
Introduction to R Software

Basics of Calculations
::::

Conditional Executions and Loops

Shalabh

Department of Mathematics and Statistics

Indian Institute of Technology Kanpur

1

1. Conditional execution

Syntax

if (condition) {executed commands if condition is

 TRUE}

if (condition) {executed commands if condition is

 TRUE}

else { executed commands if condition is FALSE }

2

2. Conditional execution

Syntax

ifelse(test, yes, no)

 Vector-valued evaluation of conditions .

 For the components in the vector-valued logical expression test

which provide the value TRUE, the operations given by yes are

executed.

 For the components in the vector-valued logical expression test

which provide the value FALSE, the operations given by no are

executed.
3

2. Conditional execution
Example

> x <- 1:10

>x

 [1] 1 2 3 4 5 6 7 8 9 10

> ifelse(x<6, x^2, x+1)

 [1] 1 4 9 16 25 7 8 9 10 11

Interpretation

• If x < 6 (TRUE), then x = x2 (YES) .

• If x ≥ 6 (FALSE), then x = x + 1 (NO).

• So for x = 1, 2, 3, 4, 5, we get x = x2=1, 4, 9, 16, 25

• For x=6, 7, 8, 9, 10, we get x= x+1 = 7, 8, 9, 0, 11
4

5

Control structures in R :

Loops

Repetitive commands are executed by loops

• for loop

• while loop

• repeat loop

6

1. The for loop

If the number of repetitions is known in advance (e.g. if all

commands have to be executed for all cases i = 1,2,...,n in the data),

a for() loop can be used.

Syntax

for (name in vector) {commands to be executed}

A variable with name name is sequentially set to all values, which

contained in the vector vector.

All operations/commands are executed for all these values.
7

Example

> for (i in 1:5) { print(i^2) }

[1] 1

[1] 4

[1] 9

[1] 16

[1] 25

8

Example

Note: print is a function to print the argument

> for (i in c(2,4,6,7)) { print(i^2) }

[1] 4

[1] 16

[1] 36

[1] 49

9

2. The while() loop

If the number of loops is not known in before, e.g. when an

iterative algorithm to maximize a likelihood function is used, one

can use a while() loop.

Syntax

while(condition){ commands to be executed as

long as condition is TRUE }

If the condition is not true before entering the loop, no commands

within the loop are executed.

10

Example

> i <- 1

> while (i<5) {

+ print(i^2)

+ i <- i+2

+}

[1] 1

[1] 9

The programmer itself has to be careful that the counting variable

i within the loop is incremented. Otherwise an infinite loop

occurs.
11

12

3. The repeat loop

The repeat loop doesn’t test any condition — in contrast to the

while() loop — before entering the loop and also not during

the execution of the loop.

Again, the programmer is responsible that the loop terminates

after the appropriate number of iterations. For this the break

command can be used.

Syntax

repeat{ commands to be executed }

13

Example:

> i <- 1

> repeat{

 + print(i^2)

 + i <- i+2

 + if (i > 10) break

 +}

[1] 1

[1] 9

[1] 25

[1] 49

[1] 81

14

15

16

Example:

Additionally, the command next is available, to return to the

beginning of the loop (to return to the first command in the loop).

> i <- 1

> repeat{

 + i <- i+1

 + if (i < 10) next

 + print(i^2)

 + if (i >= 13) break

 +}

[1] 100

[1] 121

[1] 144

[1] 169

