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Lecture 29
Application of Galerkin Method



i I

References for this Lecture
Analysis and Performance of Fiber Composites, Agarwal,

B.D. and Broutman, L. J., John Wiley & Sons.

Mechanics of Composite Materials, Jones, R. M., Mc-Graw
Hill

Structural Analysis of Laminated Composites, Whitney, J.
M., Technomic

Nonlinear Analyis of Plates, Chia, C., McGraw-Hill
International Book Company



Application of Galerkin Method: Example 1

* Here, we consider a beam which is simply supported at both ends, as
shown in Fig. 29.1. The overall length of the beam is L.

Fig. 29.1

e Here, we assume:
— Material is isotropic.
— Normal uniform load of intensity q, is applied over the length of the beam.
— Strain-displacements relations are linear.

e For such a system, the governing equation for normal deflection is:
El(d*w/dx*) - g, = 0. (Eq. 29.1)



Application of Galerkin Method: Example 1

In this example, we will compare the accuracy of Galerkin solution for Eq.
29.1 with exact solution.

* Insuch a case, the boundary conditions are:
— Displacement at ends of the beam is zero, i.e. w =0 at x = £L/2.
— Moment at both beam ends is zero.

e At this stage, we select a displacement function, which satisfies the
kinematic boundary conditions. Thus, we assume:

wO(x) = A cos (rtx/L)

e Such a displacement function satisfies the displacement BC at both ends
of beam. Substituting this function in governing equation gives us error in
the force. The relation for this error is:

E[w(x)] = AEIl-(r/L)* cos (nx/L) - q, (Eq. 29.2)



Application of Galerkin Method: Example 1

 The virtual work done by this error force as defined in Eg. 29.2, when
integrated over the length of beam should be zero. Thus, we get:

JoEIw(x)]- ew,(x) dx =0, where integration limits are -L/2 and L/2.
or,
Jo [AEl-(1t/L)* cos (mx/L) - g, ]- ew,(x) dx = 0. (Eq. 29.3)

e At this stage, we chose w, as defined below:
w,(x) = A, cos (rx/L)

e Thus, Eq. 29.3 can be rewritten as:
Jo [AEl-(1t/L)* cos (mx/L) - g, ] € A, cos (mx/L) dx = 0. (Eq. 27.4)

* From Eqg. 29.4, we get:
A = 4q,L%/(rEl) (Eg. 29.5)



Application of Galerkin Method: Example 1

Thus, the approximate solution as per Galerkin method is:
w(x) = [4q,L*/(r>El)] cos (mx/L)

e Atx =0, the beam deflection is:
W grerkin(0) = 0.01309[q,L%/(EI)]

* Also, the exact solution for beam deflection is:
We,,(0) = 0.1302 [g,L*/(El)]

e Comparing exact and approximate values (as per Galerkin method), we
see the two answers are fairly close to each other.



Application of Galerkin Method: Example 2

 Now through Example 1, that the Galerkin solution for displacement is
slightly less than as predicted by exact solution. This is because Galerkin
method predicts higher stiffness for a system.

 To improve the accuracy of the solution we may use more than one term
in the assumed solution form. Thus, we assume:

w°(x) = A, cos (rx/L) + A, cos (3rx/L)

e Such an assumed expression for w(x) satisfied the kinematic boundary
conditions at both ends of the simply supported beam. At this stage, we
also assume an expression for virtual displacement. Thus,

w,(x) = B, cos (rx/L) + B, cos (3mx/L)

* Like the expression for w(x), the expression for virtual displacement, w,(x),
also satisfies kinematic boundary conditions.



Application of Galerkin Method: Example 2

e At this stage, we develop an expression for virtual work over the entire
domain, and equate it to zero. Thus:
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* But we know that B, and B, can have arbitrary magnitudes. Hence,
integral of virtual work over domain can only be zero, if both terms in [ ]
are individually zero.



Application of Galerkin Method: Example 2

Thus we get two parallel equations in A;, and A;. Solving for these
equations gives us:

— A, = 4q,L%/(rSEl)
— A,=-A/35

e Thus,
w(x) = [4q,L*/(m°El)] [cos (nx/L) - (1/35) cos (3mx/L)].

 Atthe center, i.e. when x =0, the value of displacement of the beam is:

w. ... (0)=0.01309[q,L%/(El)] using 1-term solution
Galerkin\~1 LMQ= /7 \=*/1 o

W grercin(0) = 0.01302[q,L%/(El)] using 2-term solution

We,,(0) = 0.1302 [qg,L*/(EI)] exact solution.

 Thus, we see that in this case, a 2-term solution brings us remarkably close
to the exact solution.



Application of Galerkin Method: Example 2

e Based on this analysis, we make following observations.

— As we increase the number of terms in an assumed form of Galerkin solution,
it approaches the exact value monotonically.

— A solution with lesser number of terms represents a stiffer system vis-a-vis a
system which has more terms.

— As shown later, this asymptotic convergence on stiffness (and displacements)
occurs because Galerkin method is similar to a “least squares approach”. As
number of terms increase, so does the flexibility of the system, thereby
reducing its overall energy. Hence, accuracy of solution increases with number
of terms.

— Galerkin method tends to help itself.

— This method can be easily extended for plates.



