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Introduction

e Most of the composite materials are neither
homogeneous nor isotropic.

— A homogeneous material is one where properties are in
the body, i.e. they do not depend on position in body.

— An isotropic material is one where properties are direction
independent.

 Composites are inhomogeneous (or heterogeneous) as
well as non-isotropic materials.

— In an inhomogeneous (or heterogeneous) material
properties of material vary from point-to-point.

— A non-isotropic material is one, where material properties
depends on direction of observation. Thus, a material’s
modulus may be different in x, y, and z directions.



Introduction

* Consider a rectangular slab of isotropic material.

— It this slab is pulled in tension, as shown in Fig. 17.1, then it only produces
normal strains. These strains are tensile in loading direction, and compressive
(due to Poisson’s effect) in transverse direction.

— Further, if this slab is subjected to pure shear stresses, then as shown in Fig.
17.1, the slab exhibits pure shear strain in X-Y plane.

— These are important characteristic of isotropic materials, i.e. normal stresses
produce pure normal strains. and shear stresses produce pure shear strains.
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Introduction

* Next, we consider a rectangular slab of fully anisotropic material.

— It this slab is pulled in tension, as shown in Fig. 17.2, then shear as well as
normal strains will develop in the body. Further, if this slab is subjected to pure
shear stresses, then as shown in Fig. 17.2, the slab exhibits not only shear
strain in X-Y plane, but also normal strains.

— This is a very important characteristic of anisotropic materials, i.e. normal
stresses produce normal as well as shear strains, and shear stresses produce
normal strains in addition to shear strains.
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Introduction

* Finally, we consider a rectangular slab of orthotropic material.

— In general, this material behaves in ways very similar to anisotropic materials.
Thus, when subjected to normal stresses, it will not only exhibit normal
strains, but also shear strains.

— However, the response of these materials mimics that of isotropic material, if
the edges of slab are parallel to a special set of three mutually perpendicular
axes.

— The exact orientation of these three mutually perpendicular axes depends on
the internal material structure, and in case of unidirectional composites, on
the direction of fibers.

— These axes are known as natural material axes. Also, the planes for which
these axes act as normals are known as planes of material symmetry. In case
of unidirectional composites the direction of fiber is one such material axis,
and is called longitudinal axis. The direction normal to the longitudinal axis is
termed transverse axis.



Hooke’s Law for Orthotropic Lamina

Understanding mechanics of a solid requires one to know relationships between
strains and stresses. For isotropic solids, this relationship is simple and
straightforward. For an isotropic sample under pure tensile stress the
relationship between stresses and strains is given below.

o, = Eg,
where, o, and g_ are stress and strain in direction of tension, and E is Young’s
modulus of the material.

We also know that due to such a tensile stress the material sample experiences
contraction in transverse directions, and the consequent lateral strain can be
expressed as:

€. = -VE, Where v is Poisson’s ratio for the material.

Further, it is also known that the relation between shear stress, T, and shear
strain, y, for isotropic solids is:

=Gy,
where G is material’s shear modulus, and it can be expressed in terms of E and v.

Hence, an isotropic material has two fundamental elastic constants, which relate
stresses and strains.



Hooke’s Law for Orthotropic Lamina

e We have to develop similar mathematical relationships between stresses
and strains present in an orthotropic lamina.

e Asshownin Fig. 17.3, there are a total of nine different types of stresses;
011, 022, 033, T1p Ty Toys Tozy T3y, T3p. Here,

0,1, 0,5, and 035 are normal stresses. They can be compressive or tensile in nature. Their
first subscript indicates the plane on which they are acting, and the second subscript
indicate the direction in which they point to.

— T4 T3 Ty, Tra, T3y, T3, are shear stresses. Their first subscript indicates the plane on which
they are acting, and the second subscript indicate the direction in which they point to.
Thus, shear stress, T,,, acts on plane 1, and it points in the 2-direction. In contrast, shear
stress T,,, acts on plane 2, and it points in the 1-direction.

e Similarly, there are nine different components of strain tensor. These are:
€11, €221 € 33, €12, €13, €91, €53, €31, €3, Here, first three are normal strains,
while the remaining six are tensorial shear strains.



Hooke’s Law for Orthotropic Lamina

Figure 17.3 : Different types of strains which can act on an infinitesimal
material element.
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Hooke’s Law for Orthotropic Lamina

The nine stress tensor components are related in a most general sense with
nine strain components through the following equations.

0; i = hhE it

These are nine equations overall. Indices i, j, k, and | can assume values of 1,
2 or 3. By is the generalized stiffness tensor. The summation on left side is
on indices k, and /. Thus, there are a total of 81 elastic constants for a fully
anisotropic material.

Now, we can show from principal of equilibrium, that the values of cross
shear stresses are equal. Thus,

U127 T, T3 = T35, 31 = Ty

This implies that values of E, and E; are same. This reduces the number of
stiffness constants to 54. Further, we can also show through principles of
geometry, the equality of cross-shear strains. This further reduces the
number of elastic constants to 36.



Hooke’s Law for Orthotropic Lamina

* Hence the stress-strain relations for a fully anisotropic material can be
expressed as:

(11 'Ey111  Ei1zz Bi1as Ehaaz EBiazz Ei1ma) penn
Faz Ejg11 Egpos Fazaz Eggrz Eggoa Eggas| | €22
J@as\ _ |Esz11 Eaaze Faszas Ewsiz Easza  Easi|) €3s
T12 Eyg11 Eizzz Eizag  Eigaz  Eizps  Eygag || F12
T23 Ejzi1 Eaazs Ego3as Eazrz Eaazg  Eogan || 523
a1 LE3111 Eaizz Eaias Eairz Laizs Eagand a1

 Now, by factoring into thermodynamic considerations pertaining to
symmetry of strain-energy density function (details not discussed here), it
can be shown that the stiffness matrix as defined above has to be
symmetric. Hence,

E112 = B
E1123 = Exzp00
Ey212 = E1202)
E3315 = Eio33)
E1203 = Ey310)

1133 = E3311)
1131 = E3111/
2223 = Ez329)
3323 = Ez333)

m m m m m

1231 = E3119)

1112 = E111)
2233 = E3321/
2231 = E3120/
3331 = E3133/

m m m m m

2331 = E3193.



Hooke’s Law for Orthotropic Lamina

* Thus, an anisotropic solid requires only 21 independent elastic constants
without any loss of generality.

e At this stage, we introduce the notion of orthotropy, which requires
existence of three planes of material symmetry. The existence of such a
symmetry implies that normal stress produce only normal strains, and shear
stresses only produce shear stresses.

e Mathematically, this implies:

Ey31,=0 Ei13=0 Ej131 =
E1,=0 Eyp3=0 Ej31 =
E331,=0 E333=0 E3s3 =
Eip3=0 Eip3, =0 Ejs31 =



Hooke’s Law for Orthotropic Lamina

* Thus, for an orthotropic material, the total number of elastic constants is 9.
Using these constants, we can write the stress strain relation as:

0, = QU.E] i,j = 1, 2, 3, 4, 5, 6. (Eq. 17.1)
where,

Q;; is the stiffness matrix, o; represents six different stress components, and
g;represents engineering strain vector.

e Equation 17.1is a generalized Hooke’s Law for orthotropic solids.



Hooke’s Law for Orthotropic Lamina

e Equation 17.1 may also be represented as:

91y @11 @12 @iz 00 00 00 7 ¢ €1y

Tz Q12 @2z Qo 00 00 00 Eq
) dq L — @3 @az @3 00 00 00 ) £ 'r" Eq. (17.2)
T23 00 00 00 Qs 00 00|V
31 00 00 00 00 Qi 00]|Ya

T2/ L oo o0 00 00 00 Q. \iz/

e InEq.17.2, subscripts 1, 2 and 3 coincide with orthotropic material axes.

* Now a lamina may be assumed to have only two-dimensions as its thickness
is very small compared to its in-plane dimensions. Hence, all the terms
related to thickness direction may be dropped. The stress-strain relationship
for such a lamina is:

7 @1 @z O €1
[ﬂ: I = I'E?lz Q22 0 ][E: I Eq. (17.3)
0 0 @



Hooke’s Law for Orthotropic Lamina

* Finally, for the case when stresses are know in an orthotropic lamina, and
we wish to know strains, we can simply multiply both sides of Eq. 17.3 by
inverse of stiffness matrix [Q]. This yields us expressions which may be used
to calculate strains in terms of stresses and a compliance constants
represented by [S]. The general form of such a relation is shown in Eq. 17.4.

€4 3511 31z 0 (o
¥12 0 0 Sl \T12

e In above equation, compliance terms relate stress to strain. These terms
may be expressed in terms of stiffness coefficients as shown in Eqgs. 17.5.

S11= Qp,/(Q44Q,, - Q%)

Sy = Qy1/(Q44Q,, - Q%)

S12 = Qy,/(Qy3Qy, - Q%) (Eg. 17.5)
and

Ses = 1/Qq



Hooke’s Law for Orthotropic Lamina

e Similarly, following equation may be used to find out stiffness constants of
an orthotropic lamina, if its compliance coefficients were known.

Q= S22/(511522 } 5212),
Q,, = S11/(511522 } 5212),

Qy, = S12/(511522 } 5212), (Eq. 17.6)
and
Qg6 = 1/566.

* It needs to reiterated here that Egs. 17.3 to 17.6 are only applicable for a
two-dimensional orthotropic lamina. Such materials require only four
independent elastic constants. For a three-dimensional orthotropic lamina,
nine elastic constants are needed.

 Thus, understanding of three-dimensional orthotropy involves more
complexity compared to that of isotropy or two-dimensional orthotropy.



