
Introduction to R Software

 Data Handling
::::

Importing Data Files of Other Software
and Redirecting Output

Shalabh
Department of Mathematics and Statistics

Indian Institute of Technology Kanpur

1

Spreadsheet (Excel) file data

The xlsx package has the function read.xlsx() for reading
Excel files.

This will read the first sheet of an Excel spreadsheet.

To read Excel files, we first need to install the package

install.packages("xlsx")

library(xlsx)

data <- read.xlsx("datafile.xlsx", Sheet Index

or Sheet Name)

Importing Data Files

2

Spreadsheet (Excel) file data

To load other sheets with read.xlsx(), we specify a number for

sheetIndex or a name for sheetName:

data <- read.xlsx("datafile.xlsx", sheetIndex=2)

data <- read.xlsx("datafile.xlsx",

sheetName="marks")

Importing Data Files

3

Spreadsheet (Excel) file data

For reading older Excel files in .xls format, use gdata package and

function read.xls()

This will read the first sheet of an Excel spreadsheet.

To read Excel files, we first need to install the package

install.packages("gdata")

library(gdata)

data <- read.xls("datafile.xls", Sheet Index or

Sheet Name))

Importing Data Files

4

SPSS data file

For reading SPSS data files, use foreign package and function

read.spss()

To read SPSS files, we first need to install the package

install.packages(" foreign ")

library(foreign)

data <- read.spss("datafile.sav")

Importing Data Files

5

Other data files
The foreign package also includes functions to load from other
formats, including:

• read.octave("<Path to file>"): Octave and

MATLAB

• read.systat("<Path to file>"): SYSTAT

• read.xport("<Path to file>"): SAS XPORT

• read.dta("<Path to file>"): Stata

Importing Data Files

6

More description of data import and export can be found in the
respective R manual at

http://cran.r-project.org/doc/manuals/r-
release/R-data.pdf

Importing Data Files

7

The list.files function shows the contents of your working
directory:
> list.files()

> setwd("C:/RCourse/")

> list.files()
[1] "~$example3.xlsx" "example1.csv" "example2.txt"

"example3.xlsx"

[5] "marks.csv" "munichdata.asc"

"pizza_delivery.csv"

8

Contents of working directory

Issue:

We want to redirect the output from R into a file instead of your

console.

Solution:

Redirect the output of the cat function by using its file argument:

> ans <- 6 + 8
> cat("The answer of 6 + 8 is", ans, "\n",
file="filename")

The output will be saved in the working directory with given
filename 9

Redirecting Output to a File

Use the sink function to redirect all the output from both print
and cat.

Call sink with a filename argument to begin redirecting console
output to that file.

When we are done, sink with no argument to close the file and
resume output to the console:

> sink("filename") #Begin writing output to file

. . . other session work . . .
> sink()

10

Redirecting Output to a File

The print and cat functions normally write the output to console.

The cat function writes to a file if we supply a file argument.

The print function cannot redirect its output.

The sink function can force all output to a file.

11

Redirecting Output to a File

1.

> sink("output.txt") # Redirect output to file

2.
> source("script.R") # Run the script, capture
 its output

3.

> sink() # Resume writing output to console

Other options like append=TRUE/FALSE, split=TRUE/FALSE

are available.
12

Redirecting Output to a File: Three steps

Example:
Find the mean of all the three variables in the data set
example1.csv

setwd("C:/RCourse/")

data <- read.csv("example1.csv", header=TRUE)

> data[,1]
[1] 2 3 4 5

> data[,2]
[1] 20 30 40 50

> data[,3]
[1] 200 300 400 500

13

Example:

Programme:

meanxyz <- function(data)
{
 meanofdata <- 0
 for (i in 1:3)
 {
 meanofdata[i] <- mean(data[,i])
 cat("The mean of X",i, "is", meanofdata[i], ".", "\n")
 }
}
meanxyz(data)

Save it as script, say meanxyz.R

14

Example:
> sink("output_meanxyz.txt") # Creates a blank file

(Open the file and check it – a blank file will be there)

> source("meanxyz.R") # Writes output inside the file

 Or run the programme as

> meanxyz(data)

(Open the file and check it – a file with the output will be there)

> sink() # Resume writing output to console

15

Output:
Open the directory "C:/RCourse/".

Find a file output_meanxyz.txt

Open it and we find the following output

The mean of X 1 is 3.5 .
The mean of X 2 is 35 .
The mean of X 3 is 350 .

16

17

Suppose we want to save a matrix or data frame in a file using the
comma-separated values format.

The write.csv function writes tabular data to an ASCII file in CSV
format.

Each row of data creates one line in the file, with data items
separated by commas (,):

> write.csv(x, file="filename", row.names=FALSE)

Example:

> write.csv(meanxyz(data),

file="output_meanxyz.csv", row.names=FALSE)

Check working directory, file output_meanxyz.csv is created.
18

Writing to CSV files

	Introduction to R Software�� Data Handling�::::�Importing Data Files of Other Software and Redirecting Output
	Importing Data Files
	Importing Data Files
	Importing Data Files
	Importing Data Files
	Importing Data Files
	Importing Data Files
	Contents of working directory
	Redirecting Output to a File
	Redirecting Output to a File
	Redirecting Output to a File
	Redirecting Output to a File: Three steps
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Writing to CSV files

