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* |Introduction

e Commonly used simplification approaches
while solving problems related to finite plates

— Stiffness matrix elements
— Boundary conditions

e Out-of-plane BCs for different end conditions.



Introduction

 Consider a rectangular composite plate with dimensions a and b. Solving
for displacement field for such a plate is significantly different than that
for a semi-infinite plate.

* Inthe semi-infinite plate, we had assumed that all partial derivatives in
one direction (e.g. y direction) were zero. Such a simplification renders
equilibrium equations, which are originally Partial Differential Equations
(PDEs), to Ordinary Differential Equations (ODEs).

e Such a simplification helped us develop closed form solutions for the
problem at hand.

e The same simplification can not be used for finite plates, since the
displacement field exhibits variation in both, x, and y directions.



Introduction

 Hence, only in very special cases, closed form solutions for finite plates are

possible. In general, finite plate problems are solved using approximate
methods. Some of the more popular methods used to address finite plate
problems are:

— Galerkin method

— Rayleigh-Ritz method

— Finite element method

— Series methods

e The last approach, i.e. the series method, works well in some special cases,
and yields solutions which are of “semi-closed” nature.

 The overall strategy to solve a finite plate problem starts with simplification
of the problem to the maximum possible extent, without compromising on
the physics of the problem. Such simplifications can be applied to governing
equations, kinematic relations, material properties, and BCs.



Common Simplification Strategies

Kinematics: Look out for specific displacements which may be constant or
zero throughout the field.

Equilibrium: Some force resultants or moment resultants may be known or
zero throughout the field.

Stiffness matrices:
— Symmetric laminates: B; = 0.

Such a simplification decouples resultant force {N} and moment vectors {M}.
Hence the third equilibrium equation for z direction involving w®, gets decoupled
with those for inplane displacement variables, i.e. u° and v°, when infinitesimal
strains are considered.

— Balanced and symmetric laminates: B; =0, and A;; = A, = 0.

Such a simplification not only decouples the out-of-plane response of the plate
with in-plane response, but also extensional strains with shear strains.



Common Simplification Strategies

e Stiffness matrices (contd.):
— Symmetric and specially orthotropic laminates: B;; = Ajg = Ay =D =D,)s=0

Such a simplification not only decouples the out-of-plane response of the plate
with in-plane response, but also extensional strains do not cause shear strains.
Further, there is no twist curvature in the system, unless it is caused by externally
applied twisting moments. In such a case, we can solve the inplane part of the
problem independently vis-a-vis out-of-plane part of the problem.

— Non-symmetric but specially orthotropic laminates: A,.=A,¢ = B;(=B,, =D,=D, =0
— Balanced and anti-symmetric laminates

— Cross-ply and anti-symmetric laminates



Common Simplification Strategies

e Boundary Conditions: As seen earlier, there are four sets of boundary
conditions for each edge of the plate. These are relisted below for edge x = a.

(i) (N, —NI)éu’ =0,
where du®implies variation in midplane displacement u,,.
Thus, either N, = N,” must be known, or u, must be known.

(i) (N,,—N;i,)év°=0,
where d1°implies variation in midplane displacement v.,.
Thus, either N, = N,,” must be known, or v, must be known.

i) {(22+222) — (07 + 22)}owe = 0

dx ay ay
where dw “implies variation in midplane displacement w..

i aM M, aMy,
Thus, either ( 42 ”) = (Q: + a—”) or, or w, must be known.
”

dx ay

(v) (M, —M)HEE) =0

. aw?°
Thus, either M,. = M :::raL must be known.
X



Common Simplification Strategies

e Boundary Conditions (contd.): Out of these four BCs listed earlier:
— Conditions (i) and (ii) relate to inplane variables.

— Conditions (iii) and (iv) relate to out-of-plane variables.

— If the laminate is symmetric and we are only interested in out-of-plane response
of the plate [i.e. only w®(x,y)], then only BCs (iii) and (iv) may be considered, and
appropriate simplifications may be made.

e Next, we look at different edge conditions for rectangular plates, and their
associated boundary conditions. Here we are addressing only out-of-plane
boundary conditions.



Different Edge Conditions for Plates

e Simply Supported Condition: For a plate simply supported along edge x = a/2,
the out-of-plane BCs along this edge will be:
— w°=0and M* =0.
— The condition for moment can be further elaborated as shown below.

Mf=D e +D 97we + 2D o7we 0
| = = I ——— =
* gyl 2 gyt 1® axay
dw® _ 8%w® . . -

But on edge, x=a/2, w° = 3y = 3y? = 0 because w* is continuously zero along the entire edge.
Thus,
Mf=D 9"w* + 2D o7w* 0
| = ——— _— =

. BT 2w’ ) A%y
It may be noted here that the condition w® = = —— = 0 does not imply that the term I

By By® Bxdy
Aw?

~in v direction.

zero along the same edge, because this term equals the rate of change of slope 3
X

When Ds; does not equal zero, this term causes twist in the plate along its edge.

e Clamped Support: Here, displacement and slope are zero along the edge.



Different Edge Conditions for Plates

Traction Free Edge: For a plate with traction free edge at x = a/2, the relevant
BCs will be Q*, = M*, = M*, = 0. Substituting this in BC (iii), we get,
aM,.,. Equivalent BC for traction free edge
M, +2 mir.i:ﬂ (Eq ge)

since Q*, and partial derivative of M, w.r.t. to y are zero along edge x = a/2.
Also from Eq. iv, we set the other BC for traction free edge as:

M, = 0.

Now for a symmetric laminate,

M. = D W D W + 2D W =
T 11 dx < 12 ﬂ_}-‘: 16 ﬁxﬂ}

M D :rﬂ+D :rﬂ+ED :rﬂ——ﬂ
¥y 16 ﬂ'I: 26 ﬂ'_].-': =1 3 ﬂ'_].



Different Edge Conditions for Plates

e Traction Free Edge (contd.): Thus, out-of-plane BCs for such plates at x=a/2
are:

ﬂ'aufﬂ' ﬂ'aufﬂ' a-Elwn aawn aﬂﬂ'ﬂ I§|-EI...|E,|'.:*
(Dllﬁ + Dy, W + 2D 5 ) + 2 (Dlﬁ— + DEE_&;-'H + 2D, ?,,) =0

15 3x2ay dxidy dxdy?
and
D o"we + D a':H.fE'+ 2D o7we =10

* For specially orthotropic case, when D, = D, = 0, we get:

aEwﬂ- ﬂawﬂ ﬂawﬂ
Dyy——=—+Dyp——= | +4D == 10
( 11 343 12 ﬁxﬂy‘j 56 '

and

. ﬂ:w"_l_ﬂ w?°
11 2 12 a}?g

=
dx




