Lecture 31: Kosterlitz Thouless theory

As we have seen in the last lecture, the measured value of the superfluid

stiffness pmeasured can be expressed as
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Here, C; is defined by the relation
(m(Qm(=D)os = C1d* + -+, (2)

where the expectation value is computed in the “Coulomb-gas” of vortices,
with partition function
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To use this result, let us now try and calculate C to leading order in
the vortex fugacity parameter y = exp(—mpse./T) (note that although the
bare value of y is related to the bare value of p;, this relationship will not be
preserved under coarse-graining, so y should be thought of as an independent
variable). This is conveniently done by starting with
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and taking two derivatives with respect to ¢ to obtain
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where in the last line we have reverted to the discrete language with vortices
of vorticity m; at positions 7; rather than a continuous vortex-density field
m(7).

The first non-zero contribution is a single vortex-antivortex pair at two
points 77 and Zs:
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Therefore, we obtain to leading order in y the equation:
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we can rewrite this to the same leading order in y as
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where we have switched to a dimensionless coordinate 7.

Further analysis splits naturally into two cases: If the integral converges
in the large R/a limit, we expect to have only a finite renormalization of
the superfluid stiffness, and the system remains a superfluid at the longest
distances, corresponding to a pm°®wed > (. On the other hand, if the integral
diverges, it strongly suggests that our perturbative treatment in powers of y
was inadequate, and that superfluidity is destroyed due to the proliferation
of defects, i.e. pP*ued = () in actual fact.

To put the latter conclusion on a firmer footing, we note that we could
follow a more careful approach instead of trying to perturbatively treat all
vortex-effects in one calculation: Instead of doing this, one could incorpo-
rate the effects of vortex-pairs with separations less than some distance-scale
ae as a first step, where dl is a small dimensionless quantity. This would
amount to doing the same calculation as above, but with the upper-limit



R/a replaced by €. This would define a “renormalized” or scale-dependent
g(0l) as follows:
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Having done this, we are left with a system with coupling ¢(6/) in which
the minimum dimensionless separation between vortices is €. We may now
repeat this procedure to obtain
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This last transformation in effect restores the minimum length in the problem
to a again, at the expense of a renormalized value of y?. Clearly this can
be repeated systematically. The result is a flow of renormalized parameters
g(1) and y(1), with gmeasured = T/ pmeasured given in this renormalization group
language as g(I — o0). The corresponding flow equations are readily seen to
be:
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where the coefficient of y? on the right-hand side of the first equation is
obviously non-universal and depends on the precise lattice regularization
used.

These equations are the well-known Kosterlitz Thouless RG equations
which control the long-distance physics of the O(2) rotor model in space-
time dimension D = 2. They place on a firmer footing our earlier intuitive
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idea that there is a well-defined superfluid-insulator transition driven by the
proliferation of vortices. To see this, let us study fixed points of these equa-
tions. Clearly, y = 0 is a fixed-line for any value of g. This simply says
that the system with no vortices has power-law correlations controlled by
the bare value of g (as we have seen earlier). The important question then
is the stability of this fixed-line.

From the second equation, we readily see that an infinitesimal perturba-
tion in y is a relevant perturbation when g > 7/2. This means that vorticity
dominates at the longest length-scales, driving the system far away from
the regime of validity of our perturbative analysis in y. On the other hand,
when g < 7/2, a small starting value of y renormalizes to 0 as [ increases.
This means that vorticity plays no role in the long-distance physics at the
longest length-scales In other words, there is a phase transition from a su-
perfluid to an insulator when g(I — o0) increases to beyond 7 /2. Since
g(l = o00) = T/pmeasured e have demonstrated that
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It is possible to study behaviour near the transition in some more detail
by linearizing in deviations from this critical fixed point. The analysis is quite
straightforward and is left as an exercise for you to carry out. By doing this
linearized analysis, you should be able to show that the correlation length of
the system has a very strong exponential divergence as one approaches the
transition from above T,. In addition, you should be able to readily see that
the critical system (exactly at T.) has a very peculiar slow transient in the
effective value of g:
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This has an interesting consequence for correlation functions. To see this,
we need to first state without proof the precise connection between the long-
distance correlations and the renormalized value of g. This was hinted at
earlier but never established. Since the end-result is quite intuitive, we state
this without proof [a detailed derivation can be found in any of the references
given at the begining of the course]. Let C(r) = (n(7) - 7n(0)). Then, it can
be shown that
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In the superfluid phase g(I) approaches g(co) exponentially, and the long-
distance correlators are simply power-law in form, with power g(co)/27 as

expected:
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However, when there is a slow transient, as is the case at criticality, one
obtains logarithmic corrections to the power law form, which can be computed
using the procedure outlined above.

This concludes our discussion of Kosterlitz-Thouless theory, and our course
of lectures as well. There are many more applications of these ideas, and I
hope you will be motivated to learn about some of these from the references
listed at the outset.



