
Module 11 : Free Vibration of Elastic Bodies; Longitudinal Vibration of Bars; Transverse
 Vibration of  Beams;  
                      Torsional Vibration of Shaft; Approximate Methods –  Rayleigh's Method and
 Rayleigh-Ritz Method.

Lecture 34 : Torsional Vibration of Shafts

 Objectives

   In this lecture you will learn the following

Significance of torsional vibrations in shafts

Derivation of governing partial differential equation

Natural frequencies and mode shapes for torsional vibrations

 

Shafts transmit power and in the process, are subjected to time-varying torques. For example an IC Engine
crankshaft is subjected to pulsating torques as we have discussed in an earlier module. Such fluctuating
torques set-up vibratory motion. However the shaft is already undergoing rotation. Thus the torsional (elastic
twisting and untwisting) vibration is superposed on this rigid body rotation, making it somewhat complex to
visualize. When subjected to excessive vibrations for a sufficiently long time, the shafts may fail and thus
they need to be analyzed carefully for torsional vibrations. While most of the real-life shafts may be quite
complex in shape, we begin our discussion with a simple, uniform cross-section circular shaft as shown in
Figure 11.3.1.

 

Consider a small elemental length “ ”. Under the action of the torque, let the left end rotate by  and

the right end by  . For small deformations, the shear strain is given by:

 

(11.3.1)

 
The shear stress is given by:

 
(11.3.2)

 
wherein  represents rate of twist or angle of twist per unit length.

 

The shear stress acting on an elemental area “dA” at a radial distance “r” causes an elemental torque “dT” as
shown in Fig. 11.3.2:

 
                                                                         dT = r ( dA) (11.3.3)

 
Integrating over the whole area, the total twisting moment is obtained as:

 
(11.3.4)

 

Considering a slice of length “dx” as shown in Fig. 11.3.3, from equilibrium considerations ( Newton 's second
law), we can write:

file:///E|/HTML-PDF-conversion/112101096/Mod%2013/Lect3/13.3_2.html


 
(11.3.5)

 
Substituting from eq. (11.3.4), we get:

  
(11.3.6)

 Figure 11.3.1

   Figure 11.3.2

  

 

This is essentially similar to eq. (11.2.7), the wave equation for axial vibrations of rods. In both the cases, it is
important to note that the governing equation does not contain any terms pertaining to area of cross-section or
polar moment of area of cross-section etc. As long as the cross-section is uniform (and circular for torsion case),
these equations can be used. The solution procedure also proceeds in a very similar fashion.

A typical multi-cylinder IC engine crankshaft is shown in Fig. 11.3.3 and it is readily observed that it deviates
significantly from the idea uniform cross-section shaft we assumed so far. An equivalent uniform diameter shaft
can be drawn-up as shown in Fig. 11.3.4 and the above equations can be used for its torsional dynamics. Such
an analysis will help us determine the natural frequencies approximately. A more detailed analysis will require a
full three dimensional finite element model as shown in Fig. 11.3.5. Finite Element Method, P.Seshu, Prentice Hall
of India,2006.

 
Fig. 11.3.3 A typical multi-cylinder engine crankshaft



 
Fig. 11.3.4 Equivalent Shaft for Crankt

 
Fig. 11.3.5 Representative 3-D finite element model of crank shaft

  
 Recap

 In this lecture you have learnt the following.

Torsional vibrations of uniform circular cross-section shafting



Derivation of the governing equation

Simplifications required to model real-life crankshafts
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