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The Lecture Contains:

Numerical Stability Considerations

Higher Order Upwind Differencing

Solution of Energy Equation

Retention of Dissipation
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Numerical Stability Considerations :-

For accuracy, the mesh size must be chosen small enough to resolve the expected spatial variations
in all dependant variables. Once a mesh has been chosen, the choice of the time increment is
governed by two restrictions, namely, the Courant-Fredrichs-Lewy (CFL) condition and the
restriction on the basis of grid-Fourier numbers. According to the CFL condition, material cannot
move through more than one cell in one time step, because the difference equations assume fuxes
only between the adjacent cells. Therefore the time increment must satisfy the inequality.

  (4.19)

where the minimum is with respect to every cell in the mesh. Typically,  is chosen equal to one-
fourth to one-third of the minimum cell transit time. When the viscous diffusion terms are more
important, the condition necessary to ensure stability is dictated by the restriction on the grid Fourier
numbers, which results in.

  (4.20)

in dimensional form. After nondimensionilization, this leads to

  (4.21)

The final  for each time increment is the minimum of the 's obtained from Equations (4.19) and
(4.21) The last quantity needed to ensure numerical stability is the upwind parameter . In general,
should be slightly larger than the maximum value of  occurring in the mesh,

that is,

  (4.22)

As a ready prescription, a value between 0.2 and 0.4 can be used for . If is too large, an
unnecessary amount of numerical diffusion (articial viscosity) may be introduced.

 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///D|/Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture20/20_3.htm[12/24/2014 6:03:15 PM]

  Module 4: Solution of Navier-Stokes and Energy Equations for Incompressible Internal Flows
  Lecture 20: Solution Technique

 

Higher Order Upwind Differencing:
More accurate solutions are obtained if the convective terms are discretized by higher order
schemes. Davis and Moore (1982) use the MAC method with a multidimensional

   

third-order upwinding scheme. Needless to mention that their marching algorithm for the momentum
equation is explicit and the stability restriction concerning the CFL condition

 1] is satisfied.The multidimensional third-order upwinding is,in principle

similar to one-dimensional quadratic upstream interpolation scheme introduced by Leonard (1979).
Consider Figure 4.6.Let be any property which can be convected and diffused. The convective term 

may be represented as .

  (4.23)

where the variables j are defined as

  (4.24)

and

  (4.25)
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The parameter  can be chosen to increase the accuracy or to alter the diffusion-like

characteristics. It may be pointed out  corresponds to the quick scheme of

Leonard(1979) Let us consider two-dimensional momentum equation in weak conservative form
which is given by.

  (4.26)

In non-conservative form this may be written as

  (4.27)

Here we introduce a term transport-velocity .The transport velocities for the second and third terms
on the left hand side are u and v respectively. While dealing with the equations in the conservative

form, we shall keep this in mind. For example, during discretization of the term  of

Equation 4.26 we should remember that v is the transport-velocity associated with this term. It is
customary to define the transportvelocity at the nodal point where the equation is being defined. In

case of the term  we have to refer to Figure 4.7 and write down the product term uv

as.

  (4.28)

Finally the discretization of the term for the x-momentum equation will be

accomplished in the following way:

  (4.29)

  (4.30)
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where

 

Sample Results :-

For unsteady laminar flow past a rectangular obstacle in a channel, Mukhopadhyay, Biswas and
Sundararajan (1992) use the MAC algorithm to explicitly march in time.Their results corroborated
with the experimental observation of Okajima (1982). A typical example of numerical flow
visualization depicting the development of Von-Karmen vortex street is illustrated in Figure 4.8.
The cross-stream velocity vectors behind a delta-wing placed inside a channel are shown in Figure
4.9. These results were obtained by Biswas and Chattopadhyay (1992) who used MAC to solve for
a three-dimensional flow field in a channel containing delta-wing as a vortex generator. The MAC
algorithm has been extensively used by the researchers to solve flows in complex geometry. Braza,
Chassaing and Ha-Minh (1986) investigated the dynamic characteristics of the pressure and velocity
elds of the unsteady wake behind a circular cylinder using MAC algorithm. Recently, Robichaux,
Tafti and Vanka (1992) deployed MAC algorithm for Large Eddy Simulation (LES) of turbulent
channel flows. Of course, they performed the time integration of the discretized equations by using a
fractional step method (Kim and Moin, 1985). Another recent investigation by Kim and Benson
(1992) suggests that the MAC method is signicantly accurate and at the same time the
computational eort is reasonable
where,
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Solution of Energy Equation :
The energy for incompressible flows, neglecting mechanical work and gas radiation, may be written as

  (4.31)

where is the viscous dissipation given as

   

Equation 4.31 may be nondimensionalized in the following way:

   

Substituting the above variables in equation 4.31 we obtain

   

where is the nondimensional form of Finally, the normalized energy equation
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where Pe, the Peclet number is given as

   

Further, Ec, the Eckert number is

   

Retention of Dissipation

The dissipation term is frequently neglected while solving the energy equation for incompressible flows. As

the Mach number However, even at a low Mach number, can be important if is

very small. Let us look at these aspects. 
Since
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and

   

where R is the gas constant  and = cp=cv.Let the local acoustic velocity

Then,

   

hence
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 or

   

In general for incompressible flows . Hence Ec is small. But for very small

temperature difference, i.e if  is slightly larger than 1, Ec might assume a large value and

importance of including dissipation arises. However, for computing incompressible convective flows,
the viscous dissipation is neglected in this chapter and we start with the steady state energy
equation.

Solution Procedure
The steady state energy equation, neglecting the dissipation term, may be written in the following
conservative form as.

  (4.33)

Equation 4.33 may be written as

  (4.34)

where [CONV T]m is the discretized convective terms on the left hand side of Equation 4.33

and stands for the iterative counter. To start with, we can assume any guess value of  throughout
the flow field. Since u; v; w are known from the solution of momentum equation hence Equation
4.33 is now a linear equation. However, from the guess value of  and known correct values of u;v
and w the left hand side of Equation 4.33 is evaluated. A weighted average scheme or QUICK
scheme may be adapted for discretization of the convective terms. After discretizing and evaluating
right hand side of Equation 4.34 we obtain a Poisson equation for temperature with a source term
on the right hand side. Now, we shall follow SOR technique for solving Equation 4.34. 
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Consider a discretized equation as.

   

Where

   

or

   

or

   

Where

   

 in Equation 4.35 may be assumed to be the most recent value and it may be written as 

. In order to accelerate the speed of computation we introduce an over relaxation factor 

Thus

   

where  is the previous value,  the most recent value and  the calculated better

guess. The procedure will continue till the required convergence is achieved. This is equivalent to
Gauss-Siedel procedure for solving a system of linear equations.
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