
 

Lecture 21: 

 

Hyperfine Structure of Spectral Lines: 
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In this lecture, we will go through the hyperfine structure of atoms.  

Various origins of the hyperfine structure are discussed  

The coupling of nuclear and electronic total angular momentum is explained. 
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When individual multiplet ( J J→ transitions) components are examined with spectral apparatus 
of the highest possible resolution, it is found that in many atomic spectra each of these 
components is still further split into a number of components lying extremely close together.  

This splitting is called hyperfine structure.  

The magnitude of the splitting is 1~ 2cm− . 

Hyperfine structure is caused by properties of the atomic nucleus. 

Isotopic effect: 

Heavier isotopes present 1 in 5000 in ordinary hydrogen. 

Therefore, different isotopes of same element have slightly different spectral lines. 

Consider 1H (hydrogen) and 2H (deuterium): 
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This is known as isotope shift. 
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A quantitative explanation of the isotope effect is not simple, exception H atom. For the heavier 
elements the effect is traced back to the change of nucleus radius with mass. 

150 152Sm Sm−  is double that of 152 154Sm Sm− . 

Usual increase is not from 150 152Sm Sm→ . 

 

In many cases the isotope effect is not sufficient to explain the hyperfine structure.  

The number of hyperfine structure components is often considerably greater than the number of 
isotopes.  

In particular, elements which have only one isotope in appreciable amount also show hyperfine 
structure splitting.  

Likewise, the number of components of different lines is frequently quite different for one and the 
same element. 

These hyperfine structures can be quantitatively explained, when it is assumed that the “atomic 
nucleus possess an intrinsic angular momentum with which is associated a magnetic moment”.  

This angular momentum can have different magnitudes for different nuclei and also of course, for 
different isotope of the same element. 

This is known as Nuclear spin 
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Magnetic moment & Angular momentum of the nucleus. 

Nucleus consists of Proton & Neutron. 

(i) Possesses angular momentum 

Proton: 

PI


 described by the spin quantum number 
1
2

; this angular 

momentum obeys the general rules of quantization. 

Component along oz-axis ( ) 1
2P zI = ±   

Magnitude 
1 1 1
2 2PI   = +    

  

(ii) Possesses a magnetic moment Pµ


 parallel and in the same sense as its angular 

momentum PI . 

Magnetic momentum of proton ( ) 2.79 2.79
2

N
P P Bz

e
MK

µ µ µ= = =
  

N
Bµ =  nuclear magneton

1
2 1836B B

e m
MK M

µ µ= ≈ =


 

So, 
1836B

N Bµµ =  

 

Neutron:

1.913
B
N

Neuµ µ= −

 also possesses magnetic moment 

 

But Neu Pµ µ+ ≠ total magnetic moment of the nucleus. 
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The structure of the nucleus is complex. 

Inter nuclear forces are non-central forces involving angles between the magnetic moments and 
the radius vector joining the nucleus.  

Further more, within the nucleus the nucleus possess an orbital angular momentum which can be 
zero for certain nuclei. 

The nuclear magnetic moment Nµ  is related to nuclear angular momentum I, 

1,
1836

N I B

N N N
I B I I

g I

g I So g g

µ µ

µ

=

= =






 

or 
I

N
Ig g  is called nuclear Lande’ factor. 

The general adopted sign for Ig : 

 The Lande’ factor is positive when the nuclear magnetic moment and angular momentum 
are in the same direction, and is considered negative when in the opposite direction. 
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(1) All isotopes having an even mass no. 

Nuclear spin and Magnetic moment: 

A  and an even atomic number z , have zero 
nuclear spin and zero nuclear magnetic moment. 

Example: 4 16 20
2 8 10; ; ; .....He O Ne  

(2) All isotopes having an even mass number A  and an odd atomic number z , have an 
integral nuclear spin. 

2 6 10
1 3 5, 1 ; , 1 ; , 3 ; .....D I Li I B I= = =  

(3) All isotopes having an odd mass number A , have a half integral nuclear spin. 

[ ]

1 3 39
1 2 19

31 1, ; , ; ,2 2 2
1 1 2 _ 4

H I He I K I

s s s s

= = =
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Magnetic field due the orbital motion of electron: 

A point charge is q e= −  is moving in a classical orbit with a velocity V . At a given instant, the 
field it creates at the nucleus, is  

0 0 0
3 3 3

0
3

4 4 4

4

i d r r qB qV m r V
mr r r

q l
m r

µ µ µ
π π π

µ
π

× −
= = × = ×

=



 

 

 


 

r  is directed from the nucleus towards the charge q . 

Hence the magnetic field due to the orbital motion of the electron is 

0 0
3 3

1 12
4 4l B

qB l l
m r r

µ µ µ
π π

= = −
 





 

The interaction energy between the nuclear magnetic moment and the orbital motion of electron 

20
3

12
4l N l I BE B g l I

r
µ

µ µ
π

= − ⋅ = ⋅


 





 

Using special case of Wigner-Eckart theorem, ( Lande formula) 

( )
| |

' | | ' | |
1

J m A J J m
J m A J m J m J J m

J J

⋅
=

+

 

 

 

( )
| |

' | | ' | |
1

j m l j j m
j m l j m j m j j m

j j

⋅
=

+









 

So we can substitute, 
.

( 1)
l jl j

j j
=

+









 and we get    

( )2 20 0
3 3

1 . 12 2 .
4 4 ( 1)l I B I B

l jE g l I g I j
j jr r

µ µ
µ µ

π π
= ⋅ =

+






 



 

……………………..(21.1) 
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The interaction energy between two magnetic dipole moments Nµ


and Sµ


 separated by r is 
given by  

( )( )0
3 5

3.
4

N SN S
Spin

r r
E

r r
µ µµ µ µ

π
 ⋅ ⋅

= + 
 

   

 

  …………………………………(21.2) 

Substituting the value of Nµ


and Sµ


in this equation, we get 

( )( )2
0

3 5

3.
4

I S B
Spin

I r s rg g I sE
r r

µ µ
π

 ⋅ ⋅
 = − +
  



  






  ……………………………..(21.3) 

Let us take the first term 3

.I s
r





 

Using the relation 
( )
| |

' | | ' | |
1

j m s j j m
j m s j m j m j j m

j j
⋅

=
+









 

So we can substitute, 
.

( 1)
s js j

j j
=

+









and we get    

2

3 3 3

. . 1 . 1( . ) ( . )
( 1) ( 1)

I s j s l s sI j I j
r j j r j j r

+
= =

+ +

   




 
 

 

Now let us take the second term 
( )( )

5

3 I r s r

r

⋅ ⋅


  

 

we can substitute, 
.

( 1)
r jr j

j j
=

+









and we get    

( )( ) ( )( )
5 5

3 3 .
( 1)

I r s r I j s r r j
r r j j

⋅ ⋅ ⋅ ⋅
=

+

 


    




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Now,      

. ( ).

. .
0 .
.

j r l s r

l r s r
s r

s r

= +

= +
= +
=





  



  

 

 

 

 

So, 
( )( ) ( )( )2

5 5

3 3

( 1)

I r s r I j s r

r j j r

⋅ ⋅ ⋅ ⋅
=

+

 


    

 

Substituting the values in equation-21.3 of 3

.I s
r





and 
( )( )

5

3 I r s r

r

⋅ ⋅


  

 , we get the interaction 

energy for spin 

( )( )

( )( )

( ) ( )

2
0

3 5

2
2 2

0
5 3

22 2
0

5 3

3.
4

3 . 1 ( . )
4 ( 1) ( 1)

3 .
4 ( 1)

I S B
Spin

I S B

I S B

I r s rg g I sE
r r

I j s rg g l s s I j
j j r j j r

I j s rg g l s s
j j r r

µ µ
π

µ µ
π

µ µ
π

 ⋅ ⋅
 = − +
  
 ⋅ ⋅ + = −

+ + 
 

 ⋅ ⋅ +
= − 

+   



  









  









 

 



 …………………..(21.4) 
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Now we will calculate the total interaction energy due to electron orbital (equation 21.1) and spin 
(equation 21.4) 

( ) ( ) ( )22 2
20 0

3 5 3

32. 1 .2 .
4 ( 1) 4 ( 1)

HF l Spin

I B
I B

E E E

I j s rgl j l s sg I j
j j r j j r r

µ µ µµ
π π

= +

 ⋅ ⋅ +
= + − 

+ +   




 



 




 

 

Here we have substitutes 2Sg =  for the electron. 

So 

( ) ( )

( ) ( )

( ) ( )

22 2
0

3 5 3

22 2 2
0

3 5 3

22 2 2
0

3 5 3

32 . .
4 ( 1)

32 . .
4 ( 1)

32
4 ( 1)

I B
HF

I B

I B

I j s rg l j l s sE
j j r r r

I j s rg l s l l s s
j j r r r

I j s rg l s
j j r r r

µ µ
π

µ µ
π

µ µ
π

 ⋅ ⋅ +
= + − 

+   
 ⋅ ⋅+ +

= + − 
+   

 ⋅ ⋅
= + − 

+   




 



 






 

 








 



 

Substituting 
1.
2

s r r=
 

and 2 1 1 3( 1) 1
2 2 4

s s s  = + = + = 
 

, we get 

( ) ( )

( )

( )

22
0

3 5 3

2
0

3

2
0

3

32 ( 1) 3
4 ( 1) 4 4

2 ( 1)
4 ( 1)

2 ( 1) 1
4 ( 1)

I B
HF

I B

I B

I j rg l lE
j j r r r

I jg l l
j j r

g l l I j
j j r

µ µ
π

µ µ
π
µ µ
π

 ⋅ +
= + − 

+   

⋅ + =  +  
+

= ⋅
+
















…………………….(21.5) 
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So the Hamiltonian including the hyperfine interaction for one electron system is  

0 Spin Orbit HyperfineH H H H−= + +  

Here the hyperfine interaction is coupling the total angular momentum of the electron j and the 
nuclear angular momentum I. So we need the new angular momentum F which will be the good 
quantum number for the total Hamiltonian. 

So we define, 

F j I= +
 



and the eigenfunction is FF m  which will be the coupled state arising from the 

uncoupled states of  j Ij m I m    

The interaction energy HF HFE A I j′= ⋅



 

HFA′ →  constant, characteristic of the level  and j l . 

Note that the value of 0HFA =  for l = 0, i.e.  for the s-states. 

However, experimentally splitting is observed for the 2
1

2
S state of hydrogen. This can not be 

explained by this classical explanation. 

However, starting from the Dirac equation, if one evaluates the Hamiltonian for the hyperfine 
interaction including the vector potential (Reference: Atoms and Molecules by M. Weissbluth), it 
becomes 

( )
( ) ( )( )

( )
( )

2
0

3
12 1 8

4 1 3

1
1

I B
h

HF F HF F

gH I j r I s
j j r

A I j A I s A I j A I s
j j

µ µ π δ
π

 +
= ⋅ + ⋅ + 

+
′= ⋅ + ⋅ = ⋅ + ⋅

+

 


 





   
 

 

 ……………………(21.6)
 

The first term is the dipole-dipole interaction with corresponding to classical expression as we 
derived earlier. The last term is known as Fermi Contact Interaction term,

( )0ψ
 it has no classical 

analog and contributes only for s-states. Since at  r = 0 for non-s states is zero, Fermi 

contact term goes to zero for non-s states. 

( ) ( ) 2
3
0

10r
a

δ ψ
π

= =
 



Where 0a is the Bohr radius. 
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For 0;=  i.e. s states first term zero; second term is important. For penetrating orbit 
contact term is important. 

2 2 2

2 2 2

2

2

F I s

F I s I s

F I sI s

= +

= + + ⋅

− −
⇒ ⋅ =

 











 

( ) ( ) ( ). 1 1 1
2
F

HF F F F
AE F m A I s F m F F I I s s= = + − + − +  



  

For hydrogen, 2
1

2
1 1state,   , , 0,12 2S I s F= = =  

So 
( ) 1 1 1 1( 1) 1 1 1 1 1

2 2 2 2 2
32

2 2 4

F
HF

F F

AE F

A A

    = = + − + − +        
 = − =  

 

( ) 1 1 1 1( 0) 0 0 1 1 1
2 2 2 2 2

3 30
2 2 4

F
HF

F
F

AE F

A A

    = = + − + − +        
 = − = −  

 

The hyperfine splitting = ( 1) ( 0)HF HF HF FE E F E F A∆ = = − = =  

The calculated values of FA = 0.047 cm-1.  

 

 

 

 

 

 

4
FA

 
3

4
FA  

10.047 cm−

 

2
1

2

1n
S
=

 

1F =  

0F =  
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For non s states, We have 

( )
( )

( )
( ) ( ) ( ) ( )

2 2 2

2 2 2

1
1

2

2
1

1 1 1
2 1

HF HF

HF
HF

E A I j
j j

F I j I j

F I jI j

AE F F I I j j
j j

+
= ⋅

+

= + + ⋅

− −
⇒ ⋅ =

+
= + − + − +  +




 







   

For hydrogen, 2
3

2

31state, 1,   , , 2,12 2P l I j F= = = =

 

So, 

( )
( ) ( )1 1 1 1 1 3 3( 2) 2 2 1 1 1

3 32 2 2 2 212 2
8 18 26

2 15 4 5

HF
HF

F
HF

AE F

A A

+     = = + − + − +        +

 = − =  

 

And   

( )
( ) ( )1 1 1 1 1 3 3( 1) 1 1 1 1 1

3 32 2 2 2 212 2
8 18 22

2 15 4 3

HF
HF

F
HF

AE F

A A

+     = = + − + − +        +

 = − = −  

 

The hyperfine splitting = 16( 2) ( 1)
15HF HF HF HFE E F E F A∆ = = − = =  

 

 

 

 

 

 

 

2
5 HFA  

2
3 HFA  

2
3

2
P  

2F =  

1F =  
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For hydrogen, 2
1

2
1 1state, 1,   , , 0,12 2P l I j F= = = =

 

So, 

( )
( ) ( )1 1 1 1 1 1 1( 1) 1 1 1 1 1

1 12 2 2 2 212 2
8 3 22

2 3 2 3

HF
HF

F
HF

AE F

A A

+     = = + − + − +       +  

 = − =  

 

And 

( )
( ) ( )1 1 1 1 1 1 1( 0) 0 0 1 1 1

1 12 2 2 2 212 2
8 30 2

2 3 2

HF
HF

F
HF

AE F

A A

+     = = + − + − +       +  

 = − = −  

 

The hyperfine splitting = 8( 1) ( 0)
3HF HF HF HFE E F E F A∆ = = − = =  

 

 

 

 

 

 

 

 

 

 

 

 

2
3 HFA  

2 HFA  

2
1

2
P  

1F =  

0F =  



 

 

Page-15 

For multielectron atom 

The interaction energy is  'HFE A I J= ⋅
 

 

'A →  hyperfine constant, characteristic of the level J and L  

( ) ( ) ( ) ( )

2 2 2

2 2 2

2

2
' 1 1 1

2HF

F I J I J

F I JI J

AE F F F I I J J

= + + ⋅

− −
⇒ ⋅ =

= + − + − +  

 

 

 

( ) ( )1HF HFE F E F+ − =  hyperfine splitting or hyperfine structure. 

Hyperfine splitting is very small – measurements can be made to a high degree of precision. 

 The general conference of weights and measures (1964) defined “atomic second” from 
the transition between the hyperfine energy levels 4, 0FF m= =  and 3, 0FF m= =  of the 

6
1

2
S , Ground state of Cs atom 133

55 Cs . 

These two sublevels correspond to parallel and anti parallel orientations of the spins S = 
1/2 of the valence electron and I = 7/2 of the nucleus of the Cs atom 
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Since the hyperfine splitting is very small, a lot of small corrections are needed. 

Various Corrections: 

(1) Polarization of the inner shells: For atoms with many electrons, the resultant of the 
electron spins in the completed inner subshells cannot be regarded as zero, statistically 
each spin has a slight tendency to align parallel to the spins of the valence electrons. In 
evaluating the field 0B , it is necessary to take account of this magnetization of the inner 
shells 30%. 

(2) Relativistic effect: As a result of high electrostatic charge of the nucleus with high atomic 
number z , the velocity of the electrons is high in the neighborhood of the nucleus and 
corrections are necessary. These corrections can modify the result with far heavy atoms 
for levels with small J , by a factor of the order of two. 

(3) Volume effects: With increasing t , the approximation of a point nucleus cannot be 
preserved. 

The distribution of the charge 

Electric Quadrupole Effects  

Nq  within the nucleus is not spherically symmetric. 

 In classical theory, if the origin is taken as the center of gravity of the electric charges. 
Within the nucleus, the corresponding electric dipole moment is zero, there then remains the 
problem as to relative positions of the center of gravity of the electric charges and of the center of 
gravity of the masses within the nucleus. 

 In quantum theory, symmetry rules result in zero dipole moment for the nucleus. The first 
term in the multipole moment expansion corresponds to the interaction of electric quadrupole 
moment with electric field gradient create by the electrons in the region of the nucleus. 

 Let’s assume that the nucleus has a cylindrical charge distribution around its own Oz 
axis, I  is also Oz axis. The electron cloud has cylindrical symmetry around Oz axis (direction of 
J ). The electric field gradient, 

2

2
z

zz
E V
z z

φ ∂ ∂
= − =

∂ ∂
 

Q → quadrupole moment of the nucleus 
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The additional energy QE∆  resulting from quadrupole coupling will be, 

23 1cos
4 2 2

zz
Q

eQE φ θ ∆ = − 
 

 

Where θ  is the angle between ( )Oz I  and ( )Oz J . 

 

Define a quadrupole coupling constant zzD eQφ= =  

23 1cos
4 2 2Q
DE θ ∆ = − 
 

 

From vector model, 

( ) ( ) ( )
( ) ( )

1 1 1
cos

2 1 1

F F I I J J

I I J J
θ

+ − + − +
=

+ +  
 

Or, using quantum mechanics, 

( ) ( ) ( )
( ) ( )

3 1 2 1 1
2

4 2 1 2 1Q

C C I I J JDE
I I J J

+ − + +
∆ =

− −
 

Where, ( ) ( ) ( )1 1 1C F F I I J J= + − + − +  

 

 

 

 

 

 

 

1
3

2

J

I

=

=
 

5
2F =  

3
2F =  

1
2F =  

3
2

A′  

A′  

5
2
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Recap  

In this lecture we came to know the origin of hyperfine structure such as isotope effect, 
hyperfine interaction etc. 

The hyperfine structure is very small and can only be observed with a very high 
resolution. 

We have understood the interaction of interaction of nuclear magnetic moment and the 
total electronic angular moment. 

We now know that the ground state hyperfine splitting of hydrogen can not be described 
by classical concept.  

The Fermi contact term is important to describe this splitting and quite accurately predict 
the experimental observation.  

We have also understood the various corrections due to quadrupole effect, volume effect 
and relativistic effect.  


