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Introduction

e Earlier, following equations, which govern stress-strain relations in a
composite laminate, have been developed.
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 These equations work well in terms of predicting stress-strain response of

plate if {N} and {M} are known. However, if they are unknown a new set of

relations have to be developed, which have to be used in addition to above
equations.

* These relations can be developed using one of following two approaches.
— Equilibrium approach: It is based on Newton’s 1%t Law of Motion.
— Variational approach: It is based on energy equilibrium.

 Here, we start our discussion with the Newtonian approach.



Equilibrium Equations

 According to Newton’s Laws of Motion, for a body to remain in
equilibrium, the sum of external forces and moments on it, should be
zero. This can be mathematically expressed as:
— SF=0
— SM, =0,
where, i, is an index which can assume values x, y, or z.

* Thus, there are a total of six equilibrium equations; three for force, and
three for moment. Consider an infinitesimal portion of a plate, as shown
in Fig. 23.1. Here, forces in only x-direction have been depicted.

|1 Fig. 23.1: x-direction forces
N N o & acting on the mid-plane of
YN~ %x 'z R e a plate (origin assumed to

./ ~ be at geometric center of
| ' plate element)




Equilibrium Equations

* InFig. 23.1, the geometric center of a very small portion of the plate
coincides with the origin of the coordinate system. Also, the dimensions of
this plate are Ax, Ay, Az. Further, we assume that force and moment
resultants at the origin are N, N,, N,, M,, M,, and M., Figure 23.1 shows

force resultants on different faces of the plate, acting in x-direction.

* For equilibrium in x direction, the following equation can be written as

shown below.
an . Ax an, Ax N, Ay N, Ay
*he=0= {(Nx_i_ dx E)_(Nx_ dx ?)}ﬁ}“l_ {(Nﬁ_i_ dy 2/ Ny = ay 2 )™
ar
aN, aN,,
T
dx dy
(Eg. 23.1)

e Similarly, the equilibrium equation for y direction can be written as:

aN,, N (Eq. 23.2)

dx dy




Equilibrium Equations

* Here, it should be noted that force resultants N, N,,, and N, are zero, and
so are moment resultants M,,, and M, ,. This is an outcome of Kirchhoff’s
assumptions for a plate due to which out-of-plane shear and normal
strains are zero.

* Next, we develop the equilibrium equation for the z-direction. Consider an
infinitesimal portion of a plate subjected to normal load per unit area, q.
Figure 23.2 shows force resultants on different faces of the plate, acting in
z-direction.

8q,.
Q-52.7
e — ' Fig. 23.2: Equilibrium
=2 ! schematic for z-direction
'TJ;" """""" py, on an infinitesimal portion
) I wa+ZET ofa composite plate
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Equilibrium Equations

* As per Kirchhoff’s assumptions, out of plane shear stresses (t,,, and t,)
should be zero. This in turn implies that the equilibrium equation for z
direction should be:

g-dx-dy=0o0rg=0.

 Above relation implies that for a plate to be in equilibrium in z direction, it
should not be subjected to any external load acting in out-of-plane
direction.

 However, this is not consistent with reality since plates indeed capable of
bearing significant out-of-plane loads. Thus we have to revisit Kirchhoff’s
assumptions concerning out-of-plane shears, and it can be inferred that
these entities are not zero in plates.

* Thus, we apply a correction to Kirchhoff’s plate as shown further.



Equilibrium Equations
* As per this correction, we do not assume out-of-plane shear stresses to be
zero, and thus define two non-zero entities as follows.
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Q. = ft;: Tz 2, and Qy = ) 7 TyzdZ
* Thus, the equation for force equilibrium in z direction is:
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* Next we look at moment equilibrium about origin. Consider Fig. 23.3,
which depicts various moments acting about the y-axis.

oM, Ax
M, +— .—
dx 2

Fig. 23.2: Depiction of moments and
forces needed to develop moment
equilibrium equation about y-axis
(moments and forces shown only on
positive faces of the plate element).
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Equilibrium Equations

* Considering the equilibrium of moments about y-axis, we get:

ﬂMIﬁK) ( BMIEI.};)} M., Ay M., Ay
M, +—2— ) — (M, ———=—lay + 1 M, + = (M, ——22)a
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* Neglecting higher order terms, we get moment equilibrium about y axis.

A My n A My _

= Eq. 23.4

Similarly, the equation for moment equilibrium about y axis is:

My BMy
Xy ¥ _
0 T . @, =0 (Eq. 23.5)




Equilibrium Equations
e Finally, we consider moment equilibrium about the z-axis. Here, we note
the following:
— N, and N,, do not contribute to moments about the z-axis, as they per

definition, act on the mid-plane.
— g(x, y) does not contribute to moments about the z-axis, since its contribution

is of a higher order.
— OnlyN,, and Ny contribute to moments about the z-axis. However, their

Xy’

contributions add up to zero. Thus, the moment equilibrium equation for the
z-direction, which is given below, is identically satisfied.

Ny, - Ny, =0 (Eq. 23.6)

 Equations 23.1, 23.2, and 23.3 represent force equilibrium in x, y, and z, directions,
respectively.

 Equations 23.4, 23.5, and 23.6 represent moment equilibrium in x, y, and z,
directions, respectively.



Equilibrium Equations

Differentiating Eq. 23.4 and 23.5 with respect to x, and y, respectively,
summing them up, and then substituting Eq. 23.3 in this “summed up”
relation, we get:

M, 9°M,, 0°M,

+
dx? * dxdy  dy*?

+q=0

Thus. there are a total of four eauilibrium eauations. These are:

ANy | ONyy —
- 1 = 0 Eq. (23.7)
5NIJ; + aN}‘ _ {] Eq (238)
dx dv
52‘ azﬂ{ . 52M1

My 4 XY + 2} + q= 0 Eq (239)

dx2 Bxdv av

Ny, — Ny, = 0. Eq. (23.10)

Embedded within Eq. 23.10 are three equilibrium conditions; force
balance in z direction, and moment balance in x and y directions.



Boundary Conditions

Equations 23.7 to 23.10 are valid for any composite plate of arbitrary shape
or dimensions. These equations have to be solved to getting displacement-
field for the plate. For a rectangular plate there are four sets of boundary

conditions (BCs) corresponding to each edge.

These four sets of BCs correspond to four equations of equilibrium.

— First two sets of boundary conditions correspond to inplane equilibrium
equations, i.e. Egs. 23.7 and 23.8.

— Second two sets boundary conditions correspond to out-of-plane equilibrium
equation, i.e. Eq. 23.9.

Each edge of a rectangular plate could have five different force and moment
resultants. For instance, the x = a/2 edge could be subjected to external force
and moments resultants as, N, *, N, N5 M7, and M,,"

However, there are only four BCs for each edge. Here, we directly write these
BCs for each edge. A detailed proof for these BCs will be provided later.



Boundary Conditions

Boundary Conditions at x = +a/2.

(i) (N, —N;)éu’ =0,
where du®implies variation in midplane displacement w..
Thus, either N, = N,” or u, must be known.

(i) (N, —N:)6v°=0
where dv°implies variation in midplane displacement v..
Thus, either Ny, = N~ or v, must be known.

+
(i) {("":’u 2 2 ) (q 4 2% )}aw — 0
x ¥
where dw “implies variation in mu:iplane displacement w..
Thus, either ( M

+
- p ) (Q + ):::r or w, must be known.
x ¥

(iv) (M,—M)8E) =0
Thus, either M,, = M n::rEJ "

dx

must be known. (Eq. 23.11)



Boundary Conditions

e Boundary Conditions at x = -a/2.

(i) (N, —N_)éu’ =0,
where du”implies variation in midplane displacement u..
Thus, either N, = N,, or u, must be known.

(i) (N, —Nz,)6v° =0,
where dv°implies variation in midplane displacement v..
Thus, either N, = N, or v, must be known.

(iii) {(“’I +2 a“’“) - (q; + a’“;}')}ﬂw“ )

dx ay gy
where dw “implies variation in midplane displacement w,,.

[l aﬂf al“ ¥ — a;‘f—.
Thus, either (a 42 a’“) = (GI + a—"}) or, or w, must be known.
x ¥ ¥

(v) (M.—M)8() =0
Bw?

A

Thus, either M,, = M, or must be known.

(Eq. 23.12)



Boundary Conditions

e Boundary Conditions at x = -b/2.
(i) (N,—N;)6v°=0
where dv°implies variation in midplane displacement v,.
Thus, either N,= N, or v, must be known.

(i) (N, —Ng,)éu®=0,
where du®implies variation in midplane displacement u,.
Thus, either N, = N/, or u, must be known.

(i) {(Z2+222)— (o) +22)}swe = 0
ay dx
where dw “implies variation in mu:lplane displacement w..
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Thus, either (a— +2 : ) ( ) or, or w, must be known.
¥ x

(iv) (M - Mt)ﬁ(a—“’”) =

known.

(Eq. 23.13)



Boundary Conditions

e Boundary Conditions at x = +b/2.

() (N,—Nj)év° =0,
where dv%implies variation in midplane displacement v..
Thus, either Ni= N,”, or v, must be known.

(i) (N,,—Ni,)éu®=0,
where du®implies variation in midplane displacement u,.
Thus, either Ny, = N,,”, or u, must be known.

i) {(Z2+272) — (o7 + 22)} 6w = 0

¥ dx dx

where dwimplies variation in midplane displacement w,.

] M, M gy L+ aME
Thus, either -+ za— =|Q; + —_ ) or orw, must be known.
¥ x x

iv) (M, - M;).ﬁ(aa—‘f) —0

: aw?
Thus, either M, = M :::raL must be known.
- - ¥

(Eq. 23.14)



Boundary Conditions

In Equations 23.11 through 23.14, the BC on equality of out-of-plane shears
requires careful consideration.

As per this condition, either displacement in z direction should be known, or
the sum of Q and partial derivative of M, should be known.

This condition does not require knowledge of either Q, or partial derivative
of M,,, individually. Rather, what is needed to be known is their sum. It is for
this reason, five variables on each face of plate, are linked by only four
boundary conditions.

Overall, there are three displacements, three strains, three stresses, and six
force and moment resultants; a total of 15 unknown variable. These can be
calculated by solving 15 simultaneous equations; three kinematic relations,
six equations of equilibrium, and three relationships between force and
momentum relations and strains using A, B and D matrices. The integration
constants/functions may be determined from boundary conditions.



Boundary Conditions

* Finally, we note that for the edge, x =+a/2, one of the boundary condition is:

(ﬂMﬁ HﬂMA,_}.) (Q +ﬂM )
dx dy dy

or, mid-plane displacement w®, should be known.

e Theterm (q s, DMy represents, net out-of-plane shear force acting at edge,

ay
x=+a/2. It is sometimes also referred as Q"

e Similar boundary condition requirements also exist for other edges of the

[Py Ry

piate.



Classification of Boundary Conditions

* We have seen that there are four sets of boundary conditions for each edge.

* For each such set, the BC involves a force resultant (or moment resultant)
and a displacement (or displacement gradient). Thus, we either have to
know the displacement (or its gradient) or externally applied force resultant
(or moment resultant).

* These BCs can be classified in two groups. These are:

— Essential boundary conditions: All variables in formulation which are either displacements
or their gradients are termed as primary variables. BCs associated with primary variables
are termed essential boundary conditions (EBC).

— Natural boundary conditions: All variables in formulation which are directly related to
forces or moments (or their gradients) are secondary variables. BCs associated with
primary variables are termed natural boundary conditions (NBC).



Classification of Boundary Conditions

Essential and natural boundary conditions occur invariably in pairs. In a

given situation, only one element of each pair can be specified. The
following table categorizes various BCs for a rectangular plate as EBCs and

NBCs.

Classification of Boundary Conditions for a Rectangular Composite Plate

x=a/2
EBC NBC
u° N,
Ve N,y
Out-of
we plane
shear

x=-a/2
EBC NBC
u° N,
Ve N,y
Out-of-
we plane
shear
ow°/dx M.,

y=0b/2

EBC NBC

u° N,y

v° Ny
Out-of
we plane
shear

ow°/dy M,

y=-b/2
EBC NBC
u° N,
v° Ny
Out-of-
we plane
shear
ow°/dy M,



