
Module 11 : Free Vibration of Elastic Bodies; Longitudinal Vibration of Bars; Transverse
 Vibration of  Beams;  
                      Torsional Vibration of Shaft; Approximate Methods –  Rayleigh's Method and
 Rayleigh-Ritz Method.

Lecture 33 : Longitudinal vibration of bars

 Objectives

   In this lecture you will learn the following

Derivation of the governing partial differential equation for longitudinal vibration of bars

Solution of the governing equations in terms of the natural frequencies and mode shapes

 

Consider a long, slender bar as shown in Fig. 11.2.1. We aim to study its vibration behavior in the
longitudinal (i.e., axial) direction. Recall that when it undergoes axial deformation, we assume that the
whole cross-section moves together by the same displacement. Thus the axial deformation “u” could vary
from point to point along the length of the bar (i.e., u is a function of x) but all points in the cross-section
at a given axial location (i.e., x) have the same displacement. Of course, the axial displacement at any
given point varies with time as the system vibrates. Thus we write u(x,t).

 
When a rod undergoes deformation u, the strain at any point is given by:

 

(11.2.1)

 
Assuming linear elastic homogeneous material obeying Hooke's Law, we have:

 

(11.2.2)

 
When a cross-section of area A is subjected to this stress, the axial force is given by:

 
 

(11.2.3)

 
Since axial displacement “u” is a function of x, all these quantities (the strain, the stress and the internal
force in the cross-section) are all dependent on x and vary from point to point along the length of the bar.

 
Figure 11.2.1

 Contd...



 Recall that the first order approximation to the Taylor 's series expansion of a function f(x) in the neighborhood
of x is given by:

 

(11.2.4)

 

With this brief background, consider the free body diagram of a differential element of length (dx) shown in
Fig. 11.2.2. From Newton 's second law, the algebraic sum of all the forces in the axial direction must equal
mass time acceleration. Thus we can write:

 

(11.2.5)

 

Substituting from Eq. (11.2.3) in Eq. (11.2.5), and assuming that the area of cross-section and Young's
modulus are constant, we get:

 

(11.2.6)

 
Eq. (11.2.6) can be re-written as:

 

(11.2.7)

 

where , the wave speed i.e. the speed of sound wave (acoustic wave) propagation in that medium.

 

Particular solutions can be obtained for this wave equation when the boundary conditions are specified, for
example the left end of the rod may be fixed (i.e. u(0,t)=0) etc. We will illustrate this on one set of boundary
conditions here.

 Figure 11.2.2

 Example:

 
Let the left end of the rod be fixed and the right end be free i.e., no force on right end. Thus we get:

 

u(0,t) = 0; (11.2.8)

 
We can use the method of separation of variables i.e.,

 
u(x,t) = U(x) T(t) (11.2.9)

 
Substituting in eq. (11.2.7), and re-arranging the terms, we get:



 
(11.2.10)

 Contd...

 
Since the left hand side is only a function of time and right hand side is only a function of spatial coordinate
“x”, each of them must be equal to a constant. Let this constant be . Thus we can write:

 
  

(11.2.11)

 
 

(11.2.12)

 
Thus, we get,

  (11.2.11)

  (11.2.14)

 

Boundary condition that U(0) = 0 at all times requires that D = 0. The second boundary condition requires
that:

 
(11.2.15)

 

i.e., L/c =  , for n = 1, 3, 5, .....

 

Thus harmonic vibration takes place at discrete frequencies called the natural frequencies of the
system. The natural frequencies of the clamped-free bar under axial vibration are:

 

(11.2.16)

 
The corresponding deformation shapes are given by:

 
(11.2.17)

 
The constants A and B are determined using the prescribed initial conditions. The “shape” of vibratory
displacement varies sinusoidally along the length of the bar. These are called the mode shapes.

 Recap

 In this lecture you have learnt the following.

Developing governing partial differential equations for longitudinal vibration of rods

Obtaining the solutions to the free vibration problem

Natural frequencies and mode shapes of axially vibrating rods
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