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Introduction

 Here, we will study how governing equations for composite plates as
developed earlier, can be used to calculate the response of semi-infinite
plates.

 We analyze semi-infinite plates because of following reasons:

— Closed form solutions for such plates are easy to develop. The same may not
be true for more “common” geometries and boundary conditions.

— Analysis of semi-infinite plates involves significant idealization, thereby
reducing the complexity of the problem. Such simplified analyses provide us
with useful insights related to role of material properties, boundary conditions

and external loads on the response of plates.

— The closed form solutions developed here, may be used to check validity of
other solution approaches, e.g. finite element method.



Assumptions about Semi-Infinite Plates

e Consider a plate which is infinitely long in one direction and simply
supported along both of its short-edges as shown in Fig. 24.1. The plate is
loaded in the z-direction with constant load intensity g.

y

Fig.24.1

* Avery long plate, with dimensions a, and b, such that a >> b, will
approximately mimic the response of an “infinitely” long plate in an
approximate sense. Here, a is plate’s dimension in the x-direction.

e Given that the plate is very long in the x-direction, it can be assumed that
partial derivatives of all entities in the y-direction for such a plate are zero.
Thus, for such a plate partial derivative of an entity in the x-direction will
equal total derivative in the x direction. This can be written as:

2 2 d
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Different Cases to be Studied

* Finally we define the boundary conditions and lamination sequence of the
plates to be studied. Overall, four cases will be studied. The BCs and
lamination sequences for these cases are shown in Fig. 24.2.

CASE A: [0/90],

CASE B: [0/90],

CASE C: [0,/90,];

CASE D: [0,/90,],

Fig. 24.2: Boundary Conditions for Semi-Infinite Plates



Solutions for Response of Infinitely Long Plates

 Kinematic Equations: Rewriting Egs. 16.4, 16.5 and 16.6 we get:
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e Given that for such plates partial derivatives in the y-direction are zero, we
can write these relations as:
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(Eq. 24.1)




Solutions for Response of Infinitely Long Plates

e Equilibrium Equations: Next, we simplify equilibrium equations, in the
same way as we simplified kinematic equations, i.e. by using the fact that
partial derivatives the y-direction for such a plate are zero.

e Thus, Egs. 19.7, 19.8 and 19.9 may be simplified as:

Ny  dNy 0
dx dx
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Integrating these equations yields:

Ny =e1

(Eq. 24.2)
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Solutions for Response of Infinitely Long Plates

e Stiffness Matrices: For cases A and B, as defined in Fig. 24.2, the
lamination sequence is [0/90].. Thus, the laminate is symmetric, as well as
cross-ply. For such a laminate:

— [B] =10]

— And because all the plies in the laminate are oriented either at 0° or at 90°:
* A=Ay =0
e D;g=Dy =0 (Eg. 24.3)

 Forcases Cand D, as defined in Fig. 24.2, the lamination sequence is
[0,/90,]+. This is a non-symmetric but cross-ply laminate. For such a

laminate:
— A=Ay =0
— Big=By =0

— Dy=Dy,, =0 (Eq. 24.4)



Solution for Case A

e For Case A, we now combine Egs. 24.1, 24.2 and 24.3 to get:
du®
N,= ¢ = ‘qna (Eqg. 24.5)
Integrating this relation, we get:

eyx = Ay u(x)—egor,

Y Gl (Eq. 24.6)
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Similarly, in definition of N, only 1 term is non-zero, as all other terms are zero

because Ais and Az are zero, and also partial derivative in y direction is zero.

du’
Thus, using Eq. 16.5, we get: (Eq 24 7)
N, =A,, 2

Finally, for equilibrium equation in y direction, we get:

€, x + €, (Eq. 24.8)
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Solution for Case A

e Also, considering the momentum equation, and assuming that external
normal load per unit area g, is a constant, we get from Eq. 24.2:

M, =-gx*/2 + Cx + C, (Eqg. 24.9)

* And expressing M, in terms of strains and curvatures, we can write:
M, = D, (d?w°/dx?) (Eq. 24.10)
because terms D¢, D,4, and B; are zero.

e Combining these two equations, and integrating twice, we get:
wO(x) = {-gx*/24 + C;x3/6 + C;x*/2 + Cx + Gg}/D 4 (Eq. 24.11)

e Also, writing expression for M., and using Eq. 24.8, we get:
M, = Dy,(d?>w®/dx?) = (D,,/ Dy;)M, (Eq. 24.12)



Solution for Case A

* It may be noted here, that Egs. 24.5 through 24.12 are valid for Cases A
and B, because the problem definition for either cases is same except for
boundary conditions. As we have not yet applied boundary conditions,
Equations 24.5-24.12 are applicable to Case B as well.

e Boundary Conditions for Case A
— As shown in Figure 24.2, the BCs for this plate are:

BCsatx=-a/2 BCs at x = +a/2

U =0 N, =0
Vo =0 N, =0
M, =0 M, =0

we =0 wet =0



Solution for Case A

Plugging 1% set of BCs, i.e. u> =0and N,* =0 in Egs. 24.5 and 24.6, yields:
C,=C.=0.

Thus,
N (x)=0 u°(x) =0 N,(x) =0 (Eg. 24.13)

Similarly, second set of BCs, i.e. v°"=0 and N, * = 0 yields:

C,=C,=0.
Thus,
N,,(x) =0 ve(x) =0 (Eqg. 24.14)

Further, the 3" set of BCs, i.e., M% =0, at x = +a/2 implies (from Eq. 24.9):

0=-qa%/8 + C,a/2 + C, (for x = +a/2)
0=-qa%/8 - C;a/2 + C, (for x =-a/2)
Thus,

G, =0, C,=qa?/8, and M. =q(a?/4 - x?)/2 (Eq. 24.15)



Solution for Case A

* Finally, plugging 4t set of BCs, i.e. w%* =0, at x = +a/2 in Eqgs. 24.11,and
also using Eq. 24.15, yields following two simultaneous equations.
0 ={-qa*/384 + €,&%/48 + C,0°/8 + C,0/2 + C,}/D,,
0 ={-qa*/384 - €,&%/48 + C,0°/8 - C,a/2 + C,}/D,,

Thus,

G, =0, Cs =-5ga?/384, and

we(x) = {-16(x/a)*/24 + 24(x/a)?/16 - 5}(ga*)/(384D,) (Eq. 24.16)
Also,

M, = (Dy,/ D1)M, and M,, =0 (Eq. 24.17)

 Equations 24.13 through 24.17 constitute the solution for Case A.



Comments on Solution for Case A

It is seen from Eqs. 24.13 through 24.17, that the solutions for mid-plane
displacements, resultant forces, and resultant moments is symmetric with

respect to x axis.

However, as seen in Fig. 24.2, the boundary conditions for Case A are not
symmetric about the x-axis. Further, even though the beam is free to
move in x direction at x = +a/2, the solution for displacement at this end,
u°, is zero. There are two reasons for this.

— Presence of symmetric laminate ensures that there is no coupling between
u(x) and M,. Hence, the moment imposed by external load intensity g, cannot
create inplane resultant force N,, and thus, no inplane displacement in x-
direction is getting generated.

— Further, we have assumed linearity of strains in our strain-displacement
formulation.



Comments on Solution for Case A

* Next, consider Fig. 24.3(a), which shows the un-deformed shape of a small

portion of the plate being currently analyzed.

q (xy)

Fig. 24.3(a): Undeformed Shape
of a Small Portion of Plate
Subjected to Various Loads and
Moments which may Change Its
Curvature



Comments on Solution for Case A

dA

Fig. 24.3(b): Anticlastic curvature
in plate under loads and
moments




Comments on Solution for Case A

This plate, has three forces/moments acting on the laminate. These are; g,
M,, and M. All other forces have been found to be zero as per our
calculations.

Surface ABCD is the mid-plane for the plate in Fig. 24.3a. Now, because in-
plane displacements (u°, and v°) and curvature dw®/dy for midplane
ABCD are zero (see Egs. 24.13 and 24.14), lines AB, and CD, which were
straight prior to deformation, will remain straight after deformation as
well. This is counter-intuitive, as external load g would tend to induce
curvature on these line-segments.

However, presence of non-zero M, ensures that these line segments
remain straight. This is explained as follows.



Comments on Solution for Case A

* Vertical force due to g is balanced by M,, and M,. However, given that
M, /M, equals D,,/D,,, and typically, D12 << Dy, q is predominantly
balanced by M.,

* However, in absence of M, plate would curve as shown in Fig. 24.3b, and a

straight line AB, would curve upwards to position A’B’ due to load.

e This curvature, which would have existed in absence of M is known as
anticlastic curvature.

* However, the presence of non-zero M, causes segment A'B’ to become
once again straight.

* Also, note that M, is non-zero because Dy, is non-zero, and the latter term
is dlrectly proportional to Poisson’s ratio v,, Hence, presence of M,, and
straightening of AB is a demonstration of P0|sson s effect.

* Finally, absence of M, would have induced a non-zero curvature in the y-
direction. This would have violated the condition that partial derivatives in
the y-direction should be zero. Hence, we see that it is the material, which
drives the condition that partial derivative in the y-direction should be zero.



Solution for Case B

e Case B is similar to Case A, except for some differences in in-plane
boundary conditions. BCs for Case B are given below.

BCs at x =-a/2 BCs at x = +a/2

u-=0 u’*=0
v =0 Vor =0
M =0 M}*=0
w =0 w* =0
e Plugging 15t set of BCs, i.e. u®* =0 at x = +a/2 in Egs. 24.5 and 24.6, yields:
C,=C;=0.Thus,
N (x) =0 u°(x)=0 N,(x) =0 (Eg. 24.18)

e Similarly, second set of BCs, i.e. v°* = 0 at x = +a/2 yields:
C,=C,=0.Thus,
N,,(x) =0 v(x)=0 (Eg. 24.19)

* Since the out-of-plane problem is identical to that of Case A, and since it is not
coupled with the inplane problem (because [B] is zero), thus, the solution for
out-of-plane problem is same as that for Case A.



