
 
Lecture 16 
 

Title: Wigner-Eckart theorem 
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In this lecture, we will see the relation between the rotation operator and angular 
momentum 
 
We will learn the calculation of matrix elements of scalar and vector quantities. 
 
We will see that these matrix elements knowledge can be extrapolated to form the general 
Wigner-Eckart theorem. 
 
We will also understand the use of Wigner-Eckart theorem to evaluate the transition 
selection rules. 
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Angular momentum operators have a close relationship to rotations. Let us consider a 
coordinate system ( , , )a X Y Z≡ as shown in figure-16.1. This system rotates at an 
infinitesimal δα  around the Z axis to form the new axis system ( , , )a X Y Z′ ′ ′ ′≡ . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The rotation operator R is related to the angular momentum as 1R i J uδ α= − ⋅ where u is 
the unit vector along the rotation axis Z. 
 
Any scalar quantity is invariant under the rotation of coordinate system. Thus scalar 
operator commutes with the rotation oprator. 

J m RA Jm J m AR Jm′ ′ ′ ′=  
 
Thus  
 

' 0 0
' 0 0

J J J
m m m
− = ⇒ ∆ =
− = ⇒ ∆ =

 

 
 
 
 
 
 

δα  X 

Z, Z′ 

Y 

X′ 

Y′ 

Figure-16.1 
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Now any vector A



 in the old coordinate system ( , , )a X Y Z≡  as shown in figure-16.2 is 
related to the same vector A′



 in the new coordinate system ( , , )a X Y Z′ ′ ′ ′≡ as 

( )A A A A u Aδ δα′ = + = + ×
    

  

In the following, we will establish a relationship between angular momentum operator 
and the vector. 
We are removing the arrow sign for the sake of simplicity, but remember A is a vector 
 

( )

1

1

' '

' '

a A a a A a u a A a

a R A R a a A a u a A a

R A R A u A

δ α

δ α

δ α

−

−

= + ×

= + ×

= + ×
  



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

δα  X 

Z, Z′ 

Y 

X′ 

Y′ 

A


 

A′


 
Aδ


 

Figure-16.2 
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Now substituting the value of the rotation operator, 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

( ) ( )

2

1 1

,

,

i J u A i J u A u A

A i A J u i J u A A u A

i A J u i u A

A J u i u A

δ α δ α δ α

δ α δ α δ α

δ α δ α

+ ⋅ − ⋅ = + ×

⇒ − ⋅ + ⋅ = + ×

⇒ − ⋅ = − ×  
⇒ ⋅ = ×  

 

 
Now using this relation we can establish the commutation relations. 
 

x y z

x y z

i j k
u u u

A A A

 
 
 
 
  

 

 
 
 

( ) ( )
( ) ( )
( ) ( )

[ ] [ ]
[ ] [ ]

,

,

,

, 0 , 0 ,

, , , 0

, , ,

z x y y x

x y z y z

y x z x z

z z x z y z z

z x y x x z y x

z y x x y y y y x

A J u i u A u A

A J u i u A A u

A J u i A u u A

A J A J A J i A

A J i A A J i A A J

A J i A A J i A A J i A

⋅ = −  

⋅ = −  

 ⋅ = − 

 = = = − 
 = = = 

     = − = − =       
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zA  And zJ  commuts. 
0z z z zA J J A− =  

  
When 'J J=  
 

' | | ' | | 0z z z zJm A J Jm Jm J A Jm− =  

 

'' '' '' ''
' | | '' '' '' '' | | ' | | '' '' '' '' | | 0z z z z

J m J m
Jm A J m J m J Jm Jm J J m J m A Jm− − − =∑ ∑  

 
( )' | | ' 0zJm A Jm m m− =  

 
When ', ' | | 0zm m Jm A Jm= ≠  
 
Now the commutation with A+  
 

( )

,
1[ ] [ , ]
2
1 {[ , ] [ , ]}
2

1 [ , ]
2
1 [ ]
2

z x y z

x z y y

y x

x y

A J A iA J

A A A J

iA i iA

A iA A

+

+

= +

= +

= − +

= − + = −
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So, 
 

0
''

z z

z z

A J J A A
A J J A A
when J J

+ + +

+ + +

− = −
− + =

=
 

 
 

( )

' | | ' | | ' | | 0

' | | ' | | ' ' | | 0

' | | ' 1 0
' 1

z z

z

Jm A J Jm Jm J A Jm Jm A Jm

Jm A Jm Jm A Jm m Jm A Jm

Jm A Jm m m
so m m

+ + +

+ +

+

− + =

− + =

− + =

= +

 

 
Now, the relation between A and J’s matrix elements 
 

,[ ] [ , ] 0x y x yA J A iA J iJ+ + = + + =
 

'when J J=  
 

' | | ' | |

2 1 1 2 1 1

| | 1 | | 1
1| | 1| |

Jm A J Jm Jm J A Jm

Jm A Jm Jm J Jm Jm J Jm Jm A Jm

Jm z A Jm Jm z J Jm
a

Jm A Jm Jm J Jm

+ + + +

+ + + +

+ +

+ +

−

+ + + = + + +

+ + + +
= =

+ +

 

 
This is true only if 1| | 1| |Jm A Jm a Jm J Jm+ ++ = +  
Where a is a constant. 
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Now, 

( )
, ,[ ] [ ]z z x y

y x

x y

A J A J iJ

iA i iA

iA iA A

+

+

= +

= + −

= + =

 

 
0z zA J J A iA+ + +− + =  

' | | ' | | ' | | 0zJm A J Jm Jm J A Jm Jm A Jm+ + + +− − =  

1| | 1 1| | 1| | | | 1| | 0z zJm A Jm Jm J Jm Jm J Jm Jm A Jm a Jm J Jm+ + ++ + − + − + − + =
 
[ 1| | 1 | | ] 1| | 1 0z zJm A Jm Jm A Jm a Jm J Jm++ + − − + + =  

1| | 1 | |z zJm A Jm Jm A Jm a+ + − =  
 
This relation is true if we take  

( )
| |

1| | 1 1

1| | 1 | |

z

z

z z

J m A J m a m b

J m A J m a m b

J m A J m J m A J m a m

= +

+ + = + +

+ + − = a b+ + a m− b− a=

 

 
 

( )

( )

( ) [ ]

( )

| | 2 1

1 1,

1

0
, 2 1 0 , 0

| | | |

1| | 1| |

1| | 1| |

J J

z z
m J m J

z x y x y y x

z x y y x

z z

A J m A J m a m b J b

A A J A J J A
i i

Trace A Tr A J J A Tr AB Tr BA
i

So J b or b

J m A J m a m a J m J J m

J m A J m a J m J J m

J m A J m a J m J J m

+ +

=− =−

+ +

− −

= = + = +

 = = − 

= − =

=

+ = =

= =

+ = +

+ = +

∑ ∑
What is the value of b? 
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1' | | ' | |

' 0
' 1 1
' 1 1

' ' | ' | ' ' | ' |

' ' | ' |

' ' | ' |

q q

q q

q

q

J m A J m a J m J J m

m m when q
m m when q
m m when q

J m A J m a J m U J m

J m A J m
a

J m U J m

=

= = 
= + = + 
= − = − 

=

⇒ =

In general form: 

 

 
 
From the above matrix elements relations we write the general form of 

 

Wigner Eckart 
theorem. 

 

Coupling Reduced
coefficient / matrix
Symmetry element / 

part Physical
interaction

' ' | | ' ' | ' ' | |

' ' | | ' ' | ' ' | |

k k
q

k k
q

J m T J m J k m q j k j m J T J

th en J m U J m J k m q J k j m J U J

=

=





Wigner Eckart theorem: 

 

 
 

1

1

' ' | | ' | | '1 ' | '1

' ' | | ' | | '1 ' | '1

' | |
' ' | | ' ' | |

' | |

' ' | |

q

q

q q

q

J m A J m J A J J m q J J m

J m J J m J J J J m q J J m

J A J
J m A J m J m J J m

J J J

a J m J J m

=

=

  =  
  

=

Application: 
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General Statement: 

( )

1' ' | | ' ' | ' | |
2 1

'11 || ||
'2 1

k k
q

J m k

J m T J m J k m q J k J m J T J
J

J k J
J T J

m q mj
−

=
+

 
= −  −+  

 

 
Here k

qT is a tensor and kT is the reduced tensor. 
If we know the three j properties, we can evaluate selection rule for which matrix element 
will be zero. 
 
 
 

( )

1 2

1 2
1 2

1 2

1 2

'

0
:

0
0

m m q
j j j n
j j j

j j j
j j j
j j j

= +

+ + =
 + − ≥∆  − + ≥
− + + ≥

Properties of 3j: 

 

 
For scalar 

0
0' ' | | 0 ' 0

' ' 0 0
' 0 0

' ' 0 0
' 0 0

' 0 ' 0 0

J m T J m unless J J n

J J J J
J J J

m m J J
m m m

J J J J

= + + =

= + + ≥ 
− = ⇒ ∆ = = + + ≥   − = ⇒ ∆ = + ≥ + + ≥ 

 

For vector 
1' ' | | 0 0, 1

' 1
( 1,0, 1)

0, 1

qJ m T J m unless J

J J
m m q q

m

= ∆ = ±

+ ≥
′ = − = −

∆ = ±
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Now we will evaluate the selection rules for the transitions 
 
We know that in the electric dipole approximation the dipole matrix elements 

erψ ψ′  should be evaluated.  If the dipole matrix element is nonzero the transition is 
allowed, otherwise, it is forbidden. 
 
Let us take the case of central field orbitals. The wavefunctions are characterized by the 
quantum numbers , , , ,l sn l m s m  
so 

s l l s s s l ls m l m er lm sm s m sm l m er lm′ ′ ′ ′ ′ ′ ′ ′=
   

The dipole being the space operator, does not operator on spin functions. So 0s∆ = . 
Now er is a vector. So, we evaluate the vector matrix elements  

1' ' | | 0 0, 1

' 1
0, 1

ql m T l m unless l

l l
m

= ∆ = ±

+ ≥
∆ = ±

 

 
Although it shows 0, 1l∆ = ± , but 0l r l′ =

 if 0l∆ = due to parity. The er connects 
only opposite parity states. Thus the selection rules are 
 

1
' 1

0, 1

l
l l

m

∆ = ±
+ ≥

∆ = ±
 

 
Now for the transitions between the terms. The wavefunctions are characterized by 

, , ,L SL M S M  
 

s L L S s s L LS M L M er LM SM S M sm L M er LM′ ′ ′ ′ ′ ′ ′ ′=
   

 
Using the same argument  

1| | 0 0, 1, 0

' 1
0, 1

q L

L

L M T LM unless L S

L L
M

′ ′ = ∆ = ± ∆ =

+ ≥
∆ = ±
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How to evaluate a: 

[ ]

" "

"

" "

"

1
2

1 1| | | | " " | | | | " " | |
2 2

| | " " | |

1 1| | " " | | | | " " | |
2 2

| | " " | |

1|
2

x x y y z z

z z

m m

z z
m

m m

z z
m

J A J A J A J A

J A J A J A

J m J A J m J m J J m J m A J m J m J J m J m A J m

J m J J m J m A J m

a J m J J m J m J J m a J m J J m J m J J m

J m J J m J m A J m

a J m J J J

+ − − +

+ − − +

+ − − +

+ − −

⋅ = + +

= + +

⋅ = +

+

= +

+

= +

∑ ∑

∑

∑ ∑

∑

( )

( )

2 2 2

2

|

| |

| | 1

z z

x y z

J J J J m

a J m J J J J m

a J m J J m a J J

+

= + +

= = +

 
 
 
 
 

( )

( )

( )

'
| | | | ' ' | |

1

| |
1

| |
, ' | | ' | |

1

m
J m A J J m J m A J m J m J J m

a J J

J m A J J m
a

J J

J m A J J m
S o J m A J m J m J J m

J J

⋅ =

= +

⋅
⇒ =

+

⋅
=

+

∑

 

This is a special form of W-E theorem known as Lande’ formula. We will use this 
relation later. 
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In this lecture, we understood the calculation of matrix elements of scalar and vector 
quantities. 
 
We use these matrix elements to extrapolate the general form of Wigner-Eckart theorem. 
 
This is used to evaluate the transition selection rules. 
 
We will also use the special form of W-E theorem known as Lande’ formula later. 


