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Lecture 26 Title: Fundamentals of the Quantum Theory of molecule formation 

In the last module, we have discussed about the atomic structure and atomic physics to 
understand the spectrum of atoms.  

However, many atoms can combine to form particular molecules, e.g. Chlorine (Cl) and 
Sodium (Na) atoms form NaCl  molecules.  

Bonding between ions, as in the negative charged chlorine ion and the positively charged 
sodium ion, could be understood in the light of coulomb interaction (attraction) between 
oppositely charged bodies. 

But atoms of the same type can also form bonds, as for example in the case of 2H . 

It remained, however, inexplicable that two similar atoms, which are electrically neutral, 
could form a bound state.  

In this lecture, we will understand the formation of molecule from atom in the quantum 
mechanical framework.  
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It only became possible with the aid of quantum mechanics to attain a fundamental 
understanding for the formation of molecule.  

Even in the case of ionic bonding, basic new insights have been obtained through 
quantum theory.  

First, for example, it must be understood why the ions form in the first place, and why the 
electron which is transferred from sodium to chlorine thus finds an energetically more 
favorable state. 

In the following, we will develop some important basic ideas for the quantum theory of 
chemical bonding. However, Physics & Chemistry are still far away from a complete 
solution to these problems.  

To understand chemical bonding, the interactions of several particles must be taken into 
account: given n  atomic nuclei and m  electrons, one would have to find the complete 
wavefunction and the corresponding energies of the total system.  

It is useful to keep in mind that the nuclear masses are much greater than those of the 
electrons. Thus the electronic motions are much faster than nucleus.  

Then we may ignore the motion of the nuclei and treat them as fixed.  

In atomic physics, we were able to obtain much information from spectroscopic 
observations and could direct our attention to both the ground states and the excited 
states.  

In the study of chemical bonding, the determination of the wavefunction of the ground 
state of the particular molecule plays a more important role. 
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+
2HThe Hydrogen – Molecule Ion  

 Certainly the simplest case of chemical bonding occurs in the hydrogen molecule 
ion +

2H . This species is observed as a bound state in gas discharges in a hydrogen 
atmosphere, in such a gas discharge, the hydrogen molecule loses one electron.  

The bonding energy, equivalent to the dissociation energy, has been determined to be 
2.65 eV. 

 We are dealing with two nuclei (a and b in figure-26.1) and one electron. If the 
nuclei are far removed from one another, we can imagine that the electron is localized on 
one nucleus or other.  

The wavefunctions are those of the hydrogen atomic ground state. 

So the Hamiltonian for nucleus a , 
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  ….. (26.1) 

And correspondingly for nucleus b , 

( ) ( )0
b b b b b bH r E rφ φ=    ….. (26.2) 

So, 0 0 0
a bE E E= =  

If we let the nuclei approach one another, the electron, which was, for example, at first 
attached to nucleus a , will experience the attractive Coulomb force of nucleus b .  

Conversely, an electron which was at first bound to nucleus b  will experience the 
attractive Coulomb force of nucleus a . We must therefore set up a Schrodinger Equation 
which contains the Coulomb potential for both.  

Further in order to calculate the total energy of the system, we must take into account the 

Coulomb repulsion between nuclei. The additional energy 
2
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  
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 is not directly related 

to the energy of the electron, it will only produce a constant shift of all the energy eigen 
values. We will introduce it at the end. 
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Referring to the figure 26.1, let us define, 

ab a b a a b bR R R r r R r r R= − = − = −  

 Thus, Schrödinger equation, then 

2 2 2
2

2 a b

e e E
m r r

ψ ψ
 
− ∇ − − = 
 



          .....  (26.3) 

Here E  and ψ  are energy eigen value and the wavefunction for the whole system 
respectively and are yet to be calculated. 

We will use the perturbation method. In principle, the electron could be in the 
neighborhood of nucleus a  or of nucleus b , with the same energy. These two states aφ  

and bφ  are thus degenerate. Now however, the other nucleus, from which the electron is 
by chance more distant, acts, as a perturbation to the electronic state. We thus expect that 
the degeneracy will be lifted by this perturbation.  

In the presence of the degeneracy, we take the total wavefunction is the linear 
combination of the hydrogen wavefunctions defined in equation 26.1 and 26.2 and 
defined as, 

1 2a bc cψ φ φ= +  

Where c1 and c2 are the coefficients. This is generally known as linear combination of the 
atomic orbital (LCAO) and ψ  is known as the molecular orbital. 

So, putting this, in equation 26.3, and rearranging we get, 
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Substituting the values from equations 26.1 and 26.2 in 26.5, we get, 
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 

            ….. (26.6) 

While aφ  and bφ  are functions of position, the coefficients are independent of positions. 

 We assume that the functions aφ  and bφ  are real, as in the case of hydrogen atom 

ground state wavefunctions, and the functions aφ  and bφ  are not orthogonal since the 
electron is associated with two different nuclei a and b. So, 

                   a b dV Sφ φ =∫     and   1a a b bdV dVφ φ φ φ= =∫ ∫     …..  (26.7) 

Now, Equation 26.6 is multiplied by aφ  
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                                                                                                  ………….(26.8) 
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Equation 26.6 is multiplied by bφ  and following the same procedure we get, 

( ) ( )1 2 0E S D c E C c−∆ ⋅ − + −∆ − =                                       …….. (26.9) 

So, to get the solution, following determinant from equations 26.8 and 26.9 should 
vanish. 

The determinant: 
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Two solutions: 
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So, 
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If we take, solution (i) in equation 26.10 and then,  

 

So, 1 2c c c= =  and thus, ( )a bcψ φ φ+ = +  

 

……………………………………………(26.11) 

Now if we take, solution (ii) in equation 26.10 and 
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Let us understand the meaning of this wavefunctions ψ+  and ψ− . Figure-26.2 shows the 

plotting of wavefunctions aφ  and bφ  as well as ( )a bφ φ+ .  

 

 

 

 

 

 

 

 

 

 

The following observations can be made. 

(a) Symmetric wavefunction ψ+  is formed by a bφ φ+ . Because of the overlap, the 

occupation probability for ψ+  between two nuclei is increased. 

(b) Thus the density distribution of electron in the ψ+  state shown in the lower part of 
figure 26.2 increases as the distance between a and b decreases. 

 

 

 

 

 

 

 

 

Density distribution of electron 
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Figure -26.2 



Page-8 

Antisymmetric wavefunction ψ−  is formed from a bφ φ− . The occupation probability is 
clearly zero in the plane of symmetry. 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from figures-26.2 and 26.3 that the distance between a and b is an 
important factor to have finite overlap between the aφ  and bφ . 

Now we will concentrate on the energy values E+ and E− . To do that we have to 
understand the meaning of the quantities S, C and D. We will try to evaluate these 
quantities through the diagrams. 
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Figure-26.3 
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The quantity a b dV Sφ φ =∫  

From figure 26.4 it is clear that this quantity S is considerable when Rab is sufficiently 
close and S increases when Rab decreases. The quantity S is known as overlap integral. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-26.4(i) represents the 1s atomic orbital of hydrogen for two nuclei a and b.  

Figure-26.4(ii) shows that when the nuclei are close enough the overlap increases. 

Figure-26.4(iii) plots the value of overlap integral S with respect to the internuclear 
distance Rab. When both the nuclei are coming closer the overlap increases and the value 
of S increases. When they fall on each other, the overlap integral becomes 1. However, 
this situation does not arise due to the nuclear-nuclear repulsion term. We will visualize 
this picture later. 
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This term is known as the direct coulomb term. Figure-26.5(i) shows the orbital 2
aφ and 

the coulomb attraction potential. As the two nuclei approaches to each other, the overlap 
between them increases. Figure-26.5(ii) plots the term C with respect to the internuclear 
distance Rab. Here also we see that, this term is appreciable when the both the nuclei are 
close enough. 
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The term D is known as cross integral term. The meaning of this is that there should be 

overlap between aφ , bφ  and coulomb attraction term (
2

04 b

e
rπε

− ) as shown in figure 

26.6(i). The value of this integral is plotted in figure 26.6(ii). It is clear from this figures 
that when there is no overlap between aφ and bφ , the value of D goes to zero. 
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In figure 26.7(i), the quantity , ,S C D  are plotted together to have a comparison. It can be 
seen that all these quantities depend on the abR .  

 

 

 

In figure 26.7(ii), the quantities 
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are plotted with respect to the 

internuclear distance Rab. As can be seen, from this plot that these quantities are 
degenerate when the two nuclei are far away from each other. If two nuclei approach one 
another the quantities split up in a way depending on whether symmetric or 
antisymmetric / bonding or antibonding. In Symmetric case energy reduces whereas in 
Antisymmetric case energy increases. 
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Now, if we add nuclear energy, the energy diagram is shown in figure-26.8 symmetric 
case there is a minimum, so it forms a bound state. Antibonding is not a stable state. 

 

 

 

 

 

 

 

 

 

Physical meaning: in the bound state the probability density of electron is quite large in 
the middle, profit Coulomb attraction from both the nuclei, energy goes down. Whereas 
in the antibonding case, only electron experiences attractive force of one nucleus at a 
time. The internuclear distance where the energy is having a minimum is known as 
equilibrium internuclear distance. Thus, this molecule H2

+ - ion is stable with the bonding 
energy lower than the individual hydrogen atom. 
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Recap 

From this lecture we have developed the basic idea of the quantum theory of chemical 
bonding.  

To understand chemical bonding, the interactions of several particles should be taken into 
account: given n  atomic nuclei and m  electrons, one would have to find the complete 
wavefunction and the corresponding energies of the total system.  

It is useful to keep in mind that the nuclear masses are much greater than those of the 
electrons. Thus the electronic motions are much faster than nucleus. This is known as 
Born-Oppenheimer approximation. 

In the study of chemical bonding, the determination of the wavefunction of the ground 
state of the particular molecule plays a more important role. 

The degenerate atomic energy levels split due to the interaction between the atomic 
orbitals. The no. of molecular orbital is same the no. of atomic orbital.  

The molecule will be stable only if a minimum is achieved during the calculation of 
ground state energy of the molecule.  

The minimum arises because the coulomb attractions bring the nuclei closer on the other 
hand the nuclear-nuclear repulsion restrict them to come too close. An optimum distance, 
the two energies form a minimum for the molecule and thus equilibrium is achieved. The 
inter-nuclear distance at equilibrium is the bond length of the molecule. 

 

 


