
Lecture – 6 

Title: Radiative transitions and spectral broadening 

 

Objectives 

The spectral lines emitted by atomic vapors at moderate temperature and pressure show the 

wavelength spread around the central frequency. This is known as width of the spectral lines. 

 

In this lecture at first we will understand the origin of radiative transitions. 
 

We will establish the relations between Einstein coefficients B12, B21 and A21 

 

We will discuss the different mechanism for the broadening of the spectral lines emitted by the 

atomic source. 

 

We will find out the reasons for these broadening. 
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Radiative transitions and spectral broadening: 

 We now know that, Bohr’s theory described that the emission of radiation from atoms 

was from the higher energy state to lower energy state of atom. 

 This is known as “quantum jump” 

 Bohr tried to describe it through the correspondence principle 

According to Bohr’s theory, 
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Equation – 6.3 

However, Bohr’s theory fails to describe the mechanism of transitions between the two 

stationary states. It also does not provide rational explanation for deriving the intensity and 

polarization of the emitted spectral lines. 

 

 



Page-2 

Einstein transition probabilities: 

The first major step to understand the transitions between two stationary states and the 

corresponding radiation was taken by Einstein. 

As shown in Figure – 6.1, let us assume that E1 and  E2 are the stationary energy levels of an 

atomic system. Let us consider that this system is exposed to a radiation hν. 

 

 

 

 

 

 

 

  

Figure – 6.1 

 

Process 1: If an atom absorbs a photon of energy 2 1E E h  , it is excited from the lower 

energy level E1 to the higher energy level E2. The process is called induced absorption.  The 

probability per second that the atom will absorb the photon, 12dp

dt
 

This is proportional to the number of photons of energy hν per unit volume = the spectral density 

of the radiation field ( )   

So, 12
12 ( )

dp
B

dt
  ,   B12 = Einstein coefficient of induced absorption. 

Equation – 6.4 
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Process 2: The radiation field can induce the atoms to make a transition from excited states E2 to 

lower energy state E1.  

        Since the system decreases the energy, the extra energy will be released as the emission of a 

photon of energy hν. This process is known as induced emission or stimulated emission. 

                      The induced photon of hν will have the same nature as the photon caused this 

emission.  The probability 12dp

dt
 that one atom emits one induced photon per second is  

                                                                      

                   21
21 ( )

dp
B

dt
                                              

Equation – 6.5 

B21 = Einstein coefficient of induced emission. 

 

Process 3: An excited atom in the excited state E2 can spontaneously jump into the lower energy 

states E1 by emitting a photon of energy 2 1E E h   

Note: Spontaneous radiation can be emitted in any arbitrary direction. The probability per 

second depends on the nature of the stationary energy state and independent of the external field. 

So,                21
21

spontdp
A

dt
                                       

Equation – 6.6 

A21 = Einstein coefficient of spontaneous emission and also known as spontaneous transition 

probability. 
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Relation between B12, B21 and A21 

Let us assume that the system is having N number of atoms and distributed in different energy 

levels Ei such that 

iN N  

At thermal equilibrium of temperature (T), according to Boltzmann distribution, 
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Equation – 6.7 

Where ig  is the degeneracy of level Ei. 

In a stationary field, 

       The number of photons absorbed per unit volume per second = the emission state 
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Equation – 6.8 

The radiation density given by plank’s law, 
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Equation – 6.9 



Equating we get,  
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Equation – 6.10 

It implies that with the equal weights 2 1g g , the probability of induced emission is equal to that 

of induced absorption. 

We also get 
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Equation – 6.11 

This provides the number of modes per unit volume and unit frequency interval
3
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This means that the ratio of the induced to the spontaneous emission rate in an arbitrary mode in 

equal to the number of photons in this mode. 
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Relation between lifetime and spontaneous transition probability 

An excited atom in the excited state E2 can spontaneously jump into the lower energy states E1 

by emitting a photon of energy 2 1E E h   

So,       21
21

spontdp
A

dt
  

 

When there are several pathways then 

i ik

k

A A  

The population of the excited state will decrease. 

So i i idN A N dt   

We get ( ) (0) iAt

i iN t N e


  

Where (0)iN  is the population density at t = 0 

 

 

The population (0)iN  will be (0) /iN e after 

time 1
i

iA
   as shown in Figure – 6.2. This i  

represents the mean spontaneous lifetime of the 

level Ei.  

 

  Figure – 6.2 

 

 

 

 

E0 

Ei 

E2 

E1 

Ai0 

Ai2 

Ai1 

Ni 

Ni(0) 

Ni(0)/e 

t  



Page-6 

Semiclassical approach of radiative transitions:  

In this approach, we consider the radiation as classical electromagnetic wave 

0 ( )E E Cos t kz   

Equation – 6.12 

On the other hand, we treat the atom quantum mechanically. That means, the atoms absorb or 

emit radiation when they jump between the two quantized states. 

Since the dimension of the atom is much smaller (~0.5 nm) than the wavelength of light (~500 

nm), we take 
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Equation – 6.13 

In the dipole approximation, the interaction energy 0. ( )V p E pE Cos t  where the dipole 

p er   

The general solution ( , )r t of the time dependent Schrodinger Equation  
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Equation – 6.14 

Can be expressed as /
( , ) ( ) ( ) miE t

m m

m
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Equation – 6.15 

Where ( )m r  is the eigen function of the time independent Schrodinger equation 

( ) ( )m m mH r E r   

Equation – 6.16 
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For two level system as shown in Figure – 6.3, / /
( , ) ( ) ( ) ( ) ( )a biE t iE t

a br t a t r e b t r e  
    

Equation – 6.17 

Where a(t) and b(t) are the time dependent probability amplitude of the states a and b and  

2 2
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Substituting in the Schrodinger equation, we get 
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Figure – 6.3 

Integrating over the space we get 
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                     Equation – 6.18 b 

Where * *

a aab b bV V d eE r d          

The dipole matrix element *

aab bD e r d      

Since r has odd parity, we get 0ab baD D    and *

aab ba bD D e r d       

This depends on the stationary state wavefunctions ( )a r and ( )b r and need to calculate for 

understanding the transitions between the two states. 

Intensity of the transition 
2
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Widths and Profiles of Spectral lines 

As shown in Figure – 6.4, the spectral lines observed from atomic vapors are never strictly 

monochromatic.  

Even with very high sensitive instrument, the observed lines show a wavelength spread around 

the line center.  

This is known as width of the spectral lines. 

Width of the spectral lines 

Central frequency 0 ( ) /a bE E     corresponding to a transition  

The line profile ( )I   around 0 is known as line profile 

1  and 2 where the intensity is the half of the maximum 

intensity ( 0 / 2I ) 

2 1     is known as the Full Width at Half Maximum 

(FWHM) 

Equation – 6.19 
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          Equation – 6.20 

The relative half width 
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Equation – 6.21 
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Mainly there are two reasons for the broadening of the spectral lines 

(a) Width caused by the atomic source 

(b) Width arises due to the instrumental limitations 

(a) There are basic three reasons for the broadening caused by the atomic source 

1. Natural line broadening 

2. Doppler line broadening 

3. Pressure / Collisional line broadening 

Depending on the effect on the individual atoms, there are two types of broadening. 

If all the atoms are experiencing the same type of effect, then the broadening caused by this is 

known as Homogeneous broadening. 

On the other hand, if individual atoms are experiencing different effect then this is known as 

inhomogeneous broadening. 
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1. Natural line broadening 

An excited atom can emit the radiation spontaneously. This phenomenon can be treated 

classically as damped oscillator discussed in the previous lecture. 

The intensity profile  
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Equation – 6.22 

Where I0 is the maximum intensity and 2  . This line profile is known as Lorentzian profile 

and can be written as  
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Equation – 6.23 

In this, full width half maximum (FWHM) =    or 
2




  

Equation – 6.24 

This also can be understood from the Heisenberg Uncertainty Principle 

.
2

hE


   where  is the lifetime and E is the uncertainty in energy. So, when  is small, 

E  is large. 

This broadening is known as natural linewidth of the spectral line for the excited state whose 

lifetime is finite. The broadening of the spectral line can not be smaller than this E even a high 

resolution instrument is used to measure it. This type of bradening is Homogeneous broadening. 
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1
Natural Width

Life Time of Excited States
  

Equation – 6.25 

At high pressure, due to collisions life of the excited state is decreased and the broadening occurs. 
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Equation – 6.26 

If collision occurs it looses some excitation energy and for that if it  decreases then the natural width 

increased. 

For example: If the lifetime of a particular excited state is 10
-9

 sec then the energy broadening from 

Heisenberg uncertainty principle  
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2.  Doppler line broadening 

Atoms emitting electromagnetic radiation are not stationary (gas). For an observer in the laboratory frame 

of reference, the emission must be considered as coming from a source in motion, so necessary to take 

Dopper effect.  

Speed V  of atom is small compared to c , so it is possible to use classical expression for the Doppler 

effect. 

 Let   be the angle between observation direction & velocity vector, the change of frequency   

between the exact frequency 0  and the frequency   seen by the observer, 
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xV  is the component in the direction of the observer. If we assume that the temperature of the gaseous 

source of light is uniform, the distribution of speeds of the atoms is a Maxwell distribution. So the 

number of atoms whose velocity xV  is between xV  and x xV dV  

  .x xdN N f V dV N Total no of Atoms   

 xf V  is the probability density for the component xv  
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Equation – 6.28 

M   molecular weight, R  perfect gas constant 

Now,    0

0 0

So,x x

d
V c dV c

  

 


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Equation – 6.29 
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Figure – 6.5 
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Let P d   is the power emitted in the band frequencies between   and d   is proportional to the 

number of atoms between velocity xV  and x xV dV , if proportionality constant is K , 
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Equation – 6.30 

This profile as given in Equation – 6.30 & as shown in 

Figure – 6.6 is the Gaussian line profile. 

 

2 1D     , the width at half height of the curve. 
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Figure – 6.6 
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So the Doppler width is much greater than the Natural line width. Doppler broadening is inhomogeneous 

broadening.
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3. Pressure / Collisional line broadening 

For a gas at a given pressure radiating atoms interact with the neighboring atoms via collision 

and this affect the emission line width strongly. 

For example, an atom A with energy levels E1 and E2 approaches to another atom B. Because of 

the interaction, the energy levels get perturbed and the shift of these energy levels occur. Due to 

this the line profile gets broadened. This broadening depends on the collision diameter. 

FWHM = 
0

1


 where 0 is the mean flight time between two successive collision. 
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(b) Width arises due to the instrumental limitations 

The basic set up for the emission experiment is  

 

 

 

 

 

 

Figure – 6.7 

The basic configuration of a monochromator 

 

 

 

 

 

 

 

Linear Dispersion = 2( , )
dx dn

f f
d d 

  

Equation – 6.33 

Slit width = x1 

Equation – 6.34 

Image width = x1(f2/f1) 

Equation – 6.35 
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Figure – 6.8 
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SSppeeccttrraall  RReessoollvviinngg  PPoowweerr  

 

 

 

Equation – 6.36 

Rayleigh criterion 

0.8 of Imax 

 

x2 = f2(/a) 

Equation – 6.37 

Where a is the aperture 

And the resolving power =



  Equation – 6.38  
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Figure – 6.9 
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The Grating monochromator. 

 

Figure – 6.10 

 

(i) Light gathering power / numerical aperture / speed of monochromator 

Acceptance Angle = d/f1  

(ii) The spectral transmission of the optical systems T() or R() 

(iii) Spectral resolving power = / 

     minimum  separation  of two spectral lines that can be resolved 

(iv) Free Spectral range : wavelength range  in which the wavelength  can be unambiguously 

determined from x()  = 

If N is the no. of grooves per inch and m is the order then mN



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
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Recap 

 

In this lecture we understood the classical and quantum description of the radiative transitions. 
We established the relations between Einstein coefficients B12, B21 and A21 

 

We came to know that the minimum spectral line width is governed by the lifetime of the excited 

state. 

 

Now we know that the origin of homogeneous broadening and inhomogeneous broadening. 

 

We had briefly gone through the monochromator which is an essential instrument for 

spectroscopy experiment. 

 

In this module, we prepare ourselves the basic understanding of quantum mechanics through the 

development of concept of atom. In the next module, we will start applying these concepts to 

understand various observations of atomic spectroscopy.  

 


