Module 1 : Introduction and Background Material

Lecture 3 : Wave Propagation In Linear, Homogenous Isotropic Media

Objectives
In this lecture we will look at

e General solution of wave equation.
e Dispersion and absorption.

We now consider propagation of an electromagnetic wave in an infinite, homogeneous medium without
free charges
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As already observed in the previous lecture, inclusion of free electron can be easily done when we use
complex dielectric function.

For the complex amplitude of harmonic waves these become
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For a uniform isotropic medium, we know that ;(m) and ;(m) are scalar
D(0)=&(0)E(o) 3.9)
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For g{a) there is no simple model.

In the following the {? dependence of fields and g(g}) and #(@) is not written explicitly.
From egs (3.7) and eqgs (3.8) we obtain
V x Vx E(m)—EEE(m)=ﬂ (3.11)
Now
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we may write thus in an isotropic medium the Electric field obey the egs.
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Similarly for magnetic induction E we obtain
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The wave equation for E and E have the same form as in vacuum. The only difference is that



£, H, = 1/c* is replace by 4.

2
The ratio £H =":_1 where EC is speed of light in the medium.
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From egs 3.7 to 3.10, we observe that E E and _.é from a set of orthogonal vectors Such that
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However, as we saw in lecture 2 in a medium it is also possible that g(m) =() at some frequency. Then
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For transverse waves (g[m} =)
- = = 2 —+
Jox o +“":[ £A ]E=D
A& H,
becomes
4
=‘:""—2 el (3.15)
€\ & Hy
Since g(g} can be complex, in general & will also complex.
We write
k=k(n+ix)® -0 (3.17)
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where :f; is unit vector along ;f;
An+m)= £ (3.18)
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n is called the refractive index and K is the a attenuation coefficient.
This corresponds to an electric field variation in space that is given by
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@ nk.r—@f is the time and space dependent phase. Since a wave front is the phase constant surface

is for the present case the wave front is an finite plane and it move with a velocity (-:3‘:"' H]k- The

amplitude of this wave falls exponentially as



i is therefore called the attenuation coefficient.

{n+k} is often called the complex refractive index.

METALS. DIELECTRICS AND SEMICONDUCTORS

Earlier, we had shown that for a damped harmonic oscillator
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In general a material will have not only one resonance frequency &?& —m:" but several, each
corresponding to transition between two states of the system. Thus, in general the linear susceptibility

of a system has the form
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where, w;j is the resonana frequency of the jth transition.

For the dielectric function

e(@) =& (1+ y(@))

We get
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where a}; = ——is called the plasma frequency.
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We note:

(3.19)

(3.20)

(3.21)

e near a resonance, say & = WJ, we need to retain only the resonant term in egs (3.21). Then
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Thus, _}S determines the integrated absorption over the line width of the transition at ii} It is important

day /2
to note that I T T is independent of ¥.
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* For @=a,
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the contribution of _f resonance goes as —mp(f;f@ ) which decrease rapidly as

{f1—»o2. Thus, a resonance does not contribute much to the polarization at frequencies much
larger than the resonance frequency. However, as m:&:;_z} the contribution of the resonance

becomes m;/mj i.e. at zero frequency all resonances contribute to the polarization of the

medium.

Generally Welectronics-excitation -2 Wyibrational-excitation =& ® rotational-excitation

So, in the frequency range where vibrational rotational excitation occur, the dielectric function can be

written as
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where £_ is the back ground dielectric function. In this reign since <% w, . £, is the low

frequency limit of the electronic dielectric function. It is written as £, is the dielectric function at
frequency far above the vibration rotation excitation frequency.

In contrast, if we are studying the optical response of a material in the electric frequency range
{ﬁm :]e]’f) the low—frequency excitation contribute negligibly to the dielectric function and we may
write:

£{&J}=1+ E fj -
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In this lecture we have learned about the

e Solutions of the wave equation are obtained to identify dispersion and absorption with real and
imaginary parts of the complex refractive.
index

e For metals, the real part of the dielectric function is negative below the plasma frequency.

e Oscillator strength determines the integrated absorption of a transition.
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