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Topics Covered in the Last LectureTopics Covered in the Last Lecture

Introduction to HBLS Materials

Smart Magnetostrictive Material

Modelling of Smart Laminated Beam

Basic Assumptions



LECTURE 34
Modelling of Smart Composite 
BeamBeam
(Part 2)



Organization of this LectureOrganization of this Lecture

• Displacement Field of Smart Composite 
Beam

• Governing Equation of Motion
A Di t ib t d C t l M d l f Vib ti• A Distributed Control Model for Vibration 
Control



DisplacementsDisplacements

( ) ( )  ( )• u(x,y,z)=u0(x,y)-zx(x,y)

• v(x,y,z)=v0(x,y)-zy(x,y)
– if the plate is thin 
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– length of A-D is constant zz~0

– x and x are very small x x

• w(x,y,z)=w0(x,y)



Strain Displacement RelationsStrain-Displacement Relations

The strains at any point in a plate are:
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Strains and CurvaturesStrains and Curvatures
Pl i l d f i i i h i di l• Plugging plate deformation equations into the strain-displacement 
relations and simplifying yields:

• Strains in terms of midplane strains and curvaturesp
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Mid-plane Strains and CurvaturesMid plane Strains and Curvatures
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• Midsurface Strains
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1266 GQi  where E11
i , ν21

i etc. are Elastic constants and 
Poisson’s ratio respectively. Following 
Euler - Bernoulli model, the total strain at any layer 
may also be expressed as 



i wz ., xxx wz

Assume velocity proportional control algorithm, 
the active strain becomes proportional to the 
transverse velocity of the beam,

wC  wCx 

the symbol ‘.’ denotes differentiation with 
respect to time, the constant of proportionality 
C is function of electro/magneto-mechanical 
constant(d), and controller gain (f). 



In case of magnetostrictive material, 

fkdC m 1

where the coil constant k is given bywhere the coil constant  k1 is given by 
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nc is the total number of coil-turns, rc – effective 
l th f ti i il d ff ti idthlength of magnetizing coil and wc – effective width 
of magnetizing coil. 



Stress at any layer may now be written as 

Using the Hamilton's principle, the governing 
Equation of Motion may be derived asEquation of Motion may be derived as 
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P (x, t) is the generalized distributed load on the 
beambeam 



F di t ib t d t l th i i t tiFor distributed control, there is an interesting
difference in forming the equation of motiond e e ce o g t e equat o o ot o
of the system.
In the usual Hamiltonian, the actuation of the
structure is considered as an outside effectstructure is considered as an outside effect
and the work done due to actuation is
considered separately, whereas in this
approach the effect of actuator is consideredapproach, the effect of actuator is considered
implicitly.



Consider a freely vibrating simply supportedConsider a freely vibrating simply supported 
beam of length L, subjected to distributed 
controlcontrol. 

The specified initial condition of velocity is 1The specified initial condition of velocity is 1 
unit. Find out the responses of the system and 
compare it with uncontrolled vibration for acompare it with uncontrolled vibration for a 
control gain of unity. 

Let us consider w, the transverse deflection as 
the product of the following spatial and temporalthe product of the following spatial and temporal 
functions -
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L
when after variable separation, the governing eqn. reduces to 

0 TmTDT  011  TmTDT 
The damped natural frequency  and the damping constant α of 
the system may be evaluated as:
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For the case of initial displacement specified as T1(0) = 1;
Displacement:Displacement:
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Actuation Effort – Voltage or Current:
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Actuation Stress:
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The spatial variation for the actuation stress and the applied 
voltage is the same as that of deflection. However, the 
variation with respect to time is different for deflection and 
application of electric / magnetic fieldapplication of electric / magnetic field. 

The present solution is although found out for the first mode p g
of vibration of a simply supported beam, it should be noted 
that the controller is not designed individually for each 
mode. 

It is shown through the solution of transverse deflection wIt is shown through the solution of transverse deflection w, 
that the presence of constant gain velocity feedback can 
suppress any mode of vibration and hence the overall pp y
vibration of the beam. 

.



Thus, the problem of 'spill-over' etc. does , p p
not arise here. The general solution of 
d fl ti h th t th d i ff t fdeflection shows that the damping effect of 
smart actuator is implicitly incorporated p y p
through the term .

f
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By controlling the control gain and thereby 
the term  one can achieve the requiredthe term , one can achieve the required 
damping. The presence of smart layer also 
affects the natural frequency of the beam 
through both damping coefficient  andthrough both damping coefficient  and 
material property constant Dn. 
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