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MAC Formulation
The region in which computations are to be performed is divided into a set of small cells having
edge lengths  and (Figure 4.3). With respect to this set of computational cells, velocity
components are located at the center of the cell faces to which they are normal and pressure and
temperature are defined at the center of the cells. Cells are labeled with an index (i,j,k) which
denotes the cell number as counted from the origin in the x , y and z directions respectively. Also 

 is the pressure at the center of the cell (i,j,k), while  is the x-direction velocity at the

center of the face between cells (i,j,k) and (i+1, j, k) and so on (Figure 4.4). Because of the
staggered grid arrangements,the velocities are not defined at the nodal points, but whenever
required, they are to to be found by interpolation. For example, with uniform grids, we can write 

Where a product or square of such a quantity appears, it is to

be averaged first and then the product to be formed. Convective terms are discretized using a
weighted averaged of second upwind and space centered scheme (Hirt et al,1975). Diffusive terms
are discretized by a central diffrencing scheme. Let us consider the discretized terms of the x-
momentum equation (Figure 4.4):
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with

   

Factor  is chosen in such a way that the differencing scheme retains "something" of second order
accuracy and the required upwinding is done for the sake of stability.A typical value of is between

0.2 and 0.3. As mentioned earlier,the quantity  is now evaluated explicitly from the

discretized form of Equation (4.2) as.

   

where

   

Similarly we evaluate.
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As discussed earlier, the explicitly advanced tilde velocities may not necessarily lead to a flow field
with zero mass divergence in each cell. This implies that, at this stage the pressure distribution is
not correct. Pressure in each cell will be corrected in such a way that there is no net mass ow in or
out of the cell.In the original MAC method, the corrected pressures were obtained from the
solution of a Poisson equation for pressure. 

A related technique developed by Chorin (1967) involved a simultaneous iteration on pressure and
velocity components.Vieceli (1971) showed that the two methods as applied to MAC are equivalent.
We shall make use of the iterative correction procedure of Chorin (1967) in order to obtain a
divergence-free velocity field. The mathematical methodology of this iterative pressure-velocity
procedure will be discussed herein. The relationship between the explicitly advanced velocity
component and velocity at the previous time step may be written as.

  (4.8)

where,[CONDIFU] is only the contribution from convection and diffusion terms.On the other hand,
the corrected velocity component (unknown) will be related to the corrected pressure (also unknown)
in the following way:

  (4.9)

From equation (4.8) and (4.9)

 

where the pressure correction may be defined as

   

Neither the pressure correction nor  are known explicitly at this stage. Hence,one cannot be

calculated without the help of the other.Calculations are done in an iterative cycle and we write 

Corrected Velocity   Estimated Velocity   Correction
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In a similar way, we can formulate the following array:

  (4.10)

  (4.11)

  (4.12)

  (4.13)

  (4.14)

  (4.15)
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The correction is done through the continuity equation. Plugging-in the above relationship into the
continuity Equation (4.1) yields

 

 

 

 

 

 

 

 

or    

   

In deriving the above expression, it is assumed that the pressure corrections in the neighboring
cells are zero.Back to the calculations,we can write .

  (4.16)
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the pressure correction equation is modified as.

  (4.17)

where is the overrelaxation factor. A value of  = 1.7 is commonly used. The value of 

giving most rapid convergence, should be determined by numerical experimentation. After calculating
 the pressure in the cell is adjusted as.

  (4.18)

Now the pressure and velocity components for each cell are corrected through an iterative procedure
in such a way that for the final pressure field, the velocity divergence in each cell vanishes. The
process is continued till a divergence-free velocity is reached with a prescribed upper bound; here a
value of 0.0001 is recommended. Finally we discuss another important observation. If the velocity
boundary conditions are correct and a divergence-free converged velocity field has been obtained,
eventually correct pressure will be determined in all the cells at the boundary. Thus, this method
avoids the application of pressure boundary conditions. This typical feature of modified MAC
method has been discussed in more detail by Peyret and Taylor (1983). However, it was also
shown by Brandt, Dendy and Ruppel (1980) that the aforesaid pressure-velocity iteration procedure
of correcting pressure is equivalent to the solution of Poisson equation for pressure.

Boundary Conditions :-
So far we have not discussed the boundary conditions. However, they are imposed by setting
appropriate velocities in the ctitious cells surrounding the physical domain (Figure 4.5).Consider, for
example, the bottom boundary of the computing (physical) mesh. If this boundary is to be a
rigid no-slip wall, the normal velocity on the wall must be zero and the tangential velocity
components should also be zero. Here we consider a stationary wall. With reference to the Figure
4.5, we have
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If the right side of the wall is a free-slip (vanishing shear) boundary, the normal velocity must be
zero and the tangential velocities should have no normal gradient. 

   

If the front plane is provided with in flow boundary conditions, it should be specified properly. Any
desired functional relationship may be recommended. Generally, normal velocity components are set
to zero and a uniform or parabolic axial velocity may be deployed. Hence with reference to Figure
4.5, we can write
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where is the horizontal midplane. Continuative or out flow boundaries always pose a problem for
low-speed calculations, because whatever prescription is chosen it can affect the entire flow
upstream. What is needed is a prescription that permits fluid to flow out of the mesh with a minimum

of upstream influence. Commonly used conditions for such a boundary is  where n is

the unit normal vector. 
The boundary condition that has more generality at the out flow is described by Orlanski (1976).
This condition allows changes inside the flow field to be transmitted outward, but not vice-versa.

   

where is the average velocity at the outflow plane and represents u, v, w or any dependant

variable.
where is the horizontal midplane. Continuative or out flow boundaries always pose a problem for
low-speed calculations, because whatever prescription is chosen it can affect the entire flow
upstream. What is needed is a prescription that permits fluid to flow out of the mesh with a minimum

of upstream influence. Commonly used conditions for such a boundary is  where n is

the unit normal vector. 

The boundary condition that has more generality at the out flow is described by Orlanski (1976).
This condition allows changes inside the flow field to be transmitted outward, but not vice-versa.

   

where is the average velocity at the outflow plane and represents u, v, w or any dependant

variable.
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