are summed over. The current operator can now be written
down by following the usual prescription:

J(x, t) =
δS

δA(x, t)
, (10)

where S =
∫
dt
∫
ddxL is the action corresponding to the Lagrangian density

L. In our case, this gives

J(x, t) = −Qc2
(
∇φαε

αβφβ +QAφ2
α

)
, (11)

where repeated indices are again summed over.
Let us now specialize to a situation in which the scalar potential is zero.

Furthermore, let us assume that the vector potential is slowly varying in
space. Below, we will be more careful about what precisely we mean by this.
For now, we simply note that

A(x, t) = Re(A(q, ω)eiq·x−iωt) (12)

where q, the magnitude of q is assumed small.
In studying the current response of the system to a slowly varying exter-

nal vector potential, it is conventional to focus on two distinct limits, each
with a different physical meaning. The first of these is related to the stiff-
ness or rigidity that emerges when a continuous symmetry is spontaneously
broken. Thinking of bosonic action as the path integral representation of a
O(2) spin system, this is identical to the “spin-stiffness” we discussed in our
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introductory lectures as being one of the hallmarks of a broken symmetry
state of a spin system. This limit is best discussed in imaginary time: If we
consider the system in the presence of a uniform external vector potential
A(τ) (we are now working in imaginary time) pointing along the x axis, it is
apparent from the gradient term in the Lagrangian density that turning on
this vector potential is equivalent to imposing a twist in the orientation of φ
of magnitude QA(τ) per unit length (where A is the magnitude of A) as we
move along the x direction on the time slice labeled by τ .

If we take the external vector potential to be static, i.e. independent of
imaginary time, then this is a familiar situation in the context of classical
spin systems (as mentioned earlier, the imaginary time action we consider
is essentially a coarse grained version of the xy model in d + 1 dimensions).
Therefore, the change in the free energy density, δF , that results from the
imposition of a small twisting potential is related to the ‘stiffness’ ρs of the
system as we discussed in our introductory lectures on broken symmetry and
related issues:

δF =
1

2
ρs(QA)2 (13)

to leading order in A, the magnitude of the external vector potential.
Let us now be a bit more precise about what we mean by “uniform”

and “static”. The precise limit that probes the stiffness is one in which the
frequency ωn = 2πnT is set to zero by working with n = 0 (periodicity in the
imaginary time direction of course constraints allowed frequencies to have
this form), and q‖, the component of the momentum parallel to the vector
potential is also set to zero, while the transverse component q⊥ is sent to
zero later. To understand this limit, we note that in this limit, the magnetic
field obtained from this vector potential will be a non-zero constant, and the
stiffness of the system is nothing but its ability to create internal currents that
try and cancel out this magnetic flux, giving rise to the Meissner effect in
superconductors, familiar from your elementary solid-state physics classes.
Indeed, the stiffness we are talking about here is, up to a proportionality
constant, the superfluid density of the system.

To express the superfluid density in terms of correlation functions of the
system, it is convenient to work with the imaginary time path integral repre-
sentation of the partition function Zand take two derivates of −kBT log(Z)
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to give:

ρs = c2{T
∑
εm

∫
ddk

(2π)d
〈φα(k, εm)φα(−k,−εm)〉

− c2〈Ξ(q⊥ → 0, q‖ = 0, ωn = 0)Ξ(q⊥ → 0, q‖ = 0, ωn = 0)〉c} ;

(14)

here the subscript c on the correlation function of Ξ indicates that we only
keep the connected terms, ωn = 2πnT , the sum in the first term is over
frequencies εm = 2πmT , and Ξ(x, τ) is defined as

Ξ(x, τ) =
(
∇φα(x, τ)εαβφβ(x, τ)

)
‖ , (15)

where the subscript indicates the component parallel to A.
The second limit is the one appropriate for the discussion of transport

properties: We now wish to study the current the system can carry in a
transport experiment when acted on by a time-varying electric field. We
therefore revert to real-time and note that the external electric field in this
situation can be written as

E(q) = −∂A(q)

∂t
. (16)

For a transport experiment, the appropriate limit is one in which q‖ and q⊥
are both set to zero at the outset, and the frequency sent to zero later if we
wish to model the d.c. transport.

Now, the uniform conductivity tensor at non-zero temperature T is de-
fined as

σ(t, t′, T ) =
δ〈J〉(t)
δE(t′) E=0

(17)

Using the expression for E in terms of A, we then have

σ(ω, T ) =
1

iω

δ〈J〉(ω)

δA(ω) A=0

; (18)

here it is understood that the current J is parallel to the vector potential
A due to the isotropy of our theory. One may now use the standard linear
response theory formalism we have already studied in previous lectures to
derive an expression for the conductivity at frequency ω in terms of a retarded
correlation function. I leave this to you as an exercise to work out.
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Here, we prefer to highlight a different approach: In this alternate path
integral approach, one works with the imaginary-time path integral and de-
rives an expression for the imaginary frequency conductivity σ(ωn, T ):

σ(ωn, T ) =
c2Q2

ωn
{T
∑
εm

∫
ddk

(2π)d
〈φα(k, εm)φα(−k,−εm)〉

− c2〈Ξ(q⊥ = 0, q‖ = 0, ωn)Ξ(q⊥ = 0, q‖ = 0,−ωn)〉c} ;

(19)

here we have used the same notation as in our earlier expression for the su-
perfluid stiffness. At this point, you may wonder: How does one obtain the
real-frequency conductivity from this expression at the imaginary frequencies
iωn? To answer this, you should go back to the discussion of analyticity prop-
erties of response functions in the complex ω plane (in our earlier lectures
on linear response theory), and convince yourself that the correct procedure
is to take the above result at positive ωn, i.e. in the upper-half plane, and
continue down to the real-axis. Although this is true in principle, the an-
alytical continuation of approximate or numerical results for the imaginary
frequency conductivity is fraught with difficulty, and requires us to have at
least a rough idea of what the answer should look like. It is therefore com-
mon to constrain the end-result of analytical continuation with sum-rules
and Kramers-Kronig relations whenever applicable.

This concludes our discussion of the effective field theory for the low-
energy properties of the Bose-Hubbard model.
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