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THREE DIMENSIONAL RECONSTRUCTION FROM SCHLIEREN DATA

The schlieren image yields gradients of refractive index and hence concentration. As discussed in
Section Data Reduction, the gradient information can be integrated to yield data in terms of
concentration itself. Subsequently, the concentration field on selected horizontal planes above the
growing crystal can be reconstructed using principles of tomography.

Here, the left side of Equation 3 (Lecture 26) is interpreted as projection data of the refractive index
gradient.

The schlieren images have been utilized to reconstruct the concentration field on horizontal planes
above the crystal. For this purpose, images have been recorded at four different view angles. Since
these images are time-separated, the present study is restricted to a steady convection conditions.
Minor changes in the concentration field with time have been accounted for by averaging a sequence
of four successive images. The schlieren images recorded during the initial transients as well as late
stages of growth when convection is unsteady have not been utilized for three dimensional
reconstruction.

Computed Tomography

Tomography has been used in the present work to reconstruct two-dimensional concentration field
over individual horizontal planes from their one-dimensional projections. The third dimension is filled
by moving from one plane to the next in the third (vertical) direction. The recording configuration
shown in Figure 5.16 is the parallel beam geometry. The convolution back projection (CBP) algorithm
has been used in the present study for tomographic reconstruction. Significant advantages of this
method include its non-iterative character, availability of analytical results on convergence of the
solution with respect to the projection data, and established error estimates.

Figure 5.16: Schematic drawing of data collection using parallel beam
geometry. S- source, D-Detector, s-perpendicular distance from the center of

the object to the ray, -view angle, and - polar coordinates.
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Contd...

In an experiment, projection data can be recorded either by turning the crystal growth chamber or the
source-detector combination. The latter is particularly difficult due to stringent requirement of
alignment. With the first option, it is not possible to record a large number of projections, owing to the
inconvenience of installing plane optical windows in a circular beaker. Further, for a cylindrical growth
chamber, the entire field of interest cannot be imaged due to the curvature of the test cell. Instead,
the central core region (corresponding to the size of the optical windows), that includes the growing
crystal, has been recorded. In this respect, the projection data set is incomplete. In order to generate
a complete projection data set for each view angle, an extrapolation procedure has been adopted and
is discussed in the next section.

Projection data has been recorded for four view angles of  in the present

experiments. The data for 1800 is taken to be identical to that for zero angle. Information for
intermediate view angles has been generated by employing linear interpolation on the experimentally
recorded data. 
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EXTRAPOLATION SCHEME

The experimental set up employed in the present work enables only a part of the aqueous solution in
the beaker to be scanned by the laser beam, being limited by the size of the optical windows. The
projection data is thus incomplete, as shown schematically in Figure 5.17. Specifically, the
experimental data in the form of the schlieren images covers about 25% of the beaker diameter.

Figure 5.17: Definition of partial projection data.

In order to successfully apply the CBP algorithm for tomographic inversion, one needs projection data
over the entire width of the physical domain for each view angle. In the present work, the
experimentally recorded partial data has been extrapolated to derive information about the portion of
the solution beyond the optical windows. In all experiments, the region inclusive of the crystal has
been imaged; extrapolation is applied to the portion of the field from the edges of the laser beam to
the walls of the beaker.
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The applicability of extrapolation to the present study can be justified on the basis of two factors:
First, the concentration level away from the growing crystal, corresponding to the supersaturated
solution is practically constant. This is confirmed in the recorded schlieren images where the changes
in the intensity are found to be localized in the vicinity of the growing crystal alone. These images are
discussed in the subsequent sections.  Secondly, the information content of schlieren images
decrease with the geometric path length of the light beam within the beaker, as indicated by the
integration limits in Equation 3 (Lecture 26). The diminishing chord length of the beaker towards the
edges shows that the measurement procedure de-emphasizes concentration variation occurring
towards the sides of the beaker. Specifically, the chord length is zero at the extremities of the beaker.
The approximation involved in extrapolating concentration outside the measurement volume is thus
expected to be less serious in predicting the concentration field closer to the center of the beaker and
hence the crystal location. Further justification can be based on the fact that concentration is
continuously distributed in the fluid volume. 

In the present work, a tenth order polynomial has been used to extrapolate the concentration
distribution, starting with the portion covered by the optical windows. Polynomials of order 5 to 10
produced practically identical results. The limiting values of concentration in the far field, and the
necessity of maintaining slope-continuity in the concentration distribution at every point have been
enforced. An independent check on the accuracy of the experiment, data analysis and extrapolation is
the conservation of solutal mass in each of the projections. Mass balance was found to be better than
0.01% in all the experiments analyzed using tomography. Minor imbalances are subsequently rectified
by normalizing the data-set. To account for changes in the integration length along the direction of
the laser beam, the extrapolated data is multiplied by the local chord length as one proceeds from the
center towards the periphery of the growth chamber. This projection data is used for tomographic
reconstruction of the concentration field over a horizontal plane of the solution. The above approach
has been successfully tested in the context of numerically simulated buoyancy-driven convection and
is discussed in the section Validation of Reconstruction Procedure With Simulated Data.
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CONVOLUTION BACK-PROJECTION

In the convolution back-projection algorithm (CBP), the reconstructed function, , is evaluated
by the integral formula

(5)

where

Here  is the projection data and  is the perpendicular distance of the data ray from the
center of the object. In addition,  denotes the source-detector line with respect to a fixed axis (and
hence the view angle),  is the diameter of the growth chamber, and s’ is the s-value of the data ray
passing through the point . The symbol  is the Fourier frequency,  is the convolving
function of Equation 5, and  is the filter function. Also see Figure 5.16 for an explanation on the
notation used. The filter function vanishes outside the interval  and is an even function of 

. Here  is the Fourier cut-off frequency and is taken to be  being the ray spacing. The
reconstruction obtained is specific to the choice of the filter function A Hamming filter h 54 has been
used in the present study. For  it is given by the formula

This filter emphasizes the smooth features of the concentration variation, while suppressing small-
scale (fine structure) fluctuations. This is quite appropriate to the present study for the following
reason. Density variations in the solution arise primarily because of the deposition of the solute on
the growing faces of the crystal as the solution is cooled at a given rate. Since the crystal growth rate
is slow, one encounters density variations that are distributed in the entire solution, while rapid
fluctuations in concentration do not appear. Hence, it is of interest to reconstruct the dominant pattern
in the concentration field rather than its secondary features.
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VALIDATION OF RECONSTRUCTION PROCEDURE WITH SIMULATED DATA

The goal of the present work is to obtain concentration distribution on selected planes above the
crystal growing from its aqueous solution from the schlieren images. These images require to be
extrapolated to fill the width of the beaker. The extrapolation step combined with the convolution
back-projection algorithm is first validated against simulated data. The physical problem considered is
buoyancy-driven convection in a differentially heated circular fluid layer with upper and lower walls
maintained at specified temperatures. The side wall that is circular is thermally insulated. The fluid
considered is air and the Rayleigh number based on the height of the fluid layer is set at 

. The temperature distribution in the fluid layer has been obtained by numerically solving
the governing equations of flow and energy transport on a fine grid.  For definiteness, the thermal
field is taken to be axisymmetric; accordingly the isotherms on individual planes of the fluid layer are
circular.

With the solution for temperature determined numerically, the projection of the thermal field is
obtained by path integration. The accuracy of reconstruction with partial data has been examined in
the present study against the available numerical solution. 

Errors have been reported in the present section on three grids, namely 64 X 64, 128 X 128 and 256
X 256. Here, the first number represents the number of view angles along which projections have
been recorded, and the second indicates the number of rays for each view. The definitions of errors
considered are:

absolute maximum temperature difference

RMS error

Here  are the original and reconstructed temperature fields respectively and 
 arises from the fact that the former highlights large isolated errors, while the latter reveals

trends that are applicable for the entire cross-section. 
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The validation of the reconstruction procedure with simulated data is summarized in Figure 5.18.

Figure 5.18: Buoyancy-driven convection in a differentially heated circular
cavity. (a) Complete projection data in the form of isotherms for the

differentially heated circular fluid layer; (b) Reconstructed temperature
contours at y/H=0.65 for full (i) 100% and partial (60% (ii), 30% (iii))

projection data; and (c) Comparision of original and reconstructed non-
dimensional temperature distribution along the radial direction for the three

different combinations of rays and views.

Figure 5.18(a) shows isotherms of the thermal field in the fluid layer for a given view angle. This data
is presented in the form of contours of the path integrated temperature field. Since the thermal field is
axisymmetric, the projection data for all other view angles are identical to Figure 5.18(a). The
reconstruction over a horizontal plane of the fluid layer is shown in Figure 5.18(b).
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Results obtained with complete projection data (marked 100% in 5.18b(i)) and partial data (60% in
5.18b(ii) and 30% in 5.18b(iii), symmetrically placed about the center) are also shown. The
axisymmetric nature of temperature distribution is brought out in all the reconstructions. This can be
taken as a validation of the extrapolation procedure used to convert partial to an approximate but
complete data set. A quantitative comparison of the reconstructed temperature profiles along the
diameter of the cavity for different combinations of rays and views are shown in Figure 5.18(c).
Profiles obtained with full as well as partial data are reported. For the complete data set, a perfect
match between the original and reconstructed profiles can be seen for grid sizes of 128 X 128 and
256 X 256, while small errors are to be seen for the 64 X 64 grid. The extent of deviation from the
original increases as the fraction of incomplete data increases. Noticeable errors are to be seen when
only 30% of the original data is used, the rest of it being derived by extrapolation. Errors in
reconstruction were found to be significantly higher when the partial data set was used without
extrapolation.

The magnitudes of errors as a function of discretization of the fluid layer and size of the partial data
set are summarized in Table 1. Since the difference between the minimum and maximum
temperatures is unity, the percentage error is obtained as  .

Table 1: Comparision of the original and reconstructed temperature feilds in terms
of errors  and  for buoyancy-driven convection in a circular cavity.

Data Type Rays X Views

Full Data
256 X 256 0.052 0.028

128 X 128 0.109 0.056

64 X 64 0.124 0.058

Partial Data

60%

256 X 256 0.095 0.039

128 X 128 0.148 0.061

64 X 64 0.152 0.067

30%

256 X 256 0.122 0.051

128 X 128 0.148 0.072

64 X 64 0.173 0.076

.  In Table 1, error  is consistently seen to be higher than  the latter being an average over the
entire field. Both errors decrease as the grid size (number of rays and views) increases. For a given
grid size, errors increase as the fraction of original data used in reconstruction decreases. When only
30% of the original is used (the rest being obtained by extrapolation), the maximum errors on a 64 X
64 grid are 17.3% (absolute maximum) and 7.6% (RMS). Figure 5.18 shows that the corresponding
reconstructions are qualitatively meaningful, and hence these error magnitudes may be taken to be
within limits.

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///G|/optical_measurement/lecture30/30_10.htm[5/7/2012 12:37:19 PM]

 Module 5: Schlieren and Shadowgraph
 Lecture 30: Three dimensional reconstruction of schlieren data

 

BENCHMARK EXPERIMENT: A COMPARISON OF INTERFEROMETRY,
SCHLIEREN AND SHADOWGRAPH

A direct comparison of images of convection seen in interferometry, schlieren and shadowgraph is
presented here.  The physical experiment considered is a differentially heated fluid layer enclosed in a
rectangular cavity. In the initial discussion, the temperature difference across the cavity is 10 K in the
experiments, while the fluid medium in the cavity is air. The corresponding Rayleigh number has been
calculated to be  The interferograms, schlieren and shadowgraph images are compared on
the right column of Figure 5.19. The fringes of an interferogram are lines of constant temperature.
With reference to the discussion in Section Data Reduction, temperature here is to be interpreted as
an integrated value over the length of the cavity. It should be noted that fringe shapes in a circular
geometry are harder to interpret owing to a change in the geometric path length in a direction the
path of the light beam.
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Figure 5.19:Comparision of data recovered from the three optical techniques
(left column). The corresponding experimental images are shown in the right
column. . The solid line in the left column is representative of

the trend seen at any vertical section of the image.
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The spatial coordinates of the fringes can be used to obtain the temperature profile. For schlieren and
shadowgraph, the information regarding the thermal field is contained in the light intensity variation. 
The respective thermal properties recovered are the local values of the first derivative and the Laplace
operator applied to the temperature. These quantities have been plotted for the mid-plane of the
cavity on the left side of Figure 5.19. The individual data points are specific to the mid-plane of the
cavity, while the solid line indicates the overall trend.  The shaded circles of the left column indicate
the gradients calculated from interferometric data (for schlieren) and from schlieren data (for
shadowgraph).  A good overall match is a confirmation of the result that schlieren is a derivative of
the interferometric field, and the shadowgraph in turn is the derivative of the schlieren. The
appearance of dense fringes near the horizontal walls is indicative of high temperature gradients at
these locations. This is brought in the schlieren image in the form of an increase in intensity as well
as the data points. The central region is a zone of nearly constant temperature, where the gradients
(and the light intensity values) are close to zero.  Thus, the schlieren images and interferograms
correlate quite well with each other. They also correlate with the shadowgraph, once it is realized that
in this approach, light is redistributed over the image. In a shadowgraph image, light from the region
close to the cold top wall deflects towards the lower hot wall, where the light intensity shows a
maximum.  Thus, high gradients are represented in a shadowgraph by regions of very low as well as
very high light intensity. In the central core, the change in light intensity with respect to the initial
setting is small. Thus the Laplacian operation of temperature in this region yields a practically zero
value. The thermal lensing effect that distorts the shape of the cavity cross-section is most visible in
the shadowgraph.

Quantitative analysis of the temperature field and wall heat transfer rates is reported for the lower
range of cavity temperature differences (and hence Rayleigh number). Clear shadowgraph images
could not be recorded for small temperature differences and have not been shown. At higher
temperature differences, the field was seen to become unsteady. The discussion for larger cavity
temperature differences is based on qualitative comparison of the three imaging techniques.
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Low Rayleigh numbers

Figure 5.10 shows the steady state interferometric and schlieren images for the lower range of
Rayleigh numbers namely . At  the interferogram has only
a few fringes. The number of fringes in the experiments was uniformly found to be consistent with the
estimate  the denominator being given by Equation 1 (Lecture 29).  The number of
fringes increases with Rayleigh number, along with the fringe density near the horizontal walls. With
respect to the schlieren images, it can be seen that the increase in light intensity is distributed over
the cavity cross-section at the lowest Rayleigh number. As Rayleigh number increases, the
brightness is limited to the wall region, and its size progressively diminishes. The schlieren image
clearly brings out a boundary-layer type of flow structure in the cavity. The above experiments have
been validated against a numerical model and the comparison has been found to be good.

A comparison of the steady dimensionless temperature profiles in the cavity as obtained from
interferometry, schlieren, and numerical simulation is presented in Figure 5.21. Temperature profiles at
two column locations  have been considered. The comparison has been
presented for the three Rayleigh numbers referred in Figure 5.20. The shape of the temperature
profile, characteristic of buoyancy-driven convection in a Rayleigh-Benard configuration is reflected in
all the three approaches. The slopes of the individual curves near the walls give a measure of the
wall heat flux. The comparison between the experiments and simulation is seen to be good. Schlieren
measurements compare marginally better with numerical simulation, as against interferometry. This is
because in interferograms, information about the thermal field is available only at the fringes.
Constructing a complete temperature profile requires interpolation between fringes, and is a source of
error. In addition, the number of fringes at low Rayleigh numbers is small.
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Figure 5.20: Interferometric and schlieren images for the lower range of
Rayleigh numbers in air.
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Under steady conditions, the average wall heat flux is also equal to the energy transferred across any
horizontal plane of the cavity.  Average heat transfer rates at the hot and the cold walls of the cavity
have been calculated in terms of Nusselt number and presented in Table 2. Further, they have been
compared against an experimental correlation. The correlation summarizes the observations of a
number of authors and cavity dimensions. Consequently, it has a large uncertainty level of +20%. The
average Nusselt numbers predicted by the two optical techniques match well with each other, with a

maximum difference of +5%, that occurs at the lowest Rayleigh number (Ra= 1.3×104) of the present
work. The hot and cold wall Nusselt numbers are also reasonably close, indicating a good energy
balance in the data reduction procedure. The discrepancies are higher in interferometry at this
Rayleigh number owing to the formation of just a few fringes in the cavity.

Table 2: Wall-averaged Nusselt numbers at the lower (hot) and the upper (cold)
walls for convection in a rectangular cavity with air as the working fluid.

Comparision of experiments with corelation of Gebhart et al (1988). Symbol I in
brackets indicates values calculated from interferograms; symbols S indicates

values calculated from a schlieren image.

Rayleigh Number Nu(cold) Nu(hot) Nu (Reference)

1.3×104

2.6×104

5.0×104

2.38 (I) 2.28 (S) 1.965 (I) 2.07 (S) 2.615
3.32 (I) 3.50 (S) 3.13 (I) 3.10 (S) 3.03

3.56 (I) 3.37 (S) 3.51 (I) 3.38 (S) 3.45

Figure 5.21: Convection in an air-filled cavity. Non-Dimensional temperature
profiles as a function of the vertical coordiante.
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High Rayleigh numbers

Convection in a cavity subjected to a large temperature difference and hence a high Rayleigh number
is discussed in the present section.  The shadowgraph images were quite clear in these experiments
and have been included for comparison. In each of the experiments, a true steady state was not
attained even after the passage of a long period of time. Secondly, interferograms were subjected to
large refraction errors. The cavity viewed through the schlieren and shadowgraph layouts looked
deformed once again due to refraction. Hence, the present discussion is purely descriptive and
quantitative data has not been reported. Rayleigh numbers considered are 

.

Figure 5.22 shows representative images of the convective field recorded after the passage of 8-9
hours of real time.

Figure 5.22: Interferograms, schlieren and shadowgraph images for the
higher range of Rayleigh numbers in air.
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At , the interferogram shows nearly straight dense fringes parallel to the horizontal
walls. These are indicative of near-parallel flow near the hot and the cold walls.  The flow turns at the
corners, leading further to fringe curvature and separation. The flow field is symmetric about the
centerline of the cavity.  These trends are well-reproduced by schlieren and shadowgraph images.

The movement of the fluid medium in the cavity cross-section has the shape of a roll.  The roll size
can be determined directly from the optical images since the fringes as well as the intensity fields
should turn along at corners with the local velocity vector. The roll sizes of Figure 5.22 have been
compared in Table 3, and are found to be quite close. The three experimental techniques reveal a
reduction in the roll size with increasing Rayleigh number.

Table 3: A comparision of roll sizes of convection seen relative to the cavity height
in the three optical techniques; effect of increasing Rayleigh Number.

Rayleigh Number Interferometry Schlieren Shadowgraph
0.270 0.278 0.310

0.258 0.252 0.252

0.210 0.242 0.220
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Thermal imaging of the test cell filled with water is reported in the following discussion. The vast
difference in the properties of air and water leads to certain difficulties in temperature measurement in
a water-filled cavity.  Specifically, the following issues are to be noted:

1. Even for modest temperature differences, the equivalent Rayleigh numbers are very high. 
Consequently, the convective field reaches the unsteady, turbulent regime quite early.

2. The temperature drop per fringe shift is small in water.  Thus the fringe density in
interferograms is high, making data analysis difficult.

3. The sensitivity of the refractive index to temperature is high.  Thus the deformation of the
cavity size as seen on the screen is large and leads to ambiguity in data analysis.

In view of these complications, it is natural that shadowgraph should be best suited for temperature
measurement in water. A comparison of interferometry, schlieren and shadowgraph for a temperature
difference of  is presented in Figure 5.23. The optical images contain
information that is path-integrated in the direction of propagation of light, but are functions of time.
Figure 5.23 shows that the shadowgraph has the most well-defined intensity variation and is the
easiest to analyze for the present experiment.

Figure 5.23: Comparsion of (a) interferogram, (b) schlieren and (c)
shadowgraph for buoyant convection in a water-filled cavity at 
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A comparison of shadowgraph images over a range of high Rayleigh numbers in water is shown in
Figure 5.24. The light intensity variation shows the flow evolving from a boundary-layer type behavior
at the lowest Rayleigh number towards large scale structures (namely, plumes) at the highest

Rayleigh number. Beyond Ra = 5×106 the flow is unsteady as well.  The images shown in Figure
5.24 have been time-averaged over a few seconds so that the dominant spatial features are
captured.

Figure 5.24: Shadowgraph images of the convective field with increasing
Rayleigh number in water.
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Convection in water at high Rayleigh numbers in the presence of an air-water interface is considered.
A sequence of shadowgraph images recorded in the experiments is shown in Figure 5.25. 

Figure 5.25: Shadowgraph images showing the deformed interfaces in a
cavity half-filled with water, the best being air; Interfaces are emphsized in

black.
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Based on the above discussion, the following conclusions can be drawn.

1. In low temperature gradient experiments, all the three techniques correlate well with one
another. Interferograms are limited by few fringes in air, and too many fringes in water.  The
shadowgraph image does not show sufficient contrast for analysis. In this respect, the
schlieren technique is most amenable to data reduction.

2. In high gradient experiments, both schlieren and shadowgraph yield clear images.  The
interferograms are however corrupted by refraction errors. Schlieren and shadowgraph track
the temporal response of the fluid medium in the form of the light intensity variation.

3. In high Rayleigh number experiments with water, the flow field is turbulent. Shadowgraph
images are seen to be meaningful, as against interferograms and schlieren. The shadowgraph
images reveal a considerable amount of physical information, including boundary-layers,
plumes and time scales. It can be independently used to improve existing models of
engineering turbulence.
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