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e Transformation of stresses and strains

e Stress-strain relations for a lamina with any
orientation

e Strength of an orthotropic lamina



Introduction

e Earlier, while discussing the stress state in 2-D orthotropic materials, it was
assumed that reference axes for measuring stresses and strains were
coincident with material axes. In reality, that may not be the case.

 Hence, there is a need to develop stress-strain relations in a 2-D
orthotropic lamina oriented arbitrarily. Towards this goal, as a first step,
we have to transform stresses and strains from material axes to arbitrary
axes, and vice-versa.

e Consider a tetrahedron with vertices ABCP. Its face ABC, with surface area
A and, normal n (with direction cosines, n,, n, and n,), experiences is
subjected to stress vector T, such that the total external force on face ABC
is T-A. Further, the x, y, and z components of Tare T, T, and T,
respectively.

e Further, we assume that the length of normal to face ABC passing through
P is h. Such a tetrahedron is shown in Figure 19.1.
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Fig. 19.1: Tetrahedron at Point P
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e Further, we assume that the body is in equilibrium, and thus, other three
faces experience normal and shear stresses.

e Given that the body is in equilibrium, we can write the following three
equilibrium equations.
o, An, + tyxAny +T,,An, = TA

T, ANt 0, An + T, An, =T A

T AN + T AN +0,AN, = TA,

* Eliminating A from above equations, we get Cauchy stress-formulae, as follows.
Oyl + TNy + TN, = In =T,
Ty + O+, n,=Tn =T (Eg. 19.1)
TNy + TN, + 0,50, = n,=T,

e InEg.19.1,T7,T,and T, arex,y, and z, components of stress-vector T. Further, T,

r Uxr Ty
can also be resolved in terms of its normal and tangential component, with respect

to surface A. The normal component can be expressed as:
o,=T,n+Tn +Tpn, (Eg. 19.2)
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Combining Equations 19.1 and 19.2, we can write the relation for normal
stress as:

O, =0,N, +o Sy 2+0,n2+2t nn, +2t,nn, +2t,nn (Eg. 19.3)

Xy "Xy yz''y' 'z zx' 'z 'x

Eq. 19.3 can be used to transform normal stress from one set of axes to
another set of axes.

Now, let us consider Fig. 19.2. Here, we assume that the stress state at a
point with respect to an arbitrary set of axes, x, y, and z is known. We
would like to use this information to calculate the stress-state with respect
to natural material axes of the system.

T Y
L
Fig. 19.2: Orientation of
Natural Material Axes with
0 X reference to Arbitrary Axes

z, T



Engineering Constants for a 2-D Orthotropic Lamina

From Fig. 19.2, it is seen that the material axis system is essentially a
rotation of x-y axes, around z axis by an angle 0. Thus the direction cosines
for the material axis system (L-T-T’), with respect to x-y-z system are, cos
0,sin 6 and 1.

Thus, normal stresses o,, and o,, can be written as:
o, = 0,,c0s* 0 + 0, sin” B + 21, cos Bsin O (Eg. 19.4a)
Or=0,,sin* 6 + 0, cos? 6 + 2T, cos O sin O (Eg. 19.4b)

Using similar approach, we can also write the equation for shear stress can
be written as as:

T;r = -0,, C0s Bsin 6 + 6, cos 6 sin B + T, cos? B sin* 6 (Eq. 19.4c)

Eqgs. 19.4a-c, can also be written in matrix form as:

Ty ..
[HTI = [T] [%—I Eg. (19.5)
Tt Tey
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Similar equations can also be used to transform strains from one
coordinate system to another one. The strain transformation equations
are:

£ £,
=
151’ =[T]4,7 Eq. (19.6)
E};Ll" Erx}'

In Equations 19.5 and 19.6, [M] is transformation matrix, and is defined as:

cos*@ sin@ 2sinf cos8
[T] = sin® @ cos’f —2s5inf cosd Eg. (19.7)
—sing cosf@ sinf cosf cos*@ — sin‘@

It may be noted here, that unlike stress transformation equations, strain
transformation equations have a factor of %2 within strain vectors. This is
because such a transformation requires usage of tensor strains, and not
engineering strains. While mathematical definitions of normal tensor
strain and normal engineering strains are identical, tensor shear strain is
one-half times that of engineering shear strain.



Transformation of Engineering Constants

* Now, that we have relations which can be used to transform strains from
one system to other, we proceed to develop relations which will help us
transform engineering constants. Pre-multiplying Eq. 19.5 by [T]? on
either sides, we get:

[T]-l{O}L-T = [T]-l [T] {G}X-y or {o}x-yz [T]-l{G}L-T (Eq- 19-8)

where, {o} ;and {c},, are stresses measured in x-y, and L-T reference
frames, respectively.

e Further, as shown in earlier lecture, we can write stress-strain relation as:
{o}.r=[Q] {e} ¢ (Eq. 19.9)

e Putting RHS of Eq. 19.9 in RHS of Eq. 19.8, we get:
{o}., = [TI"[Q] {e}_¢ (Eq. 19.10)



Transformation of Engineering Constants

e And finally expressing {€},_; in terms of {co}, , , using appropriate

transformations, in Eq. 19.10, we get:

X-y ’

{o}., = [T1"[Q] [THe},, o,
{0}, = [Ql{e},, (Eq. 19.11)

* Equation 19.11 helps us compute stresses measured in x-y coordinate
system in terms of strains measure in the same system. Here, [Q] is the
transformed stiffness matrix, and its individual components are:

Q,; = Q ; cos*0 + Q,, sin*0 + 2(Q,,+2Q;) sin%6 cos?0
Q,, = Qq; sin*0 + Q,, cos*0 + 2(Q,,+2Q,) sin%0 cos?6
Q = (Qqq + Q,, - 4Q,)sin?6 cos?0 + Q;, (cos*0 + sin*B)
=(Qq; + Qy, - 2Qq, - 2Q,,)sin?0 cos?0 + Q4 (cos*0 + sin“0)
= (Qqq - Q,, - 2Q,¢)sinG cos30 - (Q,, - Q;;, - 2Q,, )sin®6 cos O
= (Qqq - Q,, - 2Qg¢)sin0 cos O - (Q,, - Q;, - 2Q,, )sin O cos36
(Eg. 19.12)



Transformation of Engineering Constants

* Following observations can be made from Eq. 19.12.
— Unlike, [Q] matrix, [Q] matrix is fully populated.

— Terms Qq¢, and Q,, are identically zero. However, terms Q,,, and Q,, are not
necessarily zero, and their definition involves linear combinations of four
elements of [Q] matrix.

— For a specially orthotropic lamina, i.e. when its loading direction coincides
with lamina’s material axes, application of normal stresses produce only
normal strains, and application of shear stresses produce pure shear strains.

— For a generally orthotropic lamina, i.e. when loading direction and material
axes are not coincidental, application of normal stresses produce normal as
well as shear strains. This occurs because of non-zero values for terms Q,,, and
Q,¢, which couple normal and shear responses. These terms are also known as
cross-coupling stiffness coefficients.



Transformation of Engineering Constants

Using a transformation procedure similar to the one used to transform
stiffness matrix [Q], we can also transform the compliance matrix [S] to an
arbitrary coordinate system. The elements of transformed compliance
matrix [S] are defined below.

S;1=S5,,€0s*0 +S,, sin*0 + (25, + S;¢) sin%0 cos?0
S,, =5, 5in*0 +S,, cos*0 + (25, + S¢) sin?0 cos?0
S15 = (511 +S,, - See)sin?0 cos?0 + S, (cos*0 + sin*0)
Sec = 2(25,, + 2S,, - 45, - S¢6)sin?0 cos?0 + S (c0s*O + sin“0)
Si6 = 2(25,1 - 2S,, - S¢g)sinB cos30 - 2(2S,, - 2S5, - Sg )sin0 cos 6
Sy =2(25,1 - 2S,, - Sg)sin30 cos O - 2(2S,, - 25, - S5 )sin 6 cos*0
(Eq. 19.13)



Strength of an Orthotropic Lamina

In isotropic materials, failure prediction requires calculating
principal stresses or strains and comparing them to their
respective allowable stress and strain limits.

In non-isotropic materials such an approach does not work.

— The notion of principal stress makes no sense for these materials, as
material strength changes with direction, and direction of principal

stress may not in most of the cases coincide with direction of
maximum strength.

e For an isotropic material, we can fully describe allowable

stress field by knowing the material’s tensile, compressive and
shear strength.



Failure in Isotropic v/s Transversely Isotropic
Materials

e Similarly, for 2-D orthotropic materials, we evaluate allowable
stress field in context of five different strengths of material
measured with respect to its principal material directions.
These are:

— Longitudinal tensile strength (o)

— Lateral or transverse tensile strength (o;)

— Longitudinal compressive strength (o’,)

— Lateral or transverse compressive strength (o’ )
— In-plane shear strength (t)

e These material strength parameters for an orthotropic lamina
are its fundamental material properties.



Failure in Orthotropic Materials

e Similar to isotropic materials, several theories have been developed to
predict failure in orthotropic materials. Some of the more widely used
theories are based on maximum stress, maximum strain, and maximum
work.

e  Maximum Stress Theory: As per this theory, failure will occur once stresses
measured with respect to principal material axes, exceed their respective
allowable limits. Thus, for failure at least one of the following conditions
must be violated.

O <Oy O7 < Oy Tr < Tqu-

For compressive loads:

o0, <0' 07 < 01y (Eg. 19.14)

* One limitation of this theory is that different modes of potential failure do
not interact with each other.



Failure in Orthotropic Materials

Maximum Strain Theory: As per this theory, failure will occur once strains
measured with respect to principal material axes, exceed their respective
allowable limits. Thus, for failure, at least one of the following five
conditions must be violated.

For normal tensile strains the conditions are:
EL< € €7 < Eqy, Yir < Viru:
And if normal strains are compressive, then failure criteria are:
E.<€ Er< €1 (Eg. 19.15)

If material is linearly elastic, then Eq. 10.15 can be re-written as:

e<oy/E,  &<on/E, Yir < T/ Gy
’ 7
g <0 /E, &<0q/E (Eg. 19.16)

Predictions from maximum stress and maximum strain theories are very
similar, with minor differences being attributable to role of Poisson’s ratio.
This is true for linear elastic materials. For non-linear elastic materials, Eq.
19.16 should not be used, and significant difference should be expected
between results from these two theories.



Failure in Orthotropic Materials

e Tsai-Hill or Maximum Work Theory: As per this theory, failure occurs when the
following inequality condition is violated.

(o,/0,,)? - (o /o) (07 /07,) + (07/07y)% + (T /T70)2 < 1 (Eg. 19.16)

 Here, if normal stresses are compressive then compressive strength should be
used in the equation. Also, if the lamina is subjected to unidirectional normal
stress, then above equation can be simplified as:

(cos?0/0,,,)? - (cos sinB/a,,,) 2 + (sin?0 /o,,)?+ (cosB sinb/t,+,)? < (1/ 0,)*> (Eq. 19.17)
LU LU TU LTU X

e Unlike maximum stress and strain theories, Eq. 19.16 provides a single
criterion for predicting failure. It also accounts for interaction between
different strengths of the material. Predictions of strength from this theory are
slightly lesser than those from maximum stress and maximum strain theories.

* All the theories discussed till so far work only for a lamina subjected to bi-axial
stress state and not for tri-axial stress state.
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e Transformation of stress and strains

e Stress-strain relations for a lamina with any
orientation

e Strength of an orthotropic lamina



