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COMPUTERIZED TOMOGRAPHY

The three-dimensional temperature field can be reconstructed from its interferomeric projections using
principles of tomography. Tomography is the process of recovery of a function from a set of its line
integrals evaluated along some well-defined directions. In interferometry, the source of light (the laser)
and the detector (CCD camera) lie on a straight line with the test cell in between. Further a parallel
beam of light is used. This configuration is called transmission tomography and the ray configuration
as the parallel beam geometry [28]. Tomographic algorithms used in interferometry reconstruct two-
dimensional fields from their one-dimensional projections. Reconstruction is then applied sequentially
from one plane to the next until the third dimension is filled.

Tomography can be classified into: (a) transform (b) series expansion, and (c) optimization methods.
Transform methods generally require a large number of projections for a meaningful answer [92]. In
practice, projections can be recorded either by rotating the experimental setup or the source-detector
combination. In interferometry, the latter is particularly difficult and more so with the Mach–Zehnder
configuration. With the first option, It is not possible to record a large number of projections, partly
owing to inconvenience and partly due to time and cost. Hence, as a rule, a large number of
projections cannot be acquired with interferometry and one must look for methods that converge with
just a few projections. Limited-view tomography is best accomplished using the series expansion
method [29]. As limited-view tomography does not have a unique solution, the algorithms are
expected to be sensitive to the initial guess of the field the start the iterations. Optimization-based 
algorithms are known to be independent of initial guess, but the choice of the optimization functional
plays an important role in the result obtained. Depending on the mathematical definition used, the
entropy extremization route may yield good results, while the energy minimization principle may be
suitable in other applications. For the algebraic techniques considered in the present study, an
unbiased initial guess such as a constant profile was seen to be good enough to predict the correct
temperature field. A complete random number guess can also be viewed as an unbiased initial guess.
Tomography begin an inverse technique, was seen to preserve (and amplify under certain conditions)
the noise in the initial data. The dominant trend in the field variable was seen to be however
captured  during tomography inversion.
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Convolution Backprojection          

The convolution backprojecton (CBP) algorithm for three-dimensional reconstruction classifies as a
transform technique. If has been used for medical imaging of the human brain for the past several
decades. Significant advantages of this method include (a) its noniterative character, (b) availability of
analytical results on convergence of the solution with respect to the projection data, and (c)
established error-estimates. A disadvantage to be noted is the large number of projections normally
required for good accuracy. In engineering applications, this translates to costly experimentation, and
nonviability  of recording data in unsteady experiments the use of CBP continues to be seen in steady
flow experiments, particularly when the region to mapped is physically small in size. The statement of
the CBP algorithm is presented below.

Let the path integral equation be written as

(17)

where  is projection data recorded in the experiments and  is the function to be computed by
inverting the above equation In practice, the function  is a field variable such as density, void
fraction, attenuation coefficient, refractive index, and temperature. The symbols  stand for
the ray position, view angle, position within the object to be reconstructed, and the polar angle,
respectively (fig. 4.50).The integration is performed with respect to the variable  along the chord  of
the ray defined be  Following Herman [28], the projection slice theorem can be employed in
the form

(18)

Where the overbar indicates the fourier transform and  is the spatial frequency. In words, this
theorem states the equivalence of the one-dimensional Fourier transform of with respect to s
and the two-dimensional Fourier transform of  with respect to r and   A two–
dimensional Fourier inversion of this theorem leads to the well-known Radon transform

where
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The first integral in the form given above is divergent with respect to the spatial frequency  practical
implementation of the formula replaces , where W is a window function that
vanishes outside the interval  The cut-off frequency  can be shown to be inversely
related to the ray-spacing for a consistent numerical calculation of the integral. When the filter is
purely of the band-pass type , the Radon formula can be cast as a convolution integral:

(19)

where

and

The inner integral over s is one dimensional convolution and the outer integral, an averaging
operation over  is called back projection.This implementation of the convolution backprojection
algorithm is commonly used in medical imaging. Applications of the CBP algorithm to flow and heat
transfer problems have been reviewed by Munshi [94].

Figure 4.63: Nomenclature for the concolution backprojection algorithm
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Iterative Techniques

Series expansion methods are perhaps the most appropriate tomographic technique for interferometry
since they work limited projection data. These methods are iterative in nature and consist necessarily
of four major steps, namely:

initial  assumption of the field to be reconstructed over a grid,
calculation of the correction for each  pixel,
application of the correction, and
test for convergence,

The central idea behind the calculation of the correction (step2) is the following. With the assumed
field, one can explicitly compute projection values by numerical integration. The difference between
the computed projection and experimentally recorded projection data is a measure of the error in the
assumed solution this error can be redistributed to the pixels so that error is reduced to zero.
Repetition of these steps is expected to converge to a meaningful solution. The series expansion
techniques differ only in the manner in which the errors are redistributed over the grid.
The word convergence in step 4 is used in an engineering sense as a stopping criterion for the
iterations, and not in the strict mathematical sense, where a formal proof is needed to show
convergence of the numerical solution to the exact solution 
The iterative methods require the discretization of the plane to be reconstructed by a rectangular grid
(Figure 4.66). The length of the intercept of the i-th ray with the j–th cell in given projection is known
as the weight function wij. It can be shown that

(20)

where  refers to the projection data. The number of unknowns N in most cases is much larger than
the number of unknowns M. This discretization produces a matrix equation

(21)

The problem of reconstruction thus is a problem of inversion of a rectangular matrix. Iterative
techniques that are used in the tomography can be viewed as developing a generalized inverse of the
matrix  This matrix in a typical laser tomography problem has large dimensions for the

differentially heated fluid layer, the greatest matrix size encountered was  This is a
sparse matrix with many of its elements being zero. General purpose matrix libraries cannot be used
to invert such matrices since they are highly ill-conditioned and rectangular in structure. The
tomographic algorithms can be seen as a systematic route towards a meaningful inversion of the
matrix equation.
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Series expansion methods being discussed in the present section can be classified into: ART
(Algebraic Reconstruction Technique) and MART (multiplicative Algebraic Reconstruction
Technique).The optimization of the entropy and minimization of the energy functions.

Figure 4.64: Discretization of a plane of fluid layer for art calculations

The ART and MART families of algorithms differ only in the method of updating the field parameters in
each iteration In ART. The correction is additive while for MART, the correction is multiplicative. In
both cases, the numerical procedure is based on the comparison of the estimated projection from an
initial guess with the measured projection data obtained though experiments. This gives a correction
term for the field variables. The values of the variables are then updated. Once an iteration is over,
the field value differs from the previous guess. The extent of the difference in then calculated. If the
difference is within acceptable limits, the field value is taken to represent the physical field. Otherwise
the iterations continue until the convergence criterion is satisfied.

Since the original field in real experiments is unknown, an estimate of the number of iterations can be
found by using test functions (called phantoms) that are similar in nature to the original field. The test
functions are also perturbed with noise to gauge the sensitivity of the algorithms to issues such as
initial guess and error in the projection data. This method can only be adopted where an exact
estimate of noise in the projection data and a good knowledge of the   original field is known
beforehand. Variations in the noise level and nature of the noise in the projection data can alter the
convergence rates.

Tomographic algorithms used in the present work are iterative in nature and intermediate steps may
also involve iterations in the form of FOR loops.  To identify   the beginning and the ending of each
iterative loop, start and close labels with statement number have been indicated in the description of
each  algorithm. These algorithms are briefly surveyed in the following sections.
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ART

 Various ART algorithms are available in the literature owing their origin to Kacz-marz [95] and
Tanabe [96]. They differ from each other in the way the correction is applied. Those presented below
have been tested successfully by the author and his coworkers in the context of interferometry.

Simple ART

This algorithm has been suggested by Mayinger [6]. The corrections are applied through a weight
factor. Computed as an average correction along a ray. The deference between the calculated
projections with the measured projection data gives the total correction to be applied for a particular
ray. The average correction is then the contribution to each cell falling in the path of the ray. This is
computed by dividing the total correction obtained with the length of the ray. The calculated projection
are computed once for a particular angle. Though are field values are continuously updated the
calculated projection values remain unchanged until the completion of all the rays for a given angle.
This algorithm will be referred  to as ART1 in future discussions.

Let  be the projection due to the -th ray in the  direction of projection and  be the initial guess
of the field value. Numerically the projection  using the current field values is defined as:

(22)

The individual steps in the algorithm are listed below.
Calculate the total value of weight function  along each ray as:

Start: 1 For each projection angle 
Start:2 For each ray 
Start:3 For each cell 

Close:3
Close:2
Close:1
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Start:4 start iterations 
Start:5 For each projection angle 
Start:6 For each ray 

Compute the numerical projection (Equation 21)

Close:6
Start:7 For each ray 

Calculate the correction as:

Calculate the average of correction as:

Close:7
Start:8 For each ray 
Start: 9 For each cell 
If  is non –zero then

where  is a relaxation factor.
Close:9 
Close:8
Close:5
Check for convergence as: 
If

(where  is the prescribed convergence, say
STOP:
Else: continue 
close:4 
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Gordon ART

Algorithm contributed by Gordon et al. [97] is considered. Mayinger’s ART is similar to this original
version under the condition that no two ray simultaneously pass through a particular cell for a given
projection. In this method corrections are applied to all the cells through which the -th passes, using
the weight factor which is exactly the proportion of  to the total length of the ray. The projection
data gets updated after calculations through each ray. This procedure will be referred to as ART2.
The individual steps are:

Calculate the total value of weight function  along each ray as:

Start:1 For each projection angle 
Start:2 For each ray 
Start:3 For each cell 

Close:3
Close:2
Close:1
Start:4 start iterations 
Start:5 For each projection angle 
Start:6 For each ray 

Compute the numerical projection (Eqution 22)
Calculate the correction as:

Start:7 For each cell 
If is non-zero then:

where  is a relaxation factor: 
Close:7
Close:6
Close:5
Check for convergence as: 
If

STOP:
Else: Continue 
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Gilbert ART

Gilbert [98] has developed independently a form ART known as SIRT (Simultaneous Iterative
Reconstruction Algorithm). In SIRT, the elements of the field function are modified after all the
corrections corresponding to individual pixels have been calculated. This will be referred to as ART3.
The numerically generated projection is computed once for all the angles and gets updated only after
the completion of calculations through all the rays. For each ray from all angles, all the cells are
examined to look for those rays which pass through a particular cell. For each cell, the rays which
pass through it will contribute a correction that is decided by the weight factor . The algebraic
average of all these corrections is implemented on the cell. This procedure will be called ART3. Its
individual steps are: Calculate the total value of weight function  along each ray as:
Start:1 For each projection angle  
Start:2 For each ray 
Start:3 For each cell 

Close: 3
Close: 2
Close: 1
Start: 4 Start iterations 
Start: 5 For each projection angle 
Start: 6 For each ray 
Compute the numerical projection (Eqution21)
Calculate the correction as:

Close: 6 
Close: 5
Start:7 For each cell 

Identify all the rays passing through given cell (j)let be the total number of rays passing through the 
th cell)and corresponding   and 

Apply correction as:

Where  is relaxation factor.
Close: 7 
Cheek for convergence as: 
If
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Anderson ART

Anderson and Kak [99] have proposed a variation to the ART algorithm. This algorithm is abbreviated
as SART (Simultaneous Algebraic Reconstruction Technique). The method of implementing the
correction is similar to ART1. The only difference this algorithm has from ART 1is in the calculation of
correction for each cell The weight factor used here is the exact intersection of a ray with the
concerned cell. In contrast, ART1 uses the average correction for all the cells. This algorithm will be
referred to as ART4. The individual steps are: 
Calculate the total value of weight function  along each ray as:
start:1 For each projection angle  
start: 2 For each ray 
start: 3 For each cell 

.

close: 3
close: 2
close: 1
start: 4 start iterations 
start: 5 For each projection angle 
start: 6 For each ray 
Compute the numerical projection (Equation21)
close: 6
start: 7 For each ray 
Calculate the correction as:

 

start:8 For each cell 
If  non-zero then:

where  is a relaxation factor.
close: 8
close: 7
close: 5 
Check for convergence as:
If
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STOP
Else: continue 
close: 4 
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