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Introduction

Closely related to the method of interferometry are Schlieren and Shadowgraph that employ
variation in refractive index with density (and hence, temperature and concentration) to map a
thermal or a species concentration field. With some changes, the flow field can itself be mapped.
While image formation in interferometry is based on changes in the the refractive index n with
respect to a reference domain, schlieren uses the transverse derivative @n,/@y for image formation. In
shadowgraph, effectively the second derivative 8%n/8y? (and in effect the Laplacian ¥2n) is utilized.
These two methods use only a single beam of light. They find applications in combustion problems
and high-speed flows involving shocks where the gradients in the refractive index are large. The
schlieren method relies on beam refraction towards zones of higher refractive index. The
shadowgraph method uses the change in light intensity due to beam expansion to describe the
thermal/concentration field.

Before describing the two methods in further detail, a comparison of interferometry (1), schlieren (Sch)
and shadowgraph (Sgh) is first presented. The basis of this comparison will become clear when
further details of the measurement procedures are described.

1. Interferometry relies on the changes in the refractive index in the physical region and hence
the changes in the optical path length relative to a known (reference) region. Schlieren
measures the small angle of deflection of the light beam as it emerges from the test section.
Shadowgraph measures deflection as well as displacement of the light beam at the exit plane
of the apparatus.

2. Displacement effects of the light beam are neglected in schlieren while displacement as well as
deflection effects are neglected in interferometry. In effect, the light rays are taken to travel
straight during interferometry.

3. Since large gradients will displace and deflect the light beams, interferometry is suitable for
small gradients and shadowgraph for very large gradients. Schlieren fits well in the
intermediate range.

4. In a broad sense, interferometry vyields the refractive index field n{x,v), schlieren - the
gradient field V 1 and shadowgraph — V2n.

5. Since deflection and displacement calculations are more complicated than that of the optical
path length, shadowgraph analysis is the most involved, schlieren is less so, and
interferometry is the simplest of the three.

6. All the three methods yield a cumulative information of the refractive index field (or its
gradients), integrated in the viewing direction, i.e. along the path of the light beam.

7. As will be seen in the text of this module, schlieren and shadowgraph methods require simpler
optics than interferometry. Shadowgraph is the simplest of all. The price to be paid is in terms
of the level (and complexity) of analysis.
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Figure 5.1: A schematic drawing of the schlieren set-up.

A schematic drawing of the schlieren layout is shown in Figure 5.1. In the arrangement shown, lens
L; produces a parallel beam that passes through the test cell TC. Density gradients arising from
temperature gradients in the test cell lead to beam deflection shown by dashed lines 1 and 2 in the
figure above. A discussion on this subject is available in the context of refraction errors in
interferometry.

A key element in the schlieren arrangement is the knife edge. It is an opaque sheet with a sharp
edge. The deflected light beam emerging from the test cell is decollimated using a lens or a concave
mirror. If the light spot moves downwards, it is blocked by the knife edge and the screen is darkened.
If the light spot moves up, a greater quantity of light falls on the screen and is suitably illuminated.
Thus, the knife edge serves as a cut-off filter for intensity. An appropriate term that characterizes this
process is called contrast, measured as the ratio of change in intensity at a point and the initial
intensity prevailing at that location. The knife edge can be seen as an element that controls contrast
in light intensity. The change in contrast depends on the initial blockage and hence the initial intensity
distribution on the screen. If the initial (undeflected) light beam is completely cut-off by the knife edge,
the screen would be dark. Any subsequent beam deflection would illuminate the screen, thus
producing a significant increase in contrast.

In Figure 5.1, the knife edge is kept at the focus of the lens L; and the screen at the conjugate focus
of the test cell. In other words, the distances p, q, and [> satisfy the relation

In Figure 5.1, ray 1 increases the illumination at a point P on the screen while ray 2 is blocked by the
knife edge and this results in a reduction in the illumination. Hence the image of the scaler field is
seen as a distribution of intensities on the screen.
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In a schlieren measurement, beam displacement normal to the knife edge will translate into an
intensity variation on the screen. Displacements that are blocked by the knife edge sheet are not
recorded. Similarly, displacements parallel to the knife edge will also not change the intensity
distribution. Information about these gradients in the respective directions can be retrieved by suitably
orienting the knife edge. Other strategies such as using a gray scale filter are available. A color filter
leading to a color schlieren measurement is desrcibed later in this module.

Consider the displacement of ray 1 as in Figure 5.2. At point P the illumination is proportional to a,
say, equal to k X a . With the test cell in place this becomes k (@ + A a). Hence at P the contrast
with respect to the undisturbed region is proportional to & @/@. The contrast increases greatly when
the initial illumination & is small, but it can lead to difficulties in recording the schlieren pattern. It can
be shown that

Aa ¥ f Xp

and the contrast can be adjusted using the focal length of lens L.

Deflected beam

Undisturbed beam

Knife edge ——

—l\\

Figure 5.2: Initial and final positions of the light spot with respect the knife
edge.
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Laser Schlieren

Image formation in a schlieren system is due to the deflection of light beam in a variable refractive
index field towards regions that have a higher refractive index. In order to recover quantitative
information from a schlieren image, one has to determine the cumulative angle of refraction of the
light beam emerging from the test cell as a function of position in the X —¥ plane. This plane is
defined to be normal to the light beam, whose direction of propagation is along the = —coordinate.The
path of the light beam in a medium whose index of refraction varies in the vertical direction {¥) can
be analyzed using the principles of geometric or rays optics as follows:

Consider two wave fronts at times T and T+ AT as shown in Figure 5.3. At time T the ray is at a
position z. After a interval At, the light has moved a distance of AT times the velocity of light, which
in general, is a function of 3, and the wave front or light beam has turned an angle Az, The local
value of the speed of light is ¢p/T where cg is the velocity of light in vaccum and n is the refractive
index of the medium. Hence the distance Az that the light beam travels during time interval AT is

€
Az = ;‘lT—D
M

There is a gradient in the refractive index along the ¥ direction. The gradient in 1 results in a bending
the wave front due to refraction. The distance AZz is given by

. A A(1/n)
Az = Az, — Azypp, M Az, — Az, — o (Az) (Ay) = —¢p v At Ay

Let Aw represent the blending angle at a fixed location z. For a small increment in the angle, Aa can
be expressed as

Aa =tan(Aa) = 22— o, 2™ pr _paz 2O
Ay Ay Ay
In the limiting case
8(lnn)
da = dz
ay 1)

Hence the cumulative angle of the light beam at the exit of the test region will be given by

dilnn)
a= | aj—n dz )

where the integration is performed over the entire length of the test region.
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If the refrective index within the test section is different from that of the ambient air 5, then from
Snell's law, the angle of the light beam " after it has passed through the test section and emerged
into the surrounding air is given by

N sinag’ = nsinag

For small values of & and a",

n
ag'=—ua
ﬂ'ﬂ
Therefore, Equation 2 gives
. n [é(l,n)
& = — dz
Mg dy

If the factor 1,/ within the integrand does not change greatly through the test section, then

. m f a(l,n)
a4 = — dz
Ng dy

Let L be the length of the test section along the direction of the propogation of the light beam. Since
n, # 1.0 the cumulative angle of refraction of the light beam emerging into the surrounding air is
given by

Lan
o = j — dz ©))
o 3y

A schlieren system is basically a device to measure the angle e, typically of the order of
10=% — 1073 rad, as a function of position in the x-y plane normal to the light beam. Consider the
system shown in Figure 5.3. A light source with dimensions @: * b is kept at the focus of lens Ly
and provides a parrallel beam of light which probes the test section.

y
Deflected ray )
. -z )

< | | o |
Source ) __..-' £
‘ S Test Section Lens.L,  Knife edge |
,.,—,.,‘ B |k Screen
h p

q

Figure 5.3: Schematic showing the path of light beam in a typical schlieren
system
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The dotted lines shows the path of the light beam in the presence of disturbances in the test region.
The second lens L, kept at the focus of the knife-edge collects the light beam and passes onto the
screen located at the conjugate focus of the test section.
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Figure 5.4: View of deflected and undistributed beams at the knife-edge of a
schlieren system.

If no disturbance is present, the light beam at the focus of L, would be ideally as shown in Figure 5.4,
with dimensions @y * By. These are related to the initial dimensions by the formulas

apg by E

Qg bs B fl
where fi and fz are the focal lengths of Ly and L, respectively.

In a schlieren system, the knife edge kept at the focal length of the second concave mirror is first
adjusted, when no disturbance in the test region is present, to cut off all but an amount
correnponding to the dimension @y of the light beam Let @y be the original size of the laser beam.If
the knife edge is properly positioned, the illumination at the screen uniformaly changes depending
upon its direction of the movement. Let Iy be the be the illumination at the screen when no knife-
edge is present. The illumination I with the knife-edge inserted in the focal plane of the of the
second concave mirror but without any disturbance in the test region will be given by

_ %k 4
Let Aa be the deflection of the light beam in the vertical direction {v) above the knife edge

corresponding to the angular deflection (&™) of the beam after the test region experiences a change
in the refractive index. Then from Figure 5.4, Aa can be expressed as

Ao= T fHha" (5)
where the sign is determined by the direction of the displacement of the laser beam in the vertical

direction; it is positive when the shift is in the upward direction and negative if the laser beam gets
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deflected below the level of the knife-edge. In the present discussion, the gradients in the fluid layer

are in the upward direction and only the positive sign in Equation 5 is considered.
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Let ¢ be the final; illumination on the screen after the light beam has deflected upwards by an
amount Aa due to the inhomogeneous distribution of refractive index gradients in the test cell. Hence

L] :1;,{+;‘1'.:1_]T (_l_l_ﬁa)
FT T, TR a (6)

The change in the light intensity on the screen Al is given by
The relative intensity or contrast can be expressed as

Al If _Ik Aa
contrast= —= ———= — @)
I I dy

Using Equation 5

s}

a” s Al
contrast = = —
Qp Iy

(8)
Equation 8 shows that the contrast in a schlieren system is directly proportional to the focal length of
the second lens. Larger the focal length, greater will be the sensitivity of the system.

Combining Equations 3 and 8

Al fy (“on
—==| —dz 9)
I ag Jo 9y

This equation shows that the schlieren technique records the average gradient of refractive index over
the path of the light beam. If the field is two dimensional with the refractive index gradient (@n,/@y)
constant at a given X¥ — ¥ position over the length L in the z direction, then

M_fz an 1
— == — (10)
I, apdy

4| Previous Next||p

file:///G|/optical_measurement/lecture26/26_8.htm[5/7/2012 12:34:04 PM]



Objectives_template

Module 5: Schlieren and Shadowgraph

Lecture 26: Introduction to schlieren and shadowgraph

Equation 10 holds for every position in the test section and gives the contrast at the equivalent
position in the image on the screen. The quantity on the left hand side can be obtained by using the
initial and final inensity distribution on the screen. L is the length of the test section along the direction
of the propogation of the laser beam, f5 is the focal length of the second concave mirror and iy is
the size of the focal spot at the knife-edge. Usually, the knife-edge is adjusted in such a position that
it cuts off approxiamtely 50% of the original light intensity, i.e. @x = a@g/2 where @; is the original
dimension of the laser beam at the pin-hole of the spatial filter. Typically, for a He-Ne laser
(employed as the light source in the present work) @y is of the order of 10-100 microns. With
a, = ap/2 Equation 10 can be written as

Al 2f, dn
= — L (11)
I ag dy

Equation 11 represents the governing equation for the schlieren process in terms of the ray-averaged
refractive index. It requires the approximation that changes in the light intensity occur due to beam
deflection, rather than its physical displacement.

If the working fluid is a gas (e.g. air as employed in the validation experiments of the present study),
the first derivative of the refractive index field with respect to y can be expressed as

% _ _po_on
dy ng—13dy

(12)

Equation 12 relates the gradient in the refractive index field with the gradients of the density field with
the gradients of the density field in the fluid medium inside the test cell. The governing equation for
the schlieren process in gas (Equation 11) can be rewritten as

ﬂl.f_fgn.}—lﬂpi.

= (13)
I ax pPo 9y
Assuming that pressure inside the test cell is practically constant, we get
Al i ng—1 p 4T L
s T T T 5 A 14
I, a, pg RT*dy s

Equation 13 and 14 respectively relate the contrast measured using a laser schlieren technique with
the density and temperature gradients in the test section. With the value of the dependent variables
defined in the bulk of the fluid medium or with proper boundary conditions, the above equations can
be solved to determine the quantity of interest.
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For a growing KDP crystal, the refractive-index field gradients of the KDP solution and the
concentration gradients are related using the following formula:

aN 9n on
v 2agpp mE+2)2 ay

(15)

Here axpp is the polarizability of the KDP crystal (= 4.0 cm®/mole) and N is the molar
concentration of the solution (moles per 100 gram of the solution). Combining Equations 9 and 15 and
integrating from a location in the bulk of the solution (where the gradients are negligible) , the
concentration distribution around the growing crystal can be uniquely determined. Equations 13 and
14 show that the schlieren measurements are primamarily based on the original intensity distribution
as recorded by the CCD camera. Though the schlieren images shown in the present work for
qualitative interpretation of the fluids region have been subjected to image processing operations for
contrast enhancement, original images as recorded by the CCD camera are employed for quantitative
analysis. Figure 5.5 shows a set of four consecutive schlieren images and their averaged image. The
images show a convective plume in the form of high intensity regions above a crystal growing from its
aqueous solution and are discussed in detail in the subsequent lectures (27-33).

() [e)

(1) (14}

Figure 5.5: Original schlieren images (a-d) of convective field as recorded by
the CCD camera and the corresponding time-averaged image(e).
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Window Correction

For visualization of the concentration field by the schlieren technique, circular optical windows have
been fixed on the walls of the growth chamber at opposite ends. THe optical window employed in the
present discussion of crystal growth is of finite thickness (5 mm) and the index of refraction of its
material (BK-7) is considerably different from that of a KDP solution and air. The light beam emerging
out of the KDP solution with an angular deflection " due to the variable concentration gradients in
the growth chamber again undergoes refraction before finally emerging into the surrounding
environment. The contribution of refraction of light at the confining optical windows can be accounted
for by applying a correction factor in Equation 11 as discussed below.

The laser beam strikes the second optical window fixed on the growth chamber at an angle after
undergoing refraction due to variable concentration gradients in the vicinity of the growing KDP
crystal. The optical windows are made of BK-7 material with index of refraction (lemdm-g} equal to
1.509. The refractive index of the KDP solution at an average temperature of 30°C (ngpp) is equal to
1.355 and for air Mg:;-= 1.00, Let @" be the angular deflection of the beam purely due to the
presence of concentration gradients in the vicinity of the growing crystal as shown schematically in
Figure 5.6.

optical window ]
:.Hwnulnw}\ . i

-"f..
L~T10 _
--rrrr._..i'-'-'-
< i N
1"!’_‘9.'5;..']] [
KDP solution (7, 5p)
growth
chamber

Figure 5.6: Schematic drawing showing the path of the light beam and the
corresponding angles of deflection as it passes through the growth chamber.
(Dimension in the figure are exaggerated for clarity).

The beam strikes the second optical window at this angle. Let 5 be the angle at which the laser
beam emerges out of the second optical window. The angle at which the laser beam emerges out of
the second optical window can be determined in terms of " using Snell's law as

Ngnp _ Slﬂ.ﬁ
Mwindow sina’

(16)
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Since " is quite small, sina” % &", and

n
sinfi = (—KDP ) o (17)

Myindows

Let & be the final angle of refraction with which the laser beam emerges into the surrounding air. For
the optical window-air combination,

Mwindows _ sino

= 18
. sinf (18)

Substituting the value of sin§ from Equation 17 into Equation 18, the angle with which the laser
beam emerges into the surrounding medium can be expressed as

- (nwimim's)( Ngpp ) "
Sing = o (19)
Najp Myindeow
or
e Ngop\ .
Fing~ g = o (20)
Rage
Since Mg = 1.00,
& = (HKDP} a" = 1.355a" (21)

Hence a correction factor equal to the refractive index of the KDP solution at the ambient temperature
is taken into consideration for calculating the angle at which the laser beam emerges into the
surrounding medium.
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Shadowgraph

The shadowgraph arrangement depends on the change in the light intensity arising from beam
displacement from its original path. When passing through the test field under investigation, the
individual light rays are refracted and bent out of their original path. The rays traversing the region
that has no gradient are not deflected, whereas the rays traversing the region that has non zero
gradients are bent up. Figure 5.7 illustrates the shadowgraph effect using simple geometric ray
tracing. Here a plane wave traverses a medium that has a nonuniform index of refraction distribution
and is allowed to illuminate a screen. The resulting image on the screen consists of regions where
the rays converege and diverge; these appear as light and dark regions respectively. It is this effect
that gives the technique its name because gradients leave a shadow, or dark region, on the viewing
screen. A particular deflected light ray that arrives at a point different from the original point of the
recording plane should be traced. It leads to a distribution of light intensity in that plane altered with
respect to the undistributed case.

When subjected to linear approximations that includes small displacement of the light ray, a second
order partial differential equation can be derived for the refractive index feild with respect to intensity
contrast in the shadowgraph image. Let D be the distance of the screen from the optical window on
the beaker. The governing equation for a shadowgraph process can be expressed as

Yop[(S+ L) mma
Io ax? | gyz) WM AE (22)
Screen
. Neutral
pt  1Juight
Collimated . Btk

light rays

JLight
L Neutral

Testregion Deflected ray

Figure 5.7: lllustration of the shadowgraph arrangement
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Here Al is the change in illumination on the screen due to the beam displacement from its original
path and Iy is the original intensity distribution. Equation 22 implies that the shadowgraph is sensitive
to changes in the second derivative of the refractive index along the line of sight of the of the light
beam in the fluid medium. Integration of the Poisson equation (22) can be performed by a numerical
technique, say the method of finite differences.

From Equation 22 it is evident that the shadowgraph is not a suitable method for quantitative
measurement of the fluid density, since such an evaluation requires one to perform a double
integration of the data. However, owing to its simplicity the shadowgraph is a convenient method for
obtaining a quick survey of flow fields with varying fluid density. When the approximations involved in
Equation 22 do not apply, shadowgraph can be used for flow visualization alone.

The present lecture has a discussion on how shadowgraph images can be analyzed to retrieve
information on the concentration field.

Shadowgraphy

It employs an expanded and collimated beam of laser light. The light beam traverses the field of
disturbance, an aqueous solution of KDP in the present application. If the disturbance is a field of
varying refractive index, the individual light rays passing through the field are refracted and bent out of
their original path. This causes a spatial modulation of the light intensity distribution. The resulting
pattern is a shadow of the refractive-index field in the region of the disturbance.

Governing equation and Approximations

Consider a medium with refractive index n that depends on all the three space coordinates, namely
n=nlxv,z). We are interested in tracing the path of light rays as they pass through this medium.
Starting with the knowledge of the angle and the point of incidence of the ray at the entrance plane,
we would like to know the location of the exit point on the exit window, and the curvature of the
emergent ray.

Let the ray be incident at point F; = (xi-, Vi zi} and the exit point be £ = (xg, Var zg}. According
to Fermat's principle the optical path length traversed by the light beam between these two points has
to be an extremum. If the geometric path length is L, then the optical path length is given by the
product of the geometric path length with the refractive index of the medium. Thus

Pz

8 J‘ nix,v,z)ds (23)
Bi
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Parameterizing the light path by z, the condition (Equation 23) can be represented by two functions
x(z) and y (z), and the equation can be written as

e
—
8 j nix,vz) Jx?+vy?+1dz (24)

=i

where the primes denote differentiation with respect to =. Application of the variational principle to the
above equation yields two coupled Euler-Lagrange equations, that can be written in the form of the
following differential equations for x{z) and y (z):

" 1 an an
— 12 L2 ot
x (z) = - (1+x2+v"%) (ﬂx x _ﬂz) (25)
. 1 an an
: = 1+ x"2 412 (— —_ r"_) 2
y (2) n( x }}ax Y3, (26)

The four constants of integration required to solve these equations comes from the boundary
conditions at the entry plane of the chamber. These are the co-ordinates x; = x (ZE}J ¥ = 3’(2:'3' of
the entry point Z; and the local derivatives x; = x'(z;), ¥/ = y'(z;). The solution of the above
equation yields the two orthogonal components of the deflection of the ray at the exit plane, and also
its gradient on exit.

In the experiments performed, the medium has been confined between parallel planes and the
illumination is via a parallel beam perpendicular to the entry plane. The length of the growth chamber
containing the fluid is D and the screen is at a distance L behind the growth chamber. The z —
coordinates at entry, exit and on the screen are given by Z;, Z, and Z. respectively. Since the incident
beam is normal to the entrance plane, there is no refraction at the optical window. Hence the

derivatives of all the incoming light rays at the entry plane are zero; x: = }"; = 0. The displacements
(xs—xi-} e (}-‘5,. —}’:'3' of the light ray on the screen (xsj }-‘5,.} with respect to its entry position
(-1’-':' , }’f} are

(x,— x;)= (x,— x;)+Lx'(z,) 27)

Oe— = 0.—»)+Ly'(z) (28)

where x,,V; and xf(Zg}J }-"(Zg} are given by the solutions of previous equations at z..

The above formulation can be further simplified with the following assumptions.
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Assumption 1. Assume that the light rays incident normally at the entrance plane undergo only
infinitesimal deviations inside the inhomogeneous field, but have a finite curvature on exiting the
chamber. The derivatives x'(z.) and y'(z.) at the exit plane have finite values. The assumption is
justifiable because of the smoothly varying refractive index in a fluid medium. Under this assumption
Equations25 and 28 become

1 7dn
x"(z)= — (—) (30)
n \dx
1 /dn
¥ (Z} = H (E) (31)
x.—x; =Lx'(z,) (32)
ye — ¥ = Ly'(z,) (33)

Rewriting the Equations 32 and 33 as

X.—X; = Lj x" (z) dz (34)
V=¥ =1L j y" (z) dz, (35)

=i

and using Equations 30 and 31, Equations 34 and 35 become

Eﬂ (logn)
XE—XE=L—"T|:£Z (36)
=i
g
@ (logn)
Ys—yi =1L j "oy dz @7

=i
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Assumption 2 : The assumption of the infinitesimal displacement inside the growth chamber can be
extended and taken to be valid even for the region falling between the screen and the exit plane of
the chamber. As a result, the coordinates of the ray on the screen can be written as

X=X + 51(.'3[.':- W Vi j (38)
Ve =¥ +8,(x;,3:) (39)

The deviation of the rays from their original paths in occurs through the inhomogeneous medium. In
the absence of the inhomogeneous field, such an area is a regular quadrilateral. It transforms to a
deformed quadrilateral when imaged on to a screen in the presence of the inhomogeneous field. The
summation in the above equation extends over all the rays passing through points (x:, ¥:) at the
entry of the test section that are mapped onto the small quadrilateral (x5 ) on the screen.
Considering the fact that the area of the initial spread of the light beam gets deformed on passing
through the refractive medium, the intensity at point {x, ¥.) is

j" (_'X,' Z 'ir {xi -'}E
-] S'-'JS' - I a(xs_.}s (40)

where I, is the intensity on the screen in the presence of the inhomogeneous refractive index field,
and I is the original undisturbed intensity distribution. The denominator in the above equation is the
Jacobian | (xz- Vi Xg, }-},.} of the mapping function of (xij}’e} onto (xg J}-},.} as shown in Ffigure 5.8.

-1

J(x 4502, 95)

L

4
(x.%) (x,.v,)

Figure 5.8: Jacobian [ {(x;,¥;,x.¥:) of the mapping function (x;,;) onto (x,,y.)

Geometrically it represents the ratio of the area enclosed by four adjacent rays after and before
passing through the inhomogeneous medium. In the absence of the inhomogeneous field, such an
area is a regular quadrilateral. It transforms to a deformed quadrilateral when imaged on to a screen
in the presence of the inhomogeneous field. The summation in the above equation extends over all
the rays passing through points (x;,v:) at the entry of the test section that are mapped onto the
small quadrilateral (xs. Jj,-‘_q} on the screen and contribute to the light intensity within.
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Assumption 3: Under the assumption of infinitesimal displacements, the deflections &~ and &, are
small. Therefore the Jacobian can be assumed to be linearly dependent on them by neglecting the
higher powers of &, and &, and also their product. Therefore, the jacobian can be expressed as

‘ﬂ(xy}}} vy 2O x) 00— y) "
8 (x;,y:) dx ay @0
Substituting in Equation 39, we get
dx—x) 80—w)
fg(xg J}rs} \‘1 + Ay + a} = Z 'irs- (xi J}"z’} (42)
L)
Simplifying further we get
IL(x;, vi)— L(xg, ve)  0(xs—x) 30 —v)
= + (43)

1, (x.,v.) N Ax dy

Using Equations 36 and 37 for (xj.— xi} and (}-‘5,. - }-‘J, and integrating over the dimensions of the
growth chamber, we get

el =
= rs

= (L xD) ( 2+ 2 j {ogn(x.y)} (@9

Io (xi, i) — L(xs, 3) - —
ax?  ay?

I (xs,v:)

Equation 44 is the governing equation of the shadowgraph process under the set of linearizing
approximation 1-3. In concise from the above equation can be rewritten as

'Fr.:-_'rs

I5

= (L x D) V* {logn (x,y)} (45)
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Numerical Solution of the Poisson Equation

The governing equation of the shadowgraph process (Equation 44) relates the intensity variation in
the shadowgraph image to the refractive index field of the inhomogeneous medium. In order to solve
the equation to obtain the refractive index, the following numerical procedure is adopted. First, the
Poisson equation is discretized over the physical domain of interest by a finite-difference method. The
resulting system of algebraic equations is solved for the image under consideration to yield a depth
averaged refractive index value for each node point of the grid. A mix of Dirichlet and Neumann
boundary conditions are used for the purpose. The refractive index conditions typically used on the
boundaries of a crystal growth chamber are shown inn Figure 5.9. A computer code can be written for
solving the Poisson equation, and it can be validated against analytical examples.

KDpP

solution

”:”:.'ll."-q‘f."ﬂ‘-' 'Ir:”.':ln}"t‘i"i ar

H=Ny

[Past]
& &
' )
— — [} = U
(-‘T Y=y, E.L X
|‘-
H=Ngpersar N=Ngpersar

Figure 5.9: Refractive index specification on the boundaries.

The experimental input to the code is in the form of a matrix containing the gray value of each pixel
of the shadowgraph image. The output generated by the Poisson solver is a matrix containing the
averaged refractive index at each node point of the grid. Since the relationship between thee
refractive index and the concentration of the KDP saturated solution at different temperatures is well
documented, the refractive indices can be related to concentration over every frame of the image
record.
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Ray tracing through the fluid medium: Importance of the higher-order effects

In order to assess the importance of higher-order optical effects in shadowgraph imaging, the extent
of the bending of rays is estimated by tracing the passage of rays through the fluid phase. In order to
be able to do this, the shadowgraph images of the growth process recorded at different stages of
growth are analyzed as follows: The Poisson equation governing the shadowgraph process is solved
numerically to yield a depth-averaged refractive index value for each node point of the grid. The
refractive index information is then used to determine the deflection of the ray at the exit plane of the
growth chamber by solving the coupled ordinary differential equations (ODES) governing the passage
of light ray through the region of disturbance. The solution of these equation yields the two orthogonal
components of the deflection of the ray and its gradient at the exit plane of the test cell. For the
Poisson equation to be applicable for shadowgraph analysis, the ray deflections should be small.

Considering the length of the growth chamber containing the fluid as D and the screen to be at a
distance L behind the test section, the displacements {x.— x;) and (¥, — ¥;) of a light ray on the
screen with respect to its entry position are given by Equations 27 and 28. A computer code for
solving the coupled ODEs has been written and validated against analytical examples.

Correction factor for refraction at the glass-air interface

In order to perform laser shadowgraphic and interferometric imaging of the crystal growth process,
two different growth chambers were fabricated. The crystal growth process referred here is described
in detail in lectures 27-33. The growth chambers have optical windows for the entry and exit of the
laser beam. The cavity is enclosed between the windows for the entry and exit of the laser beam.
The cavity enclosed between the windows was filled with the KDP solution. During the process of
crystal growth the KDP solution is a medium of varying refractive index, leading to the bending of the
rays as the laser beam traverses through the solution. At the exit from the growth chamber, the light
ray encounters two different interfaces, namely KDP-solution and glass, followed by glass and air.
Thus, the light ray emerges at an angle different from the angle at which it is incident on the solution
and glass interface. The refractive indices of the KDP solution, the quartz window and the air around
result in a scale factor which must be taken into account to get the correct emergent angle of ray. The
optical path of the light ray through the two interfaces is shown in Figure 5.10.
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Figure 5.10: Optical Path of the light ray passing from the growth chamber
into the air.
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Contd...
The scale factor used in calculations is derived below.

Applying Snell's law for refraction of the light ray passing from the KDP-solution into the quartz optical
window, we get

0 Poot _ Zace (a6)

sin Eqrz LLERY,
where 3ss-nfi"qrz:ﬂsp: ﬂ'ﬂd’ﬂqg are the angles of incidences of the light at the quartz window, the

angle of refraction of the light ray into the quartz window, the refractive index of the KDP solution, and
the refractive index of the quartz window respectively. Applying Snell's law again for the ray passing
from the quartz optical window to the surrounding air, we get

sinfo.;  ngir
— = (47)

sln Ig‘r.iz';"' qurz

where Bgez, BririMgez and Mgy are the angles of refraction of the light ray into the quartz window, the
angle of refection of the light ray in the air, the refractive index of the quartz window, and the
refractive index of air respectively. Substituting the expression for 5in 8.z from Equation 46 into

Equation 47, we get
sin Igs’r.:-! Nair

sin I911'1&:"' LLFEY,

4

Under the small-angle approximation sin & % &, and

Esa! . Mg

Eﬂir‘ Mzni

= B (48)

Mz

Thus the correction factor for additional refraction at the optical windows is ——
air
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