
Module 1   :   Dynamics of Rigid Bodies in Plane Motion; Dynamic Force Analysis of Machines

Lecture 2 :   Dynamics of Rigid Bodies in Plane Motion; Dynamic Force Analysis of  Machines.

 Objectives
  In this lecture you will learn the following

Inverse dynamics -- Determination of actuating forces

Forward dynamics – determination of accelerations given the actuating forces

 Introduction

 In this lecture, we take up the following two problems.

Determine forces required to generate given accelerations of a mechanism.

Determine the acceleration and motion resulting from given forces on a mechanism.

 The equations of motion were derived in the previous lecture. Here we use those equations to solve the
above two types of problems.

 Force Determination

 
In many situations, it is necessary to determine the forces to be applied on a mechanism to keep it in
equilibrium or to accelerate it. Both are part of the same general problem. However, we treat them
separately here. First we look at how the force is specified.

 Specification of Unknown Force

 

For an F degrees of freedom mechanism, we need to specify F number of scalar force elements as the
unknowns to be determined. To give an example, in the mechanism shown in the previous lecture, as the
degree of freedom is 2, we need to specify two force elements. In that case, we can say that the unknowns
to be determined are the torque t 2 and the magnitude of the force F 4 . It is assumed that the direction of
F 4 is known.

 Equilibrium

 
In many situations we are interested in determining the forces that will keep a given mechanism stationary
at a position. When the mechanism is at a position with no velocity, and the forces on the mechanism do
not cause any acceleration, the mechanism is said to be in equilibrium in that position. The problem of
finding forces causing equilibrium can be stated formally as follows.

  

Given a mechanism and its fixed kinematic and inertia
parameters (i.e., link lengths, CG locations, masses etc) and
the forces already on the mechanism, determine the
additional forces to be applied on the mechanism to prevent
it from accelerating.

 

 
The solution can be obtained using the equations of motion of the mechanism. As the accelerations and
velocities are zero, all terms of the equations involving acceleration and velocity terms disappear. The
unknowns in the equation are the reaction forces and the unknown applied forces.

For the mechanism shown in Fig. 1.2.1, considering the magnitudes of as the unknowns along

with the reaction forces, we can write the nine equations of motion as



 

 

Figure 1.2.1 Typical planar mechanism

 

Since all the kinematic information about position of various links, their C.Gs is given, the unknowns are

only reaction and applied forces namely   (since direction of 

  is assumed to be given) and . It can be seen that the number of unknowns is the same as the

number of equations. Note that the unknowns appear in linear form in the equations. Hence the unknowns
can be obtained by solving the system of nine linear algebraic equations, using any standard available
techniques. Thus the problem of determining the forces required to maintain static equilibrium for a given
position of the mechanism is fairly straight-forward.

Solution of the static equilibrium problem (also known as “static force analysis”) is also useful when viewed
from another context. Normally, from a specified input-output motion requirement, a mechanism (such as a
four-bar mechanism) is synthesized i.e., its link lengths are found. However, purely from this kinematics,
link cross-sections and material cannot be decided since these have to be chosen such that the link can
withstand the forces being transmitted. Since link cross-sections and material are as yet unknown, link
masses and mass moments of inertia required in the general dynamic equations of motion are as yet
unknown. Thus, from synthesis, one cannot jump to general dynamic analysis. Static force analysis helps to
get some estimate of the forces on the links and the joints, when the accelerations are negligibly small.
Using these estimates, we can decide tentative dimensions for link cross-sections and choose an appropriate
material. Using these numbers, we can perform dynamic analysis to verify, if under dynamic conditions, the
mechanism performs as desired.

Nonzero Accelerations

When the acceleration demanded is nonzero, the problem of determining forces can be stated as follows.

Given a mechanism and its fixed kinematic and inertia parameters, the forces already on the mechanism,
and the velocity and acceleration of the mechanism, determine the additional forces to be applied on the
mechanism to generate the required acceleration.



 
Here, the terms “velocity of the mechanism” and “acceleration of the mechanism” means, velocities and
accelerations respectively of all links of the mechanism. However since the mechanism has only F degrees
of freedom, there are only F independent velocities and accelerations. Thus one approach is to give a set of
F independent velocities and accelerations, from which the velocities and acceleration of all links can be
determined using standard kinematic velocity and acceleration analysis.

The problem of solving for the forces which generate the given accelerations is solved by substituting the
accelerations (and velocities) in the equations of motion and then solving for the unknown reaction forces
and additional unknown forces. If reaction dependent friction forces are absent, the unknowns occur in the
linear form and hence solution is easy.

 
Acceleration Determination

Determination of acceleration when the forces are given is necessary to determine the motion of
mechanisms subjected to forces. This problem can be stated as follows.

  
Given a mechanism and its fixed kinematic and inertia parameters, all the
applied forces on the mechanism, and its position and velocity, determine
the acceleration of the mechanism.

 

 

Once the accelerations at this instant of time (t = 0) are found, we can integrate forward in time and
determine the possible position and velocity of the mechanism at the next instant of time . Again,

knowing the position and velocity and the forces, the acceleration can be determined at . Repeating
these steps, we can find the complete motion history of the mechanism, from the forces (as a function of
time) and initial position/velocity. This problem can also be solved using the equations of motion of the
mechanism. However, if we count the unknowns and the number of equations of motion, we find that the
unknowns are more than the number of equations. If there are n links, there are n - 1 moving links and
hence there are 3( n - 1) equations. The unknowns in the equations of motion are the accelerations which
are 3( n - 1) in number and the reaction forces which are equal in number to the number of constraints in
the mechanism.

In the particular mechanism example we have been discussing, the unknowns are -- 
,  and there are nine equations of

motion. Thus we need to find more equations to be able to solve the system. We do know that this is a two
degree of freedom mechanism and therefore there are only two independent accelerations and seven
constraint equations that tie together all others. Therefore we can use the kinematic constraints to generate
the necessary additional equations. The number of kinematic constraints and the number of reaction forces
are the same – each constraint prevents some motion and hence sets up some reaction force or moment.

 

Consider the two degrees of freedom example mechanism we have been discussing. To simplify the
equations, let us make several simplifications in the mechanism. The global reference frame attached to the
fixed link has its origin at A (see Fig.1.2.1). The line on link 2, on which the point B of link 3 is constrained
to move, passes through A . The center of mass  is on this line, at a distance  from A . The line BD

on link 3 is perpendicular to the line  on link 2. The center of mass   is on line BD , at a distance 

  from B . The center of mass   is at a distance   from D . Let the fixed link length BD be called .

Consider as position variables, the angles  and   and the distance   from A to B . Here θ 4 is

defined as the absolute angle made by the vector . In addition to the above position variables, to

formulate the contact constraint of the cam-follower joint, we introduce the variables   which

locate the point of contact E on link 1, and   which locate the point of contact E on link 4. Note

that   is dependent on   and   is dependent on   as the cam profile is given . We can now write

the following constraint equations relating the above variables to the Cartesian coordinates of the links
(note that some of the former are identical to some of the latter).



 (2)

 We can write three constraints related to the cam-follower joint as follows. The first two constraints (i.e.,
eq (3)) state that the global location of the point of contact E on the two links be identical.

 (3)

 
The last constraint states that the two curves are tangential to each other. For this, we use the normal  

to the profile of link 1 at E and the tangent   to the profile of link 4 at E . The tangency condition is

 
          

(4)

 The expressions for    and   are  (5)

 Where  

 Now equation (4) can be written as

 (6)

 

Recapitulating our discussion thus far, we have nine position variables etc and we have

introduced additional variables . We also have seven reactions as unknowns. On the other

hand, we have nine equations of motion and the above ten constraint equations (seven contained in eq (2);
two contained in eq (3) and one in eq (6)).

 

The constraint equations in position coordinates are differentiated twice with respect to time to get
constraint equations in velocities and accelerations. These are actually the equations used in any standard
kinematic position/velocity/acceleration analysis. It is to be observed that the original equations of motion
are differential equations. The constraint equations in position coordinates are algebraic equations. So also



the velocity and acceleration equations. Thus, for forward dynamics problems, we need to solve a set of
differential – algebraic equations. Recall that inverse dynamic analysis (i.e., given all the kinematic variables
the problem of finding the actuating forces) involved only algebraic equations. Thus forward dynamics
problem of simulating the mechanism motion is far more involved than the inverse dynamic problem.

 We will briefly illustrate the forward dynamics problem on a simple example problem.

 Example: 2-R planar manipulator

 Consider the two link planar manipulator moving in horizontal plane as shown in Fig. 1.2.2. The free body
diagrams are shown in Fig. 1.2.3. The equations of motion for the two moving bodies are given by:

   (E1)

   (E2)

 
 

(E3)

  (E4)

  (E5)

 
  

(E6)

 The unknowns for a forward dynamics simulation problem are

 

 

It is observed that there are 10 unknowns in six equations of motion. It is a two degree of freedom
mechanism. Thus even though we have taken six coordinates for the two moving links, only two of these
are independent. Let us choose them to be . Other coordinates can be expressed in terms of

these two independent coordinates through constraint equations. There are four constraint equations and
correspondingly four reaction force unknowns. The kinematic constraint equations are given as:

 
 

(E7)

 
 

(E8)

 
 

(E9)

 (E10)



 

 

    

 

Let us explicitly work out, how these constraint equations can be used in the solution process. One strategy
is to keep them as algebraic equations and solve a set of Differential (equations of motion) and Algebraic
(constraint) equations. Other approach is to differentiate the constraint equations once for velocity and a
second time for acceleration equations. We illustrate this second approach here. Differentiating equation
(E7-E10) once, we get the velocity equations as:

 
   

(E11)

 (E12)

 
  

(E13)

 
 

(E14)

 Further differentiation yields the acceleration equations as follows:

 
  

(E15)

 
 

(E16)

 (E17)

 (E18)



 
Substituting for  from equations (E4) and (E5) into (E6) and using equations (E17) and

(E18) in equation (E6) we get the following:

 (E19)

 
Similarly, substituting for   from equations (E4) and (E5) into (E3) and   and  

from equations (E1) and (E2) into (E3) and using equations (E15)-(E18) in

 
 

(E20)

 equation (E3) we get the following:

 

These are the two independent equations of motion in the two independent degrees of freedom namely 
. All the substitutions etc. that have been carried out, may also be done automatically in a

formal computer program. Now the solution process proceeds as follows. To begin with we are given the
parameters of link lengths, masses etc; we are also given the position and velocity on both ; we

are also given the torques . Using equations (E19 – E20), we can find the accelerations 

at this instant of time. Over a sufficiently small time interval , changes in velocity 

and consequently positions   and   can be estimated. Using these new position and velocity variables

at time , and appropriate values of torques, we can find the accelerations again using equations

(E19-E20). This process is repeated for the entire time duration of simulation. At each instant of time, the
constraint equations (E7-E10); (E11-E14) and (E15-E18) can be used to estimate other position, velocity
and acceleration variables. Using these in equations (E1-E6), we can find the reaction forces at each instant
of time. That completes the solution process.

   Recap
   In this lecture you have learnt the following

Statement of forward and inverse dynamic problems

Inverse dynamics problems (in the absence of complications such as friction) are posed as linear algebraic
equations and hence readily solved

Forward dynamics problems where the forces are specified and resulting accelerations for a given position,
velocity of the mechanism are to be determined get posed as differential equations which need to be
solved for finding the accelerations. Integrating these acceleration will yield the position and velocity
information at the next instant of time.

 Congratulations, you have finished Lecture 2. To view the next lecture select it from the left hand side
menu of the page
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