Module 3 : Radiation

Lecture 29 : Discrete Ordinates Methodology

Objectives
In this class:

e« The solution for the RTE using the Discrete Ordinates Methodology is discussed.
¢ No analytical solutions will be discussed in this course for the RTE

Discrete Ordinates Methodology (DOM)-1

¢ The main problem with the RTE is the occurrence of the integral term and differential terms
together.
¢ In the Discrete Ordinates Method the integral term in the RTE is replaced by a summation.
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¢ Regular numerical schemes can then be used to solve for the intensities

DOM-2

e Depending on the number of directions chosen the methods are referred to as the Sy, S4, Sg .....
Sy methods.

¢ The weights depend on the directions chosen and are computed mathematically. Weights are
different for 1D, 2D and 3D situations. Weights and directions (4 = cosB) for 1D and are given in
the table on next slide from ref[5].

DOM- 1 D weights & Directions

| SN H Weights H *+HM ‘
S 1 0.50000

| | | |
S4 1/2 0.211325

| | 12 | 0.788675 |

| | | |
Se 1/3 0.146446

| | 1/3 | 0.500000 |

| | 13 || 0.853554 |

| | | |
Sg 1/4 0.102672

| |  1/4 || 0.406205 |

| | w4 || 0593795 |

| | w4 | 0.897327 |

¢ Weights for 1D case. Multiply weights by 2n.
(Taken from Ref.[5])

DOM: Summation terms

e Consider the radiative transport equation:
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e The integral term is represented by:
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DOM: Directions-1
e The direction ‘s’ is along that specified by the discrete ordinates method. We now look at the
cartesian coordinate system. An arbitrary unit vector along a direction which makes angle 8 with
the z-axis and whose projection on the x-y plane makes an angle gy with the x axis is given by:

sin &sin i +sin Hcos iy +oos d i

DOM: Directions-2

e Therefore change in intensity per unit distance is given as:
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e And:
dx . : dy . dz
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DOM: Directions-3
e Therefore:
df & a7 i
—=—sinfsin i+ —sinFooslr+—rcos & (29.6)
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¢ Therefore since the discrete ordinate directions are known one can take a cartesian grid and
determine the gradients in the X, y and z directions and then compute the change in the intensity
in a given direction.
DOM: Directions-4

e For the sake of simplicity define the following:

sin Hsin =
sin fcosl=m (29.6a)
cosf=n

e Therefore:

adf & & a7
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DOM: Formulation-1

« Integrate equ" (29.2) over a typical control volume:
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Using the Gauss divergence theorem the first term of the above equation is written as:

I”%a?ﬁ”:”f 1dd,+[[ 1 mdd +[[I naA, (29.8)

Formulation-2

Equ™ (29.8) is substituted in equ™ (29.7) for the first term.
The boundary conditions are given and the temperature within the enclosure is to be determined.
The entire volume is divided into a number of smaller volumes.
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Formulation-3

The following nomenclature is used during the integration process:
AN, As, Ag, Ay: Areas of the North, South, East and West faces respectively.

Ikp,Q :the Intensity in the k™ direction at the P, Q location/node
Direction cosines:

x . dy dz
— —snfsnp=l—=anfeosip=m—=cosd=n
ds v ds v ds

Formulation-4

Intensity is different in different directions. Consider the direction k. Consider an arbitray point P,
Q within the volume. The volume averaged intensity fll-{u for the control volume is considered to

exist at this point. Intensity at neighbours are fk fk I k fk

petr tpotr Ip aeds L a1 and the intensity at the

control volume faces are given as ff,fwk,fr*f,fg- All these are shown in the figure on the next

page where the control volume is in red.

Formulation-5




DOM: Formulation-6

« For a 2D situation the variation of 1X in the x direction does not exist, therefore equ” (29.8) is
rewritten as:
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¢ The intensities at the faces are not known and therefore some sort of an interpolation has to be
used to relate the cell face and volume intensities.

DOM: Formulation-7

¢ A common interpolation is:
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o Substitute equ" (29.10) in equ" (29.9) to get:
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DOM: Formulation-8
o Substitute equ™ (29.11) in equ” (29.7) to get

1 =7,

N e (Aw+
7
=l —(a+ o)1) Frg+ *G(S)Z 1(5,8,)8(5.6,, 8 W g (29.12)

e This equation is now simplified so that the intensity at the point P, Q is explicitly obtained.

DOM: Formulation-9

« Simplifying equ" (29.12) gives the expression to use for solving for the intensity at the point P, Q

F B |

(29.13)

e The term marked red is the numerator and that marked blue is the denominator
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Formulation-10

So far the boundary conditions have not been discussed. At the boundary the intensity will have

contributions due to emission and reflection of incident radiation. Recall the equ"” (26.15) where
the definition of intensity was given. This was for intensity of radiation from a surface losing
energy. The same magnitude incoming intensity can be visualized as supplying the same energy
to a very similar surface.

Formulation-11

The incident energy on a surface is therefore:

"Ettl_l
olal — | ToosEd o 29.14

Assuming the surface to be diffuse, the reflected intensity will be equal in all directions. The
reflected intensity is therefore:

Fiotas (17 8) II cos da (29.15)

et T

f=

Formulation-12

The boundary condition at the wall is therefore written as

_ url )
(- . cos(8)w, T (29.16)
i 71

=gl o+

Note that the Gj is the angle between the normal to the surface and the I direction.

Also note that the summation is only till n/2 i.e. only directions towards the surface are
considered in the calculations. Only what falls on a surface can get reflected

: Formulation-13

The steady state radiative energy equation assuming convection, conduction and internal heat
generation are negligible is:
Energy emitted = energy absorbed

¢ Energy emitted = Iffaff‘r’: 4;:7,5-£ (29.17)
K
« Energy absorbed = alfd&.‘r (29.18)
e Therefore
ej Ha=deaT' =T = i]mm (29.19)
der
Recap

In this class:

The solution for the RTE using the Discrete Ordinates Methodology is discussed.
No analytical solutions will be discussed in this course for the RTE
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