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Behavior of Unidirectional Composites
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Predictive models for transverse stiffness

e Shear modulus and Poisson’s ratio

e Estimates for transverse strength

e Predictive models for coefficient of thermal expansion
 Thermal conductivity

e Failure mechanisms in unidirectional composites



Predicting Transverse Modulus of Unidirectional Lamina

Figure 16.1 shows a simple model for predicting transverse modulus of
unidirectional lamina. Here, the model constitutes of two “slabs” of
materials, fiber and matrix, of thicknesses t; and t_, respectively. The
overall thickness of composite slab is t_, which is sum of t;and t.. It may
be noted here that these thicknesses of fiber and matrix are directly
proportional to their respective volume fractions.
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In such a system, externally imposed stress on the composite (o) is
assumed to be same as that seen by fiber (o;) and also by matrix (o).

pd
~

This is in contrast to the model developed for predicting longitudinal
modulus, where we had assumed that strains, and not stresses, in
composite, fiber and matrix are equal.



Predicting Transverse Modulus of Unidirectional Lamina

e Further, in such a model, which is akin to springs in series, the overall
displacement in composite (A ) in transverse direction due to external load
is a sum of displacement in fiber (A;) and displacement in matrix (4,,).

A =0+ A
e Further, recognizing the relation between strains in each constituent, and
their thicknesses, above equation can be rewritten as:

Ec tczem tm+8ftf

* Dividing above equation by thickness of composite (t_), and realizing that
t/t., and t_/t.equal V;and V,_, respectively, we get:

e.=€g,V, +&V;

* Inlinear-elastic range, strain is a ratio of stress and the modulus. Hence,
above equation can be further re-written as:

(o JE)= (o JE V., + (0 /E)V;



Predicting Transverse Modulus of Unidirectional Lamina

* However, we had earlier assumed that externally applied stress on the
composite (o) is same as that seen by fiber (o;) and also by matrix (o).
Thus, previous equation can be rewritten as:

1/E=V_/E_ + V/E; (Eqg. 16.1a)

Or alternatively,
E.=(EE.)/([(1-V,)E; + V(E, ] (Eg. 16.1b)

e Equation 16.1 gives us an estimate for transverse modulus of
unidirectional lamina. The relation shows that a significant increase in
fiber volume fraction is required to raise overall transverse modulus in
moderate amounts. This is in stark contrast with longitudinal modulus,
which is linearly dependent on fiber volume fraction.

e Equation 16.1, even though based on a simple model, is not borne out
well be experimental data. To address this inconsistency, several
alternative models have been developed.



Predicting Transverse Modulus of Unidirectional Lamina

However, in this lecture we will use simple and generalized expressions for
transverse modulus as developed by Halpin and Tsai. These are relatively
simple relations, and hence easy to use in design practice. The results
from Halpin and Tsai are also quite accurate especially if fiber volume
fraction is not too close to unity.

As per Halpin and Tsai, transverse modulus (E;) can be written as:
Ei/E,=(1+&nV)/(1-nV,) (Eq. 16.2)
where,

N =[(E/Ey) - 11 / [(E/Ey,) + €]

Here, € is a parameter that accounts for packing and fiber geometry, and
loading condition. Its values are given below for different fiber geometries.
— & =2 for fibers with square and round cross-sections.

— &=2a/b for fibers with rectangular cross-section. Here a is the cross-sectional dimension
of fiber in direction of loading, while b is the other dimension of fiber’s cross-section.



Shear Modulus and Poisson’s Ratio

* A perfectly isotropic material has two fundamental elastic constants, E and
v. Its shear modulus and bulk modulus can be expressed in terms of these
two elastic constants.

* Likewise, a transversely isotropic composite ply has four elastic constants.
These are:
— E_ i.e. elastic modulus in longitudinal direction.
— E;i.e. elastic modulus in transverse direction.
— G i.e. longitudinal shear modulus.
— vri.e. Poisson’s ratio

A detailed discussion on the mathematical logic underlying existence of
these four constants will be conducted in a subsequent lecture.

* Till so far, we have developed relations for E, and E;. Now we will learn
about similar relationships for G,; and v ;.



Shear Modulus and Poisson’s Ratio

Halpin and Tsai have developed relations similar to Eq. 11.2 which can be
used to predict longitudinal shear modulus, G ;. This is shown below.

G/G,=(1+nVy)/(1-nV) (Eg. 16.3)
where,
n=[G/G,) - 11/ [(G/G,,) + 1]

For predicting Poisson’s ratio v,;, we exploit the fact that a longitudinal
tensile strain in fiber direction, will generate Poisson contraction in
transverse direction in both, matrix and fiber materials.

In this context, we also use the fact that relative strain values for such a
contraction will be proportional to each constituent material’s volume
fraction. Thus, overall Poisson’s ratio v; for the composite can be written
as:

Vir = VeV + vV (Eq. 16.4)



Transverse Strength

We have seen that a unidirectional ply, when put to tension in fiber
direction tends to break at stress values which exceed matrix tensile
strength. This is particularly true when fiber volume fraction exceeds V_.
Similarly, fibers play a central role in significantly enhancing the stiffness of
the ply in fiber direction, and the overall stiffness of the system tends to
far surpass that of pure matrix.

This occurs because fibers, which are stronger and stiffer vis-a-vis matrix,
carry a major portion of external load, thereby enhancing composite’s
stiffness and strength.

However, the same may not be said for a unidirectional ply loaded in
tension in the transverse direction. This is because load-sharing between
fiber and matrix in a transversely loaded ply is very less. In contrast, the
extent of load sharing between fiber and matrix in a longitudinally loaded
ply is very significant.

When a unidirectional load is subjected to transverse tension, fibers which
are far more stiff vis-a-vis matrix, act to constrain matrix deformation.



Transverse Strength

Such a constraint on matrix deformation, tends to increase ply’s transverse
modulus, though only marginally (unless fiber volume fraction is high).

However, the story is even more starkly different in case of transverse strength.
The deformation constraints imposed on matrix by fibers tend to generate strain
and stress concentrations in matrix material.

These stress and strain concentrations cause the matrix to fail at much lesser
values of stress and strain, than a sample of matrix material which has no fibers at
all. Thus, unlike longitudinal strength, transverse strength tends to get reduced for
composites due to presence of fibers.

This reduction in transverse strength of a unidirectional ply is characterized by a
factor, S, the strength-reduction-factor. The exact value of this factor can be
calculated by using a combination of advanced elasticity formulations and
numerical solution techniques.

The strength of unidirectional ply in transverse direction, o, can be written as:
Oyr = Oy /S (Eg. 16.5)



Some Other Properties of Unidirectional Plies

e Using approaches as described earlier, thermal conductivity in L (k)
direction can be written as:

ko =V +V k. (Eg. 16.6)

* Similarly, transverse conductivity, k;, can be written as:

ki/ky = (1+&nVy)/(1-nV)) (Eq. 16.7)
where,
n = [(k/k.,) - 11 / [(ki/k.,) + €], where, log € = 1.732 log(a/b)

e Finally, longitudinal and transverse thermal expansion coefficients have
been shown in engineering literature to be:

a =(EVia:+E V_a )/E (Eg. 16.8)

ar = (1+v)Via, + (1+v )V, a . - a v (Eg. 16.9)
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e Predictive models for transverse stiffness

e Shear modulus and Poisson’s ratio

e Estimates for transverse strength

e Predictive models for coefficient of thermal expansion
 Thermal conductivity

e Failure mechanisms in unidirectional composites



