
Module 2 : Convection

Lecture 25 : Integral  Boundary Layer Equations

 Objectives
   In this class:

Integral equations for the momentum and thermal boundary layers are obtained
Solution of these equations for flow over a flat surface is demonstrated

Integral Boundary Layer Equations

Similarity methods are differential methods. Give local information but mostly need complicated
methodologies for solution of the resulting equations.
Integral methods give overall information but are very useful since the results are simple and not
too far from reality. Major disadvantage is the necessity of profiles for temperature and velocity.

Momentum Equation-Derivation-1

Consider the 2D continuity equation and integrate over the height of the boundary layer

(25.1)

(25.2)

Note that the velocity at the wall is zero and at the edge of the boundary layer is the free stream
value

Momentum Equation-Derivation-2

Now, consider the momentum equation.

(25.3)

Integrate this over the thickness of the boundary layer

(25.4)

Momentum Equation-Derivation-3

Perform the integration for equn (25.4):

(25.5)

Simplify equn (25.5) using equn (25.2), velocity is zero at wall and the velocity gradient is zero
for free stream at y = δ and replace pressure gradient with free stream velocity gradient.

Momentum Equation-Derivation-4

The equn (25.5) therefore becomes:



Modify the second term on the LHS of equn(25.6) to get:

(25.7)

Momentum Equation-Derivation-5

The momentum equation becomes:

(25.8)

The Leibnitz rule, given below,  is used to simplify the first term

(25.9)

Momentum Equation-Derivation-6

Using the Leibnitz rule for the term marked in red in equn (25.8):

Substitute in equn (25.8) to get the Momentum Integral Equation

(25.10)

Momentum Equation: Flat plate-1

Equn (25.10) can be solved to obtain the quantities of interest.  However, unless a profile for the
velocity is known the solution cannot be obtained.
Assume the following velocity profile for zero pressure gradient flat plate boundary layer flow:

(25.11)

Momentum Equation: Flat plate-2

The four unknown constants need four conditions and the following are often used:

(25.6)



(25.12)

Momentum Equation: Flat plate-3

Equn (25.12) and equn (25.11) together give:

The profile and wall shear are calculated as

(25.13)

(25.14)

Momentum Equation: Flat plate-4

Substitute the velocity profile in the momentum integral equn (25.10) and simplify to get:
(Assume η = y/δ)

(25.15)

Momentum Equation: Flat plate-5

Integrate equn (25.15) to get:

(25.16)

Even though it is not correct assume that the boundary layer starts from x = 0 i.e. x = 0, δ = 0
we use this condition to determine C = 0. Therefore:

(25.17)

Momentum Equation: Flat plate-6

The growth of the boundary layer predicted by this expression is remarkably close to the one
obtained by the more accurate similarity solution.
A typical velocity profile has been chosen in the analysis shown. One could use several other
profiles and get reasonably good agreement with the numerically obtained similarity solutions.



Energy Equation Derivation-1

Similar to the momentum integral equation an energy integral equation can be derived by
integrating the energy equation:

(25.18)

Add continuity equation on the LHS of equn (25.18) to obtain:

(25.19)

Energy Equation Derivation-2

Integrate equn (25.19) over the thickness of the thermal boundary layer:

(25.20)

Equn (25.2) can be used to replace the second term in the equn (25.20).

Energy Equation Derivation-3

In addition assume the temperature profile smoothly meshes with the free stream temperature
making the gradient of temperature zero at the edge of the boundary layer. Equn (25.20)
simplifies to:

(25.21)

Energy Equation Derivation-4

Use Leibnitz rule for equn (25.21) and noting that T = T∞ at the edge of the thermal boundary
layer obtain:

(25.22)

Equn (25.22) is the integral form of the energy equation.   Here also a temperature profile is
required and therefore assume:

(25.23)

Energy Equation: Flat Plate-1

Conditions required for evaluation of the constants are:



(25.24)

Energy Equation: Flat Plate-2

Using conditions in equn (25.24) in equn (25.23):

(25.25)

Solving the equns (25.25) gives:

(25.26)

Energy Equation: Flat Plate-3

The temperature profile therefore becomes:

(25.27)

Substitute in the energy integral equn (25.21)

(25.28)

Energy Equation: Flat Plate-4

Both the thermal and momentum boundary layers are together in the equn (25.28). Define:

(25.29)

Substitute in equn (25.28):

(25.30)

Energy Equation: Flat Plate-5



Equn (25.30) can be integrated assuming  to be a constant since   is not a function of y:

(25.31)

In this equation, in general   can be less than or greater than unity. The solutions are likely to
be different for these two cases.

When 

(25.32)

Energy Equation: Flat Plate-6

Simplify equn (25.32):

(25.33)

Equn (25.15) for the growth of the momentum boundary layer gives:

(25.34)

Energy Equation: Flat Plate-7

Substitute equn (28.34) in equn (28.33) and simplify:

(25.35)

Equn (28.35) is a first order differential equation in φ3,is solved using the solution of the
homogenous part and particular integral

Energy Equation: Flat Plate-8

Solution for Equn (25.35) is:

Assuming that the thermal boundary layer starts growing from x = x0 , the constant can be
evaluated and the solution becomes:

If x0 << x then:



(25.36)

Energy Equation: Flat Plate-9

When both the boundary layers start at nearly the same location the ratio is simply the Prandtl
number which is a constant.
Use the temperature profile equn (25.27) to evaluate the heat transfer coefficient:

(25.37)

Energy Equation: Flat Plate-10

Notice that in equn (25.37) the heat transfer coefficient is inversely proportional to the thermal
boundary layer thickness.
Use equns (25.36) and (25.34) in equn (25.37) to obtain:

Energy Equation: Flat Plate-11

Now consider the case where 

For a given ‘x’ location, when y > δ u = U∞  The momentum boundary layer is fully developed
within the thermal boundary layer.

Energy Equation: Flat Plate-12

Start with the energy integral equn (25.28) and split the integral into two parts since the velocity
is different in the two regions:

(25.38)

Energy Equation: Flat Plate-13

Define  and substitute in equn (25.38)



(25.39)

Energy Equation: Flat Plate-14

Equn (25.39) is further simplified to:

(25.40)

Equn (25.40) is the integral portion of LHS marked green of the energy integral equn (25.22).
Including the RHS also it becomes:

(25.41)

Energy Equation: Flat Plate-15

Equn (25.41) simplifies to:

(25.42)

In addition, from the momentum boundary layer:

When φ is large only the first term will survive and equation is very similar to equn (25.32) and

the conclusions that were drawn earlier continue to hold i.e. 

Energy Equation: Flat Plate-16

Therefore here too:

Nux = 0.332 Rex
1/2 Pr1/3 (25.43)

Almost the same equation is obtained from the similarity analysis also
Notice that the ratio of the boundary layer thicknesses is proportional to the Prandtl number to
some power. Heat transfer coefficient is inversely proportional to the thickness of the thermal
boundary layer.

 Recap

   In this class:

Integral equations for the momentum and thermal boundary layers are obtained
Solution of these equations for flow over a flat surface is demonstrated
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