
Module 1 : Conduction

Lecture 5 : 1D conduction example problems. 2D conduction

 Objectives
   In this class:

An example of optimization for insulation thickness is solved. The 1D conduction is considered
completed.
A few example problems are solved for 1D conduction.
2D conduction in cartesian coordinate system using separation of variables is started.

Minimization of Insulation Thickness-1

Need to insulate a plate such that the heat loss is minimum. Temperature of the plate varies with
‘x’ and the variation is known
Volume of insulation is fixed.
Determine the thickness of insulation

Minimization of Insulation Thickness-2

Assume plate width (normal to x-y plane) is W and length is L. Assume heat transfer is one
dimensional in the y direction.
Assume outer insulation is at 

(5.1)

(5.2)

Minimization of Insulation Thickness-3

t(x) has to be determined. Take help from variational calculus
Need to find the maximum of the integral stated below

(5.3)

If ‘I’ has an extremum for a ‘y’ the Euler equation below is satisfied:

(5.4)

Minimization of Insulation Thickness-4

Suppose ‘y’ also satisfies a constraint given by:



C is a constant. The modified Euler equation given below is also satisfied:

(5.6)

Where 

is the Lagrange multiplier and needs to be determined also (5.7)

Minimization of Insulation Thickness-5

Now return to the problem at hand i.e. substitute eqn 5.1 and eqn 5.2 in eqn (5.7):

(5.8)

(5.9)

Minimization of Insulation Thickness-6

 is unknown still but use the constraint equation to determine its value

(5.10)

Now obtain t(x) using (5.9)

1D conduction: some comments-1

We have seen some aspects of one dimensional conduction.
The most important is the use of the resistance analogy for making calculations – many times this
is very useful although a little crude
Another important aspect is the conversion of a higher dimension problem into a lower dimension
situation

1D conduction: some comments-2

Conversion of a higher dimension situation to a lower dimension one necessitates the derivation
of a new governing equation. Again this is done to get results in an easy fashion
Some optimization situations were looked at and some methodologies were presented.
One or two illustrative problems will be solved and some given as assignment before proceeding
to the 2D situation.

End of 1D conduction: Problem1-1

(5.5)

A special computer chip has 2 thin regions ‘1’ and ‘2’ embedded in a matrix which has a thermal



conductivity of 4 W/mK. Heat is generated in regions 1 and 2 only and equal to 50 kW/m2 and
13.33 kW/m2 respectively. The chip is convectively cooled at its outer surface with a fluid stream
h1 = 1000 W/m2 and T∞1 = 30° C. The chip is joined to the circuit board at its inner surface. The
thermal contact resistance between the chip and the board surface can be ignored.

End of 1D conduction: Problem1-2

The board thickness and thermal conductivity are L = 1 mm and k = 2 W/mK. The outer surface
of the board is exposed to cooling air with temperature 20° C and heat transfer coefficient 1000
W/m2 K. Assume heat generation regions to have negligible thickness, all surfaces not exposed to
cooling air are perfectly insulated. Assume steady conditions and determine the temperature of
the region ‘1’.

End of 1D conduction: Problem1-3

End of 1D conduction: Problem1-4

Conditions are steady and properties are constant. The heat generation is present in areas of
negligible thickness. Therefore the electrical analogy is used. The heat generation is input at the
nodes and resistances are indicated on the figure.

End of 1D conduction: Problem1-5

Now obtain the solution using the standard Ohm’s law expressions. First write the equation for
heat flow between nodes at T2 and 30° C ambient:



End of 1D conduction: Problem1-6

Now obtain the heat flow between the T2 and 20° C ambient:

Solve to get T1= 85° C and T2 = 76.25° C

End of 1D conduction: Problem2-1

A rod of length L which acts as a handle protrudes from a furnace door at temperature Tw . Since
there is an air draft present, you have decided to insulate it. A linearly varying thickness of
insulation as shown below with the diameter of the insulation at the base being 5 times the
diameter of the fin is provided. Assume that transverse (y direction) temperature gradients can
be ignored in the rod but not for the insulation.

End of 1D conduction: Problem2-2

Set up the equations required to get the temp. profile within the rod. Assume that the
surrounding air is at   , the heat transfer coefficient for air over the insulation is very large,

thermal conductivity of insulation in x,y directions is kx and zero respectively.

End of 1D conduction: Problem2-3

Transverse gradients are present in insulation and absent in rod. The surrounding heat transfer
coefficient is very large and therefore the outer insulation temperature is equal to 

The diameter of insulation at any distance Dx is given by:



Consider an annular disk of insulation of length dx at location x. Heat loss due to conduction in
the y direction is :

Use the same formulation for the rod as that done for the fin. Here the loss is due to conduction
whereas there it was due to convection  and this is the only difference.

End of 1D conduction: Problem2-5

The governing equation therefore becomes:

The boundary conditions are:

The variation of Dx has already obtained and therefore the solution of the above equation will
give the temperature profile.

2 D Conduction-1

Analytical solution available for simple geometries.
Consider steady situation without heat generation, constant thermal conductivity

2 D Conduction-2

The governing equation is:

(5.11)

Steady, constant properties, no heat generation, cartesian coordinates gives:

(5.12)

Transform the variable ‘T’ using:

(5.13)

2 D Conduction-3

Governing equation and boundary conditions become:

End of 1D conduction: Problem2-4



(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

2 D Conduction-4

Attempt a separation of variables methodology for obtaining solution:

(5.19)

Variable which is a function of ‘x’ and ‘y’ is assumed to be a product of two variables – one purely
a function of ‘x’ and the other purely a function of ‘y’

2 D Conduction-5

Substitute in the governing equation to get:

(5.20)

(5.21)

The original governing partial differential equation is transformed into two ordinary differential
equations.   is an arbitrary constant which can be zero, positive or negative.

2 D Conduction-6

Consider the two equations separately. Consider first the ‘x’ direction along with the associated
boundary conditions:

(5.22)

(5.23)

(5.24)

2 D Conduction-7

Consider now the ‘y’ direction along with the associated boundary conditions:

(5.25)

(5.26)

(5.27)

The constant   needs to be determined

2 D Conduction-8

 is assumed = 0.



Solution for (5.22):

(5.28)

X = 0 is a solution which cannot be the case since we know x dependence exists.   λ2 = 0 is
therefore is not a valid option

2 D Conduction-9

 is assumed = – ve. Solution for equn (5.22):

(5.29)

This is not acceptable since this again implies no dependence on X

 Recap

   In this class:

An example of optimization for insulation thickness is solved. The 1D conduction is considered
completed.
A few example problems are solved for 1D conduction.
2D conduction in cartesian coordinate system using separation of variables is started.
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