
Module 2 : Convection

Lecture 24 : Thermal  Boundary Layer Equations

 

   Objectives
   In this class:

Solution for thermal boundary layer equation is obtained

Thermal Boundary Layer Solution-1

The 2D boundary layer energy equation assumptions is easily obtained . Assume wedge flow with
constant wall temperature and 

  (24.1)

Boundary layer flow over a wedge possesses a similarity solution and therefore:

   

Thermal Boundary Layer Solution-2

In addition, we define a non-dimensional temperature as:

  (24.2)

The attempt is once again to see if the energy equation can be transformed into one where the
governing equation becomes an ordinary differential equation.

Thermal Boundary Layer Solution-3

Consider each term of equn (24.1) separately. 
Consider the RHS first:

 

 

(24.3)

Thermal Boundary Layer Solution-4

The next term on RHS is the viscous dissipation term:

  (24.4)

The next term is the compressibility term. Use the Bernoulli equation to convert pressure into
velocity and simplify:

  (24.5)

Thermal Boundary Layer Solution-5

Now look at the LHS of equn (24.1). The wall temperature is not a function of ‘y’. In addition
assume that the T∞ is also not a function of ‘y’ (varying the free stream temperature in the ‘y’
direction is physically very difficult). The first term is:



  (24.6)

Thermal Boundary Layer Solution-6

It is hoped that a similarity solution will exist even when the energy equation is added. 
Derivatives must therefore be in terms of ‘η’. Simplify equn (24.6) using:

   

Therefore:

  (24.7)

Thermal Boundary Layer Solution-7

Simplify equn (24.7) further to get:

 

 

(24.8)

Use this in equn (24.6)

  (24.9)

Thermal Boundary Layer Solution-8

The next term is evaluated in parts. The first part is:

 

 

(24.10)

The second part is the vertical component of the velocity ‘v’

Thermal Boundary Layer Solution-9

The ‘v’ component is evaluated as follows:

 

 

(24.11)



Thermal Boundary Layer Solution-10

Simplify the expression (24.11) further:

 

 

(24.12)

Thermal Boundary Layer Solution-11

Combine equn (24.9) and (24.11) to get:

 

 

(24.13)

All differential terms of the governing equation are now converted in terms of the variable ‘η’.

Thermal Boundary Layer Solution-12

Now substitute equns (24.9) and (24.13) in in the LHS of governing equation (24.1)

   

The terms marked yellow in the above expression cancel off

Thermal Boundary Layer Solution-13

The LHS of governing equation (24.1) is thus:

  (24.14)

Substituting equns (24.3)-(24.5), (24.14) in (24.1) gives:

 

 

(24.15)

Thermal Boundary Layer Solution-14

Multiply the equn (24.15) throughout by the term  to get:



 
 

(24.16)

Thermal Boundary Layer Solution-15

Minor adjustment of the equn (24.16) results in the final form of the energy equation:

 

 

(24.17)

The term marked yellow will be assumed to be zero since varying T∞ in the ‘x’ direction is usually
not possible.

Thermal Boundary Layer Solution-16

For the equation (24.17) to be amenable to a similarity solution the following two conditions must
be satisfied:

 

(24.18)

(24.19)

λ and Ec are arbitrary constants. Ec is the Eckert number that has been seen earlier.

Thermal Boundary Layer Solution-17

Equn (24.18) can be integrated to give:

  (24.20)

Substitute (24.20) in (24.19) to get:

  (24.21)

Even though λ was an ‘arbitrary constant’ to start with, it can now be seen that there are
‘constraints’ which it has to satisfy.

Thermal Boundary Layer Solution-18

Now consider the special case of a flat plate. For this case m = 0 since 

The above condition gives . This implies  i.e. Tw = constant.

The similarity solution therefore will exist only for the constant wall temperature case. While this
is a very important case one would also like to get the solution for the equally important constant
wall flux case.

Thermal Boundary Layer Solution-19

For any other value of ‘m’, corresponding to other wedge flow situations, the similarity solution
will exist only for a very restrictive variation of wall temperature.
One option is to neglect the presence of the viscous dissipation and compressibility  term. The
last  term of equn (24.17) therefore drops out and the  condition given by equn (24.19) no longer



is required to be satisfied.

Thermal Boundary Layer Solution-20

Thus  the λ = 2 condition is no longer required. Now the only restriction is  and

solutions can be obtained for more cases.
The governing equation and BCs become:

(24.22)

Thermal Boundary Layer Solution-21

Now for Tw = constant λ = 0 but the surface need not be flat plate anymore since λ and ‘m’ are
no longer related. The governing equation becomes:

(24.23)

The equation can be integrated to obtain the solution for the temperature distribution after
incorporating the boundary conditions.

Thermal Boundary Layer Solution-22

Equn (24.23) is rewritten in the following manner:

(24.24)

This equation is now integrated to obtain:

(24.25)

Thermal Boundary Layer Solution-23

Now apply the boundary conditions and get solution

(24.26)

Thermal Boundary Layer Solution-24

‘F’ is known from the solution of the momentum equation and ‘Pr’ is a fluid property and
therefore temperature profile can be obtained from equn (24.26). Solutions would typically be
numerical.
Interest is typically more in the heat flux from the wall to the fluid which is evaluated as:



Thermal Boundary Layer Solution-25

The similarity solution dictates that the free stream velocity and the wall temperature must follow
the relations given by:

Equn (24.27) is therefore further simplified as:

(24.28)

Thermal Boundary Layer Solution-26

Consider the constant wall heat flux case. The equn (24.28) suggests:

For a flat plate m = 0 and therefore λ = 1/2
The wall temperature variation for a constant wall flux case for boundary layer is given by:

Thermal Boundary Layer Solution-27

Often the heat transfer coefficient is of interest which is

 can be numerically obtained

Reynolds Analogy-1

The equations for the 2D thermal and momentum boundary layer are:

(24.29)

(24.30)

For α = ν and zero pressure gradient flows the equations are identical. The velocity and
temperature profiles are therefore identical. Assume that the momentum equation solution is
known

Reynolds Analogy-2

The following quantities of interest are known:

(24.31)

The thermal quantities of interest are :

(24.27)



(24.32)

Equns (24.31) and (24.32) are combined to give:

(24.33)

Reynolds Analogy-3

Since the profiles are identical, momentum information is used to get the thermal information

(24.34)

(24.35)

Use equn (24.34) to get ‘u’ as a function of ‘y’ and equn (24.35) to get ‘T’ as a function of ‘y’ by
using 

Reynolds Analogy-4

Use equn (24.35) to get:

(24.35)

The above equation is one form of the Reynolds analogy
By definition:

Reynolds Analogy-5

Therefore, the Reynolds analogy as derived in equn (24.25)  is often expressed as:

The result is significant in the sense that one can get heat transfer data from shear stress data.
The usefulness of the analogy is often limited due to the restrictions on pressure gradient and
Prandtl number imposed

 Recap

   In this class:

Solution for thermal boundary layer equation is obtained
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