
 
Lecture 10 : Title : ALKALI SPECTRA 

 
 
Page-0 
 
In the previous lecture we have learnt the quantum mechanical treatment of hydrogen 
atom. 
 
The similar picture is not able to explain the alkali atoms, the other elements in the first 
group of periodic table. 
 
Here, we will discuss the development of the theory to explain the alkali spectra. 
 
We will also elaborate the concept behind the modification of the potential required to 
explain the observation in alkali atoms. 
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The absorption spectra of alkali vapors (Such as lithium, sodium) appear quite similar in 
many respects to the absorption spectrum of H atom. They are only displaced to a 
considerable extent, toward longer wavelengths. These spectra also consist of a series of 
lines with regularly decreasing separation and decreasing intensity.  
 
⇒ It cannot, however, be represented by a formula completely analogous to the Bohr 
formula. On the other hand, since the lines converge to a limit, we must be able to 
represent them as differences between two terms.  
Rydberg formula, 

( )2 2,3PS
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m p
ν = − =

+
 

p  is a constant, known as Quantum Defect. TPS is known as series limit. This series is 
known as Principal series.  
⇒ Other series, in addition to this, may be observed for the alkalis. They are diffuse, 
sharp and Bergmann series. 
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As an example, sodium energy levels and transitions are given in figure-10.1 
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Sodium atom energy levels and transitions 

Figure-10.1 



 
Page-2 

As a specific example, we consider the alkali metals such as lithium, sodium and 
potassium, which come from group I of the periodic table. They have one valence 
electron outside filled inner shells. They are therefore approximately one-electron 
systems, and can be understood by introducing a phenomenological number called the 
quantum defect to describe the energies.  
 
Let us consider the sodium atom. The optical spectra are determined by excitations of the 
outermost 3s electron. The energy of each (n; l) term of the valence electron is given 
by: 
 

, 2( ( ))n l
RE

n lδ
= −

−
   ……….10.1 

Where  3, ( )n lδ≥ is the quantum defect.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The quantum defect ( )lδ was introduced empirically to account for the optical spectra. In 
principle it should depend on both n and l, but it was found experimentally to depend 
mainly on l as given in the following table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

l n = 3 n = 4 n = 5 n = 6 
0 1.373 1.357 1.352 1.349 
1 0.883 0.867 0.862 0.859 
2 0.010 0.011 0.013 0.011 
3  0.000 -0.001 -0.008 

Values of quantum defect for sodium 

Nucleus +11e 

2s 
1s 

2p 

3s 

valence electron 

Sodium Atom Z = 11 
Figure-10.2 
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The dependence of the quantum defect on l can be understood with reference to the figure 
where the radial probability densities for the 3s and 3p orbitals of a hydrogenic atom with 
Z = 1 are plotted with respect to normalized radial distance.  
 
An individual electron in sodium atom experiences an electrostatic potential due to the 
Coulomb repulsion from all the other electrons in the atom. Ten out of eleven electrons 
are in closed sub-shells, which have spherically-symmetric charge clouds. The off-radial 
forces from electrons in these closed shells cancel because of the spherical symmetry. 
 
 
Hydrogen radial probability distribution (figure-10.3) is expected to be a reasonable 
approximation for the single valence electron of sodium.  
 
⇒ We see that both the 3s and 3p orbitals 
penetrate the inner shells, and that this 
penetration is much greater for the 3s 
electron.  
 
⇒ The electron will therefore see a larger 
effective nuclear charge for part of its orbit, 
and this will have the effect of reducing the 
energies. 
 
⇒The energy reduction is largest for the 3s 
electron due to its larger core penetration. 
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The effect of this penetration results in the shift of energy levels. A comparison with the 
hydrogen energy level is shown in figure-10.4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We can draw the conclusions that, 
 
⇒ Energy levels with different   have different energies. In other words   degeneracy 
removed.  
 
⇒ From the hydrogen atom energy levels, it cannot be described, because energy 
depends on “ n ” only. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hydrogen energy levels Sodium energy levels 

Figure-10.4 
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1) Non-Penetrating orbits 

Classical Explanation 
Penetrating and Non-Penetrating Orbits as shown in figure-10.5: 

The first is the case when the outer electron has a non penetrating orbit, as in the 
figure. If its accepted that the mean 
symmetry of the cloud formed by ( )1Z −  

electrons is similar, the electron experiences 
the electrostatic potential of the nuclear 
charge of Ze  and of the spherical 
distribution of charge ( )1Z − . The 

discussion presented for the hydrogen atom 
remains valid. 
 
 
 
 

2) Penetrating orbit 
On the other hand, if the orbit of the outer electron penetrates inside the core of 
the atom, the problem is much more complex, simple solution by Somerfield, is 
this, 

0

0

1 " " Large
4

1V . " " Small
4

ext

in

eV r
r
Ze Const r
r

πε

πε

=

= +
 

 

 

 

 

 

 

-e 

(Z-1)e 

Figure-10.5 

(Z-1)e 

-e 



Page 6 

 

 
Quantum Mechanical Calculation

 
Form of the potential energy, ( )
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  …………….10.2 

This form represents the potential energy requirement at large distance, 
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and at small distance, ( )
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This potential with respect to radial distance is shown in figure-10.6 
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Since this is radial dependence and we need to solve only radial equation of the 
Schrödinger equation of hydrogen atom problem 
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Now, the Hamiltonian for one electron atom,  
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The radial equation: 
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Taking  2 2
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  and substituting in equation 10.4 
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Same radial equation as in hydrogen atom, solution with * * *where 1n n p= + +  
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Note that : 
This energy expression is dependent on both n and l 

Maximum l -> small correction 
Small l -> correction term is large 
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Now we know 
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Take an example:  
Lithium : ionization potential : 143,486 or, 5.39cm eV−  
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Recap  
 
 
In this lecture, we have learnt that 
 
 
⇒ The departure in the spectra of alkali atom from hydrogen such as lithium, sodium is 
that the energies are not only dependent on n but also l.   
 
⇒ The modification of the potential of electron in such multielectronic atoms is that the 
energy correction term is large of small l values. 
 
 


