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Introduction

Till so far, we have deduced solutions for laminated composite plates by
solving equilibrium equations.

These equations are derived from Newton’s Laws of Motion, as per which
“for an equilibrium state there must be no net force acting on the body”
(or system).

There is an alternative approach to solve these problems without using
Newton’s method. This method was originally developed by John Bernoulli
(1667-1745) and later pefected by Lagrange (1736-1783).

Bernoulli conceived the notion of “virtual work” to solve the same
problem. As per this method, “for all possible displacements (of a system),
the sum of the products of force and initial displacement in the direction
of the force (i.e. the virtual work) must balance for equilibrium.



Introduction

e Comments on Newton’s and Bernoulli approaches:
— These are totally different concepts.

— Newton’s method is force oriented, and free-body-diagrams have to be
constructed to develop equilibrium equations.

— Bernoulli’s method is displacement oriented (or configuration oriented).
— Both these methods provide us final state of equilibrium.
— These methods are mutually independent.

The virtual work method is applicable only for static problems. However,
its dynamic analogue is d’Alembert’s Principie, which is also known as
Lagrange-d’Alembert’s Principle.

— A special “version” of this method is known as “Hamilton’s Principle”.

— Also, it can be mathematically shown that this principle maps to the Principle
of Virtual Work in static systems.



Introduction

e Here, we will understand how these methods can be used to address
problems of statics and dynamics.

* Specifically, we will use:

— Principle of minimum potential energy (similar to virtual work principle) to
address static problems.

— Hamilton’s method to solve dynamic problems.

 There are several significant advantages of energy methods over Newton’s
method. These are:
— Problem formulation is relatively straightforward.

— Such formulations can be expressed in “weak” and “strong” versions. Weak
formulations, when automated in FEA lead to symmetric stiffness matrices for
linear systems.

— It is easy to discern boundary condition requirements using such methods.

e However, Newton’s approach is more intuitive vis-a-vis energy based
methods.



Total Potential Energy Principle

The total potential energy in a structural system can be expressed as:

II= j Wdv + f[:E‘xux + B u, + Bug)dV — j(?}uﬁ + T,u, + Tu,)ds
v v Iy
(Eg. 32.1)
Here, W, is the strain-energy density function, B, represents body force per
unit volume in i-direction, and T, represents traction force per unit area in i-

direction. For purposes of brevity only, we will omit body forces going
further.

Now, we know that:
W= [Oxxexx+ nysyy+ 0-zz‘?'zz-l- Txyvxy + Tyz Vyz + Tox vzx ]/2

For a laminated plate, due to assumption of normality, we can discard shear
strains in y-z and z-x plane. Also, using Eq. 14.11 in above relation we get:
W= [C—111£2XX+ 2QlZ Exxsyy + 2c—)~16 Exx vxy + ZQZG vxyEyy + C—)~22£2yy+ 4Q66 vzxy]/2

(Eq. 32.2)



Total Potential Energy Principle

Putting Eq. 32.2 in 32.1, we get:
1 £/2
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(Eq. 32.3)

Using strain definitions from Eq. 15.3 above, and integrating the strain
energy term over thickness of plate, we get:

1
1 = EijEuﬂ, t-=”,.‘l"!-’:]'£i..'fl - J'ICT_,_.H_,_. + T.."’HJ’ -+ Tzuz} ds (Eq. 32.4)
..._A 5

In Eq. 32.4, H(u®, v°, w°) is defined in Eq. 32.5. Also, it should be noted
here that the domain of integration for H is midplane area of the plate,
while the domain of integration of tractions constitutes six external
surfaces of a rectangular plate.
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e According to Theorem of Minimum Potential Energy, “of all possible
displacement fields which satisfy compatibility and prescribed boundary
conditions, the displacement field which satisfies the equilibrium equation
makes the total potential energy a minimum”. Mathematically, this implies
that the condition for equilibrium is that the 15t variation of total potential
energy should be zero. Thus,

5M=0. (Eq. 32.6)
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e Thus, setting the 15t variation of Eqn. 29.4 to zero, we get:
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Till so far we have not addressed forces attributable to known tractions T.
These forces may exist on various surfaces of the plate. For a rectangular
plate, there are six such surfaces. The second integral (over surface S)
must be evaluated over all of these six surfaces.

We start this by assuming that the origin is located at geometric center of
the plate, and the plate dimensions are a x b. Also, the plate thickness is
assumed to be t.

Now consider 15t surface (or edge) of the plate, x = a/2. At this edge, dS
equals dydz. If we integrate the second integral on this surface, we get:
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Total Potential Energy Principle

Integrating each component over the thickness, we get the following
expression for second integral on surface x = a/2.

f:r 8ue + 229y o 1 (5o + 22 L T sweyds
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Total Potential Energy Principle

 ItisseeninEq.32.8 and 32.9, that Kirchhoff assumption along with the
surface integral for tractions shifts emphasis from known stresses to
known stress-resultants.

 Hence, developing the solution of plate does not necessarily require us to
know stresses on the boundary on a point-to-point basis. Rather, what is
needed are overall integrals of those stresses over the edge of the plate.

e This in turn means, that several stress distributions can lead to same
integrated value. Thus, the plate theory under discussion does not
provide us with unique answers for a given stress distribution over a
plate’s boundary, as some other stress distribution may also lead to same
stress resultants. This is a limitation of several structural level theories of
laminated plates.

 However, these theories provide sufficient detail as we move away from
the edge of the plate, as per St. Venant’s principle.



Total Potential Energy Principle

e Using a similar approach as discussed earlier, we can evaluate surface
integrals (2" integral) for other edges of the plate as well, i.e. x = -a/2, y=-
b/2, and y=+b/2, and get results similar to that in Eq. 32.8.

* Finally, we evaluate integrals for top and bottom surfaces of the plate, i.e.
z=+t/2. On these surfaces, typically, T,, and T, are zero, and dS is dxdy.
Thus, for the top surface of the plate, this integral can be expressed as:

3 dw® aGw® _
f (T (6u® + = )+ T, (6v° +32 }+ T,6w®)ds
5 dx dy (Eq. 32.10)
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e Similarly, the integral for the bottom surface is -g*(x,y).

* We add them together such that:
qxy)=q"-q



Total Potential Energy Principle

e Putting all these results for surface integral terms corresponding to six
surfaces in Eq. 32.7, we get:
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Total Potential Energy Principle

e Earlier, using total potential energy principle, we developed Eq. 32.11. This
is shown below.
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Total Potential Energy Principle

e Equation 32.11 is an important form of the virtual work equilibrium
equation. It has been derived using the total potential energy principle.
Here total potential energy has been minimized by setting its 15t variation
of to be zero.

e We see from Eqg. 32.11, that the formulation by itself generates requisite
boundary conditions in an appropriate form.

 Equation 32.11 is widely used since it serves as the basis of classic
Rayleigh-Ritz formulations. These formulations are used for obtaining
approximate solutions, and are very widely used in finite element
formulations.

e Equation 32.11is also known as “weak form”. Later, we will also develop a
“strong form” for equilibrium. The rationale underlying such terminologies
will be discussed later.



Generation of Equilibrium Equations

Equation 32.11 can be further processed to generate equilibrium
equations, which we have already developed through 15t principles earlier.
We will see that such an approach not only generates requisite
equilibrium equations, it also provides us with boundary conditions in

appropriate form.

First, we apply integration by parts to all the terms which are integrated
over the area of the plate, in Eq. 32.11. There are a total of eight such
terms. Consider the 1%t part:

ﬂ" ﬂ-ﬁ'u f f aﬁuﬂd-d
_Jxé“x —af bm‘é‘x e

A

In above expression we have defined the domain of integration.
— Thus, the area of integration is now a rectangle of size a X b.
— Also, dA, has been substituted by dxdy.



Generation of Equilibrium Equations

* Next, consider following identities.

ﬂ[Flt’j'u“] dou® L e dF;
dx A dx U dx
or,
dou® _ d(Fdu) . dF;
A ax dx —du E

e Applying this identity to the 1%t term, we get:
adu° adu® am w) an,
f f T g = f f N, dxdy = f f (a’n )}dxdv
aﬁ —E b |'r| ax —E 3.3'5

(Eq.32.12)
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Next, we recall the component form of divergence (or gradient) theorem.

3(F, 6u°
ﬂ( “]dxd}mf}gaﬁuﬂnxdx
r

and
d(F, du”)
J.f dxdy = § Fiéu®n,dy
dy .
A

We use this theorem to compute the area integral of d(N,6u°)/dx in Eq.
32.12, to get:

é‘:’j'u b“ .
N, e f j e )i‘rdv—l- fl‘Nx du®n,dx (£q. 32.13)

r

Here, n, is the x-direction component of a unit vector normal to the
boundary. Thus, its value is 1, 0, -1, and 0 along edges x=a/2, y=b/2, x=-a/2,
and y=-b/2, respectively, of the composite plate being analyzed here.



Generation of Equilibrium Equations

Using these values of n, along the closed boundary of composite plate, we
calculate the contour integral as defined in Eq. 32 13 as:
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e Putting Eq. 32.14 in Eq. 32.13, the final form of 15t part of Eq. 32.11 is:

ﬂ’ ﬂ:’j'u
* ox

_|_
J -

":'Il'-‘l‘l-au:r ”IF-‘I‘

=

3
&

J

(] ey

&

J. J- —du® —)dxdv—l— J.: NI &u® {E,}r‘}d}r
bia b 2 "7,

-

ra| B3 I:!

_me (_ v) Fu® {— v} dy (Eq. 32.15)



Generation of Equilibrium Equations

e Similarly, we apply integration by parts to remaining seven terms in Eq.
32.11. Putting all these terms together, and reorganizing, them we get:

iz Oy N\ ooy (N O
- j_gf_g dx dy H dx gy v
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e where, P5, P6, P7, P8, and P9 are defined as follows.
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Generation of Equilibrium Equations

Till so far, we have used the process of integration of parts to transform
Eg. 32.11 (weak form) into Eq. 32.16.

6N dN,, @Nn,
l]——j J. du® + <+ dv®
_zf B ,? dx ﬁv

5(.. M M (Eq 3216)
+ ,,“’ + —E+2—F 4 g(x,v) | 6w® |dxdy + P5 + P6 + PT + P8
dxe dy= dxdy '

+ F3

where, P5, P6, P7, P8, and P9 have been defined earlier.

Equation 32.16 is called the “strong form” of equilibrium condition. It is
termed as “strong” because the differentiability conditions for an
assumed displacement function required for such a form are stronger.

For instance, here the equation involves second derivatives of moments,
while in Eq. 32.11 did not involve any derivatives of moments.
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 Given that moments are directly proportional to second derivatives of
we(x,y), it implies that:
— Avalid function for w°(x,y) has to have at least 4™ order differential continuity,
if we use the strong formulation (i.e. Eq. 32.16) for solving the problem.

— However, if we used Eq. 32.11 for solving the same problem, the formulation
would require second order, i.e. C?, continuity for w°(x,y).

e Thus, we see that Equation 32.16 requires higher order of continuity for
assumed displacement functions, vis-a-vis Eq. 32.11. It is for this reason

that Eq. 32.16 is also known as the “strong form”, while Eq. 32.11 is known
as the “weak form”.

e Of course, in both cases, the assumed displacement function should
satisfy essential boundary conditions for the problem.

 Moving further we now extract equilibrium equations from Eq. 32.16.
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Looking at Eq. 32.16, we realize that it is a sum of area integrals, line
integrals (P5-P8), and point-specific values (P9). We further note, that
there are an infinite number of mathematically valid variations in
displacement field possible which may be used in this equation as long as
they satisfy the following conditions.

— Differentiability requirements

— Essential boundary conditions

Thus, Eq. 32.16 can be zero only if, area integrals, line integrals, and point-
specific values (P9) are individually zero.

Thus, from area integrals we get equilibrium equations, while terms P5-P9
give us a mathematically consistent set of boundary conditions.
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* Thus, the equilibrium equations are:

dN. n Ny _

0
dx dv
8 N s AN,
x4 Y _
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a2 M AZM..., 82 M,,
42— 4+ gq=0
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These equilibrium equations are identical to the ones developed earlier
developed using the Newtonian approach.

Next we look at boundary conditions. Terms P5, P6, P7, P8 correspond to
boundaries x=a/2, x=-a/2, y=b/2, and y=-b/2, respectively.
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e Looking at term P5, which corresponds to edge, x=a/2, we notice that
there are four BCs along this edge. Further, for variational statement to be
true, each of these BCs should be individually zero.

e Thus the boundary conditions along edge x=a/2 are:
1. (N, —NJ)6u® =0
implying, either N, = N, or u®is known.
2. (N, —N})6v° =0
Implying, either N,,, = N_,L;. or v%is known.

3. (M, — MR =10

gw?

is known.

Implying, either M,, = M} or g2 =

aM aM., aMI
b (e g gr )5 g
dax T gy Q‘}‘ dax
] ] BM aM M ]
Implying, either a—x + 2 a—” =Q, + a—” or w?is known.
By y LS
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e Similarly, BCs conditions for x=-a/2 are:
1. (N, — N_)éu® =0
Implying, either N,, = N, or u°is known.
2. (N, — N5 )6v° = 0
Implying, either N,,, = N, or 1%is known.

3. (M, —M7)8B) =10

: : _ dw®
Implying, either M, = M or 50 = is known.
X
aM aM.,. _ dM..
4. [—f 2—>—Q, — 3”)5WG=U
dx T gy G‘J‘ g
_ : oM aM ) _
implying, either —= + 2 ﬂﬂ =Q, + ﬂ” or w? is known.
e ¥ A

e Likewise, BCs for other two edges of the plate, y=+b/2 may also be
computed in a straight-forward way.
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Observations

* The equilibrium equations developed here and the associated BCs govern
the plate behavior completely.

e Each edge of the plate is associated with four sets of BCs. Within each set,
there is a pair of conditions of which, one must be satisfied.

* For each of these pairs, either a force or moment must be equated to
externally applied force or moment, or a kinematic condition
(displacement or slope) must be specified.

e Such a pairing of force/moment and kinematic conditions emerges
automatically, when variational process is used to minimize the total
potential energy of the system.



Observations

* The boundary conditions developed here are the only valid form of BCs
which can be enforced on a plate’s boundary, and also ensure problem’s
consistency with classical lamination theory.

e |If BCs are specified in some other way then it quite likely that we will not
be able to solve the problem.

e Specification of BCs in ways different than laid out earlier leads to an ill-
posed problem.

 The strong form of variational formulation requires higher order
continuity of displacement field. Such a formulation is used in Galerkin
method. In contrast, the weak formulation is used in Rayleigh Ritz
method.



