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Lecture 27
Simply Supported Plates with Normal Load
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e Analysis of a Simply Supported Plate on All
Four Sides
— Governing equations
— Boundary conditions
— Stiffness matrices
— Series solution

e Assessing Convergence of Solution



Simply-Supported Plate on All Sides

 Consider a plate of dimensions a X b in x and y directions, respectively, and
which is simply supported on all four sides.

e Further, we assume that this plate has a symmetric and specially
orthotropic lamination sequence. Thus,

— [B]=[0] duetosymmetry
— A=Ay =Dy =Dy =0

* Finally we assume that the plate is normally loaded as shown in Fig. 27.1
with a load intensity of g(x,y).

q(x,y)
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Fig. 27.1



Simply-Supported Plate on All Sides

e For such a plate, the out-of-plane boundary conditions are:
— w* =0on all four sides.
- M?*=0atx=0,a0.
— M =0aty=0,b.

* As explained earlier, the governing equation for equilibrium for out-of-
plane direction for such a plate is decoupled with in-plane equations,
because the plate’s lamination sequence is symmetric. This equation is
reproduced below.

8% M,
= 4- 2
Bx= Gx8y Ay
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* Expressing this equation in terms of derivatives of w°, we get:
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Simply-Supported Plate on All Sides

e Equation 27.1 has to be solved for w°. At this stage, we assume a series
function for w°, which satisfies the boundary conditions listed earlier. Let

this assumed function be:
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where, m, and n are integers which can vary between 1 and infinity.

e Such a series expression for w° satisfies out-of-plane boundary conditions.
If this expression also satisfies Eq. 27.1, then it is a valid solution. For this
expression to satisfy Eq. 27.1, we put it into the equation, and get the
following condition, which has to be satisfied for getting a valid solution
for we.
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(Eqg. 27.2)



Simply-Supported Plate on All Sides

* Now, if g(x,y) can also be expressed as a double Fourier series, as shown
below:
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then, for Eqg. 22.2 to be true, the following condition must hold.
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* Hence, if we know q,,,, we can find out-of-plane deflections for such a
plate.



Simply-Supported Plate on All Sides

The values for q,,,, can be gotten by decomposing g(x,y) into a double
Fourier series as shown below.
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* While solving for q,,,, following identities may be used.
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e |If functions are more complex, then Gaussian integration may be used.

e Also, if there are point loads, then Dirac-Delta functions §[(x-x,), (y-v,)]
may be used while computing g, using above formula.



Convergence of Solution

While computing the out-of-plane response for the plate, one has to
estimate the number of terms to be used in serial expansion of g(x,y).
Theoretically, the larger the number of terms the more accurate (or
converged) is the solution.

But then, one question that requires careful consideration relates to the
context in which accuracy/convergence is being assessed. Are we looking
for convergence of displacement, or stress, or load, or ... ?

In this context, consider that g(x,y) is constant over the plate, and has a
value g,. For such a load, the Fourier series expansion is:
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where, m=1,3,5,...andn=1,3,5, ...



Convergence of Solution

Here, for a two-term solution (i.e. m, and n can assume two distinct
values):

41,1 = (169,/1%) 03,5 = (16q,/m?) X (1/ 3°)

e Similarly, for a 20-term solution:
di11~= (16q0/n2) Q3939 = (16q0/n2) X (1/39?%)

* Hence, we see that load converges in a 1/m? way.

 Next, we look at convergence of deflection. Earlier, for this plate, it has
been shown that:

Wmn = qmn/dmn

e But, we know that d_ and g, are directly proportional to m* and 1/m?,
respectively. Thus, deflection converges in a 1/m® fashion.



Convergence of Solution

e Similarly, we can find the pace of convergence for other parameters. The
following table lists the rate of convergence for different mechanical
parameters as well.

Load m
Out-of-plane shear m3
Curvature m™*
Resultant Moment m™*
Stress m™*
Displacement (w) m

 Hence, we find that among the unknowns, out-of-plane shear converges
much more slowly than out-of-plane displacement.



