Lecture 7: Path integral representation and
spin coherent states

In the first five lectures of this course, we have seen how Statistical Mechanics
provides a prescription for the calculation of macroscopic properties of many-
particle systems, and understood that this prescription is not something that
can be applied automatically “by rote”—indeed, we have seen that it involves
introducing new ideas and concepts at each step to account for the emergent
properties of such macroscopic systems. We have also seen how experimental
measurements can be modeled by linear response theory, which relates the
response of the system to certain correlation functions of the equilibrium
System.

At this point, we need to ask: Is there a convenient formalism or lan-
guage in which one can calculate these correlation functions, or at least de-
velop some intuition for, or qualitative understanding of, these correlation
functions? The answer turns out to be the idea that Trexp(—gH) for a d
dimensional quantum system at inverse temperature 8 = (kgT)~! can be
represented as a sum over “paths” in a d + 1 dimensional space-“time” in
which the “time” direction is along the imaginary axis, and is of finite extent
equal to 8. Provided the weight of each path in this sum over paths is real
and positive, this is equivalent to mapping the quantum statistical mechanics
of the original d dimensional system to the classical statistical mechanics of a
classical system in d+ 1 dimensions, of which one dimension has finite extent.
We will see later in this course that there are interesting situations in which
the weight over paths is not real and positive, due to the presence of quantum
mechanical “Berry phases” in the weight. In these cases, the path integral
approach is difficult to use as a calculational prescription. Nevertheless, it
continues to provide insights that are not easily obtained by other means.

With this background, consider then
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In the above, we have simply written exp(—FH) as a product of M iden-
tical factors exp(—eH) with ¢ = /M, and then introduced the following
resolution of identity

Y layal = 1 (2)

between each successive factor in this product. Here, {|a)} are a complete
set of orthonormal states that form a basis. Now, if we could write

(ansrle™ar) = exp[—eS(ard)] (3)

with S a “nice” function, then, we would obtain the following representation
of the partition function
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This has the following nice interpretation: Think of the system evolving in
imaginary time 7—i.e. under the action of the evolution operator exp(—HT)
instead of exp(—iHt)— from the initial state |ag) at the “initial time” 7 = 0
along a closed path in « space, back to state |ap) at the “final time” 7 = f3.
The sequence of states

{‘O‘0>7 |a6>7 Ty ’a(M—l)e>}

represents a “stroboscopic” sampling of this path in « space at the discrete
sequence of “times”

{0,€6,-+, (M — 1)} .

The corresponding weight of this closed path is

exp (—e > s<ake>> )

which may also be written as
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i.e. in the limit of “infinitely fast sampling” of the imaginary time evolution.
In practice, this limit of infinitely fast sampling is a useful conceptual device,
because we can usually write

(ahgale™ o) = exp[—eS ()] (7)

(with S a nice calculable function) only in the limit of infinitely small e.
In this limit, the multiple summation
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is like an “integral” over all possible periodic paths in the “space of paths’.
We can schematically write this as
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to finally obtain the path integral representation of the partition function:
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If the action functional S is real and positive, then we have in effect
mapped the quantum statistical mechanics of the d dimensional quantum
system to the classical statistical mechanics of an equivalent classical system
that lives in d 4+ 1 dimensions—the extra imaginary time dimension is con-
tinuous in nature, and finite in extent, while the d spatial dimensions of the
original system remain unchanged in character and extent.

This is clearly a very attractive reformulation, but the real question be-
comes: What set |a) do we use for a particular system? In the rest of this
lecture, and in the next few lectures, we will address this question in turn for
quantum spin systems, quantum systems of bosonic particles, and quantum
systems of fermionic particles. These examples will serve to fix the foregoing
formal developments firmly in our minds, and will be useful starting points
for a further study of the statistical mechanics of these systems.

In the remainder of this lecture, we define a particularly convenient albeit
over-complete and non-orthogonal basis made up of the spin coherent states,
and demonstrate that they provide a very natural and useful basis for devel-
oping a path integral representation of quantum spin systems. In particular,



we will explicitly see that the over-complete and non-orthogonal nature of
this basis poses no serious difficulty in the implementation of the foregoing
strategy to rewrite the partition function as a functional integral.

We begin by considering a single spin-half moment, which has a two
dimensional Hilbert space spanned by the two states

{193 (11)

in which the spin is quantized along z axis to have z projection +1/2. In
standard linear algebra notation, we may represent these two basis vectors
of this two dimensional space as

mo=(y) 1=} (12)

For a d dimensional system which has a spin-half variable on each of L¢ sites,
the Hilbert space is a product of such independent two-dimensional spaces,
and has total dimension equal to 2(LY) " An obvious orthonormal basis is the
set

{lowoa - opa)} (13)

where each o can be 1 or |. However, this is not at all convenient, when it
comes to developing a path integral representation, since the basis is made
up of discrete possibilities for the o and it is hard to develop any intuition
for “paths” in this space.

A much more convenient basis is the basis of spin coherent states {|N)},
which we first define for a single spin-half variable by writing

N) = |mg=3). (14)

In other words |N) is the my = 3 state which is fully polarized along the
quantization axis (unit vector) N.

More explicitly, when

we have



and all other states |N) can be obtained from this reference state

N =2) =) =] 1) (17)

by applying an appropriate rotation operator in spin-space. To do this, we
recall that if we are given a state [¢), and we want to obtain from it the
rotated state |Ri), where R denotes a rotation with rotation angle 6 about
axis (unit vector) A, then we may write

|Ry) = etPAly) (18)

where L is total angular momentum operator appropriate to the system—in
the case of a single spin, this is clearly

L = § (19)
where S is the spin operator, while for a system consisting of many spins, it
is

E - gtot (20)

where gtot is the total spin operator (i.e. the sum of the individual spin
operators taken over all the magnetic moments in the system).

What constitutes a convenient choice of axis (unit vector) A and angle 6
to obtain |N) from the reference state [t,)? It turns out that the answer is

the following: Draw the projection of the unit vector N onto the xy plane.
If

N = (sin(f)cos(e) , sin(d)sin(¢) , cos(d)) (21)

this projection makes an angle of ¢ with the x axis and has length sin(6).
Now, draw a unit vector M in the xy plane, so that it is perpendicular to
thls projection, and makes a right handed tmad with Z and this projection of
N onto the xy plane. This uniquely specifies M to be

M = (cos(¢p+7/2), sin(¢+7/2), 0) (22)

Then, |N) can be obtained from [1,) by rotating about the axis M by an
angle of —6:

Ny = eS|y (23)
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Our over-complete basis is thus

I A —,

{exp(—i0(N)M(N) - S)[¢=)} (24)

where N ranges over the unit-sphere in three dimensions.
This basis is “very” over-complete, in the sense that

(Mi|Nz) # 0 (25)
for any pair of unit vectors ]\71 and Z\72 unless ]\71 = —]\72. Indeed, it turns
out that
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How do we go about checking something like this? The simplest way is to
construct the states |N) explicitly. To do this, we recall that
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Also, we recall
ol = 05 = ¢ =1 and
0,04, = 10, and cyclic permutations.
(28)
Next, we expand the rotation operator in a power series in ¢
0119 g, (Fi0)? o o
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and note that
(-5 = 1+ |™ o, 0} + 2o, 0.} + o, 00}
= 1, (30)
where we have used
{o,,0,} = ou0,+0,0,
= 20, (31)



So, we have
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Therefore, we have
. s 0 0
N) = IS = cosg| 1) +sinzet| 1) (33)

The formula for the overlap square of two coherent states can now be proved
by straightforward manipulation of trignometric identities, and you should
check this for yourself.

To use this basis of coherent states for obtaining a path integral repre-
sentation for quantum spin systems, two other properties are crucial. The
first is the following resolution of identity in our coherent state basis:

1= [ (34)

where [ dN denotes an integral over the unit sphere with the usual measure

/ AN = /_ 11dcos(9) /0 %dqs (35)

The validity of this resolution of identity is also easy to check using the
explicit representation we have derived for |]\7 ), and we will do so below as
an illustration.

We start with
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and note that the ¢ integral eliminates the cross terms to reduce this to
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The second important property, from the point of view of path integral
representations, is the particularly simple form of the expectation value of
the spin operator in state |N):

(NIS|IN) = (38)
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Finally, another interesting identity (which we will not have occasion to
use explicitly in this lecture course) is the integral representation of the spin
operator:

5-5f W 5\ Ry () (30)

In the next lecture, we will use this basis and these properties to develop a
coherent state path integral representation for quantum spin systems. Here,
we conclude by re-emphasizing the fact that our construction of the coherent
state basis is valid for any spin-S representation of SU(2), although in our
subsequent discussion of the properties of the basis states, we focused on the
special case of S = 1/2 for concreteness. To emphasize this point, we list the
corresponding definitions and properties for general spin S without proof:

IN) = exp(—i6(N)M(N) - S)[¢.)

where [1,) = |S, =25)
(40)
1 = (25+1)/%W><N\ (41)
(N|S|N) = SN (42)

Loy 1+ N -M\
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