Module 1 : Conduction

Lecture 3 : Conduction with heat

Objectives
In this class:

e Conduction with heat generation is completed.

e The fin equation for extended surfaces is established and solutions obtained.

e The problem of fin size optimization for a given volume is discussed and solutions obtained.

Conduction with heat generation-1
Cylindrical geometry

e« Assume uniform heat generation in a solid pipe. Outer wall temperature is fixed at Tg

e Governing equation:
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e Integrate to get solution:
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Conduction with heat generation-2

Cylindrical geometry

« Now apply boundary conditions and evaluate the constants:
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¢ Now get the solution
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Conduction with heat generation-3

Cylindrical geometry

« Notice that here again the heat flux cannot be cast into the potential difference, current and
resistance form.

e Therefore use the Ohm’s law analogy only for steady, 1D constant thermal conductivity, no heat
generation cases.

Extended surface heat transfer-1

e Extended surface heat transfer is an important engineering application. A new governing
equation is often derived.

e For the derivation assume temperature varies only in the x direction. However, heat is lost in
the y direction and therefore must be accounted for also. A two(or higher) dimension problem is
converted to a one dimensional situation — this is why a new governing equation needs to be
derived.

Extended surface heat transfer-2

e Consider a surface attached to a parent surface as shown:
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e Take small slice at a given distance ‘X’ — need not be circular as shown

Extended surface heat transfer-3

¢ An energy balance gives:

qx = gx+dx + dgconv (CR)

e Use the Fourier Law, Newton’s law and ignoring higher order terms in the Taylor series
expansion for gy + gx :
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Extended surface heat transfer-4

¢ Using these in the energy balance equation:
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» Ac is the cross section area and Ay is the perimeter

e Assume k = constant to get
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Extended surface heat transfer-5
¢ Using surface area dAp = Pdx gives:
2 A
t',l'rT 1 = d_j-‘_ ’Ili (T_Tm)zo (3.7)

=t 7
i \A dx Jdr |k A

e The above equation is the general equation for a fin attached to a surface. Would the general
conduction equation derived earlier not be appropriate here ?

Extended surface heat transfer-6
e The general heat diffusion equation is applicable here too provided you consider the problem as

a 2D/3D problem. Here the problem has been simplified to a 1D problem even though it is not a
1D problem. This is why a new governing equation had to be derived.

Fin with constant cross-section-1

e In equation (3.7) assume A. = constant and get the equation for a constant area fin:
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¢ The above is a non homogenous 2"dorder differential equation. Use the following transformation
to make it homogenous:

T(x)-T,=8(z);m" = AP
A
0 (3.8)
= —ixg —-mH=0

Fin with constant cross-section-2

e Equation (3.8) is a linear 2"dorder homogenous differential equation whose solution can be
written as:

B=Ce™+Ce™ (3.9)

¢ Now apply boundary conditions. One condition each is required at x =0 and x =L
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Fin with constant cross-section-3

e If base (x =
boundary:

0) temperature is given and the tip (x = L) is assumed to have a convective
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e Now solve to get the constants Cq and C»

Fin with constant cross-section-4

e Assume tip is adiabatic i.e. h = 0 at tip. Convert the solution from exponential to hyperbolic
functions:

B=Ce™ +Ce™ g™ +e =2coshmx
=, cosh mx + O sinh mx g —e ™ = 2sinh mx

¢ Now apply boundary conditions to get:
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Fin with constant cross-section-5

e The solution therefore becomes:

0 = &, cosh »x — 8, tanh m 7 sinh mx

cosh »x cosh »m7 — sinh ».7 sinh mix
=8, (3.12)
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¢ Heat flux from the base becomes:
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Fin with constant cross-section-6
e Other boundary conditions may be specified and a solution for such cases can be obtained
exactly in the manner followed for the adiabatic tip.

o First get the temperature profile and then the heat flux at the base
¢ The optimal size of the fin needs to be calculated and it will depend on certain constraints

Fin with constant cross-section-7

e Fin with specified temperatures

o [el sinh mox + 8, sinh m{L—x}}
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¢ Infinitely long fin
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Fin Optimization-1

¢ A common constraint is that the fin volume is fixed. Need to maximize the heat transfer from
the base. The geometry of fin is:
t = thickness, L= length, W = width

¢ Volume = LtW. In addition assume that the width is fixed and is constant.

¢ Assume the fin tip is adiabatic — this is only to keep the algebra simple

Fin Optimization-2

¢ Assume fin tip is adiabatic — for simplicity. Need to maximize:

O = /hPEAB, tanh ml. (3.14)

o Evaluate the various parameters in the above expression assuming that W >>t

P=2 +2=2lV A=Wt, L=V It (3.15)
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Fin Optimization-3

e Use (3.15) in (3.14):
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e Fin thickness is the only variable in the above expression
Fin Optimization-4
e Equation is rewritten as (3.16):
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e Notice that in the above equation ‘t’ is the only unknown. We need to maximize heat removed
by the fin ‘Q’.

Fin Optimization-5
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let 5#2 = A

tanhA+[1— tanhgfl](—lrﬁl): 0
solve equation to get A=~1.42

Fin Optimization-6

e This implies that
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since volume 1s fixed L. = z % (3.20)

¢ When the width ‘W’ and the volume V' are fixed, the thickness and length are given above for
maximum heat transfer from the fin.

Recap

In this class:

e Conduction with heat generation is completed.
¢ The fin equation for extended surfaces is established and solutions obtained.
e The problem of fin size optimization for a given volume is discussed and solutions obtained.
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