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Introduction

* One very significant advantage offered by composites is that their
properties can be tailor-made; layer-by-layer, to meet specific functional
requirements.

e Further, each layer can be itself engineered by altering selection of fiber
materials, having a mix of fibers, changing their orientation, using matrix
material with appropriate properties, and controlling fiber volume
fraction.

e Analytical models developed thus far help us calculate fairly accurately
mechanical properties of each lamina. These models allow variability of
properties of fibers and matrices, volume fractions, and fiber orientation.

 The next step in this journey is to develop a theoretical construct which
will help us predict the mechanical response of a laminate, i.e. a collection
of laminae, stacked up and bonded together. Each lamina in this stack-up
may have different properties. The 15t step for predicting the response of a
laminate involves developing stress-strain relations for a composite plate.



Strain-Field in a Laminate

 Before developing an understanding about variation of strains in a
laminate, we will make certain assumptions about it. These are:
— Laminates are manufactured so that they act as single-layer materials. In

typical applications, such a response from the laminate is required so that its
overall strength and stiffness can be maximized.

— The requirement of “single-layer materials” necessitates that the adhesive
bond between two adjacent layers is perfect in the sense it has:

e Almost zero thickness
* No shear deformation - Thus, adjacent lamina cannot slip over each other.

— The assumption of “single-layer material” also implies that displacements are
continuous across the bond between two adjacent layers.

— Laminates are thin in the sense their overall thickness is significantly smaller
other dimensions of the laminate.



Strain-Field in a Laminate

e Consider Fig. 20.1 The figure shows how a section of laminate, taken in x-z
direction, appears after deformation due to application of forces. Here, 2z,
is the thickness direction on reference coordinate system.
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Fig. 20.1: Deformation of a Laminate as Viewed in x-y Plane



Strain-Field in a Laminate

The lower left-side portion of Fig. 20.1 is a view of un-deformed laminate.

The lower right-side portion of Fig. 20.1 shows the deformed state of
laminate’s section.

In the un-deformed section, line ABCD, is perfectly straight and normal to
mid-plane of the laminate. This line is assumed to remain straight and
normal to mid-plane even after getting deformed. This implies that:

— Out-of-plane shear strainsy,,, andy,,, are zero.

— There is no inter-laminar shear or slipping.

Further, it is assumed that the length of line ABCD remains same after
deformation. This in turn implies that strain in z direction, €_, is zero.
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Strain-Field in a Laminate

* Assumptions of normality, in-extensibility and straightness for line ABCD
are together known as Kirchhoff-Love assumptions in shell theory, and
Kirchhoff’s assumptions in plate theory.

e Further, due to deformation of plate, point B undergoes translation by
amount u°, v°, and w®, in x, y, and z directions, respectively. Also, the line
ABCD rotates about B by an angle a in the z plane. Figure 20. does not
show v, displacement explicitly because the figure is a side view of the
laminate undergoing deformation.

e Thus, displacement of point C, which is z distance away from mid-plane is:

ulxy, 2) = wxy) - zalxy)= = uo— 252 (Eq. 20.1)

 InEq. 20.1, we use the fact that a is partial differential of w° in x-direction.



Strain-Field in a Laminate

Similarly, we can also write the relation for displacement v(z), as:
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Also, for small displacements, following relations hold for strains.
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(Eg. 20.2a)

Now, using definitions for u, and v, in above strain definitions, we get:
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Also, as mentioned earlier, €,,, y,,, and y,, are zero.

(Eq. 20.3)



Strain-Field in a Laminate

e As per Eq. 20.3, normal and shear strains at a point in a laminate can be
decomposed into their mid-plane, and curvature components. Thus, Eq.
20.3 may be re-written as:
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where the mid-plane strains are defined as:
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Strain-Field in a Laminate

* And, mid-surface curvatures are defined as:
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 InEg. 20.6, the last term represents twist curvature of mid-surface of
composite laminate.

 Equations 20.3-20.6 are valid only for plates and not for shells. This is
because our strain definitions, as per Eq. 20.2a are valid only for plates as
they do not account for a shell’s curvature.

* Equation 20.4 shows that strains vary linearly over the thickness of a
composite plate, with the average strain computed over plate’s thickness
equaling mid-plane strain.



Stresses in a Laminate

* If one were able to compute mid-plane strains and curvature of the plate,
then predicting stresses over the laminate’s thickness is simply a matter of
multiplying these strains with stiffness constants using strain-stiffness
relations on a layer-by-layer basis.

e Thus, stresses in kth layer of the laminate may be calculated using
following relations.
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e Since [Q] matrix varies discontinuously between two adjacent layers, variation of
stresses between two layers need not be linear, or even continuous. Thus stresses
are discontinuous between two adjacent layers, even though strain varies linearly
across entire laminate thickness. However, over the thickness of a single lamina,
stress variation is linearly continuous.



