
Lecture 28 

 

Title: Diatomic Molecule : Vibrational and Rotational spectra 
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In this lecture we will understand the molecular vibrational and rotational spectra of 

diatomic molecule 

 

We will start with the Hamiltonian for the diatomic molecule that depends on the nuclear 

and electronic coordinate. 

 

Then we will use the Born-Oppenheimer approximation, to separate the nuclear and 

electronic wavefunctions 

 

We will derive the eigen energy values to understand the rotational and vibrational 

spectra of the ground electronic state of diatomic molecules. 

 

At the end we will discuss the rotational and vibrational spectra of some diatomic 

molecules. 
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For a diatomic molecule A - B  with n electrons as shown in figure-28.1, the 

Schrodringer equation can be written as  

 
2 2

2 2

12 2

n

i
ie

V E
mµ =

 
− ∇ − ∇ + Ψ = Ψ 
 

∑ 

………………………………….(28.1) 

 

Where, Ψ is the total electronic and nuclear wavefunction & E is the total energy. 

 

1st term: K.E. of the relative motion of the nuclei with reduced mass A B

A B

m m
m mµ = +  

 

2nd term: K.E. of all electrons. 

 

And the potential, 
2 2 22

1 1 1

n n n
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ee en nn

Z e Z e Z Z eeV
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∑ ∑ ∑  

 

The molecular wavefunction, Ψ depends on both electron & nuclear coordinates, 

( )1 1 1 2 2 2, , , , , ,..... , , , , ,n n nx y z x y z x y z X Y ZΨ = Ψ ( ),r R= Ψ  

w.r.t. origin say nucleus A  

Since the wavefunction depends on both electron and nucleus coordinates, it is difficult to 

solve this problem even for a simple molecule. We would like to separate electronic and 

nuclear motion.  

 

Because of the different masses of the electrons and nuclei, we can consider the nuclei to 

be stationary to solve the electronic problem (Born-Oppenheimer approximation). 
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Figure-28.1 
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The essence of the Born-Oppenheimer approximation is to decompose nuclear and 

electronic motions based on the large disparity of the masses of nuclei and mass of 

electron.  

If we need to solve the Schrodringer equation given in equation-28.1 using Born-

Oppenheimer approximation, we have to follow five steps. 

 

Step-1 

Let us assume that the nuclei are clamped in fixed positions. This approximation is 

almost close to the reality because the electronic motion is so fast that it will see the 

nuclear motions almost stationary. This will eliminate the nuclear kinetic energy term in 

the Hamiltonian in equation 28.1 

 

Step-2 

Under the assumption in step-1, we can write equation 28.1 as 

 

( ) ( ) ( ) ( )
2

2

1
, , ,

2

n

i e
i

V r R r R E R r R
m

φ φ
=

 
− ∇ + = 
 

∑

……………………………..(28.2) 

Here nuclear K.E. is zero, and R appears only as a parameter and ( ),r Rφ is the electronic 

wavefunction. 

We can follow the procedure to fix 1R R=  

Solve  ( ) ( ) ( ) ( )
2

2
1 1 1 1, , ,

2 i eV r R r R E R r R
m

φ φ
 
− ∇ + = 
 

∑  

 

Then, fix 2R R=  

Solve  ( ) ( ) ( ) ( )
2

2
2 2 2 2, , ,

2 i eV r R r R E R r R
m

φ φ
 
− ∇ + = 
 

∑  

and do it for the entire range of R . 
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Step-3 

Having obtained the electronic wavefunction ( ),r Rφ , and ( )E R  we can write the total 

molecular wavefunction, 

 

( ) ( ) ( ), ,r R r R Rφ χΨ =          ………………………………..(28.3) 

where, ( )Rχ ⇒Nuclear wavefunction 

 

Step-4 

Now we can substitute equation 28.3 in equation 28.1 and we get, 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
2 2

2 2
2 2

, ,
2 2

, , ,
2 2

,

i
ie

i
ie

V r R r R R
m

r R R V r R r R R
m

E r R R

φ χ
µ

φ χ φ χ
µ

φ χ

 
− ∇ − ∇ + 
 

  
= − ∇ + − ∇ +  
   

=

∑

∑

 

   

 

Step-5 

Since, 2
i∇ operates only on ( ),r Rφ . We can write, 

( ) ( ) ( ) ( ) ( ) ( )
2

2 , ,
2 er R R E R R E r R Rφ χ χ φ χ
µ

 
= − ∇ + = 
 

  

Now, 2∇  is the difference w.r.t. R , so can operate on both ( ),r Rφ and ( )Rχ . 

 

As a concequence, the electronic wavefunction  is relatively insensitive to changes in the 

nuclear positions and momenta, and is therefore capable of adjusting itself quasi-

statically to the nuclear motion. This is known as the adiabatic approximation. 

Assumption:

 

 Electronic wavefunction varies slowly with the inter-nuclear distance, 
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So we get, 

( ) ( ) ( ) ( )2 2, ,r R R r R Rφ χ φ χ∇ ∇  

So, ( ) ( ) ( )
2

2

2 eE R R E Rχ χ
µ

 
− ∇ + = 
 



 
……………………………(28.4) 

 

This is the Schrödinger equation of nuclear motion of diatomic molecule. It is 

independent of electronic motion whose effect appears only through ( )eE R , which is 

electronic energy as a function of R and act as a potential energy for the motion of the 

nuclei. 

This is the central approximation of the Born-Oppenheimer approach. Its justification 

stems from the fact that nuclear velocities are small compared to electronic velocities. 

Now we are ready to solve the equation-28.4. This is simple as we have solved it for 

hydrogen atom. 

 

Let us introduce spherical polar coordinate ( ), ,R θ φ of one nucleus with respect to other 

as origin in equation 28.4, and we get 

( ) ( ) ( )
2 2

2
2 2 2

1 1sin , , , ,
2 sin sin eR E R R E R

R R R
θ χ θ φ χ θ φ

µ θ θ θ θ φ
  ∂ ∂ ∂ ∂ ∂    − + + + =     ∂ ∂ ∂ ∂ ∂      



 

Now, ( ) ( ) ( ), , ,R R Sχ θ φ θ φ= ℜ        ……………………………(28.5) 
 

Where, ( ) ( ), ,JMS Sθ φ θ φ=  are specified by the molecular total angular momentum 

quantum number J  and Z - component M , analogous to H - atom quantum no. & m . 
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The angular part, 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

22 2

2 2 2 2

2
2 2

2 2

2 2

11 1sin , ,
2 sin sin 2

1 1sin , 1 ,
sin sin

, 1 ,

JM JM

JM JM

JM JM

J J
S S

R R

S J J S

M S J J S

θ θ φ θ φ
µ θ θ θ θ φ µ

θ θ φ θ φ
θ θ θ θ φ

θ φ θ φ

+ ∂ ∂ ∂
− + = ∂ ∂ ∂ 

 ∂ ∂ ∂
⇒ − + = + ∂ ∂ ∂ 
⇒ = +





 

 ……(28.6) 

This is nothing but the rotational motion as shown in figure-28.2 

Putting it in the equation, 

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2 2
2

2 2 2

2
2

2

,

1 1sin ,
2 sin sin

1 ,
2

,

JM

JM

J JM

R E R R S
R R R

R J J E R R S
R R R

E R Sυ

θ θ φ
µ θ θ θ θ φ

θ φ
µ

θ φ

  ∂ ∂ ∂ ∂ ∂ − + + + ℜ  ∂ ∂ ∂ ∂ ∂   
 ∂ ∂ = − − + + ℜ  ∂ ∂  

= ℜ





 

where, υ ⇒ Vibrational quantum number 

J ⇒Rotational quantum number 

 

( ) ( ) ( ) ( ) ( )
22

2
,2 2

1
2 2 R

J J
R R E R R E R

R R R R υµ µ
+∂ ∂ − + ℜ + ℜ = ℜ ∂ ∂ 





 
         ……….(28.7) 

This depends only on inter-nuclear distance R and is called the radial equation for the 

nuclear motion. 

( )Rℜ ⇒Vibrational Wavefunction 

( ),JMS θ φ ⇒Rotational Wavefunction 

 

 

 

 

 

 

R 

θ,φ 

Vibration 

Rotation 

Figure-28.2 
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Rotational Spectra of Diatomic Molecule 

Simple model is rigid rotor i.e. R is fixed as eR at equilibrium. In classical mechanics, 

the magnitude of angular momentum J  of such a molecule rotating about center of mass 

with angular velocity ω . 
2

e eJ R Iµ υ ω= =  

From 28.6, rotational energy: 

( )
2

2 1
2JE J J

Rµ
= +
           putting, 

2
e

e e

R R
R Iµ

=

=
 

( )
2

1
2J

e

E J J
I

= +
  This is in energy unit joule. We will convert it to cm-1.  

( ) ( )

( )

2
1

2 21
2 8

1

J

e e

e

E hF J cm J J
hc hcI c R

B J J
π µ

−= = + =

= +



   

……………..(28.8) 

Energy Levels as shown in figure 28.3 

( )
( )
( )
( )

( )

0 ; 0 0

1 ; 0 2
cos

2 ; 0 6

3 ; 0 12

e M iM
JM J

e

e

J F

J F B
S P e

J F B

J F B

φθ

= = 


= =  =
= = 

= = 

 

 

 

 

 

 

 

 

 

 
 

J = 0 
J = 1 

J = 2 

J = 3 

F(J) = 0 

F(J) = 2Be 

F(J) = 6Be 

F(J) = 12Be 

Rotational energy levels 

Figure-28.3 
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Now we will derive the selection rule for the transitions. 

We know that we have to calculate the electric dipole transition moment integrals to 

derive the selection rule. We take elµ as dipole moment of the molecule. So the transition 

moment integral R is  

JM e J MR S S dµ τ′ ′= ∫   
The components of the dipole moment elµ  

( )
( )
( )

0

0

0

sin cos

sin sin sin

cos

e x

e y

e z

d d d

µ µ θ φ

µ µ θ φ τ θ θ φ

µ µ θ

=

= =

=







 

2

0 0 0
cos sinM M iM iM

Z J JR P P d e e d

M M

π π φ φµ θ θ θ φ′ ′−
′=

⇓
′=

∫ ∫
 

( )

1 2

1 1

0 1 1

1 2

1
cos cos

2 1 2 1

1
2 sin sin

2 1 2 1

sin 0

1 1 ; 0
1 1

M M M
J J J

M MM M
Z J J J J

M M
J J

J M J M
P P P

J J

J M J M
R P P d P P d

J J

P P d if J J

J J J M
J J

θ θ

πµ θ θ θ θ

θ θ

− +

′
′ ′− +

 +   − + 
= +   + +   

 + − + 
= + + + 

= ≠

′− = ∆ = ± ∆ = 
′+ = = ± 

∫ ∫

∫

Spherical Harmonics 

……….(28.9)
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Using the selection rule derived in equation 28.9, the transitions are shown in the 

following figure-28.4. 

 

 

 

 

 

 

 

 

 

 

The transition energies are 

( ) ( )( )
( ) ( )
( ) ( ) ( )

( )[ ]
( )

1
1 1 2

1

1

1 2

2 1

e

e

e

e

J
F J B J J

F J B J J

J F J F J

B J J J

B J

ν

= ±

+ = + +

= +

= + −

= + + −

= +
 

 
Where J = 0, 1, 2, ….. 
 
 
The expected rotational spectrum is shown in figure-28.5 
 

So we see that under non-rigid approximation, the transition are equidistant with value 

2Be and depends on the value of Be. 

 

 

J = 0 
J = 1 

J = 2 

J = 3 

F(J) = 0 

F(J) = 2Be 

F(J) = 6Be 

F(J) = 12Be 

Rotational energy levels 

Figure-28.4 

2Be 4Be 6Be 8Be 

2Be 2Be 2Be 2Be 

1cmυ −  

Intensity 

Figure-28.5 
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1

2 2
1

2 2

2 2

2 21.18

10.59
2 8

8

e

e
e e

e

B cm

hB cm
I hc R hc

h
cR

π µ

π µ

−

−

=

= = =

=



Example: 

Rotational Spectrum of  HCl molecule shown in figure-28.6 
 

 

 

24

24

1.0079
35.453

1 1.66 10
1.63 10

H amu
Cl amu

amu gm
gmµ

−

−

=
=

= ×

= ×  
 

27
2

2 24 10

16

8

6.6256 10 . sec. .
8 3.14 1.63 10 10.59 3 10 sec
1.622 10

1.27 10 1.27 A

e

o

e

erg cmR cmgm

cm

R cm

−

−

−

−

×
=

× × × × × ×

= ×

= × =

 

So the equilibrium bond length of the HCl molecule is 1.27Å.  

Thus from the rotational spectrum of a molecule, we can derive the bond length and 

structure. 

Note: For molecules without permanent dipole moments such as 2H , the electric dipole 

pure rotation transition probability is zero. In that system the moment of inertia & 

internucler distance can be found out from analysis of rotational structure of electronic 

absorption bands or rotational Raman Spectra. We will discuss these two spectra in later. 

21.18 42.36 63.54 84.72 

2Be 2Be 2Be 2Be 

1cmυ −  

Intensity 

Figure-28.6 
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( ) ( ) ( ) ( )
2

2
,22 ROT e J

d dR E R E R R E R
R dR dR υµ

ℜ − + ℜ + ℜ = ℜ 
 



Vibrational Spectra of Diatomic Molecule 

Radial equation 28.7, 

 

Where ( ) ( )2 2

2 2

1 1
2 2 ROT

e

J J J J
E

R Rµ µ
+ +

=
 

  

The total energy, , J ROT vib nuclE E E Eυ = + =  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

2

2
2

2

2

2

ROT e ROT vib

e vib

d dR E R E R R E E R
R dR dR

d dR E R R E R
R dR dR

µ

µ

ℜ − + ℜ + ℜ = + ℜ 
 

ℜ ⇒ − + ℜ = ℜ 
 





 

Putting ( ) ( )1R R
R
ξℜ =  

( ) ( ) ( ) ( )
2 2

22 vib
d R E R R E R

dR
ξ ξ ξ

µ
− + =
  

( )eE R is the electronic energy as shown in the following figure-28.7 which behaves as 

the potential energy of the nuclear motion. 

 

 

 

 

 
 

E(R)       
Bonding  

Rab 

Energy 

Figure-28.7 
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Expand this function in power series about eR R= , 

( ) ( ) ( ) ( )
2

2
2

1 .....
2

e e

e e e e
R R

dE d EE R E R R R R R
dR dR

  = + − + − +  
   

 

Choose zero of the energy at ( ) 0eE R =  minimum because this point is minimum 

0
eR

dE
dR

  = 
 

. 

So, ( ) ( ) ( )
2 3

2 3
2 3

1 1 .....
2 3!

e e

e e e
R R

d E d EE R R R R R
dR dR

   
= − + − +   

   
 

 

Putting eR R ρ− =  

( ) 21 .....
2 eE Kρ ρ= +  

Where 
2

2

e

e
R

d EK
dR

 
=  
 

 

 

 

 

If neglect the higher power 

( ) ( ) ( )
2 2

2
2

1
2 2 e vib

d K E
d

ξ ρ ρ ξ ρ ξ ρ
µ ρ

− + =
  

Harmonic oscillator equation with potential as shown in figure-28.8, so the energy value 

1 vibrational quantum number 0,1,2,3,.....
2vib eE Eυ υ ω υ = = + = = 

 
  

eν ⇒Classical frequency 
1

21
2

eK
π µ
 

=  
 

 

 

 

E(R)       
Bonding  

Rab 

Energy 

Re 

Harmonic 
potential 

Figure-28.8 



Page-11 

( )
21

2

24

x

ose

N e H x

h

β

υ υ υξ β

π µνβ

−
=

=

Wave Function 

 

 where, ( )H xυ β ⇒Hermite polynomial 

The wavefunctions are shown in the figure-28.9 with 

dashed curves. The solid curves are the 2
υξ  

Dipole moment  

0 1xµ µ µ= +  

 where, 0µ ⇒Permanent 

  1µ ⇒ Induced due to vibration 

Selection rule : 
* *

0 1

;0 1
1

xR dx x dxυ υ υ υµ ξ ξ µ ξ ξ

υ υ υ υ
υ υ

′ ′′ ′ ′′= +

⇑ ⇓ ⇓
′ ′′ ′ ′′≠ = +

′ ′′= −

∫ ∫
 

( )

( )

( ) ( )

10
2
31
2

1 0

e

e

e

E

E

E E

ω

ω

ω

=

=

∴ − =







 

So only one transition is predicted under 

harmonic oscillator approximation Figure-

28.9). However, many transitions are seen in 

the infra red vibrational spectra of diatomic 

molecule. So harmonic approximation is note the good approximation. 

Note: Dipole moment of molecule with equal nucleus is always zero. So for 2 2N ,O ,.....  

no infrared spectrum. 

 

Internuclear distance 
Re 

0υ =  

1υ =  

0υ =  

1υ =  

2υ =  

3υ =  

1
2 eω  

3
2 eω  

5
2 eω  

7
2 eω  

eω  

Figure-28.9 
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( ) ( ) ( )2 3 .....e e eE R f r r g r r= − − − +

Anharmonic Oscillator 

Introducing anharmonicity 

    Condition: g f     

Morse Potential as shown in the figure-28.10 : ( ) ( )( )2

1 er r
eE R D e β− −= −  

Energy levels: 
2 31 1 1 .....

2 2 2e e e e eE x yυ ω υ ω υ ω υ     = + − + + + +     
     

    

Convert in 1cm−  

( )
2 31 1 1

2 2 2e e e e eG x yυ ω υ ω υ ω υ     = + − + + +     
     

 

where , ,e e e e ex yω ω ω  in terms of 1cm− . 

υ ⇒ Vibrational quantum number 

Here e e e e ex yω ω ω> >  

Selection rule, 

 1, 2, 3υ∆ =± ± ±  

Zero point energy: ( ) 1 1 10
2 4 8e e e e eG x yω ω ω= − +  

If the energy referred to the lowest level, 

( ) ( ) ( )

( )

0

2 2

2 3

2 3
0 0 0 0 0

0

1 1 1 1 1 1..... .....
2 2 2 2 4 8

3 3 ..... .....
4 2

e e e e e e e e e e

e e e e e e e e e e e

G G G

x y x y

x y x y y

x y

υ υ

ω υ ω υ ω υ ω ω ω

ω ω ω υ ω ω υ ω υ

ω υ ω υ ω υ

= −

         = + − + + + + − − + +        
         

   = − + − − + + +   
   

= − +

    

where,           

0

0 0

0 0

3
4

3 .....
2
.....

e e e e e

e e e e

e e

x y

x x y

y y

ω ω ω ω

ω ω ω

ω ω

= − +

= − +

= +

 

E(R)       
Bonding  

Ra

 

Energy 

Re 

Morse 
potential 

Figure-28.10 G(0) 
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Transitions between the vibrational levels 

( ) ( )
( )

0

0

0abs G G

G

ν υ

υ

= −

=
 

Thus the observed absorption gives directly the positions of the energy levels. 

HClExample: Observed Vibration Frequency of  

-1 2(cm ) Cal. Harmonic Approx.
--------------------------------------------------------------------------------------------------------------
0 0
1 2885.9 2885.9 103.7 2885.9 2885.9
2 5668.0 2782.1 103.2 566

abs G Gυ υ ∆ ∆

−
− 8.2 5771.8

3 8346.9 2678.9 102.7 8347.5 8657.7
4 10923.1 2576.2 102.8 10923.6 11543.6
5 13396.5 2473.4 13396.5 14429.5

−
−

 

 

( )
( )
( )

2
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0

0 0 0 0

.....

1 2885.9

2 2 4 5668.0

2 4 5668.0
2 2 5771.8

( ) ( ) ( )

2 103.8 51.6

G x

G x

G x

x
x

x x

υ ω υ ω υ

ω ω

ω ω

ω ω
ω ω

ω ω

= − +

= − =

= − =

− =
− =

− + −
− − − − − − − − − − − − − −

− = − ⇒ = +

 

( ) ( ) ( )
( ) ( )

0 0

2 2
0 0 0 0 0 0

0

1

1 1

G G G

x x

υ υ υ

ω υ ω υ ω υ ω υ

ω υ

∆ = + −

= + − + − +

= 2
0 0 0xω ω υ+ − 0 0 0 0 02 x xω υ ω ω υ− − − 2

0 0xω υ+

( ) ( ) ( )
( )

0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0

0 0

2

1

2 1 2
2

x x
G G G

x x x x
x

ω ω ω υ

υ υ υ

ω ω ω υ ω ω ω υ
ω

= − −

∆ = ∆ + −∆

= − − + − + +

= −

 

which is directly the measured anharmonicity. 
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Recap 

 

In this lecture we have learnt the origin of vibrational and rotational spectra. 

 

We started with the Schrodinger equation for the diatomic molecule.  

 

Then we used the Born-Oppenheimer approximation, to separate the nuclear and 

electronic wavefunctions. 

 

We derived the eigen energy values of the rotational and vibrational motions of the 

ground electronic state of diatomic molecules. 

 

At the end we have discussed the rotational and vibrational spectra of some diatomic 

molecules. 

 


