Lecture 8 -Title: Quantum Mechanical treatment of One-electron atoms : radial part
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In the previous lecture, we have solved the angular part of the Hamiltonian.

In this lecture, we will take up the radial part of the Hamiltonian.

We will also determine the total wavefunction of the Hydrogen atom and will calculate the
energy levels.



Page-2

Now, let us solve the radial part (Eqn. 8.8)

2 /(0+1
izi(rzd—R}L 2—/; B+ 2 |- ( ;L) R=0
redr dr h Are,r r

Let us first evaluate the ground state (lowest energy) of hydrogen atom.

Assuming the ground state and taking /=0, we get

2
%i(rzd—R]+2—’? E+ ze R=0
redr dr) h Ars,¥

2 2
:i{rzd R+2rd—R}L2—’u[E+ ze jR:O

r dr? dr | #° Arg,r
2 2
:>d|§+gd—R+2—él E+ ze R=0
dr® rdr #n Areyr

..... Eqgn. (21)

_r
Let us try a solution R(r)= Ae /o , where A and a, are constants.

R(r)__A 4. d"R_A 7%
2

dr a, Cdrt Al

_r -r 2 -r
éeA—EeAu# E+ ze eA:O
a ra, h dre,r

2
_ iz+2,u2E N Z,uZe2 2 £=0
a, nh Areh” @, )r
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To satisfy this equation for any value of r,

2uze? 2 0
dre i’ a,

2 2
—a - Are, " _ Amesh [for Z =1]

2 2

uze e

and

Let us calculate the values of a, and Ground State Energy E,

— me mp
m, +m,
~9.109x10"* Kg
where m, =9.109x10"* Kg
m, =1.672x107% Kg

and  m,>m,

e=1.6x10" Coul

! _gossxigont-m?/
471'50 Coul

h=1.055%x10"*J —sec = 0.6582x107 eV —sec

(1.055x10°* )2
a. =
" 8.988x10° %(16x107)"x9.109x10"

3 1.055x1.055
8.988x1.6%x1.6x9.109

—0.00531x10° m = 0.529x10"° m = 0.529 A

—34-34+19+19+31-9

which is same as Bohr Radius.

Eqgn. (22)

Eqgn. (23)
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Substituting value of a, in Eqn. (8.22),

hZ

E=- 5
2ua,

i (1.055x10°%)’ | 1.113x10°%

© 2x9.109x10 % x(0529x107°)°  5.098x10°

 0.2183x107

1610 =0.1364x10" =-13.6eV
6%

This is the lowest energy state of Hydrogen obtained also from Bohr’s calculation.

Now let us calculate the general radial equation,

2 /(0+1
izi(rzd—R}L 2—/21 B+ |- ( ;L) R=0
redr dr h Are,r r

The radial derivatives simplify if one factor out from function R, takin
. g

r(r)= 1)
r
du
&R ra—u
dr  r?

Eqgn. (24)
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Substituting,

Lo faale, 20 ) i

2

rodr? ra Arg,r r r
2 2
:d u(zr)+{2—él[E+ ze j—g(gjl)}u(r):o
dr h 4re,r r

This is the Schrddinger equation for the particle in one dimension, restricted to r > 0.

Rearranging

2 2
d u(zr)+ Zlqu_ B ZuZe2 +f(€:—1) U(I’)ZO
dr h Ame,h°r r

Veffec!ive

This is a kind of potential ( for ¢ # 0) with positive infinity at the origin, then negative potential
and going to zero at large distances. So the minimum of the potential is at some positive r .

For bound states of proton-electron system, E will be a negative quantity.



Page-6

Now, we will simplify by introducing dimensionless variable, o such as

p=+ar
dp=+eadr
dp® =a’dr?
2
7® dPu(r ){E+ Ze? £+1}
Zy dr? 47[80
2 2
:>h—a du(p) E+Zea__a£ +1} _
2u dp 472'80p
L HEd(p) | Z¢a  p E (141 u( )=0
T dpz dreop 2 I pz g
2 2 1
:_d (;0) {1+ Ze’a 1 E(ﬁ-: )}u(p):O
dp 4dre,E p P

d?u(p) ze? 2uf 1 ((r+1)
2 :[1_47%‘0,2/ :a p+ ,02 } (p)

:{1_ Zue’ 1 f(f+1)}u(p)

2neh’a p P’

2

Zue
2

0

Substituting p, = , We get

2

p P

d*u(p) :[1—&+ E(“l)} u(p)

..... Eqn. (26)
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Here, we understand the asymptotic behavior of solution of the equation 8.26.

Case-1: when p is very large (at large separation between proton and electron), we can neglect
the p terms in equation 8.26 and we get,

d*u(p)
dp?

=u(p)

The solution is of the type,

u(p)=Ae” +Be"”

Since e” becomes infinite for large , we take and hence,

u(p)~ Ae”

. 1 . .
Case-I11: When p is very small, then —- is the dominant term, so,

d’u(p) ¢(+1)
dpzp_ = u(p) [Note ¢ 0]

d*u(p)

dp?

/+1

The solution, +Dp’

Again, as p—0; p~* becomes infinite.
Sowetake, D=0

So, for small p,

(+1

u(p)~Cp
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So, we have established that the solution u ( p) decays as e at large distance and goes as p'*™*
close to the proton (origin).

Now we write the general solution of equation as

+1

u(p)=p""e"a(p)
..... Eqgn. (27)

where, o(p) we have to define.

Let us substitute u(p) into the Eqgn. (8.26)

)y S0t
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Now, we have to solve this equation 8.28. Let us take a solution of the form,

Putting back to Eqgn. (8.27)

Mi(i-1)C,pt+2(e+1 Z]C P 1—2210 2+ (P, 2(£+1))Zijj =0
j=0 j=0

Shifting the summation of the p'™ terms

Z(j+l)jCJ+lp +2(0+1) Y. (j+1)C, .00 ZZJCp +( o0 2(z+1))Zchi=0
-1

=1 J: ]:0

For, j=-1, the first two terms becomes zero. So, we start from j=0

2 i(i+1)Cpup’ +2(0+1) 3 (1+1)Cyp’ 23 iCip" +(py —2(¢+1)) 3 Cp’ =0
j=0 j=0 j=0 20
=2 [§(i+1)Cpa+2(¢+1)(i+1)Cpy =2iC, +(p, ~2(¢+1))C, | p' =0

1l
o

]



Page-10
This is valid, if all the coefficients of p’ are zero.
i(i+1)C, +2(¢+1)(j+1)Cp,, —2jC; +(p, —2(£+1))C; =0

(2i+2(¢+1))-pq
e (i+1(i+2(¢+1) j

2
C1:IC0
2 22
C.=—C, = C
2 2 1 1)(2 0
2 23
C.==2C. =
¥ 377 1x2x3 °
j
c,-2e,
J!
Thus,
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Returning back in Eqn. (8.27), the general solution,
u(p)=p"ero(p)

(+1,— 2
=p e ’Ce”

— Copé+1ep

Again, the value of u( p) increases exponentially for large o and cannot be accepted. The
series has to terminate at finite number before reaching the large value of p.

So, we should except, that at some finite value of j, Eqn. (8.29)
2(j+0+1)=p,
So, p, should be an even integer.

We define, p, =2n

2
—Z,uez =2n
2reha
2
So, a = Z,uez
4re,hn

and,

\/ﬁ_ Z ue’
W Azghn
C2uE 7%’
W (4ms,) nin?
Z% e’ 1
(4rz,)" 2n* 0°

=>E=-

This is same energy as Bohr formula for Hydrogen putting Z =1.
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Substituting p, =2n in Eqn.8.29 this

C.- '2(j+€+1)—2n c
iy (i+2(e+1))

2(n—¢-1-j)-2n
(j+1)(2¢+j+2)

In fact, the solution of Eqn.8.28 is known as Associated Laguerre polynomials which is of the
form

o(p)=L""(2p)
e (-1)' 2! (n+¢)!
‘%(n_g_j—l)! (20+ j+1)! j!

]

So, the coefficients

. (-1)"2j(n+0)!

P (n—t— 1) (204 1)
2(n—0-1-j)

C. (J+1)(20+ j+2)

which is same as before.
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In fact, rearranging Eqn. (8.28) we can get the solution as “Associated Laguerre Polynomials” of

the differential equation of the form,

d Lk(z)+(k+1_z)dizu(z)mu(z):o

YA
dz® " ’

Substituting Z =2p in Egn. (8.28), we get,

d2

z
dz’®

a)(Z)+[(2£+1)+1—Z]dac)l—(zz)+{%—(£+l)}w(2):O

m=20_(1+1)
Here, k=2/+1, and 5
=7n—(£+1)= n—(/+1)
So the solution,
o(2)=L1.(2) =L, (2p)
In this case, the solution (27) has to be rearranged and we get,

u(p)=(20) "1 (20)

So,

/+1
R =un=[ | e o)

na,
a
AL o L

Here we have added the normalization constant N

n/

power term of r.

..... Eqgn. (30)

and absorbed the factor %a from the

0
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Now, we evaluate the normalization constant N, , from the relation,

0 * 2 B
Io anl(r)Rn,f(r)r d =t

Substituting,

(] e )

Here, we can use the orthogonality relation,

[[e7z"(2) L (2)dz ={(n+n—7)!}3(2”*k”)a“‘”

No Z(HZOJ (rf n;i)'r}s -

i

Normalized Radial Wavefunction,
3 g I r 4
R ()= | | e T (2 ez (2
' na, ) 2n{(n+¢)1} na, -\ na,

Some useful Associated Laguerre Polynomials

L@Z)=1 o B(2)=6
L(z)=4-2Z : 12(Z)=96-24Z
L1 (z)=32%-18Z +18

And the first few normalized radial wavefunction for Hydrogen,

Eqgn. (31)
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Following figures show the plots of the radial function of the hydrogen atom.

R, (r)= 2ag%e%0
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So the total wavefunction,

\Pn,lc,m = Rn,ﬁ (r)®/:,m/ (€)®m, (¢)

From Egn. (8.20) and (8.31),

3 1\ r 0
L ( 2 J (n—1 1).Se Jhag (ﬂj Lﬁ’fl(ﬂj
na, 2n{(n+€)!} na, na,

><\/(26 +1) (¢-m,)! P (Coso)

4r (€+m£,).

..... Eqgn. (32)

Here, n = Principle Quantum Number
¢ = Azimuthal Quantum Number

m, = Magnetic Quantum Number

Recap

In this lecture, we have solved the radial part of the Hamiltonian.

We have also determined the total wavefunction of the Hydrogen atom.
The calculated energy levels depend on the principle quantum number n.

However, the total wavefunction of the electron is characterized by three quantum numbers,
namely n, I, m,.



