
Module 2 : Convection

Lecture 11 : Derivation of conservation of momentum (contd.)

 

   Objectives

   In this class:

Derivation of conservation of momentum equation is completed.

Conservation of Momentum
Derivation-8

Now consider the influx of momentum due to mass entering the control volume. Let velocity be
u, v, w in the x, y and z directions.
Momentum entering the control volume in the ‘y’ direction due to mass entering the ‘y = 0’, 
‘z = 0’ and ‘x = 0’ faces is (ρvdxdz)v, (ρwdydxv) and (ρudydzv)
Momentum leaving due to mass leaving the control volume at y = dy, z = dz and x = dx is
obtained from the Taylor series expansion with only the leading term retained

Conservation of Momentum
Derivation-9

All the momentum terms in ‘y’ direction due to mass entering or leaving the control volume are
given on the figure below; term on x = 0 face omitted for clarity

Conservation of Momentum
Derivation-10

Net influx of momentum in ‘y’ direction due to mass influx

 

 

(11.1)

In addition to surface forces due to the stresses, assume body forces are present.

Conservation of Momentum
Derivation-11

Assume body forces are present. Body force vector (per unit mass) is denoted by:



  (11.2)

Net influx of momentum into control volume is due to:
- mass entering (equn 11.1) 
- force on the control volume faces (equn 10.8) 
- Body force (equn 11.2)

Net accumulation rate is 

Conservation of Momentum
Derivation-12

The overall momentum balance equation therefore becomes

 
 

(11.3)

Stresses are hard to measure therefore convert to a more useful form using a constitutive
relationship. We restrict ourselves to Newtonian fluids here.

Conservation of Momentum
Derivation-13

Newton examined results of a large number of experiments and proposed the following

relationship for shear stress:  for 1D.

This shear stress can be generalized using the nomenclature adopted earlier to get:

  (11.4)

A relationship between velocities and stress is established using the above equation.

Conservation of Momentum
Derivation-14

The following relationship, called the Stokes constitutive relationship,   will be used here without
deriving it.

 

(11.5)

 

Conservation of Momentum
Derivation-15

Now, consider the stress terms in the momentum equation and substitute the Stokes relationship
to get:

                                ---------------- From momentum equation  



            -----After substituting Stokes relationship (11.6)

Conservation of Momentum
Derivation-16

In addition if μ is assumed constant the equation becomes:

  (11.7)

For an incompressible fluid it has been shown earlier that (refer equn (10.7a))

  (10.7 a)

Conservation of Momentum
Derivation-17

Since velocity is a continuous function, cross differentiation is permissible :

  (11.8)

Use equn (10.7a) and equn (11.8) in equn(11.6):

 

 

(11.9)

Conservation of Momentum
Derivation-18

Substituting Equn 11.9 in equn 11.3:

 

 

(11.10)

Above   equation is called the conservative form of the momentum equation since it is the
‘original’ form obtained  from the conservation equations and no simplifications are as yet applied.

Conservation of momentum
Derivation-19

Expand LHS of  equn (11.10) to get:



Second term is zero from continuity (equn 10.6)

Conservation of momentum-19
Derivation-20

The ‘y’ component of the momentum equation therefore becomes (Note  that  ):

  (11.11)

Conservation of Momentum
Derivation-21

The above Y-momentum equation is written in a compact form in the following fashion

   

X and Z momentum can be similarly derived

Conservation of momentum
Derivation-22

The final set of momentum equations are:

 

(11.12)

(11.13)

(11.14)

The above equations are derived for laminar, incompressible, constant viscosity, Newtonian fluids

   Recap

   In this class:

Derivation of conservation of momentum equation is completed.
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