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Determination of alias structure 
The alias structure is determined by using the defining relation. Multiplying any column (or effect) by the defining relation

yields the aliases for that column (or effect). For example, in this case, the defining relation is I = ABC. Now multiply the

factors on both sides of I = ABC yields

The systematic rule to find aliases is to write down all the effects of a 23 - 1 = 22 factorial in standard order and multiply 

each factor by the defining contrast.

Alternate or complementary one-half fraction 
We have considered upto now the one-half fraction corresponding to + signs of treatment combinations in ABC column 

in the table.  Now suppose we choose other one-half fraction, i.e., treatment combinations with – signs in  ABC  column 

in the table.  This  is called alternate or complementary one-half fraction.  In this case, the effects are estimated as 
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we observe that A - BC in the complete 23 factorial experiment is the same as A or  BC in the one half fractional with 

I = -ABC (ignoring the common multiplier). In order  to find the relationship between the estimates under this one-half 

fraction and a complete factorial, we find that what we estimate in the one-half fraction with – sign in ABC is the same as 

of estimating A - BC from  a complete 23 factorial experiment.  

Similarly, using B - AC in the complete 23 factorial is the same as using B or AC in one half fraction with I = ABC.

Using C - AB in the complete 23 factorial experiment is the same as using C or AB in the one half fraction with I = ABC

(ignoring the common multiplier).

Now there are two one-half fractions corresponding to + and – signs of treatment combinations in ABC. Based on that,

there are now two sets of treatment combinations. A question arises that which one to use?

In practice, it does not matter which fraction is actually used. Both the one-half fractions belong to the same family of 23

factorial experiment. Moreover, the difference of negative signs in aliases of both the halves becomes positive while

obtaining the sum of squares in analysis of variance.

In this case, we notice that so the same factors remain aliases again which are aliases in

the one-half fraction with + sign in ABC. If we consider the setup of complete 23 factorial experiment, then in case of

complete fractional

, , ,A BC B AC C AB= − = − = −

(1)
(1) ,

A a b ab c ac bc abc
BC a b ab c ac bc abc
= − + − + − + − +
= + − − − − + +
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Use of more than one defining relations

Further, suppose we want to have 1/22 fraction of 23 factorial experiment with one more defining relation, say  I =  BC along 

with I = ABC. 

So the one-half fraction with + signs of  ABC can further be divided into two halves. In this case, each half fraction will 

contain two treatments corresponding to

 + sign of BC, (viz., a and abc) and

 - sign of BC, (viz.,  b and c).

These two halves will constitute the one-fourth fraction of 23 factorial experiment.

Similarly, we can consider the other one-half fraction corresponding to – sign of ABC. Now we look for + and – sign

corresponding to I = BC which constitute the two one-half fractions consisting of the treatments

 (1),  bc and

 ab, ac.

This will again constitute the one-fourth fraction of  23 factorial experiment.



All such operations are illustrated in following table .  
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Example in 26 factorial experiment
In order to have more understanding of the fractional factorial, we consider the setup of 26 factorial experiment . Since the

highest order interaction in this case is ABCDEF, so we construct the one-half fraction using I = ABCDEF as defining

relation. Then we write all the factors of 26 - 1 = 25 factorial experiment in the standard order. Then multiply all the factors

with the defining relation. For example

I ABCDEF= D ABCEF= E ABCDF= DE ABCF=

A BCDEF= AD BCEF= AE BCDF= ADE BCF=

B ACDEF= BD ACEF= BE ACDF= BDE ACF=

AB CDEF= ABD CEF= ABE CDF= ABDE CF=

C ABDEF= CD ABEF= CE ABDF= CDE ABF=

AC BDEF= ACD BEF= ACE BDF= ACDE BF=

BC ADEF= BCD AEF= BCE ADF= BCDE AF=

ABC DEF= ABCD EF= ABCE DF= ABCDE F=

2

I A ABCDEF A

A BCDEF

A BCDEF

× = ×

=

=or

    

            2 2

.or etc

  

              

   

I ABC ABCDEF ABC

A B CDEF

ABC CDEF

× = ×

=

=

One half fraction of 26 factorial experiment using I = ABCDEF as defining relation



In this case, we observe that

 all the main effects have 5 factor interactions as aliases,

 all the 2 factor interactions have 4 factor interactions as aliases and

 all the 3 factor interactions have 3 factor interactions as aliases.
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Suppose a completely randomized design is adopted with blocks of size 16. There are 32 treatments and abcdef is chosen

as the defining contrast for half replicate. Now all the 32 treatments cannot be accommodated. Only 16 treatments can be

accommodated. So the treatments are to be divided and allocated into two blocks of size 16 each.

This is equivalent to saying that one factorial effect (and its alias) are confounded with blocks. Suppose we decide that the

three factor interactions and their aliases (which are also three factors interactions in this case) are to be used as error. So

choose one of the three-factor interaction, say ABC (and its alias DEF) to be confounded. Now one of the block contains

all the treatment combinations having an even number of letters a, b or c. These blocks are constructed in the following

table:



One half replicate of 26 factorial experiment in the blocks of size 16
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Block 1 Block 2
(1)
de
df
ef
ab
ac
bc
abde
abdf
abef
acde
acdf
acef
bcde
bcdf
bcef

ab
ae
af
bd
be
bf
cd
ce
cf
adef
bdef
cdef
abcd
abce
abcf
abcdef

There are total 31 degrees of freedom, out of which 6 degrees of freedom are used by the main effects, 15 degrees of freedom

are used by the two-factor interactions and 9 degrees of freedom are used by the error (from three factor interactions).

Additionally, one more division of degree of freedom arises in this case which is due to blocks. So the degree of freedom

carried by blocks is 1. That is why the error degrees of freedom are 9 (and not 10) because one degree of freedom goes to

block.
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Suppose the block size is to be further reduced and we want to have blocks of size 8 in the same setup. This can be

achieved by 1/22 fraction of 26 factorial experiment. In terms of confounding setup, this is equivalent to saying that the two

factorial effects are to be confounded. Suppose we choose ABD (and its alias CEF) in addition to ABC (and its alias DEF).

When we confound two effects, then their generalized interaction also gets confounded. So the interaction

ABC X ABD = A2B2CD = CD (or DEF X CEF = CDE2F2 = CD) and its alias ABEF also get confounded.

One may note that a two factor interaction is getting confounded in this case, which is not a good strategy. A good strategy

in such cases where an important factor is getting confounded is to choose the least important two-factor interaction.

The blocks arising with this plan are described in the following Table. These blocks are derived by dividing each block of

earlier table of one half replicate of 26 factorial experiment in the blocks of size 16 into two halves.

These halves contain respectively an odd and even number of the letters c and d.

Block 1 Block 2 Block 3 Block 4

(1)
ef
ab
abef
acde
acdf
bcde
bcdf

de
df
ac
bc
abde
abdf
acef
bcef

ae
af
be
bf
cd
abcd
cdef
abcdef

ad
bd
ce
cf
abce
abcf
adef
bdef
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The analysis of variance in case of fractional factorial experiments is conducted in the usual way as in the case of any

factorial experiment. The sums of squares for blocks, main effects and two factor interactions are computed in the usual

way.

The total degrees  of freedom in this case are 31 which are divided as follows:

 the blocks carry 3 degrees of freedom,

 the main effect carry 6 degrees of freedom.

 the two factor interactions carry 14 degrees of freedom and

 the error carry 8 degrees of freedom.
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Resolution

The criterion of resolution is used to compare the fractional factorial  designs for overall quality of the  statistical inferences 

which can be drawn. It is defined as the length of the  shortest word (or order of the lowest-order effect) aliased with “I” in 

the generating relationship.

A fractional factorial design with  greater resolution is considered to  be better than a design with lower  reticulation. An

important objective  in the designs  is to find a fractional factorial design that has greatest  resolution for a given number of 

runs and numbers of factors. The  resolution of a design is generally denoted by a subscripted roman numeral. For 

example, a fractional  factorial design constructed by using                                                        is denoted as        fractional 

factorial  plan. In practice, the designs with resolution III, IV and V are used in practice.

" ( )"I ABCD ABEF CDEF= = ± = ± 6 22IV
−

When the design is of  resolution II, it  means that, e.g., “I = +AB”.  It means that in  this case “A = +B” which indicates that 

at least some pairs of main effects are aliased.

When the design is of resolution III, the generating relation is like e.g., “I = +ABC”. In this case “A = +BC =…”  This means 

that  the main effects will not be aliased with each other but some of them will be aliased with two factor interaction. Thus

such design can estimate all main effects if all interactions are absent.
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When design is of resolution IV, then  the generating  relationship is like “I = +ABCD”.  Then the main effects will not be 

aliased with each other or with  two factor interactions but some will get aliased with three factor interaction, e.g.,   

“A = +BCD”.  Some pairs of two-factor interactions will also get aliased, e.g.,  “AB = +CD =…”.   So this type of design 

unbiasedly estimates all the main effects even when two factor interactions are present.

Similarly, the generating relations like , “I = +ABCDE” are used in resolution V designs. In this case, all main effects can be 

estimated unbiasedly in the absence of all interactions of order less them five. The two factor  interactions can be 

estimated if no effects of higher order are present.  So resolution V design provides complete  estimation of second order 

model.

The designs of resolution II or higher than resolution V are not used  in practice. Reason being that  resolution II design 

cannot separate the influence of main effects and design of resolution VI or  higher require  large number of units which 

may not be feasible all the times.
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