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MART

When the correction in the iterative algorithms are multiplicative rather than additive, the algorithms
are grouped under the family of MART (Verhoeven, [311]). Gordon et al. [97] and Gordon and Herman
[100] have suggested different forms of MART. The MART algorithms presented below are similar to
those considered by Verhoeven [31].

The major difference between ART and MART algorithms is in the method of computing the
corrections. While ART uses the difference between the calculated projections and measured
projections, MART uses the ratio between the two. Hence the corrections applied to each cell during
calculations are via the multiplication operation. The structure otherwise is similar to Gordon’s ART
(ART2).

The individual steps of three versions of MART (1,2, and3) are summarized below. 
start: 1start iterations :
start: 2 For each   projection angle 
start: 3 For each ray 
Compute the numerical projection 
Calculate the correction as:

Start: 4   For each cell 

If  is non-zero then:
MART1:

MART2:

MART3:

where  is a relaxation factor.

close: 4
close: 3
close: 2
Check for convergence as:
If
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where  is a suitable stopping criterion.
 STOP:
Else: Continue
close: 1

Steps 3 and 4 form the essence of the reconstruction algorithm. All three versions include the
relaxation factor . Typical values of the relaxation factor reported are in the range 0.1 - 1.0, larger
values leading to divergence It is to be noted that the correction calculated in step 3 is the ratio of the
recorded projection data ( ) and that calculated from the guessed field, namely  which is being
iterated.  The three versions of MART differ in the manner in which the corrections are implemented.
In MART 1. The  weight function is prescribed in binary form, being unity if a particular ray passes
through a pixel and zero otherwise . In MART 2 and MART 3, the weight function is precisely
calculated as the ratio of the length of the ray intercepted by the pixel and the maximum dimension of
a segment enclosed by it.
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AVMART 

The reconstruction of a function from a finite number of projections recorded at different view angles
leads to an ill-posed matrix inversion problem. The problem is accentuated when the projection data
is limited. The resulting matrix is rectangular with the number of unknowns being greater than the
number of equations. In view of the ill-conditioning of the matrix, the convergence of the matrix, the
convergence of the iterations to any particular solution is dependent on the initial on the initial guess,
the noise level in the projection data and the under-relaxation parameter employed. In the present
study, the MART algorithm has been extended so as to

enlarge the range of the usable relaxation factor.
diminish the influence of noise in the projection data, and
guarantee a meaningful solution when the initial guess is simply a constant.

The original MART algorithm described above has been modified in the present work to form a
new approach to applying the corrections. In the proposed algorithm the corrections are
calculated by considering all the rays from all the angles passing through a given pixel. Instead
of a single correction obtained from individual rays, a correction that is determined as
determined as the average of all the rays is used. The difference between the conventional
MART and the present implementation is the following. The correction at each pixel is updated
on the basis of the N-th root of the product of all the corrections from all the N rays of all view
angles passing through a pixel. This idea is based on the fact that average corrections are
expected to behave better in the presence of noisy projection data. Since an average
correction is introduction, the algorithm is desensitized to noise. There is however a potential
drawback. Since an average pixel correction based on a set of rays is computed, the
reconstructed field is not required to satisfy exactly the recorded projection data. This was seen
to be no cause for concern for the three application considered. The projection data was
exactly satisfied by the reconstructed field in each case.
The modified algorithms have been identified below as AVMART, The prefix AV referring to
average. The important step, namely step 4 alone is presented here, with the understanding
that all other steps remain unchanged.

Start: 4 For each cell 
Identify all the rays passing through a given cell  Let be the total number of rays passing through
the j- th cell. 
Apply correction as:

AVMART1:    

AVMART2:    
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AVMART3:

Close:4 
The symbol  in the three algorithms above represents a product over the variable . The -th
root of this product is evaluated in each approach. The relaxation factor has been retained in the
statements above for completeness. In all calculations, it was set equal to unity to bring out a mixture
of the “smooth “ and “sharp” features of the temperature field. The proposed algorithms require a
smaller CPU time per iteration, when compared to the existing ones, Section 6.7 evaluates the
benefits derived by modifying step 4 for problems of practical importance.
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Maximum Entropy

Based on ideas from information theory, one can perform image analysis and construct meaningful
tomographic algorithms, algorithms. Suppose there is a source which generates a discrete set of
independent messages  with probabilities  Then the information associated with  is defined
logarithmically as

The entropy of the source is defined as the average information generated generated by the source
and can be calculated as

When the source is the image, the probability can be replaced by the gray level  for the th pixel
and entropy can be redefined as

For natural systems, the organization of intensities  over the image can be expected to follow the
second law of thermodynamics namely,

This is the basis of the MAXENT algorithm. For interferometric images, one can view the pixel
temperature as the information content and entropy built up using their magnitudes. In the absence of
any constraint, the solution of the above optimization problem will  correspond to a constant
temperature distribution, more generally a uniform histogram in terms of probabilities. Hence, the
MAXENT algorithm is properly posed only along with the projections as constraints.

Requiring that the entropy of the system be a maximum along with the interferometric projections as
constraints is known as the Maximum entropy optimization technique (MAXENT). It produces an
unbiased solution and is maximally noncommittal about the unmeasured parameters. This technique
is particularly attractive when the projection data is incomplete. The MAXENT algorithm is described
below:

Consider a continuous function  with condition  and values  pixels.
In the present context, the entropy technique refers to the extermination of the

(23)

Subject to a set of constraints. In constraints. In MAXENT the collected projection data and any other
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a priori information about the field to be reconstructed can be viewed as the constraints over which
the entropy is to be maximized. A typical maximum entropy problem can be stated as:

(24)

Different schemes are available for optimizing a function over some constraints, for example the
Lagrange multiplier technique. The MART algorithms have been shown to be equivalent to the
maximum entropy algorithm in the literature. Hence the entropy algorithm has not been considered
further in the present article.
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Minimum Energy

The MAXENT algorithm can be generalized for any other fumction in place of entropy. Gull and
Newton [30] have suggested four such functions which can be maximized with the projections as
constraints to obtain the tomographic reconstruction. After entropy, the energy functions are attractive
and natural for use in physical problems. The minimum energy method (MEM) can be implemented in
a manner analogous to MAXENT as follows

(25)

Compared to MAXEMT, MEM has a simper implementation while using the Lagrangian multiplier
technique, since it results in a set of linear equations. Gull and Newton however have recommended
the MAXENT over MED, since they found that the MEM produces a field which is negatively
correlated and hence produced a biased solution.
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Testing of Tomographic Algorithms

The ART, MART and the optimization algorithms have been for variety  of cases by subbarao et al.
[32]. In the examples, the temperature fields were synthetically generated. Hence it was possible to
determine explicitly the convergence properties and errors for each of the methods. Among the
various algorithms, the authors have identiflied MART3 as the best in terms of the error and CPU
time requirements. The AVMART algorithms proposed by the author and his coworkers have been
validated in the present section against two benchmark cases (1) a circular region with five holes, and
(2) the numerically generated three-dimensional temperature field in fluid convection. Employing a
temperature field similar to that encountered in the experiments aids in the choice of the proper initial
guess and error levels to be anticipated. This also helps in selecting the proper tomographic
algorithm. The algorithms stated in Sections MART and AVMART have been rested for a circular
region with distribution of holes and a numerically generated three-dimensional temperature field in
Rayleigh-Benard convection. Sensitivity of the algorithms to noise has been tested in the context of
numerically generated temperature data. Issues addressed in the sensitivity study are initial guess,
noise in projection data, and the effect of increasing number of projections on the accuracy of
reconstruction.

Reconstruction of a Circular Disk with Holes

A circular region with five symmetrically placed holes is considered. The object is recognized in terms
of the local dimensionless density, which is zero at the holes and unity elsewhere. To implement the
reconstruction algorithm, it is convenient to enclose the circular object within a square domain. The
gap between the circle and the square is specified to have zero density (in calculations, a value of
0.001 has been used for zero density). The square region is discredited into  cells in the x
and y directions. Projections of this object have been determined analytically and hence exact. The
recovery of the original object from a limited number of these projections using the original MART as
well as the proposed AVMART algorithms is discussed below.

Projections at angles of 0, 45, 90,and 135 degrees have been considered in the present application.
The initial guess for the density field was a constant value of unity. A convergence criterion of 1% for
the iterations has been uniformly used. At a Convergence of 0.01% , the solution was practically
identical, except that errors were seen to be marginally higher. This feature of topographic algorithms,
that convergence is asymptotic (but not monotonic) has been reported earlier. Such trends are to be
expected in the reconstruction of fields having a step discontinuity. At the hole boundary in the
present example. The relaxation factor was set at 0.1in case of original MART while it was unity in
the AVMART algorithms. All calculations were carried out on a DEC–alpha workstation with 196 MB
RAM and a 223 MHz processor.

A summary of the reconstructed fields using the three original and three proposed algorithms is
shown in Fields 33. In principle, all the six algorithms were seen to converge to a qualitatively
meaningful solution. The void fraction, namely the fraction of the space occupied by the holes was
0.34 in the present application. In the reconstructed solution, the void fraction can be determined from
the formula
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Figure 4.65: Original and Reconstructed density fields of a circular region
with holes (the outer circle appears as an octago because of a finite number

of view angles employed).
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It was found that all the six algorithms reproduced a void fraction of precisely 0.34.The algorithms
however different CPU time, errors, and error distribution.
The three different error norms reported in the present work are:

 Maximum of absolute difference

Table 11: Comparison of the MART Algorithms: Circular Region with Holes

Quantity MART1 MART2 MART3 AVMART1 AVMART2 AVMART3

0.99 0.96 0.95 0.99 0.96 0.96

0.25 0.24 0.23 0.24 0.23 0.23

25.12 24.08 23.63 24.59 23.72 23.65

Number of points (%) having error in the range

>95% 0.27 0.05 0.05 0.27 0.05 0.05

75-95% 0.64 0.62 0.86 0.83 0.72 0.70

50-75% 3.90 4.11 4.43 3.47 4.00 3.98

Iterations 51 63 29 17 24 21

CPU (minutes) 9.51 11.97 5.65 0.32 0.45 0.40

Results for the error level distribution in the reconstructed field have also determined. The distribution
of the absolute error as a percentage of the error has been presented in the regions Errors and their
distribution along with the computational details are given in Table 11. 
It is clear form Table 11 that the errors for all the six algorithms are practically close, with those of
MART 1 and AVMART 1 being marginally on the higher side. An examination of the error distribution
shows that large error (>95%) are seen only over of the physical region shows that large errors are
seen only over 27% of the physical region. Specifically, large errors are restricted to the surface of the
holes, where a step change in the field property (the density in the present example) takes place. The
errors are uniformly small elsewhere. The most significant difference between the original and the
proposed algorithms is in terms of the number of iterations (and correspondingly in the CPU time).
The proposed algorithms require less iteration for convergence and require a smaller CPU time. This
is clear evidence of the computational efficiency of the proposed algorithms in the context of exact
projection data.
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Reconstruction of a Numerically Generated Thermal Field

The second application taken up for analysis comprises of a numerically generated convective thermal
field in a horizontal differentially heated fluid layer. For definiteness, the wall temperatures employed

are 150C and 300C respectively. The three-dimensional temperature field  has been determined as
follows. The stream function, vorticity, and energy equations are solved in two dimensions with
symmetry conditions applied on the side walls, by a finite difference method [101]. The solution thus
obtained corresponds  to a  system of longitudinal rolls spread over an infinite fluid layer. Such
geometries show a polygonal plan form corresponding to a fully three-dimensional temperature field
[102]. The three-dimensionality has been simulated in the present work by superimposing a sine
variation in the thermal field parallel to the axis of the roll. A surface plot of the resulting temperature
field revealed the flow to be organized in the form of cubic cells in the fluid layer.

Figure 4.66: Temperature surface of the midplane of the layer, in the form of
cubic cells

The advantages of selecting the field to be reconstructed in the particular manner outlined above are :
(1) The field  is continuous and hence reconstruction errors can be expected to be small, as compared
to the application with holes.(2). Error with perfect data being small, one can systematically study
errors induced by the initial guess, and noise in the projection data. (3)The thermal field begin
analyzed is physically realizable.

For reconstruction, the fluid layer has been discretized into 11 planes and each plane into 
cells. The relaxation factor for the proposed algorithms has been set to unity. Since the algorithms are
being tested under conditions of limited data, only two and four projections have been considered. A
convergence criterion of has been uniformly employed in the computation. Results obtained using the
proposed MART algorithms alone have been reported.
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The errors reported here are on the basis of the entire fluid layer. The three different errors reported
are:

In these definitions,  and  are the hot and cold temperatures.  and  are the
temperature cariables of the original and the reconstructed field respectively. Results for the error
level distribution in the fluid layer have also been determined. The distribution of the absolute error as
a percentage of the  error has been presented in the three zones as before namely 

Table 12: Comparision of the AVMART algorithms in a Differentially Heated
Fluid Layer

Initial Guess Quantity AVMART1 AVMART2 AVMART3

Constant 1.97 1.97 1.97

0.49 0.48 0.49

2.86 2.79 2.86

Iterations 9 12 14

CPU, sec 30.6 41.3 47.2

Two-dimensional longitudinal rolls 1.98 1.98 1.98

0.49 0.49 0.49

2.86 2.86 1.98

Iterations 8 12 12

CPU, sec 28.9 41.2 42.7

Random 12.15 13.42 6.20

5.59 4.74 0.60

32.70 27.77 3.50

Iterations 15 17 14

CPU, sec 52.8 59.1 47.8
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Sensitivity to Initial Guess

The inversion of matrices arising from the ART family of algorithms from limited projection data is a
mathematically ill-posed problem. As a rule, the number of equations here is much smaller than the
number of unknowns. This makes the solution- set infinite in the sense that a unique solution is not
guaranteed. Different initial guesses, may in principle, lead to different solution of this infinite set. In
the absence of any knowledge about the field being studied, it is a difficult task to prescribe the initial
guess. The sensitivity of the algorithms to the initial guess has been studied with reference to three
different fields, namely:

1. a constant temperature field (= )
2. temperature distribution corresponding to two-longitudinal rolls, and
3. random field between  and  with an RMS value of 

The guesses 1and 2 were seen to qualitatively reproduce the thermal field of figure 59 quite well(the
reconstructed thermal field have not been shown as they are very close to the original). The noise
present in the third guess was seen to be present in the reconstructed data. But the noise could be
filtered in the frequency domain using a band-pass filter function. The reconstructed field after noise-
removal was seen to be similar to the original in Figure 59. The errors, number of iterations and the
CPU time for the three initial guesses are presented in Table 12.The fractional distribution of errors
are reported in Table 13. With initial guesses 1and 2, the RMS and fractional of errors can be seen to
be small for all the three algorithms. The maximum error is larger, but with reference to Table 13, it
can be seen that large errors are restricted to small areas and are hence localized. Thus, in effect the
initial guesses 1 and 2 may be considered to be equivalent. The errors corresponding to the third
guess are uniformly higher for the proposed AVMART1 and AVMART2 algorithms, but small for
AVMART3. The number of iterations for AVMART3are also smaller. Hence, AVMART3emertes as the
best algorithm among those proposed in terms of error and CPU time for a noisy initial guess. For an
unbiased and regular initial guess, computations over a wider range of parameters show AVMART2 to
be the best (see the section on Sensitivity to Noise in Projection Data).

Table 13: Fractional Distribution of the  Error over the fluid layer

Initial
guess

Number of points (%)having error in
the range

AVMART1 AVMART2 AVMART3

(1) >95 0.17 0.17 0.17

75-95 0.57 0.48 0.57

50-75 5.76 5.15 5.73

(2) >95 0.17 0.17 0.17

75-95 0.60 0.62 0.62

50-75 5.68 5.58 5.58

(3) >95 0.02 0.01 0.002

75-95 5.79 2.00 0.02

50-75 34.46 11.92 0.30
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The insensitivity of AVMART3algorithm to noise can be explained as follows , In the other two
algorithms, correction is applied by finding the th root of the product of all corrections arising from ray
with the cell under question. This improves the estimate of the path integral.
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Sensitivity to Noise in projection Data

In measurements involving commercial grade optical components and recording and digitizing
elements, the projection data is invariably superimposed with noise. Software operations such as
interpolation and image processing can also contribute to errors in the projection data. Experience of
the authors with interferometric experiments shows that the RMS noise level is around  [78].

The performance of the three proposed algorithms has been compared with noisy projection data as
the input. A  noise level has been adopted for all calculations. The noise pattern has been
generated using a random number generator, with a uniform probability density function. Results
have been presented for 2 and 4 projections corresponding to view angles of 

 respectively. The initial guess for reconstruction with 2
projections is simply a constant; for 4 projections the result obtained with 2 projections has been used
as the initial guess.

Results with 2 projections show that all three algorithms reproduce qualitatively the temperature field
of Figure 2. However quantitative differences are to be seen. The noise level in the reconstructed field
is found to be slightly higher than that in the projection data. The magnitude of the three different
errors and the distribution of the fractional error over the fluid domain are presented in Table 14. All
the three algorithms are practically equivalent in terms of errors, though AVMART2 is seen to be
marginally better from the error point of view. However the CPU time of AVMART1 is minimum. It is
to be noted that noise (in terms of ) in the projection data has been amplified during the
reconstruction process  This is in contrast to noise in the initial guess. Where
iterations tend to diminish errors in the converged field.

Table 14: Comparision of the AVMART Algorithms:  Noise in Projection
Data, Two-View Reconstruction

Quantity AVMART1 AVMART2 AVMART3

4.452 4.449 4.450

1.08 1.08 1.08

6.37 6.36 6.37

Number of Points (%) having error int he range

>95 0.004 0.004 0.004

75-95 0.222 0.200 0.222

50-75 4.400 4.387 4.400

Inerations 9 12 14

CPU,sec 30.5 40.9 47.8
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Reconstruction with 4 view angles is taken up next. Table 15 shows the error levels in the
reconstructed data and the distribution of this error within the fluid layer. It can be seen immediately
that the errors shows that these are at best localized, i..e., large errors may occur at a few sporadic
points. The AVMART1 algorithm shows a considerable deterioration in performance, since errors as
well as CPU time are substantially higher. AVMART2 and AVMRT3 algorithms are seen to perform

Table 15: Comparison of the AVMART Algorithms:  Noise in projection
data, Four-View Reconstruction  

Quantity AVMART1 AVMART2 AVMART3

11.80 5.52 5.52

1.78 1.36 1.36

10.41 8.00 8.00

Number of Points (%) having error int he range

>95 0.004 0.007 0.007

75-95 0.029 0.349 0.346

50-75 0.276 5.186 5.177

Inerations 190 53 53

CPU,sec 1767.7 502.3 520.8

Better than AVMART1. AVMART2 is marginally superior to.  AVMART3 since the error magnitudes
are equal, but the former takes a smaller CPU time. Hence, a consolidated view to emerge from the
discussion above is that AVMART2 exhibits the best performance.
It is of interest to compare the best proposed algorithm, namely AVMART2 with the best original
MART algorithm identified by Subbarao et al. [32], Namely MART3 of the present study. To this end,
reconstruction was carried out using 2-views of  for convection in a horizontal differentially
heated fluid layer, leading to two- dimensional longitudinal rolls. The projection data was
superimposed with  noise and an initial guess of a constant temperature field was used. Errors for
MART2–new. The computer time was also higher by a factor of4 when compared with MART2_new.
However the fractional distributions of errors over the fluid layer were seen to be similar for both, thus
confirming that they continued to belong to the same family of algorithms.
The following inferences can now be drawn from the discussion above:
1. The three AVMART algorithms show similar performance in the presence of noise in the projection
data AVMART2 is however marginally superior in terms of errors and CPU time.
2. The noise in the projection data persists after reconstruction.
3. Increasing the number of noisy projections amplifies the error in reconstruction.
4.  AVMART2 clearly shows superiority over MART3 for noisy projection data. Hence it supersedes
MART3 as the favored tomographic algorithm for the class of problems studied.
Both MART and AVMART algorithms have been tested extensively against experimental data. The
errors as well as the convergence rates have been tested extensively against experimental data. The
errors as well as the convergence rates have been reported in 
Mishra et al. [81]. The conclusions drawn above carry over to experiments without any major
modification. The convergence rates of all the algorithms were seen to deteriorate with increasing
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number of projection angles. This could be traced to the partial de-correlation among the
interferometric  images owing to mild unsteadiness in the convection patterns.
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Closure

The MART family of algorithms available in the literature was seen to require a small relaxation factor
leading to delayed convergence. To address this issue, a new set of algorithms have been proposed
in the present work. The new set is conceptually similar to the original, but differs significantly in the
manner in which corrections are applied. Specifically, the reconstructed field does not satisfy the
projection data, pointwise. However, it can accommodate a wider range of relaxation factors and thus
is better from a theoretical view point. Results with the relaxation factor set at unity have been
reported in the present work.
The proposed algorithms have been evaluated in the context of three applications, namely: (1)circular
disk with five holes, (2) three-dimensional convective thermal field, and (3) interferometric data from a
laboratory-scale differentially heated fluid layer experiment. The major results that emerge from the
study are:

1. All six algorithms reconstruct the field variable in a qualitative sense. Differences are seen only
in the numerical values.

2. The AVMART2 algorithm emerges as the best, in terms of CPU time, errors and sensitivity to
initial guess and  noise in the projection data.

3. The CPU time of the proposed algorithms is significantly; smaller than those presently available
in the literature.

4. With a limited number of projections, all algorithms show large absolute maximum error, but
these are sharply localize. Specifically, the qualitative appearance of the reconstructed field
variable is acceptable from a practical viewpoint.

5. The convergence rate of the proposed algorithms is found to be better than the original, when
the projection data is exact. In the presence of noise, all the six algo-algorithms  record a
sharp reduction in the convergence rate. In a few cases, the proposed algorithms require a
greater number of iterations compared to the original. However, in all applications, the CPU
time requirement is substantially smaller for the proposed algorithms.
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