
Module 7   :  Free Undamped Vibration of Single Degree of Freedom Systems; Determination of
Natural 
                       Frequency ; Equivalent Inertia and Stiffness; Energy Method; Phase Plane
Representation.

Lecture 13 : Equivalent Stiffness and Inertia

 Objectives

   In this lecture you will learn the following

Equivalent spring stiffness.

 Serial combination

 Parallel combination

Equivalent mass / moment of inertia including geared shafts

 

While we have discussed so far the vibration behavior of a spring-mass system, in many practical situations
we don't readily find such simple spring-mass systems. Many a time, we may find several springs and
masses vibrating together and then we will have several second order differential equations to be solved
simultaneously. In some special situations however, we will be able to simplify the system by considering
equivalent stiffness and inertia. We may then still be able to model the system as a simple single d.o.f
spring-mass case. We will now discuss some of those situations.

 When multiple springs are used in an application, they are mainly found in two basic combinations.

Series Combination

Parallel Combination

Equivalent Spring Stiffness

  

 

 
Figure 7.3.1 

 Series Combination
 A typical spring mass system having springs in series combination is shown above. The two springs can be

replaced by a equivalent spring having equivalent stiffness equal to k as shown in the figure 7.3.2




  

 

 

 
Fig 7.3.2 Spring in series

 When springs are in series, they experience the same force but under go different deflections.

 For the two systems to be equivalent, the total static deflection of the original and the equivalent system
must be the same.

  

                                                7.3.1

 

Therefore if the springs are in series combination, the equivalent stiffness is equal to the reciprocal of sum
of the reciprocal stiffnesses of individual springs.As an application example, consider the vertical bounce
(up-down) motion of a passenger car on a road. Considering one wheel assembly we can develop what is
known as a quarter car model as shown in fig 7.3.3a. For typical passenger cars, the tyre stiffness is of the
order of 200,000N/m while the suspension stiffness is of the order of 20,000N/m. Also, the vehicle mass
per wheel (sprung mass) can be taken to be of the order of 250kg while the un-sprung mass (i.e., mass of
wheel, axle etc not supported by suspension springs) is less than 50kg. Reciprocal of tyre stiffness is
negligible compared to reciprocal of suspension stiffness or in other words, the tyre is very rigid compared
to the soft suspension. Hence an equivalent one d.o.f. model can be taken to be as shown in Fig. 7.3.3b

Fig 7.3.3a Quater Car model  
Fig 7.3.3b Spring mass system
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Fig 9.3.4 Spring in parallel

 For the springs in parallel combination, the equivalent spring stiffness can be found out as:

 Each of the individual spring supports part of the load attached to it but both the springs undergo same
deflection.

 Therefore the static deflection  of the mass is,

 9.3.2

 Therefore if the springs are in parallel combination, the equivalent spring stiffness is sum of individual
stiffnesses of each spring.

 

 
Fig 7.3.6 Springs Connected by lever

 Figure 7.3.6 shows a typical arrangement in which springs are connected with a lever.

 
We herein intend to replace the two springs by one equivalent spring. Let the displacement of the equivalent
spring be, and the equivalent spring stiffness be 

 

We select then the equivalent spring displacement as equal to either of the spring displacement. Lets say
that its displacement is equal to . Then as the strain energy stored in the orignal system and the system

with equivalent spring has to be the same.

 

7.3.3




7.3.4

  

 

 Equivalent Inertia

 

We have discussed finding the equivalent stiffness. This equivalence can be termed “statically equivalent
system” since the spring controls the static response of the system. However for complete dynamic response
to a time varying load to be equivalent, we need to develop a dynamically equivalent model. Ideally, this
dynamic equivalent system has analogous equations of motion and produces the same output response for a
given input. For example consider the connecting rod of an IC Engine. It has complex shape and undergoes
general planar motion. Thus computing the kinetic energy exactly will be a tedious task. Instead we can try
and represent the connecting rod with a much simpler system as shown in Fig 7.3.5. Let us now study how
to find such equivalent mass/inertia systems. 

 

 
Fig 7.3.5 Connecting rod

  

 Rigidly Connected Masses

 
Sometimes the members connecting the various masses could be considered rigid compared to other
springy elements in the system . For example consider two masses connected together by a stiff rod as
shown in the fig7.3.7

Both the masses have identical velocities since they are connected by a rigid link.

Therefore the equivalent mass is the sum of individual masses

 

7.3.5

7.3.6




 

 
Fig 7.3.7 Rigid connected mass

  

 Masses connected by Lever

 
For the configuration shown in fig7.3.8 with small amplitude of angular motion we take the
velocity of the equivalent mass as equal to velocity of either mass and considering the lever
ratio and assuming that the lever used is rigid but massless we get,

7.3.7

7.3.8

We then equate the kinetic energy of the existing system to the equivalent system and find out the
equivalent mass from the equation below

 

7.3.9

7.3.10

 

 
Fig 7.3.8 Masses connected by lever

 Inertia on geared shafts (rotation)

 
To find the equivalent inertia on a geared system, consider two mass moments of inertias,  and , each

rotating on shafts connected by massless gears. Let the number of teeth on each gear be  and ,

respectively.





 
Fig 7.3.9

We select the angular speed of the equivalent shaft as equal to the angular speed of either of the shaft, Say

 7.3.11

 Then to determine the polar moment of inertia of the equivalent shaft we evoke the equivalence of kinetic
energy,

 7.3.12

  

 Equivalence of kinetic energy

 

 

The basis of conversion is that the kinetic energy and potential energy for the equivalent system should be
same as that for the original system.Then if and are the angular displacement of rotors and 

respectively, then neglecting the inertia's of the gears, the energy equations are given by:

                                                                                       

Where Kt1, Kt2, are the torsional stiffnesses of the shafts 

since =n ( gear ratio 'n') the expressions become:
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finally

 ; 

where

wherein and  are the number of teeth on the two meshing gears.

  

 Recap
   In this lecture you have learnt the following

Types of combinations in springs( series or parallel)

Concept of equivalent stiffness

 Equivalent stiffness for springs in series 

 Equivalent stiffness for springs in parallel 

Quarter car model and its simplified model

Concept of equivalent inertia

Derivation of equivalent inertia of rigidly connected masses, masses connected by lever and geared shafts

 Congratulations, you have finished Lecture 3. To view the next lecture select it from the left hand side
menu of the page
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