
Lecture 28: Low energy rotor description of

the superfluid state and transition to insulat-

ing behaviour

In Lectures 19 and 20, we have seen how to describe a system of bosons
in a lattice potential, with integer density per lattice-site in terms of an
effective field theory for a complex field ψ. Long-range order for correlations
of this complex field ψ correspond to the superfluid phase of this system of
bosons, while short ranged correlations correspond to the Mott insulating
phase which is more naturally described in terms of a decoupled product
wavefunction diagonal in the number (Fock) basis.

In this lecture, we will develop a coarse-grained low-energy description of
the superfluid state, which will also allow us to discuss the long-wavelength
properties of the transition at which superfluidity is lost. To this end, we
first note that our Hamiltonian H (discussed in Lecture 19) conserves the
total number of particles

Ntot =
∑
j

Nj (1)

(in that lecture, we used nj to denote the particle number operator at site
j, while here we use Nj since we wish to reserve ni for a different quantity).
The corresponding global symmetry is the invariance of the Hamiltonian H
under global phase rotations

cj → eiθcj (2)

This corresponds, in the effective field theory, to a global (space-independent)
rotation of the complex field ψ(x) by a constant phase-factor eiθ.

Now, if n̄, the average number of particles per site, is quite large, then the
dynamical fluctuations in Nj can be treated approximately without worrying
about the fact that there is a lower bound

Nj ≥ 0 (3)

that must be satisfied by Nj (here I am intentionally slurring over the dis-
tinction between the operator Nj and its eigenvalue to avoid cluttering the
notation). Henceforth we assume n̄ is an integer. With this assumption, we
may define a new operator

nj = Nj − n̄ , (4)
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We can approximate the spectrum of this operator by saying nj can take on
all values 0, ±1, ±2, · · ·, ±∞. In other words, nj can be thought of as the
angular momentum of a planar rotor (or a unit-mass particle on a circle of
radius 2π). Let us denote the canonically conjugate variable by φj (which
can be thought of as the angular coordinate of the particle on a circle), with
[φj, nj′ ] = iδjj′ .

If this is to be a useful description, we will also need to approximate the
creation operator c†j in terms of φj and nj. To do this, we note that

c†j|Nj〉 =
√
Nj + 1|Nj + 1〉 . (5)

If n̄ is much larger than 1, then
√
Nj + 1 in the above formula can be ap-

proximated by
√
n̄. In other words, we may write

c†j ≈
√
n̄eiφj . (6)

In this new language, our original Hamiltonian H from Lecture 19 be-
comes

H = −t
∑
〈jj′〉

cos(φj − φj′) +
u

2

∑
i

n2
i , (7)

where the parameters that appear above are related to the original parame-
ters as follows:

u = U ,

t = 2wn̄ , (8)

This H is nothing but the N = 2 version of the O(N) quantum rotor model
Hrotor we have been studying starting Lecture 21 (see Eqn. 1 of Lecture 21),
with the identifications

u = I−1 ,

t = Jeff . (9)

What are the possible phases of this model? To answer this, we need to
analyze various limits just like we did for the case of the O(3) rotor model in
the earlier lectures. Like in the O(3) case, the limit u� t defines one stable
phase. This is a phase in which the simple wavefunction

|ψgnd〉 ≈
∏
j

|nj = 0〉 (10)
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remains a qualitatively correct description of the ground state even when t
is increased from zero. In original variables, this is a phase in which the
particle-number at each site remains pinned to the mean density n̄. This is
why we limited ourselves to situations in which n̄ is integer. If it is not an
integer, then the limit u� t can also be subtle and depend on the nature of
the spatial lattice defined by the external periodic potential. In the present
case, there are no such subtleties and the density at each site is pinned to
the integer value n̄. In effect, this means that it is impossible to drive a
particle-current through the system in this phase, because any such motion
of particles would necessarily involve deviations of the particle number at
some sites from n̄, and this is energetically unfavourable.

To see this more formally, we can ask: What are the lowest lying ex-
citations above this ground state? The answer is clear: The lowest lying
excitations involve adding (or removing) a single particle at a chosen site.
Since this site can be anywhere in the system, this quasiparticle (or quasi-
hole) excitation has a huge degeneracy of order the number of sites in the
system. Of course, this degeneracy is an artifact of the strict t = 0 limit. As
soon as we turn on t, this degeneracy is lifted, since the hopping term allows
the quasiparticle (or quasihole) excitation to hop to neighbouring sites with
amplitude −t. This gives a quasiparticle (or quasihole) band, with excitation
energies depending on the wavevector k of the quasiparticle (or quasihole)
excitation. On a two-dimensional square lattice for instance, we will get

εp/n(k) =
u

2
− 2t cos(kx)− 2t cos(ky) . (11)

This phase therefore has a energy-gap of order u to adding or removing
particles, and is therefore an incompressible state. Clearly, passing a current
through the system involves creating particle-hole pairs, and therefore, this
phase is an insulating phase with no linear-response current possible for small
driving potentials.

One can also estimate the correlation function of the boson field

〈c†jcj′〉 ∼ 〈cos(φj − φj′)〉 (12)

in this phase as follows: To zeroth order in t/u, each site is decoupled from
other sites, and this correlator is zero except when j = j′. At first order
in perturbation theory, the O(t/u) piece of the wavefunction correlates the
phase at neighbouring sites, and therefore, this correlator now becomes non-
zero at nearest-neighbour sites. Reasoning in this way, we see that the first
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contribution to this correlator at distance r is roughly of order (t/u)r. In
other words, the boson field has an exponentially decaying correlation func-
tion

〈cos(φj − φj′)〉 ∼ exp(−r/ξ) , (13)

with an O(1) correlation length ξ. Thus, this “Mott insulating” phase has
short-ranged correlations for φ. This is not suprising since the insulating
phase is naturally described in the number (Fock) basis, and specifying the
number precisely naturally leaves the phase free to fluctuate since the two
are canonically conjugate variables.

Next, we contrast this behaviour with the physics of the opposite limit
t � u. In this limit, it is useful to abandon the Fock (number) basis and
work in the eigenbasis of φj at each site. In this language, it is clear that
the low-energy physics is dominated by configurations of φj that are nearly
uniform in space, with all the O(2) rotors lined up parallel to each other. In
the rotor language, this is a ferromagnetic phase that spontaneously breaks
the O(2) symmetry. In bosonic language, it is a superfluid phase with long-
range phase coherence for the phase of the boson wavefunction. Low-lying
excitations in this regime can be obtained by doing a harmonic spin-wave
analysis like in the O(3) case we have already discussed in earlier lectures.
This is particularly straightforward in the O(2) case, since it simply amounts
to expanding the cosine coupling between neighbouring sites to quadratic
order in its argument. This gives the harmonic spinwave Hamiltonian

Hspinwave =
t

2

∑
〈jj′〉

(φj − φj′)2 +
u

2

∑
j

n2
j (14)

As in our spinwave analysis of the O(3) case, this spinwave Hamiltonian
Hspinwave can be readily diagonalized by defining Fourier transformed opera-

tors φk and nk and constructing creation and annihilation operators a†k and
ak corresponding to the spinwave mode with wavenumber k.

Rather than repeat this analysis for the present O(2) case and then fo-
cus on the low-energy long-wavelength excitations corresponding to small
wavenumbers k, it is more instructive to go directly from Hspinwave to a coarse-
grained continuum Hamiltonian designed to capture the universal physics of
the small k excitations. To do this, we assume that n and φ vary slowly, and
view Hspinwave as the Riemann approximation to an integral. This allows us
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to replace the finite-differences in Hspinwave with derivatives, and summations
with integration, to give the continuum theory

Heff =
ρs
2

∫
ddx(∇φ̃)2 +

1

2κ

∫
ddxñ2(x) (15)

where ñ(xj) ≡ nj/a
d is the density of particles, a is the lattice spacing, the

canonical commutation relations now read

[φ(x), ñ(x′)] = iδd(x− x′) , (16)

and

ρs = ta2−d ,

κ−1 = uad . (17)

This quadratic Hamiltonian is of course diagonalized in terms of the spin-
wave eigenmodes discussed earlier. In bosonic language, these waves are
the superfluid sound modes. Their existence becomes apparent if we write
down the Heisenberg equations of motion corresponding to this continuum
Hamiltonian. These follow from the commutation relations and read:

∂n

∂t
= i[Heff , n]

= ρs∇2φ

≡ −~∇ ·~js ,
∂φ

∂t
= +i[H,φ]

=
n(x)

κ
≡ µ(x) (18)

where we have dropped the tilde on n for notational convenience and the last
lines of the two equations define the “superfluid current” ~js and the local
chemical potential µ as

~js = −ρs~∇φ

µ(x) =
n(x)

κ
(19)
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Thus, we see that the superfluid current can be non-zero even in the absence
of a gradient of the chemical potential, unlike in a normal system. This
is because the superfluid current arises due to gradients in the “condensate
phase” φ rather than chemical potential gradients. Indeed, it is easy to see
that these equations of motion imply that

∂φ(x)

∂t
= µ(x)

∂js
∂t

= −ρS∇µ . (20)

Thus, a gradient of chemical potential is actually related to the time deriva-
tive of the superfluid current. And the local chemical potential determines
the rate of change of the local condensate phase.

Now, it is easy to obtain the low-lying sound wave modes from these
equations of motion as follows:

∂n

∂t
= ρs∇2φ

∂φ

∂t
=

n

κ

⇒ ∂2n

∂t2
=

ρs
κ
∇2n (21)

As expected, they have a linear dispersion ω = ck, with c =
√
ρs/κ and no

gap, similar to our earlier analysis of spinwave modes in the O(3) case—in
both cases, the gapless nature of the dispersion is of course guaranteed by
Goldstone’s argument that we described in the context of the O(3) rotor
model. This argument can fail if the system has long-range interactions.
This is of relevance in the present context, since our bosonic fluid, if made
up of charged bosons, will have long-range Coulomb interactions between
the bosons apart from the short-ranged repulsion that we have already taken
into account. It is therefore interesting to see just how the spectrum of low-
lying excitations is modified by these long range interactions. To answer this
question, we note that if bosons interact via a Coulomb repulsion, there is a
term ∫ ∫

ddxddx′n(x)V (x− x′)n(x′) (22)
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in Heff apart from the local repulsion energy∫
ddx

n2(x)

2κ
(23)

that we have already included. Here V captures the effects of the long-range
Coulomb interaction, and it is understood that V is cut-off at short distances
since the short-distance part can be included by simply adjusting the value
of κ.

With this additional term, the equations of motion are modified:

∂φ(x)

∂t
= µ(x) +W (x) ,

∂n(x)

∂t
= ρs∇2φ (24)

where W is the Coulomb potential due to all the other particles, and obeys

∇2W = 4πen(x) . (25)

This gives the wave-equation

∂2n

dt2
= c2∇2n− 4πρse

2n (26)

which implies that the superfluid sound waves no longer have a gapless dis-
persion, but instead obey the following relationship between their frequency
and wavenumber:

ω =
√
c2k2 + 4πρse2 (27)

These are gapped plasma oscillations characteristic of a charged fluid, and
represent the simplest example of the “Higgs” mechanism that you may have
learnt about in a course on particle-physics or quantum field theory.
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