
Module 1 : Conduction

Lecture 1 : Introduction and Heat Diffusion Equation

     Objectives
   In this class:

An introduction to the overall heat transfer phenomenon is presented in brief.
Conduction, convection and radiation are introduced
The general heat diffusion equation is derived by using energy balance.

Introduction

A second level course in Heat Transfer
An essential part of the course is the review of concepts seen in a first level course and
some new material will be introduced.
No numerical methods will be covered in this course. Much of the material will concentrate
on convection. Conduction will be covered in reasonable detail. Radiation will not be
covered in any great detail.
Several symbols are used in the slides that are presented for the several ‘classes’. Where-
ever the symbols appear for the first time they are defined and therefore a separate
nomenclature is not provided
The material has been taken from several text books that are available on the subject

Conduction(Intro)

Transfer of energy from more energetic particles to less energetic particles. Energy transfer
between the neighboring molecules. Does not require bulk motion of molecules.
In gases and liquids: conduction is due to collisions and of molecules during their random
motion. 
In solid: energy transfer due to vibration of the molecules in a lattice.

Conduction(Contd.)

Rate equation to compute amount of heat energy transferred per unit time.
Fourier’s law

  (1.1)

k, is thermal conductivity (W/m.K) and ‘n’ is the direction normal to the direction of lines
of constant temperature

Convection (Intro)

Transfer of energy due to bulk motion of the fluid and random molecular motion.
Newton’s law of cooling

  (1.2)

Where h, is heat transfer coefficient (W/m2.K), Ts is the surface temperature and Tb is some
reference temperature. The reference temperature is chosen so that ‘h’ is constant.

Radiation (Intro.)

Energy transfer due to electro-magnetic waves.



Equation often used for radiation calculations:

  (1.3)

ε, is emissivity of the surface, σ is Stefan-Boltzmann constant
 σ = 5.67 x 10-8  W/m2.K4), Ts is a surface temperature and Tsurr is an appropriate
surrounding temperature

Conduction-Fourier's Law

Fourier’s law is based on experimental evidence
Heat flux is a vector quantity. For the ‘x’ direction:

  (1.4)

For all directions in cartesian frame:

  (1.5)

Fourier's Law (contd.)

Notice that −k T is independent of frame of reference
Use mathematical transformations to obtain the equation in other frames of reference

Control volume energy conservation

Consider a control volume and write the energy balance

Ėin + Ėgen - Ėout = Ėstored
Ėstored = 0  steady state

Heat diffusion equation-1

Consider  an arbitrary volume of a given medium.
Consider a small  control volume ‘dV’. Energy enters/leaves across the surface. Generation and
storage are within the volume



Heat Diffusion Equation-2

Area is considered a vector
Outward drawn normal for a given volume is considered direction of area vector

Flux entering is considered positive

Heat Diffusion Equation-3

Net heat leaving the control volume

  (1.6)

Heat flux and area are vectors and therefore the dot product in the above expression
Suppose heat flux is leaving a surface. The two vectors are in the same direction giving
positive q i.e. leaving the surface. Heat flux entering the surface means it is opposite to area
vector now giving a negative product.

Heat Diffusion Equation-4

Net heat rate out 
(1.7)

Total heat generation rate 
(1.8)



Total storage rate 
(1.9)

Use these expressions in the energy balance equation

Heat Diffusion Equation-5

Energy balance equation becomes:

(1.10)

The above is the integral form of the conduction/Heat Diffusion equation.
Often it is useful to have the differential form of the equation

Heat Diffusion Equation-6

The Gauss Divergence theorem and the mean value theorem provide the vehicle for the
conversion from the integral to the differential form.
The theorem is written on the next slide for a vector and a scalar quantity.

Gauss Divergence Theorem

Consider an arbitrary parameter ‘a’

(1.11)

(1.12)

Mean Value Theorem

Integration over a finite volume can be represented as the product of the mean value of the
integrand and the volume.
Since volume is not zero the integrand has to be zero if the integral is zero.
Now take the volume to very small value over which the properties can be assumed
constant and equate the integrand to zero. This gives the differential form of the equation

Differential form of equation

Using the Gauss divergence theorem in (1.10):

(1.13)

Group the terms to get



Use the mean value theorem to get

Since V is finite, the mean value of the integrand has to be zero. When the volume is shrunk
to a very small value, the mean value and the local value are the same, giving the
differential form of the equation

Heat Diffusion Equation-8

The differential form of the heat diffusion equation is therefore:

(1.14)

This form of the equation is not a very useful form since the flux is not an easily
measurable quantity

Heat Diffusion Equation-7
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