
Lecture 23: The Mermin-Wagner theorem

As we mentioned in the previous lecture, it is actually possible to rule out, in a
mathematically rigorous way, the existence of a long-range ordered state that
spontaneously breaks a continuous symmetry in low dimensions at nonzero
temperature. Since the other way of reaching this conclusion involves assum-
ing the existence of such a long-range ordered state and arriving at an inter-
nal inconsistency (this is basically what we did in the previous lecture), this
alternate, rigorous route to the same result has much to recommend it, par-
ticularly since rigorous statements of such significance are not so common in
physics. Therefore, we will devote this lecture to proving the so-called “Mer-
min Wagner Theorem” for the quantum rotor model (the original proof was
developed for some other systems, but it is instructive to use the same pro-
cedure to construct a proof for the quantum rotor model, so that is what we
will do here). However, before we begin, an important disclaimer is needed:
The Mermin-Wagner theorem provides a rigorous route to the T > 0 part
of last lecture’s conclusions. For the T = 0 part, the corresponding rigorous
statements are due to Pitaevskii and Stringari (Journal of Low Temperature
Physics, Vol. 85, Nos. 5/6, 1991), and outside the scope of this course of
lectures.

We begin by adding a “magnetic field” term to the quantum rotor model

H = −J
∑
〈jk〉

n̂j · n̂k +
∑
j

~L2
j

2I
− hnz(~q = 0) (1)

where

nz(~q = 0) =
∑
j

nzj (2)

Let {En} be the spectrum of exact eigenstates of H, and define the following
scalar product of two operators A and B:

(A,B) =
1

Z

∑
n,m such that En 6=Em

〈n|A†|m〉〈m|B|n〉e
−βEm − e−βEn

En − Em

+
1

Z

∑
n,m such that En=Em

1

T
〈n|A†|m〉〈m|B|n〉 (3)

where Z is the exact partition function at temperature T , and β = 1/T . In
the rest of this lecture, we will denote the double summation involved in the
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above as
∑′

n,m in order to not write out explicitly each time the limiting
procedure that is used in this definition.

To get some feeling for this scalar product, it is useful to note that (A,A)
is precisely Re χAA(ω = 0) ≡ χAA, where χAA(ω) is the usual frequency de-
pendent linear response function we have studied in previous lectures. Also,
we see that (A,A) is ≥ 0. Further, for (A,A) to be zero, all Amn have to be
zero for En 6= Em. In addition, this definition of scalar product satisfies all
the other properties one expects of a scalar product. In summary, we have:

(A,B + C) = (A,B) + (A,C)

(A,αB) = α(A,B)

(A,B) = (B,A)?

(A,A) ≥ 0. (4)

Now, as you all know well, any scalar product with these properties always
satisfies the following Cauchy-Schwarz inequality

|(A,B)|2 ≤ (A,A)(B,B) (5)

For completeness, and as warmup, let us prove this first before using it: Start
with the definitions

x = (A,A)

z = (B,B)

y = |(A,B)|
(A,B) = α?y (6)

so that α is the phase of y?. Now, observe that for any real number r, we
have

(A− rαB,A− rαB) ≥ 0 (7)

Expanding the left-hand side, we get

x+ r2z − 2ry ≥ 0 (8)

Now, if z = 0, this would be false in the limit r →∞ unless y = 0. Therefore
z = 0 implies y = 0. If this is not the case, one can choose r = y/z to get
the sharpest possible inequality

y2 ≤ xz (9)
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as required.
Also, since

sinh(w)

w
≤ coshw (10)

for any real w, (A,A) clearly satisfies the inequality

(A,A) ≤ 1

Z

∑
n,m

|〈n|A†|m〉|2

2T

(
e−Em/T + e−En/T

)
(11)

In other words

(A,A) ≤ 1

2T
〈A†A+ AA†〉T . (12)

where the subscript T indicates the equilibrium expectation value at tem-
perature T .

Now, let B such that B = [C†, H]. Then

(A,B) =
1

Z

′∑
n,m

〈n|A†|m〉〈m|[C†, H]|n〉e
−βEm − e−βEn

En − Em

=
1

Z

∑
n,m

〈n|A†|m〉〈m|C†|n〉(e−βEm − e−βEn)

= 〈[C†, A†]〉T

Also

(B,B) =
1

Z

′∑
n,m

〈n|[H,C]|m〉〈m|[C†, H]|n〉e
−βEm − e−βEn

En − Em

=
1

Z

∑
n,m

〈n|[H,C]|m〉〈m|C†|n〉(e−βEm − e−βEn)

= 〈[C†, [H,C]]〉T . (13)

Using the Cauchy-Schwarz inequality in conjunction with these two results
gives the so-called Bogoliubov’s inequality:

|〈[C†, A†]〉T |2 ≤
1

2T
〈A†A+ AA†〉T 〈[C†, [H,C]]〉T (14)
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This is the basic result that we will use to prove the Mermin-Wagner
theorem. The idea of the proof is simple, and therefore easy to state ex-
plicitly right at the outset: For each system we are interested in, we should
try and find pairs C(~q) and A(~q) such that [C†(~q), A†(~q)] is proportional to
the extensive order parameter (the quantity that scales as the volume of the
system when symmetry is spontaneously broken) for each choice of the arbi-
trary wavevector ~q. If C(~q) and A(~q) are judiciously chosen in this manner, it
then becomes possible to use the Bogoliubov inequality in conjunction with
the fact that ~q can be chosen arbitrarily to bound the order parameter from
above by a quantity that vanishes in the limit of h→ 0, thereby establishing
the absence of spontaneous symmetry breaking.

For the quantum rotor model, we make the choices

A(~q) = ny(−~q)
≡

∑
j

ei~q·~xjnyj (15)

and

C(~q) = Lx(~q)

≡
∑
j

e−i~q·~xjLxj (16)

Next, we work out the explicit form of the various factors that appear
in the Bogoliubov inequality for this choice of A(~q) and C(~q). In order to
avoid notational clutter, we leave out mention of the ~q dependence of A and
C unless this causes ambiguity.

We have

[C†, A†] =
∑
jj′

ei~q·~xj [Lxj , n
y
j′ ]e
−i~q·~xj′

=
∑
jj′

δjj′in
z
je
i~q·(~xj−~xj′ )

=
∑
j

nzj

= inz(~q = 0)

≡ iNsitesm (17)

where m is the usual intensive Néel order parameter.
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Next, we note that

1

2
〈A†A+ AA†〉T =

1

2
〈ny(~q)ny(−~q)〉T + 〈ny(−~q)ny(~q)〉T

= 〈ny(~q)ny(−~q)〉T
≡ NsitesC

yy(~q) (18)

where

Cyy(~q) =
∑
j

e−i~q·~xj〈nyjn
y
0〉T (19)

is the usual equilibrium correlation function at wavevector ~q.
Next, we note that

〈[C†, [H,C]]〉T =

hNsitesm+
∑
〈jk〉

(1− cos(~q ·∆~xjk))〈n̂⊥j · n̂⊥k 〉T

 (20)

where 〈jk〉 denotes nearest neighbour links of the hypercubic lattice, ∆~xjk de-
notes the corresponding spatial separation between nearest-neighbours, and
n̂⊥ denotes the vector made up of the two components (nx, ny) which are
perpendicular to the applied field h. Therefore, the Bogoliubov inequality
reads

N2
sitesm

2 ≤

hNsitesm+ J
∑
〈jk〉

(1− cos(~q ·∆~xjk))〈n̂⊥j · n̂⊥k 〉T

Nsites
Cyy(~q)

T

(21)

Since

〈n̂⊥j · n̂⊥k 〉T ≤ 1 , (22)

and since

1− cos(α) ≤ α2

2
, (23)

we may freely rewrite this as

m2 ≤ Cyy(~q)

T

hm+
J~q2

2Nsites

∑
〈jk〉

(∆~xjk)
2

 (24)
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In other words

Tm2

hm+ J~q2

2Nsites

∑
〈jk〉(∆~xjk)

2
≤ Cyy(~q) (25)

Next, we note that

J~q2

2Nsites

∑
〈jk〉

(∆~xjk)
2 = JC~q2a2 (26)

where a is the lattice spacing and C is some lattice dependent O(1) positive
constant.

We are now in a position to exploit the arbitrariness of ~q and sum over ~q
in the Brillouin zone to obtain:

1

Nsites

∑
~q

Tm2

hm+ JC~q2a2
≤ 1

Nsites

∑
~q

Cyy(~q) (27)

Finally, we note that

1

Nsites

∑
~q

Cyy(~q) =
1

Nsites

∑
j

〈(nyj )2〉T

≤ 1 , (28)

to obtain

1

Nsites

∑
~q

Tm2

hm+ JC~q2a2
≤ 1 (29)

We may now take the thermodynamic limit to obtain∫
BZ

ddq

(2π)2
Tm2

hm+ JC~q2a2
≤ 1 (30)

In other words, we have concluded that

m2 ≤ 1∫
BZ

ddq
(2π)d

T
hm+JC~q2a2

(31)

Curiously, in the h → 0 limit, the integral in the denominator of the right
hand side is the same as the integral we analyzed to decide if spin-wave
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theory was internally consistent for T > 0! In that analysis, the divergence
of this h = 0 integral in dimensions d ≤ 2 due to contributions near ~q = 0
was a signal of internal inconsistency in spinwave theory. Whereas in this
alternate rigorous approach, the divergent integral sits in the denominator
and rigorously bounds m2 from above by 0, thereby demonstrating that there
can be no long-range order of the n̂ in the quantum rotor model in dimensions
d ≤ 2.

This concludes our discussion of the ordered and disordered phases of the
quantum rotor model, as well as conditions for their realization. In the next
four lectures, we will introduce the renormalization group approach to this
physics.
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