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The Lecture Contains:

Transient and Frequency Response

Lumped Analysis

Analysis with Spatial Variations
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Transient and Frequency Response

There are three fundamental questions that need to be answered with respect to the temporal
response of a probe and a measurement system which are subjected to a non-zero input. These are :

1. If the input is steady, how long will it take for the probe response to become steady?

2. If the input is steady, is the probe response oscillatory?

3. If the input is periodic, what is the critical frequency beyond which the output has a negligible
amplitude?

Question 3 addresses the problem of attenuation of signals as they pass through the probe and the
measurement system. Further attenuation of signals can take place in spatially distributed systems
due to a non-uniform response of different parts of the probe. For example, in a pitot tube the fluid
close to the wall is always at rest while the bulk of the fluid within it will move during a transient. In a
hot-wire anemometer, the temperature may not be uniform along its length and in particular, the
portion of the wire close to the prongs will be at the prong temperature. Hence it would take finite time
to re-establish the temperature profile along the wire. The reciprocal of this time determines the cut-
off frequency beyond which the signal amplitude is unacceptably small.
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Lumped Analysis

A lumped parameter analysis of probes is given below. The effect of spatial variability is discussed
through specific examples later in this chapter. Let  be the flow input and  the probe output.
The order of a probe, a transducer or a measurement system is determined by the order of the
differential equation relating  and  with time  as the independent variable. Hence we have:

In the above equations  is the static sensitivity of the probe that can be determined once-and-for-all
from a steady state experiment. Consider the response of these systems to a step input , a
constant and a periodic input . Here  is frequency and  the imaginary unit 

. For a step input, we assume the initial conditions to be quiescent, i.e., 
. For a periodic input we assume that the system has reached a dynamic steady state and the output 

 oscillates with the same frequency as the forcing frequency . The second part of this
assumption is strictly true only for linear systems, i.e. coefficients , ,  and  are independent of

,  and . In both laboratory and field experiments the fluctuations in the input will displace the
measurement system only marginally with respect to the operating point and so its performance can
be locally linearized. Hence the linear analysis presented here is not severely restrictive.
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For zeroth order system the output will match the input at every instant of time except for a scale
factor  that is predetermined. There is no attenuation or phase lag for any value of  and . Hence
it represents an ideal probe or an instrument.

The response of a first order system is:

(Figure 2.20)

(Figure 2.21)

 

 

Figure 2.20: Step Response of a First Order System.
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Figure 2.21: Periodic Response of a First Order System.

For a step input it takes a time  for  to reach within  of the steady state. Here,  is
called the time constant of the system. For a periodic input, the first order system shows attenuation
for increasing values of . For a time constant of 0.2 second, the attenuation factor  is 0.04,
when Hz, (=125.6 rad/s) and amplitude reduction by a factor of 25.
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The response of a second order system depends on the value of the damping ratio .
For  the system is underdamped and the response is oscillatory even for a steady input. For 

 the system is critically damped and for it is overdamped. If  the response is
gradual and non-oscillatory with no overshoot (Figure 2.22). The system reaches steady state
monotonically at the fastest rate if . We have the following results for a second order system
subject to a step input:

Here the natural frequency  and the phase lag  for .

For a periodic input:
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Figure 2.22: Step Response of a Second Order System.
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While the first order system unconditionally attenuates the input, second order can amplify it in the
neighbourhood of the natural frequency  for . A nearly uniform frequency response is
obtained for S = 0.6 and  (Figure 2.23) and this value of the damping factor is commonly
used in the design of instruments.

Figure 2.23: Periodic Response of a Second Order System.

As a rule mechanical systems are second order systems due to their inertia while fluid systems are of
first order and electrical systems containing all the three elements ,  and  are of second order. 

 systems are of first order and - systems of zeroth order. A hot-wire anemometer working in the
constant temperature mode with feedback will be shown later to be nearly a zeroth order system and
hence close to an ideal probe.

The performance of certain probes that are commonly used in thermal sciences are described below
by examining their transient behaviour.
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Example: Consider a U-tube manometer carrying an isothermal incompressible liquid and subject to
a pressure difference  (Figure 2.24). The pressure difference is a constant; the initial liquid
level is  and the final is .

Figure 2.24: Dynamic Response of U-tube Manometer.

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///G|/optical_measurement/lecture10/10_10.htm[5/7/2012 11:56:42 AM]

 Module 2: Review of Probes and Transducers
 Lecture 10: Temporal and frequency response

 

Contd...

The instantaneous liquid displacement is . It is of interest to determine the manner in which 
increases from zero initially to a final value of . Let  be the cross-sectional area of the tube and 
be the length of the liquid column. The energy equation for the column is written as

Here the total energy of the manometer liquid consists of kinetic and potential energies and is written
as
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Contd...

 being a differential element in the liquid column and  is . The external work done is due to
the pressure difference a part of which is required to overcome viscous friction in the
limbs of the manometer. Assuming a parabolic profile for velocity with a mean value , the
expression for work done can be written as

The equation governing is then obtained after some algebraic manipulation as

where  Hence the U-tube manometer is a second order system with a natural frequency

and a damping ratio

For a manometer response without oscillations we require . As an example consider a column

of length  m and water as the working fluid. Since = 80 10-5 Pa. S and  kg/m3 ,
the condition  results in  mm. Using tubes of larger radii will result in manometer
oscillations.
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Example: Consider a pitot tube suddenly immersed in a flow for velocity measurements. At the
mouth of the tube the pressure will increase to , the total pressure. The pitot tube response is
governed by the time taken by the entire tube to attain a uniform pressure . If the fluid as taken
as incompressible then the pressure within the tube will adjust to  instantaneously. Hence
transients are related to the compressibility of the fluid. If  is small, the fluid will behave as if it
is nearly incompressible . However, the flexible tubing connecting the pitot tube to the manometer can
be very long and of small diameter and hence have a large resistance. This can result in a finite time
constant for the pitot tube and the associated tubing.

Let  be the instantaneous pressure in the tube and  be the resistance to the flow. Then the
instantaneous flow is . Assuming laminar Poisseulle flow behaviour in the tube  may
be estimated as  where  is the tube length and  the radius. This is the minimum
resistance offered by the tube. Effects of flow development will increase the resistance beyond this
value. Let  be the volume of the tube . The additional flow  will change the density of
the fluid as
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Let  be the compressibility of the fluid, i.e. . For an ideal gas at constant
temperature . Hence

This is cast as a first order system

The time constant of the pitot tube is . For  mm,  m, at 300 K the time constant of
a pitot tube exposed to flow can be calculated as 6 milliseconds. The cut-off frequency beyond which
a fluctuating signal is severely attenuated can be estimated as  Hz.

It is instructive to derive the pressure evolution equation in the pitot tube by suitable reduction of the
Navier-Stokes equations. This discussion is left to the reader as an exercise.
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Example: First consider a hot-wire working in constant current mode (Figure 2.25). The wire whose
resistance equals  is a part of a Wheatstone bridge with a control resistance  and a battery
voltage . The Joule heating of the wire is  and the energy lost to the flow is 

 where  is the heat transfer coefficient,  the surface area of the wire and  its
temperature.  is the local fluid temperature. The difference between the two energy terms will
change the wire temperature at a rate and subsequently the wire resistance. We assume
the wire resistance to change as

and so
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Contd...

Hence the energy balance equation for the wire reads as

Figure 2.25: Transient Response of a Hot-wire Probe.

Here  and  are reference wire resistance and temperature respectively. The time constant of the
wire is the reciprocal of the term multiplying . It is desirable to reduce the time constant to a
minimum value for improving the transient as well as the frequency response. This is accomplished
under the following conditions:

When a hot wire is operated under constant temperature conditions through a feedback circuit 
 and it becomes a zeroth order system. In principle the hot wire attains an infinite

frequency response. In practice it is limited by the frequency response of the feedback circuit. This is
in the range 10 to 100 kHz and is usually adequate for flow studies.
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Analysis with Spatial Variations

The effect of spatial distribution of the measured variable over the probe on the frequency response is
considered through two examples.

Example: Spatial variability in the probe response can cause additional attenuation in the output
signal at the high frequency end. Consider a pitot tube of radius , length and subjected to a
pressure gradient

The resulting flow at dynamic steady state is not only a function of time but also the radial coordinate 
 since the velocity is zero at the tube walls and finite along its axis. Assuming a long tube and no

edge effects, the Navier-Stokes equations can be reduced to
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Let  where  is the complex amplitude of . Since  at  
 and  must be finite.  satisfies the equation

The solution of the equation is

where
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The Bessel functions ber and bei used in  and  have  as an argument. Further

Define the complex mean velocity through the tube as

The equivalent resistance of the tube as  and the normalized resistance as 
. Values of  as a function of  are given in Table 2. The reciprocal of

the normalized resistance is a measure of the attenuation factor.

 

Table 2: Attenuation Factor for a Pitot Probe as a Function of the
Dimensionless Frequency

0.0 0.5 1 5 10 50 100 500
1.0 1.0 1.014 1.315 1.968 7.63 14.4 66.5
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The effective time constant of a pitot tube can be determined by considering together the effect of
lumping density changes and spatial variations in velocity. From lumped analysis the time constant 

 is

for air flow. Thus the value of time constant  for a pitot tube obtained from lumped analysis is a
function of both the radius and the tube length.

Consider spatial variation next. The associated time constant is . The attenuation factor  can be
expressed as the reciprocal of the equivalent resistance, namely

Values of  for each frequency  can then be obtained from Table 2 using this formula. The optimum
value of  is determined using a least squares procedure through the reciprocal of the  data in
Table 2. This gives  in dimensionless form and  can be calculated for any
value of .
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The effective total time constant  can be taken as the sum of the individual time constant  and 
. This value has been plotted in Figure 2.26 as a function of the radius for three different lengths.

As the radius  increases the viscous resistance to flow reduces faster than the increase in the fluid
volume. Hence  decreases with . In contrast to this it takes a longer time for the presence of the
wall to be felt and  increases with . At some intermediate radius (  mm in Figure 2.25) the
total time constant attains a minimum value. This radius as well as the magnitude of the total time
constant depend on the length of the tubing. However Figure 2.26 shows that the effect of the length
is not as pronounced as the radius. For a tube of radius greater than 2 mm the time constant is
independent of the length and determined by  (and hence spatial variation) alone.

Figure 2.26: Time Constant of a Pitot Tube as a Function of Radius and
Length.
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Example: When temperature in a hostile environment must be measured it is common to provide a
metal shield to the thermocouple as shown in Figure 2.27.

Figure 2.27: Shielded Thermocouple.
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To study the frequency response of the embedded thermocouple we consider the surface
temperature to fluctuate as  with unit amplitude. The amplitude of temperature along the
axis as a function of  will determine the extent of attenuation of the surface signal before it reaches
the thermocouple. At any location in the shield the diffusion equation is valid and expressed as

where  is thermal diffusivity of the metallic shield. Let . Hence  satisfies

where  and the second boundary condition is
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Contd...

The solution of this equation is

where

and
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In  and  of the above expressions, the argument for the ber and bei functions as defined in
Example 14 is The amplitude of the centre-line temperature is

This relationship in numerical form is given in Table 3.

Table 3: Attenuation Factor for a Thermocouple as a Function of the
Dimensionless Frequency

0 1 5 10 50 100
1.0 0.984 0.744 0.47 0.044 0.033

For  the attenuation is nearly . For a copper shield ( m2 /s) a diameter
of 20 mm gives a corresponding frequency as 60 Hz. The temperature sensed by the thermocouple
drops further at higher forcing frequencies applied at the surface of the shield.
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