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Lecture 7: Moebius Transformations Make Up

Fundamental Groups of Riemann Surfaces

The study of general Riemann surfaces is facilitated by the study of covering
spaces.

Basic Assumption : All spaces X in the forthcoming lectures are second count-
able and Hausdorff, unless stated otherwise.

Definition 1 A map p : X̃ −→ X, (where X̃, X are arcwise connected and
locally arcwise connected) is called a covering map if :

• p is continuous and surjective;

• Every point x ∈ X is contained in an admissible open neighbourhood U ,
i.e., p−1(U) = ∐α∈IVα , Vα ⊂ X̃ open, such that p|Vα

: Vα −→ U is a
homeomorphism.

X̃ is called the covering space and p is called the covering map.

7.1 Recall

Cw = the cylinder ≃ C∗ ≃ ∆∗ ≃ ∆r, i.e. all these four sets are homeomorphic
as topological spaces. We have the quotient map πw : C −→ Cw = C/Z.Tw,
which is holomorphic and the different (non-zero) w-s provide the same Riemann
surface structure upto isomorphism. We saw in the previous lecture that πw has
all the properties of a covering map. Also we have Cw as a quotient of C by
a certain subgroup of automorphisms of C (Z.Tw are Möbius transformations).
This is true in the case of a general universal covering space as well!

Examples of covering spaces :

1. Cylinders: πw : C −→ Cw = C/Z.Tw. Here the Riemann surface struc-
ture is isomorphic to that on C∗.

2. Tori: πw1,w2
: C −→ Tw1,w2

= C/(Z.Tw1
×Z.Tw2

). The set of isomorphism
classes of such structures is bijective to C, and this set naturally acquires
a Riemann surface structure which is just (isomorphic to) the complex
plane.
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Covering space theory helps us distinguish (or classify) Riemann surface struc-
tures.

Suppose X is a Riemann surface. Then the underlying topological space is
connected, arcwise connected, locally arcwise connected and locally simply con-
nected. For such a space it can be shown that we can get a covering p :X̃−→ X ,
with X̃ simply connected. Such a covering space is called a Universal covering
space for X and is uniquely determined upto isomorphism.

Any covering space (not necessarily universal) of a Riemann surface also inherits
a Riemann surface structure, defined uniquely upto an isomorphism, such that
the covering map becomes holomorphic. For, if X is any Riemann surface, X̃
is any covering space and p :X̃−→ X is the covering map, then p being a local
homeomorphism, given x ∈ X̃, we have a neighbourhood V around it such that
p(V ) = U an open subset of X , and p|V : V −→ U is a homeomorphism (we
get this from the definition of covering space). Since X is a Riemann surface, X

has charts locally, and since X̃ is locally homeomorphic to X , we can transport
these charts to X̃ . In this way, we can make X̃ into a Riemann surface. So, if
we have a covering space of a Riemann surface, we can make the covering space
into a Riemann surface as well, and this Riemann surface structure is in fact
determined uniquely upto an isomorphism.

What happened in the case of the cylinder πw : C −→ Cw or the torus
πw1,w2

: C −→ Tw1,w2
? Both are covering maps, but to begin with Cw and

Tw1,w2
were not Riemann surfaces. We wanted to give the cylinder and the

torus the structure of a Riemann surface, and we got the Riemann surface
structure on the cylinder and the torus because of the covering space which is a
Riemann surface; i.e. because the covering maps πw and πw1,w2

are local home-
omorphisms, we were able to get charts and define a Riemann surface structure
on the target space for which the covering maps became holomorphic. So what
really happens in these two cases is that we have a covering space situation as
follows : on top is a Riemann surface (C), and what we get below (as the Rie-
mann surface we wanted) is a quotient of the space on top (C) by a subgroup
of automorphisms of the space on top (in this case, they are Möbius transfor-
mations, which are automorphisms of C). That is, in the case of the cylinder
or the torus, we are obtaining a Riemann surface structure on the space below.
We have a topological space which is the base space of a covering, and since
the space on top is already a Riemann surface, the space below also becomes a
Riemann surface. What we saw earlier was the converse, i.e., if we start with
a Riemann surface and we take any covering space of that Riemann surface,
then the covering space becomes a Riemann surface so that the covering map
becomes holomorphic.
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Essentially what this means is that given a covering space situation, if we
have a Riemann surface structure on the top, we can push it to the bottom (in
nice cases); further the converse always holds.

Now in particular, if we take the universal covering space of the Riemann sur-
face, then the universal covering space also becomes a Riemann surface. But
the universal covering space is simply connected. Thus by the Uniformization
Theorem, it has to be the complex plane C or the unit disc ∆ (equivalently,
the upper half plane U) or the Riemann sphere P1

C
. This means that every

Riemann surface is obtained from these three known Riemann surfaces by going
modulo a certain group of automorphisms (Möbius transformations in this case).

We have been talking about the covering space. The next obvious question
we ask is: where does the fundamental group come into the picture?

• The fundamental group of Cw is Z. The fibre over any point in Cw is
bijective to Z. Z is also isomorphic to the group of translations going
modulo which we get the Riemann surface below. C/Π1(Cw) = C/Z ≃
C/Z.Tw.

• The fundamental group of the torus is Z × Z, and we have a similar
situation as above.

The situation above is one that holds in general: in the case of a universal
covering p : X̃ −→ X , the fibres p−1(x) are bijective to the (first) fundamental
group Π1(X), which can also be identified with a subgroup of automorphisms

of the covering space; moreover X is precisely the quotient of X̃ by this sub-
group. Therefore, X̃/Π1(X) ∼= X as Riemann surfaces and the covering map

p :X̃−→ X is just the quotient map X̃ −→ X̃/Π1(X, x). Hence, any Riemann
surface structure is a quotient of C or ∆ or P1

C
by a subgroup of automorphisms

(Moebius transformations) isomorphic to the fundamental group of the Riemann
surface.

In conclusion, to study any Riemann surface, we need to study subgroups of
automorphisms of C or ∆ or P1

C
i.e., subgroups of Möbius transfomations.

We recall that:

• AutHol(P
1

C
) = PSL(2,C) = SL(2,C)/Z2,

• AutHol(U) = PSL(2,R) = SL(2,R)/Z2,

• AutHol(C) = P∆(2,C), i.e. the upper triangular elements of PSL(2,C).
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