
Module 4 : Third order nonlinear optical processes

Lecture 21 : Self focusing Refraction and absorption 

     Objectives

   In this lecture 

we will explore an interesting phenomenon which is consequence of nonlinear refraction. We will study
the following:

1. The transverse effects on the intense laser beam propagation  in the nonlinear propagation.
2. A simple physical picture to explain self focusing and self trapping phenomena.
3. Theoretical formulation of these phenomenon.

Self focusing

An intense laser beam with in homogeneous transverse intensity profile, propagating through a plane
parallel slab of a nonlinear medium can exhibit focusing by itself. This phenomenon of self focusing was
first observed by Kelly in 1965(1).
Towards the simple physical picture of this phenomenon, let us consider the passage of a cylindrical
laser beam with Gaussian intensity profile through a nonlinear medium with intensity dependent
refractive index

(21.1)

where  is the linear refractive index, I is the intensity and   is the coefficient of nonlinear  index of

refraction which we consider here to be positive.  The refractive index profile in the medium will bear an
imprint of the Gaussian beam intensity profile i.e. the refractive index in the medium decreases radially
outward, the maximum of it being on the axis.
This retards the inner part of the beam more than the peripheral part like a positive lens and causes the
beam to focus. As the beam shrinks, the increased intensity brings in even larger refractive index
differential across the transverse profile of the beam, and sets up a positive feedback to accelerate the
beam focusing. However, with the reduction in the beam size, increased divergence due to the
diffraction counteracts the self focusing effect.  If the two effects balance each other, the laser beam will
travel with its beam profile unaltered just like in a waveguide. This limiting case is called self -trapping.
Above the critical power required for self-trapping the self-focusing effect dominates over diffraction
leading to the collapse of the beam and can lead to the optical damage of the medium

 

We will consider the transverse effects on the propagation of an intense monochromatic laser beam
characterized by its linearly polarized electric field

(21.2)

propagating along the z-axis through a third order nonlinear isotropic medium with its refractive index
given by.

(21.3)

  in equation(21.2) refers to the transverse coordinates. Assuming that the field depends weakly on
the transverse coordinates, its propagation will be described by

(21.4)

OR  

(21.5)

 



Where ,   and .

 

Expanding it further using , we get

(21.6)

           

using , we get

(21.7)

Transforming the coordinates  to

 
and

 
it is easy to show that

(21.8)

The transformed wave equation can then be written as

(21.9)

One can easily identify this equation with the nonlinear Schrödinger equation where the role of time t is
played by z. If the field E depends on both the transverse coordinates x and y, no closed form solutions
are possible.

 

However, if the field depends on one transverse variable, say x, only, the solution can be readily written
as

(21.10)

where  and represents the width of the field’s transverse profile.

Solution in equation (21.10) describes a field whose transverse profile remains invariant upon
propagation. Such a field is called a spatial soliton.

A useful approach to solve the problem of wave propagation is based upon the eikonal equation. It is
the nonlinear partial differential equation obtained by approximating the wave equation using the WKB
theory and describes the evolution of the ray trajectory or the wavefront. To get the eikonal equation,
we use the ansatz

(21.11)

where S is the eikonal or action. Both  and S are real quantities.

Separating it in to the real and imaginary parts gives us two equations

   



(21.12)

and

(21.13)

 

Equation (21.12) corresponds to an equation of continuity which describes the conservation of energy. S
represents the wave front and we can trace the ray by following its gradient.

Equation (21.13) describes the influences of the diffraction and self focusing (the first and second terms
on the r.h.s.,  respectively) on the distortion of the warfront.

If at some point z=z0, these two effects balance each other and the wave front is planar i.e. 

 then

 and  

The wave propagates in the medium with plane wave front and constant transverse profile or in other
words as spatial soliton. A small variation   in the laser power by way of absorption, scattering or
fluctuation from its critical value  can result in the imbalance of the two effects and can destroy the

soliton causing the beam to either self focus or diverge. Analytical solutions for the self focusing can be
obtained for the Kerr nonlinearity(2).

We will rather skip the rigorous mathematical apparatus and   derive the approximate expressions for
the critical power, a  and self focusing distance based  on the simple paraxial optics approximation.

Let us consider a Gaussian laser beam of radius wo incident on the medium where refractive index is
described by equation (21.1). Ignoring the effect of diffraction, intensity dependent refractive index

causes  the beam to focus at a distance  from the input face as  shown in the figure 21.1

Figure 21.1

 

We approximate the ray trajectories in the medium to be straight lines. The ray traveling along the
beam axis sees the refractive index given by equation (21.1)   where as the peripheral rays where the
intensity of the Gaussian  beam ~ 0, the refractive index  is n0

According to Fermat's principle the optical path for all the rays from a wave front at the input face to the
focus point is same.

(21.14)

where θsf is the half angle that the focal point subtends at the beam aperture at the  input face.

For small angle θsf

   



(21.15)

from equations (21.14)  and (21.15)

(21.16)

and  

(21.17)

However, as the beam size shrinks in the medium, the diffraction effect starts manifesting more and
more strongly and the self focusing angle is reduced to

(21.18)

where the diffraction angle

(21.19)

In equation(21.8), d is beam diameter. Self trapping occurs when the two effects just balance each
other i.e.

(21.20)

 

This happens at the intensity

(21.21)

where  is the critical beam power for self trapping

Hence

(21.22)

Self focusing will take place when. In this case,

 

(21.23)

Notice that unlike many other nonlinear optical phenomena, self focusing depends on the power of the
beam and not at its intensity. If the beam power  a multimode beam breaks up in to multiple

filaments. Formation of trapped filament can also take place. For a medium with negative value of n2,
self defocusing occurs. In this case, the wave front distortion is opposite to that for self focusing case.
Many other interesting effects associated with pulse propagation such as self steepening of wavefront
etc. occur, which are outside the scope of this lecture.
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   Recap

       In this lecture

1. We have explained the phenomena of self focusing and self trapping of intense laser beam
propagating through optical Kerr medium in terms of a simple physical picture.

2. The evolution of the transverse spatial profile has been formulated using wave equation. It is
then reduced to nonlinear Schrodinger equation and the corresponding spatial soliton solution in
1-d transverse case is identified.

3. To study the influence of the two competing effects of diffraction and self focusing on the
distortion of the wave front an eikonal equation has been derived and discussed.

4. Critical power for self trapping and the focusing distance have been derived.
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