
Module 5 : Pulse propagation through third order nonlinear optical medium

Lecture 35 : Pulse propagation in a linear dispersive medium

   Objectives

   In this lecture we will investigate the following

1. Propagation of a transform limited pulse in linear but dispersive medium.
2. Propagation of a chirped pulse in linear but dispersive medium and prospects of pulse compressor.
3. Grating pulse compressor.

 

 

Pulse propagation in a linear dispersive medium

To study the effect of dispersion on the broadening of pulse envelope upon propagation, we will consider
the example of a Gaussian pulse envelop. Gaussian pulse at z = 0 is given by
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Using
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We can write
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After propagating distance z in a medium, the electric field evolves to
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Note that the propagation constant β is frequency dependent.
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For z = L, we have
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Where the envelop function is

(35.11)

 



 

(35.12)

 

Let  
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The last exponential factor in the equation above is the phase term
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We can write
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Equation (35.16) shows that the Gaussian  pulse remains a Gaussian as it propagates. However its
width after propagating a distance L broadens to
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In optical communication systems, the signal pulses propagate over huge distances.

Consequently, the broadening can easily reach an extent of spoiling the signal definition itself as we will
show in an example to follow.

In practice, we do not measure the electric field of light, rather we measure the intensity, I which is
related to the electric field, E as

 

Given  for the Gaussian    pulse

 

It is more appropriate, in practice, to measure the pulse duration in terms of FWHM of intensity profile
rather than (1/e) width. The FWHM of input pulse ti is related to its (1/e) width as
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FWHM width  of a Guassian pulse after propagating through distance L in the dispersive media will be
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In terms of the dispersion parameter D
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Quite often when dealing with pulse propagation in optical fibers, one expresses λ0 in terms of  μm; DL
in ps/nm and τi in ps. In terms of these units, the input and output pulse widths are related as
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Example:

Let us consider τi = 10 ps, DL= 450 ps/nm and L= 30 km

The width of the output pulse will be

τ0 =150 ps =15  τi !!

which is a drastically broadened  pulse.

 

The natural question then to be asked is:

For a given fiber length, what is optimum shortest input pulse width?

If an extremely short pulse is chosen then it will result in  large pulse broadening due  to its huge
spectral bandwidth.
If a long input pulse width is chosen then at best τ0 = τi which will grossly limit the information
carrying capacity of the fiber.

 

It can be shown that

 (35.22)

 or  
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Thus for the example given above (τo) min = 54 ps for τoptimum = 39 ps.

Generally term "Dispersion" length, LD is used to define fiber length corresponding pulse broadening by
a factor of  .
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An inspection of the equation will reveal the following key aspects of the pulse propagation through a
dispersing  media



 

Broadening does not depend upon the sign of .
since there is no broadening for , it is desirable that we operate near zero dispersion
wavelength λD.

One can rewrite the electric field for the optical pulse after traversing a distance z through dispersive
medium
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where the phase φ (z, t) is given as
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The instantaneous frequency is given as

  

  

 (35.28)

The first term in the above equation, is the original frequency and the second term  is the frequency
that  varies linearly in time. It is called the linear frequency chirp or sweep. This frequency sweep arises
as the different frequency waves constituting the pulse undergo relative de-phasing due to their
different speeds of propagation through the dispersive medium. It should be noted that the chirp
depends upon the sign of the group velocity dispersion parameter . Remember that

In the normal dispersive regime  .
In the anomalous dispersive regime  .

 

Figure 35.1

The chirp or the frequency sweep between the leading and trailing edges in these two regimes is shown
in the figure (35.1) below.

so far we have considered the  propagation of a transform  limited Gaussian pulse.

A transform limited pulse is  one without any chirp at z=0. Transform limited pulses are  characterized
by

 (35.29)

Where Δω is the spectral width at 1/e-points. of intensity  profile.

Practical laser sources usually do not produce the chirp free pulses. Envelop function of a chirped
Gaussian pulse entering the dispersive medium is given by

 (35.30)



where ξ is the chirp parameter.

 

Unlike that in the case of the transform limited pulse in this case, the pulse broadening is governed  by
the sign of chirp parameter  ξ and the group velocity dispersion parameter .

Exercise I

Show that the output pulse width for a chirped Gaussian pulse after
propagating a distance L in the dispersive medium  is given by

An important consequence of this is that it is possible to compress or ensure no broadening of pulse

 From the equation given in the exercise above, the condition for pulse compression  i. e. τ0 < τ  can be
written immediately as
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This condition dictates that for pulse compression, we need to operate in anomalous dispersion
regime

 

Grating pulse compressor:

Amplification of ultrashort laser pulses is a complex process. To avoid detrimental nonlinear optical
effects and component damage at the intensity level that can easily reach during the course of
amplification, chirped pulse amplification (CPA) is used. In this process, the ultrashort pulses from the
oscillator are first stretched to several hundred picosecond prior to amplification and then recompressed
to their near initial pulse width after the required level of amplification. In the following we will describe
the optical systems for the realization of pulse compression and stretching.

Let us consider a positively chirped pulse incident on a pair of parallel gratings as shown in figure
(35.2).

Figure 35.2

Upon diffraction at the first grating G1, the blue front of the pulse spectrum is diffracted at smaller angle
than its red counterpart which belongs to the leading edge t < 0. It can be seen in this figure  that the
blue part covers a shorter path so that the trailing  edge catches up with the leading edge and the pulse
is thus  compressed. Thus the parallel grating pair produces a negative dispersion.

 



Different wave length components are diffracted by the grating according to the grating equation

 (35.33)

where  is the angle of incidence,  is the diffraction angle and  is the grating period. After
propagating distance

 (35.34)

, a  frequency dependent group delay  and  a phase shift  is introduced such taht.
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Correspondingly, the time delay
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One can readily see from the geometry of the arrangement.
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Therefore,

 (35.38)
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Here, we have made use of equations (35.33) to write

  

  

Equation (35.6)

 and hence a pulse which is positively chirped due  to propagation in a normally dispersive
medium can be  compressed again by the negative dispersion in a grating pair compressor described
above.

 

It can be seen easily seen that  the anti-parallel grating pair will produce positive dispersion and hence,



it will result in the pulse  streaming which again is  useful device for ultrashort  pulse amplification.
Instead of a grating pan prism pair can also be used for this application. However, due to lower
dispersion in prism, compression ratio is smaller.

 

Recap:

   In this lecture we have learned about the following

Propagation of a transform limited pulse in linear but dispersive medium.
Propagation of a chirped pulse in linear but dispersive medium and prospects of pulse compressor.
Grating pulse compressor.
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