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The Lecture Contains:

Data Analysis

Classification of Data
Analysis of Random Signals
Fourier Transform Technique
Probability Density Function Approach
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Classification of data

Data received by an observer from an experimental setup can be classified as in Figure 1.7. Methods
of analyzing deterministic data are well-established because the data is already in a form, from which
integral measures can be extracted. When periodic signals are encountered it is a conventional
practice to present results for sinusoidal signals alone. This is because results for a general periodic
signal can be constructed from those for harmonic signals using Fourier decomposition of the form

Here  is the time period of the signal  and the Fourier coefficients  satisfy the condition 
, The coefficients can be determined from the formula

As an example, pressure drop in a pipe carrying pulsatile flow can be determined as a weighted
average of the individual pressure drops occurring in sinusoidally varying flows whose frequencies are
integer multiples of that of the real problem.

Figure 1.7: Classification of Data

When the data available to the observer is random, one is forced to use statistical techniques. This is
because even when a mean value is determinable, one requires prior knowledge of the length of the
signal to be considered for averaging. This mean value can subsequently be used for deterministic
analysis. However in many applications information the randomness itself may be desired and
statistical measures of the signal will have to be calculated.
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Analysis of Random Signals

Consider a random signal sensed by a probe and recorded by a measuring system as shown in
Figure 1.8. Though it is impossible to collect this signal manually, modern instruments can collect
such a signal with considerable amount of accuracy in both magnitude and time. The simplest
quantities that must be determined from this signal are the mean, the RMS value and the cross-

correlation with a second signal . The relationships between the signal and the reduced
quantities are given by:

Mean:

RMS:

Cross-correlation:

If the signals are directly stored in the memory of a computer in digital form, the integrals appearing
above can be evaluated using computer programs.

For example, the numerical evaluation of an integral proceeds as

or,

In (i) and (ii)  where
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Equation (i) is called the ensemble average of . Equation (ii) is based on a linear fit for  between
successive points. Equation (i) is usually preferred over (ii) because it under-predicts the value of the
integral and de-emphasizes the occurrence of isolated peak values.

Figure 1.8: Sketch of a Random
Signal.

The integrals appearing above are quite sensitive to the choice of  (and hence ), namely the total
time of data collection. While the desired value of  can be estimated by increasing the length of the
signal till the mean and RMS values converge to values that are independent of  , this is not very
convenient. One can estimate the value of  from the physics of the problem being studied. Consider
atmospheric flow as an example. There will be fluctuations arising from the motion of eddies of a
variety of sizes that are transported by the flow. The fluctuation due to a typical eddy is schematically
shown in Figure 1.9.

Figure 1.9: Model of an Eddy to Define Time Scales in the
Flow.
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At a given instant, point `a' moves up while point `b' moves down. After a time interval  these
directions are reversed. Hence  is a measure of a time period of fluctuation of an eddy of size
of  and  is the associated frequency. A distribution of eddy sizes now means that there exists
a distribution of frequencies as well. In a boundary-layer,  where  is the boundary-layer
thickness and the largest value of the time period can be estimated conservatively as . In flow
past a cylinder  may be chosen as the cylinder diameter; in flow past a mesh the grid size or the
wire diameter whichever is larger can be used as an estimate of . As a rule of thumb the integration
time  should be 5 to 10 times the characteristic time period .

Other quantities that are frequently required in the study of stationary random signals with a zero
mean value are the autocorrelation and power spectrum. These are defined below.

 

Power spectrum: :  is the fraction of the kinetic energy present in the
frequency interval .

The largest value of  occurs when . For larger values of  is only partly correlated with
itself and in general as , . Signals for which  finite and non-zero are

said to be coherent since two widely separated events on the time scale continue to bear a
relationship to each other. The quantity

is called the integral time scale and is a measure of the time period over which the signal is
correlated with itself. The total time  for which the signal is acquired should be larger than , so
that the statistics are meaningfully evaluated.
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Fourier Transform Technique

The complex function  is defined as the Fourier transform of  and is calculated as

The normalized power spectrum can then be calculated as

where  is the RMS value of . It is possible to show that  and  from a Fourier
transform pair, i.e.

 

Methods of calculating Fourier transforms are well-established. In particular, the fast Fourier transform
(FFT) algorithm has found wide usage both in software and in hardware applications in signal
processing. Hence it is to be understood that integrals appearing in the Fourier transforms defined
above can be readily determined.

Though the integrals given above are complex-valued, the property  guarantees
that  is purely real. On the other hand, the Fourier integral for  is to be interpreted as the
real part of the complex function. Typical autocorrelation functions and power spectrum are sketched
in Figure 1.10.
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For a sinusoidal signal the power spectrum exhibits a peak at the signal frequency . This suggests a
method of measuring frequency of sinusoidal signals and dominant frequencies of non-sinusoidal
periodic signals. White noise is defined as a signal whose amplitude at a given instant is purely a
random variable within with certain limits. Hence the signal is correlated with itself when  and

uncorrelated for all .

The cross-correlation function  for a pair of signals  and  is defined as

Figure 1.10: Examples of Autocorrelation and Power spectrum.

Here  is a band-limited function that is zero if  where  is a prescribed large value.
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For correlated signals  has information regarding the phase difference between  and . For
example, if  and  are harmonic with phase difference ,  is also harmonic with a starting
value that depends on . It is thus a convenient measure of the phase difference itself. If  and 
are random signals  will be a function of the frequency variable . In such problems we work with
the cross-spectral function  defined as

In wave propagation problems,  has information regarding  and hence the wave number
distribution and the wave speeds as a function of frequency. In nonlinear dynamics this is further
interpreted in terms of appearance of coherent structures.

The following results can be easily derived.

If  and ,  and  is a delta
function centred at . One can calculate  from . In a travelling wave problem,  and 

 may be two signals obtained from probes separated by a distance . The wave number is then
given as . If  is white noise and , i.e.  is a time shifted form of ,
one can show that  where  is the power spectrum of  (and a constant
if  is white noise). Subsequently it is easy to show that  and .
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Probability Density Function Approach

The probability density function (PDF) of a signal denoted by the symbol , is defined as
follows:  is the fraction of the total time spent by  between the levels  and .

See Figure 1.11

Figure 1.11: Definition of Probability Density Function.

Thus,

Clearly  and . The quantity  is called zero crossing probability. It

indicates the time spent by the signal around time 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///G|/optical_measurement/lecture3/3_10.htm[5/7/2012 11:51:26 AM]

 Module 1: Introduction to Experimental Techniques
 Lecture 3: Data analysis

 

A Gaussian signal is one whose probability density function has a Gaussian profile. Such signals have
a finite range of values of time lag over which the autocorrelation  is non-zero. Additionally, the
power spectrum, interpreted as the harmonically decomposed kinetic energy, is spread over a range
of frequencies. The central limit theorem of probability theory is worth recalling in this connection. This
theorem states that a large number of identically distributed independent variables will together have
a Gaussian probability density function regardless of the shape of the density of the variables
themselves. Signals in homogeneous, stationary turbulent flow that exhibit equilibrium between energy
production and dissipation are known to exhibit a Gaussain probability density function . Hence
deviation from Gaussain behaviour can be used as a measure of deviation from equilibrium itself.

The shape of a Gaussian PDF for a zero-mean signal  is given by the formula

and is sketched in Figure 1.12. Here,  is the RMS value of 

Figure 1.12: An Example of Gaussian
PDF.
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In the definitions given in the previous slide for quantities such as  and  the signal  is
available in digital form and stored in a computer. Many of these integrals can instead be evaluated in
terms of the probability density function  of the signal . The advantages of this approach are:

1.  can be determined using hardware (instruments) and,

2.  is a usually a smooth function of its argument and hence integrals involving  can be
accurately calculated by high order numerical integration formulas.

However, the difficulty of having a long enough signal for  is now transferred to waiting for a long
enough time to determine . The accuracy with which  is measured depends on the choice of
the window  and total time .

In general, for small values  a large value of time  is required for satisfactory convergence of the
limit process arising in the definition of . In terms of  the mean and RMS values are defined as
follows:

 

For signals that do not have a zero mean

The th order moment of a signal with a zero mean is defined as
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The second order moment of  namely the mean square. The third moment  is called the
skewness factor. This  is zero for a Gaussian signal. The fourth moment  is called

flatness factor or Kurtosis. Note that as  increases the accuracy with which  is determined for
large  becomes critical. Typical examples where the skewness and flatness factors are respectively
large as shown in Figure 1.13.

Figure 1.13: Signals with Large Skewness (a) and Large
Flatness (b).

 

The cross correlation  is determined in terms of PDF as

where  is called the joint probability density function. It is defined as the fraction of the time
for which  lies between  and  and  between  and  simultaneously.
Autocorrelation can be determined in terms of  by identifying  as .

Note that the PDF approach evaluates integrals in the amplitude domain alone. In comparison, the
autocorrelation function represents time-domain statistics; the spectra are descriptors of the flow field
in the frequency domain. 
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