Smart Materials, Adaptive Structures,
and Intelligent Mechanical Systems

Bishakh Bhattacharya & Nachiketa Tiwari

Indian Institute of Technology Kanpur



Lecture 30
The Galerkin Method



i I

References for this Lecture
Analysis and Performance of Fiber Composites, Agarwal,

B.D. and Broutman, L. J., John Wiley & Sons.

Mechanics of Composite Materials, Jones, R. M., Mc-Graw
Hill

Structural Analysis of Laminated Composites, Whitney, J.
M., Technomic

Nonlinear Analyis of Plates, Chia, C., McGraw-Hill
International Book Company



Example 3: Simply-Supported Plate on All Sides

 Consider a plate of dimensions a X b in x and y directions respectively,
which is simply supported on all four sides.

e Further, we assume that this plate has a symmetric and specially
orthotropic lamination sequence. Thus,

— [B]=[0] duetosymmetry
— A=A, =D, =D,, =0 due to special orthotropy.

* Finally we assume that the plate is normally loaded as shown in Fig. 30.1
with a constant load intensity of q,.

q(x,y)

Fig. 30.1
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Example 3: Simply-Supported Plate on All Sides

e For such a plate, the out-of-plane boundary conditions are:
— w* =0on all four sides.
- M?*=0atx=0,a0.
— M =0aty=0,b.

* As explained earlier, the governing equation for equilibrium for out-of-
plane direction for such a plate is decoupled with in-plane equations,
because the plate’s lamination sequence is symmetric. This equation is
reproduced below.
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* Expressing this equation in terms of derivatives of w°, we get:
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Example 3: Simply-Supported Plate on All Sides

* For such a plate, we have already developed an exact solution. Here we
develop Galerkin solution and compare it with the exact solution.

* For this, we assume that the solution is of form:
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e Such an assumed solution form satisfies all the kinematic BCs for the
problem. Using this, we compute the error in PDE.
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* Multiplying this error with virtual displacement and integrating the
product over plate’s area we get:
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Example 3: Simply-Supported Plate on All Sides

* From Eq. 30.1, we get:

16q,
Wii=—=2
"

where,

2, 2
D = | Dy, Gf +2(D, +2Dg) C_b) +D,, (%]4]

e This value of w,, is exactly the same as that determined in the exact
solution. In this case, we get same results because our choice of w(x,y)
coincides with that of the exact solution.

* Inthis Example, we have assumed the plate to be specially orthotropic.
Thus, the role of terms D, and D, was not present. Later, we will explore
this role by solving another problem which is slightly different than
Example 3.



Another Interpretation of Galerkin Method

* Consider the 1-D beam equation as discussed earlier. For such a beam, the
error in force equilibrium equation using an assumed solution is:

E[w(x)] = El-(d’w/dx?)- q,

 The value of such an error changes with position, both in magnitude and
sign.

e Also, the integral of square of this error over the domain (i.e. beam length)
can be expressed as:

o {EIw(x)]}* dx,
or,

[q [El(d?w/dx?)- g]* dx



Another Interpretation of Galerkin Method

* A “good enough” solution for w(x), would be when the integral of this
squared error is minimized.

* The condition for a minima of a function is when its 1% derivative is zero.
Using this, we get the condition for minima of integral of square-error as:
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e At this stage, we assume a form for w(x), and introduce it in above
equation. We assume,

X
wix) = HCGET

Putting this in expression for integral of square-error, we get:
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Another Interpretation of Galerkin Method

Now the integral of square error involves E, I, A, L, q,, but not x. Thus,
when this error is minimized we have to differentiate it w.r.t. A, because E,

I, and L are known constants.
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Thus, the condition for minima of integral of square error is:
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Another Interpretation of Galerkin Method

However, since the integral is over x, we can rewrite above expression as:
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This could be re-written as:
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Another Interpretation of Galerkin Method

 Thus we see that such an approach is equivalent to Special Galerkin
method, where mathematical expressions for virtual displacement and
actual displacement expressions are very much the same.

e As Galerkin method involves a least squares approach, multiple terms
increase the flexibility of the system so that its energy is reduced.

* Hence, the accuracy of Galerkin method increases with number of terms
used in the solution.

e Such an interpretation can also be generalized in context of partial
differential equations.



