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In the beginning of this module, we have learnt the formation of the molecule from 

atoms. We have also learnt the molecular orbital and the electronic states of the 

molecules.  

 

In the last lecture we have seen the electronic transitions and the vibrational structure of 

these electronic transitions.  

 

The nomenclature of these electronic states needs to be understood and the transition 

selection rules need to be evaluated so that the electronic transitions between the two 

electronic states of the molecule could be explained.  

 

There are several ways to determine the term values of the electronic states. However, in 

this lecture we will focus only one procedure. 
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In lecture-26, when we solved the Schrödinger equation for the hydrogen molecule ion to 

understand the stability of the electronic states, we get a number of different potential 

energy curves. We refer to these states as the electronic states of the molecule. 

The electronic state corresponding to the lowest energy is known as ground electronic 

state and the others are known as excited electronic states. 

In analogy to the case for atomic electronic states, we will identify these states using 

molecular term symbols. The method for determining these molecular term symbols is 

somewhat more complicated than that for atomic term symbols.  

The manifold of the electronic states can be obtained, as for atoms, by the successive 

bringing together of the parts. This building up of the atom can be done only in one way. 

But for the molecule there are three different ways. 

Process-I: The molecule may be built up by bringing the atoms together. This means that 

the molecular states will be the result of the given states of separated atoms. Thus, when 

we carry out for all possible combinations of separated atomic states, we obtain the 

complete manifold of the states of the molecule. 

Process-II: Instead of developing the molecular states from the separated atoms, we can 

start from the so called united atom and split them hypothetically.  

Process-III: Since we have already learnt the electronic arrangements of molecules in 

lecture-27, we can start with the electronic configuration of the orbital of the molecule 

and then determine the molecular term values as we have done it in case of atoms. In this 

lecture we will determine the term values of the electronic states following this 

procedure. 
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The “terms” tell us the values of certain angular momenta. In the case of molecule, we 

have to define the angular momenta in terms of the orbital angular momentum L and the 

spin angular momentum S of the atoms. 

As we know that in the atom L and S are the good quantum numbers when we determine 

the terms because the motion of the electrons in an atom takes place in a spherically 

symmetrical field of nuclear force.  

In case of spin orbit coupling, L and S couple to give total angular momentum J (= L + S).  

In case of linear molecule, the symmetry of the field in which the electrons move is 

reduced. 

There is only axial symmetry about the internuclear axis (the cylindrical symmetry) 

created by the strong electric field of the nuclei. This destroys the relationship between J, 

L and S. Not only that even the L ceases to be the good quantum number. As a 

consequence, only the component of L along the inter-nuclear axis is a constant of motion 

or good quantum number. 

In an electric field, unlike the magnetic field, reversing the directions of motion of 

electrons does not change the energy of the system. Which means that the energies of ML 

= +1 and ML = -1 will be degenerate. Therefore, it is convenient to classify the electronic 

states of diatomic molecules according to the values of  ML  not L. 

Thus we define the projection of L along the inter-nuclear axis as Λ as shown in figure-

34.1. 

So,    LMΛ =   …………………………..(34.1) 
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Figure-34.1 
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According to equation 34.1, for a given value of L, the quantum number Λ can take the 

values 

0,1, 2,.......,

i
i

L

λ

Λ =

= ∑
 ………………………..(34.2) 

Where λ is the projection of l of individual electrons along internuclear axis.  

For example, λ = 0 for a σ electron, λ = ±1 for a π electron and so on. 

Depending on the values of Λ, the electronic state is defined. 

For Λ = 0, it is ∑ state 

For Λ = 1, it is ∏ state 

For Λ = 2, it is ∆ state 

For Λ = 3, it is Φ state 

Note here that the degenerate π molecular orbital is defined as π+ and π-, where + and – 

subscripts represent the clockwise and anticlockwise rotation. 

An example of the two electrons is shown in figure-34.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For two electrons having  
l1 = 0, l2 = 2 

+2 0 +1 0 0 0 

-2 0 -1 0 

2
state

Λ = ±

∆ −
 

1
state

Λ = ±

Π −
 

0
state

Λ =

Σ −
 

Figure-34.2 
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A molecular term symbol labels the molecular states and specifies the total spin and 

orbital angular momentum of the molecule, along with various other symmetries. 

The term symbol is written as  
2 1 ( / )

( / )

S

g u

+ + −Λ  

In the following we will understand the meaning of these notations. 

1. As defined, Λ is the quantum number for the total orbital angular momentum L of the 

electrons about the inter-nuclear axis. 

2. As defined, S is the total spin angular momentum quantum number, formed from the 

individual electron. Spin quantum number of single electron s = 1/2 , and ms = ±1/2.   

For one unpaired electron, S = s = 1/2 (a doublet state with 2S + 1 = 2). 

 For two unpaired electrons, the possible values are S = 1 and 0. For S = 1, gives triplet 

(2S + 1 = 3) and for S = 0 gives singlet (2S + 1 = 1) states.  

3. Symmetric molecules are having a centre of symmetry. The gerade (g) or ungerade (u) 

subscripts apply only to these molecules and labels the symmetry of the electronic 

wavefunction with respect to inversion through this centre. For the molecule, this can be 

thought of as simple multiplication of functions of even or odd symmetry of the 

individual electrons. In the following table provides the resultant symmetry of the 

molecule from two electrons. 

 

Individual electrons Molecular 

gerade (g ) × gerade(g),  even×even gerade, g 

Gerade (g) × ungerade (u), even×odd ungerade, u 

ungerade (u) × ungerade (u), odd×odd gerade, g 

 

4. The +/− superscript applies only to ∑ state (Λ = 0), and labels the symmetry of the 

electronic wavefunction with respect to reflection in a plane containing the nuclei. 
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Now we will carry out some examples of diatomic molecules to find out the ground state 

from its electronic configuration. 

Closed shell configuration: 

For any closed shell molecular electronic configuration, for example 2 2 21 1 2g u gs s sσ σ σ , 

there is no net orbital and spin angular momentum. So, Λ = 0 and S = 0. The term will be 

always, 1
g
+Σ  state. 

One unpaired electron: 

Let us take the case of hydrogen molecular ion 2H +   

The electronic configuration 
11 gsσ (figure-34.3). 

 

0
0;
1

2

LM
state

S

=
Λ = Σ

=

 

 

Bond order  

= (no. of electrons in bonding orbital- no. of electrons in anti-bonding orbital) / 2 

= (1-0) / 2 = ½ > 0. Molecular electronic state is stable. 

Molecular term for the ground state is 2
g
+Σ   

 

2He+  2 11 1g us sσ σ  (figure-34.4) 

0
0;

10 02

LM
state

S

=
Λ = Σ

= + =

 

Bond order = ½ > 0.  

Stable ground state will form. 

Parity = g × g × u = u     Molecular term for the ground state is 2
uΣ  

 

uσ  

gσ             (b)             
Atomic orbital  

           (a)             
Atomic orbital  

Molecular orbital  

1s  1s  

Figure-34.3 

gσ             (b)             
Atomic orbital  

           (a)             
Atomic orbital  

Molecular orbital  

1s  1s  

uσ  

Figure-34.4 
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Two electrons system: 

Hydrogen molecule 2H . Molecular electronic configuration is 21 gsσ  (figure-34.5). 

Bond order = 1; molecule is stable in the ground electronic configuration. 

0; 1 or 0SΛ = = ;  

But due to Pauli exclusion 

principle, S = 0 for closed shell. 

 

 

 Parity = g × g = g      

 

Molecular term for the ground state 

is 1
g
+Σ   

Let us draw the Λ-MS table as we have done in case of atoms. Here since i
i
λΛ = ∑  we 

will write as ( / /
1 2,λ λ+ − + − ) where + and – represents mS = +1/2 and mS = -1/2, respectively. 

For σ electrons λ = 0, so the Λ-MS table for 21 gsσ  configuration is  

 

 

 

 

 

 

Now, we can write down the wavefunctions.  

The spatial wavefunction is  (1) (2)spatial g gφ σ σ=  

The spin wavefunction is [ ]1 (1) (2) (1) (2)
2

Antisymmetric
spinχ α β β α= −  

The total molecular wavefunction is  

 [ ]1 1( ) (1) (2) (1) (2) (1) (2)
2g g gσ σ α β β α+Ψ Σ = −  

MS 

Λ  
0 

0 (0+, 0-) 

gσ             (b)             
Atomic orbital  

           (a)             
Atomic orbital  

Molecular orbital  

1s  1s  

uσ  

Figure-34.5 
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For 2He  molecule, the electronic configuration 2 21 1g us sσ σ  

Bond order = 0; No bond forms, ground state is not stable. 

For 2Li  molecule, the electronic configuration 2 2 21 1 2g u gs s sσ σ σ  

Bond order = 1; Ground state is stable. 

0; 1 or 0SΛ = = ; but due to Pauli exclusion principle, S = 0 

So, the molecular term for the ground state is 1
g
+Σ   

 

For O2 molecule, Molecular electronic configuration is given in figure-34.6 
2 2 2 2 2 4 21 1 2 2 2 2 2g u g u g u gs s s s p p pσ σ σ σ σ π π  and Bond order = (6-4)/2 = 1, molecule is stable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21s  

gσ  

uσ  

42 p  
42 p  

gσ  

uπ  uπ  

gπ  gπ  

21s  

gσ  

uσ  
22s

 

22s
 

           (b)             
Atomic orbital  

           (a)             
Atomic orbital  

Molecular orbital  

uσ  

Figure-34.6 
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So the Λ-MS table for the electronic configuration is given below. 

For π electrons, λ1 = 1 and -1; similarly λ2 = 1 and -1. For spin, ms = +1/2 and ms = -1/2. 

 

 

 

 

 

 

 

 

 

 

 

Now, we will look at the wavefunctions. 

The spatial wavefunction for Λ = 2  

(1) (2)spatialφ π π+ +=  

Since this is symmetric, we have to multiply with the antisymmetric of spin wavefunction 

to make the total wavefunction antisymmetric. 

The antisymmetric spin wavefunction is 

[ ]1 (1) (2) (1) (2)
2

Antisymmetric
spinχ α β β α= −  

And the total wavefunction is for (Λ = 2 and term is 1
g∆ ), 

[ ]1 1( ) (1) (2) (1) (2) (1) (2)
2g π π α β β α+ +Ψ ∆ = −  

For Λ = - 2, the spatial wavefunction is  (1) (2)spatialφ π π− −= and this will give rise to same 

term 1
g∆ . So 1

g∆ is doubly degenerate.  

 

 

 

MS 

Λ  
-1 0 1 

2 ----- (1+, 1-) ---- 

1 ----- ---- ---- 

0 (1-, -1-) (1+, -1-),(1-, -1+) (1+, -1+) 

-1 ---- ---- ---- 

-2 ---- (-1+, -1-) ---- 
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Now for Λ = 0, the spatial wavefunction is  

[ ]1 (1) (2) (1) (2)
2spatialφ π π π π+ − − += ±  

The symmetric wavefunction is 

[ ]1 (1) (2) (1) (2)
2

symmetric
spatialφ π π π π+ − − += +  

Because by exchanging the electrons, wavefunction does not change. 

[ ]1(2,1) (2) (1) (2) (1)
2

symmetric
spatialφ π π π π+ − − += +  

(1, 2) (2,1)symmetric symmetric
spatial spatialφ φ=  

We have to multiply with the antisymmetric of spin wavefunction to make the total 

wavefunction antisymmetric. 

Since Λ = 0, MS = 0,  it gives rise to 1
g
+Σ  and the total wavefunction is,  

[ ][ ]1 1( ) (1) (2) (1) (2) (1) (2) (1) (2)
2g π π π π α β β α+

+ − − +Ψ Σ = + −  

The antisymmetric spatial wavefunction is 

[ ]1 (1) (2) (1) (2)
2

Antisymmetric
spatialφ π π π π+ − − += −  

[ ]1(2,1) (2) (1) (2) (1)
2

Antisymmetric
spatialφ π π π π+ − − += −  

(1, 2) (2,1)Antisymmetric Antisymmetric
spatial spatialφ φ= −  

Since this is antisymmetric, we have to multiply with the symmetric of spin wavefunction 

to make the total wavefunction antisymmetric. 

The symmetric spin wavefunctions are 

[ ]

(1) (2)

(1) (2)
1 (1) (2) (1) (2)
2

Symmetric
spinχ α α

β β

α β β α

=

=

= +

 

 

 



Page-11 

Since Since Λ = 0, MS = 1,  it gives rise to 3
g
−Σ  and the total wavefunction is, 

[ ]

[ ]

[ ][ ]

3 1( ) (1) (2) (1) (2) (1) (2)
2

1 (1) (2) (1) (2) (1) (2)
2
1 (1) (2) (1) (2) (1) (2) (1) (2)
2

g π π π π α α

π π π π β β

π π π π α β β α

−
+ − − +

+ − − +

+ − − +

Ψ Σ = −

= −

= − +

 

So the grund state electronic configuration of oxygen gives three terms namely,  
3

g
−Σ , 1

g∆  and 1
g
+Σ .  

 

For energy ordering, we will use the Hund’s rule. 

Hund’s rules are applied to determine the energy ordering of terms arising from the 

ground state electron configuration of a molecule: 

1. The term with the highest spin multiplicity, 2S + 1, is lowest in energy. This stems 

from the electron spin correlation: electrons with parallel spins have a tendency to spend 

more time further apart, on average, than those with paired spins. 

2. For terms of the same multiplicity, the term with the largest orbital angular 

momentum, given by Λ, is lowest in energy.  

According to Hund’s rule, the terms arising from the ground state of O2 lie in the order 
3

g
−Σ < 1

g∆ , <1
g
+Σ . 

 

For Be2  molecule, 

Atomic electronic configuaration : 2 21 2s s  

Molecular electronic configuration: 2 2 2 21 1 2 2g u g us s s sσ σ σ σ  

Bond order = 0: no bond formation: molecule is not formed with Be2. 

 

 

 

 

 



Page-12 

The electric dipole selection rules for the electronic transitions for linear molecules can 

be determined from the following 

1. Total angular momentum selection rule: 

The total angular momentum change i.e ∆Λ = 0, ± 1. That means 

, ,Σ→Σ Π→Π ∆→∆ will be allowed because ∆Λ = 0. Similarly, 

, , ,Σ→Π Π→∆ Π→Σ ∆→Π  will be allowed because ∆Λ = ±1. 

2. Since we are taking electric dipole transitions, the spin should be conserved. So 

the spin selection rule is 0S∆ = . Please note that this is true in the absence of 

spin orbit mixing i.e. spin orbit coupling.  

3. The selection rules for the plane of reflection symmetry, + +Σ → Σ and − −Σ → Σ  

4. Since the electric dipole transition operator changes parity by one in the 

wavefunction, the transition selection rules for the parity are g u→  and u g→ . 
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Total angular momentum of the electrons: Spin-orbit coupling 

The total electronic angular momentum about the inter-nuclear axis, denoted by Ω, is 

determined by adding Λ and MS, as we have done it in case of atom. So the total quantum 

number of the resultant angular momentum about inter-nuclear axis is 

    sMΩ = Λ +  

For example, if the electronic term of a molecule is 2Π , then S = 1/2 and Λ = ±1. Then 

the projection of spin along the inter-nuclear axis MS = ±1/2. So the total angular 

momentum is 

    

1 31
2 2
1 11
2 2
1 11
2 2
1 31
2 2

Ω = + + =

Ω = + − =

Ω = − + = −

Ω = − − = −

 

Thus, the term 2Π  splits into two multiplets i.e. spin-orbit levels 3
2Ω = ±  and 

1
2Ω = ± . Both these levels are degenerate. The symbol for these multiplets are 2

3
2

Π  

and 2
1

2
Π  
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Recap 

 

In this lecture we have learnt that because of the strong inter-nuclear force, the individual 

quantum numbers of the electrons in a molecule do not remain good quantum numbers, 

instead the projections along the inter-nuclear axis need to be considered. 

 

We have also learnt the procedure for determining the terms of the molecule from the 

electronic configuration.  

 

As in case of atom, in the molecule also the spin orbit interaction takes place and the total 

quantum number of the electrons arise from their projection along the inter-nuclear axis. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


