
Module 2 : Nonlinear Frequency Mixing

Lecture 7 : Optical Response Of Anharmonic Oscillator

     Objectives

   In this lecture we will look at

Anharmonic oscillator model for nonlinear optical response of dielectrics.
Miller’s rule for Nonlinear susceptibility.

 
We have so far considered the optical properties of dielectric media in the linear approximation.
However, linearity of the response is almost always an approximation – whatever  the probe field. For
example, we know that the elastic response becomes nonlinear at high stresses and the magnetic
response is often nonlinear. Nonlinear electrical response of various electronic components is crucial for
electronic circuits. So one should have expected that the optical response should also be nonlinear. We
will now attempt to understand what parameters determine the magnitude of optical non linearity and
then, the conditions under which the effects of nonlinearities would become significant or unavoidable.

 
First, we notice that the Lorentz model of the atom gave us an exactly linear response. But real atoms
are not harmonic oscillators. In an atom the energy level spacing decreases  as we go higher in
energy whereas for the harmonic oscillator it remains constant. Moreover the Lorentz model does not
allow for ionization of the atom. These two features of the real atom can be incorporated in the Lorentz
model by making the oscillator weakly anharmonic. Let us represent the potential energy of an electron
in the model atom by:

(7.1)

 

Figure 7.1. Anharmonic oscillator potential along with the corresponding harmonic
approximation for small displacements

 
We note that this potential has a local minimum at the origin, and has two maxima at 

. This incorporates the finite ionization potential of a real atom in a crude way.

As , the potential goes to  but we will only consider electrons in the local minimum at .

 
We will now calculate the optical response of this model atom classically as before. (A quantum
mechanical calculation would have to contend with the fact that the ground state in local well near 
can also tunnel to  after sufficient time has lapsed). The classical equation of motion is

(7.2)

Even for the simple cosine time dependence of  this equation of motion is difficult to solve exactly.
However, we notice that the magnitude of nonlinear terms is small, so long as the departure from



equilibrium is small which in turn is determined by the impressed field . This suggests that we should
seek a power series solution in . We may then examine the solutions to see the limit of their range of
validity.

 
Let      

(7.3)

Where  is of the order  Substituting eq (7.3) in eq (7.2) and equating successively higher order in 
, we get:

(7.4)

(7.5)

(7.6)

and so on. We have deliberately written these equations in a way which shows that they can be solved
successively. The solution of Eq. (4) is already familiar. It may be rewritten as:

(7.7)

where  is a convenient notation for the denominator.

(7.8)

Substituting for  in Eq. (b),  is obtained as :

(7.9)

Similarly,

(7.10)

Before examining those solutions closely, we note that the expansion (7.3) for  automatically implies
that the polarization vector  is also a power series in  i.e. we may write:

 (7.11)

where  is of order  in . These solutions explicitly show several basic features of the optical
response of nonlinear dielectrics; which can be established quite generally:

1. The linear response or  does not involve the anharmonic terms. However, even the response at 
 is affected by the anharmonicity or optical nonlinearity of the medium. We notice for example,

that  has a resonance at  which gives rise to the nonlinear absorption called TWO
PHOTON ABSORPTION. We will discuss this effect in greater detail later.

2. New frequencies may be involved in successively higher order response. The  order
polarization has frequency component at all algebraic linear combinations of the  frequencies
which must be contained in the impressed field. Thus, if the  contains only the frequency , 
will contain  and . If, however,  contained Fourier components at  as
well as ,  will contain frequencies , ,  and .

3. Away from resonances, the various  may be approximated by  [Strictly  ]

Then, we have:

 

Now, for the power series expansion to be valid we should need that the amplitude is small such that for
this amplitude,  is small such that for this amplitude, the terms  and  in the

restoring force should be small compared to the harmonic restoring force . When we get close to

a resonance the validity of our expansion depends on the damping factor .

4. We may write polarization  also as sum of various Fourier components. E.g.



 

  Further, a second order susceptibility, is defined by  

(7.12)

and  

(7.13)

Where  and  may both be obtained by putting 

, respectively in the general expression :

(7.14)

The susceptibility  describes the generation of the polarization  component at 
 which is proportional to the product  Similarly we may define the third order

susceptibility tensor  which describes the creation of a polarization 

 that is proportional to 

(7.15)

Note that the susceptibility tensors are properties of the parameter in the potential i.e. properties of the
medium. They can be defined in a completely general way.

5. The general expression for  suggests that it is proportional to  Indeed, in the   early
days of nonlinear optics Miller [R.C. Miller, Appl. Phys. Lett 5, 17(1964)] found that

(7.16)

where Δ was found to be nearly independent of the material. Similar relations were also tried for the
third order response but were not so successful. We shall return to this discussion in the lecture on
nonlinear optical materials.

 

RECAP

   In this lecture we have learned about the

Anharmonic oscillator model is used to obtain second and third order susceptibilities.
Millers rule for second order response is discussed.
Third order response may arise from lowest order anharmonic term as well as the next order one.
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