
Lecture 11 Title : 

Page-1 

Helium Atom 

In this lecture we will extend the problem to more than one electron atoms. We will start with the 
simple one such as He atom.  
 
The quantum mechanical calculations of the energy levels in different approximations are 
discussed. 
 
From the ionization energy i.e the energy required to remove one electron from Helium atom, the 
ground state energy of Helium is calculated to be -79.0eV.  
 
We use this information to check the different method approximation for calculating the Helium 
atom energy levels. 
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The emission spectra of He consists of a number of series in the visible region of the spectrum as 
well as in the near & far UV regions.  
There are twice as many line series as for the alkalis; two principal series in the visible and near 
UV, as well as two diffuse, two sharp and two fundamental series. 
This observation cannot be described by simple concept from hydrogen atom. 
 
When more than one electron is present, the Hamiltonian for an atom in free space becomes 
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ENV is the Coulomb interaction between the nucleus and the electrons. EEV  is the 

electrostatic repulsion of the free electrons, summed over all pairs i  and j  at separation ijr . This 

equation (1) does not contain spin part, we assume that such effects can be treated separately. 

Equation (1) contains terms 
2

ij

e
r  for interelectronic repulsions that are not present in the 

Hamiltonian for hydrogen like atoms.  
Because of these terms, the motion of each electron affects the motion of every other 

electrons, and the wave equation for polyelectronic atoms cannot be solved exactly.  
Various approximate methods of solution exist. Most methods start by assuming that 

complex atoms can be “built up” by feeding electrons successively into atomic orbitals (AOs). 
That is, every electron in an atom is assigned a wave function iφ , defined by a set of quantum 
numbers.  

The wave function for the whole atom is written in terms of these electron wave 
functions iφ . The best sets of wave functions iφ  are those for which the residual difference 
between the calculated energy of the whole atom and the actual energy is as small as possible. 
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Independent Particle Model : 

One-Electronic Wave Functions 
A crude method, zeroth order approximation to the iφ  is obtained by ignoring altogether 

the terms EEV  in (1), giving the Hamiltonian 
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Then, in the approximation in which electron spin is neglected, the eigen functions of this 
Hamiltonian are products of the occupied single electron orbital wave functions iφ  for the N  
electrons, 
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……….11.3

 

 
Since interactions between the electrons are ignored, each electron moves independently of the 
others in the electrostatic field of the nucleus alone. The iφ  is therefore the hydrogen like 

wavefunctions, the eigen values of Hamiltonian are the sum or the individual energies iE  for the 
electrons in hydrogen like orbitals: 
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  `  …………11.4
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Let us take the example of Helium (Z = 2) that consists of two electrons as shown in the figure-
11.1 

In this approximation,  Hamiltonian , 
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Schrödinger equation, 

So, ( ) ( )
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Here we take ( )1a rφ and ( )2b rφ are the one electron wavefunction as in hydrogen atom.  
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Two electrons “a” and “b” move independently of each other and the total energy of the system is 
simply sum of the energies of non-interacting particle. 
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The ground state energy of Helium (when both the electrons are in 1s level) 
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= + = − − = − = −  

The experimental value of the ionization energy i.e. the energy required to remove one electron 
from Helium atom = 24.63 eV 

When one electron is removed then the energy of ionized Helium ion (He+)  

= -Z2×13.6 eV =-54.4 eV 

So the ground state energy of Helium = -54.5 eV - 24.63 eV = -79.03 eV  

Thus, Atomic energies calculated in this manner are the poor approximation to the actual eigen 
values.  
However, the calculated energies and wavefunctions can be improved by introducing the 
interelectronic repulsion terms EEV  as a perturbation. 
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Considering electron repulsion: 
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   ………..11.8 

We will consider the first order perturbation theory. In this approximation, we take unperturbed 
Hamiltonian as 
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And consider the perturbed Hamilrtonian as 
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Substituting in the Schrodinger Equation 

( ) ( ) ( ) ( ) ( )0 1 2 1 2a b a bH H r r E r rφ φ φ φ′+ =  

We are interested to calculate the ground state energy. So both the electrons are in 1s level. 

So, n = 1, l = 0 and m = 0 for both the electrons. Let us take the ground state wavefuntion of the 
hydrogen atom for each electron. 
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So, 
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Evaluating,  
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According to first order perturbation theory the ground state energy of He, 
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Trial wavefunction, 

Variational Method 
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The effect of the repulsive term 
2

12

e
r , is to reduce the nuclear charge on each electron. One way 

to accommodate this is to assume hydrogen like wavefunction corresponding to effective nuclear 
charge Z ′ , which will be assumed to be the variable parameter. We assume the (trial) normalized 
wavefunction, 
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φ  is normalized, so we have to minimize the integral 
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Since ( )1 2,r rΦ  is the solution of 
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1st integration: 
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Substituting in equation-11.9,  
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So, the ground state energy, 
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Other trial function yield values within 0.01%  of the observed one. 
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Recap  

What we observed is that the perturbation method fails to calculate the ground state energy of 
Helium. The basic difficulty in solving the Schrödinger equation with this Hamiltonian stems 

from the fact that the 
2

12

e
r  is too large an effect to be treated as a perturbation. On the other 

hand the variational principle is an effective approximation and is able to produce the 
experimental observation. 

Now the question is that,  

“In this Helium problem can we use perturbation method?.”  

The answer is : Yes, but we have to use “Central Field Approximation. In the next lecture, we 
elaborate the central field approximation.  

 

 

 

 

 


