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the sum of squares within-subjects are given by

Analysis of variance

Now we develop the analysis of variance for higher order cross-over designs when n1 = n2. This is used to test the effects

using F - test obtained from an analysis of variance table. The various sums of squares can be derived for the 2 x 2

cross-over design as a simple example of a split-plot design. The subject form the main plots and the periods are treated

as the subplots at which repeated measurements are taken. Following this, the total sum of squares is given as

the sum of squares between subjects are given  by:
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Source Sum of squares Degrees of 

freedom

Mean squares 

(MS)

F E(MS)
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Then the resulting analysis of variance and the construction of F statistics is given in the following Table:
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Under   we have    and we use the statistic 

Assuming              and                                                                                    .  Therefore, we get 

Testing for period effects does not depend upon the assumption that               holds. Since  

under                     ,  so the statistic   

follows the central F - distribution with 1 and degrees of freedom.
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Comment on the procedure of testing

Usually, the carry-out effects are tested on a quite high level of significance                 first.  

 If this leads to a significant result, then the test for treatment effects is to be based on the data of the  first 

period only.

 If it is not significant, then the treatment effects are tested using the  differences between the periods.

The hypothesis of no carry-over effect is very likely to be rejected even if there is a true carry-over effect. Hence, the biased

test (biased, because the carry-over was not recognized) is used to test for treatment differences. This test is conservative

in the case of a true positive carry-over effect and therefore this is insensitive to potential differences in treatments.

On the other hand, this test will exceed the level of significance if there is a true negative carry-over effect (not very likely in 

practice, since this refers  to a withdrawal effect). 

If there is no true carry-over effect, the null hypothesis is very likely to be rejected erroneously  and the less 

efficient test using first-period data only is performed.

This method is not very useful in testing treatment effects as it depends upon the outcome of the pretest.

( 0.1)α =

( 0.1)α =



Alternative parameterization in 2 x 2 Cross-Over

The model 

is used in the classical approach and is labeled as parameterization number 1. A more general parameterization of the

2 x 2  cross-over design, includes a sequence effect       and  is given by

with i, j, t, r = 1, 2 and                  . . The data are summarized in a table containing the cell means           i.e.,
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In matrix notation, we can express it as
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The X matrix is of order (4 x 5) and has rank 4, so that is only estimable if one of the parameters is removed. Various

parameterizations are possible depending on which of the five parameters is to be removed and then to be confounded with

the remaining ones.

β

Here Sequence 1 indicates that the treatments are given in the order (AB) and Sequence 2 has the (BA) order. Using the

common restrictions

and writing for brevity, we get the following equations representing the four expectations:
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Parametrization Number 1
The classical approach ignores the sequence parameter. Its expectations may therefore be represented as a submodel of

by dropping the second column of  X as 
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with     The least squares estimate of    is obtained as 

Observe that
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Therefore, the least squares estimates are given as

from  which we get the following estimators: 
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The covariance between       and       is

Hence       and       are correlated. The  correlation coefficient                                                 

τ̂ λ̂

2 1 2 1 / 2 1 / 2ˆˆ( , ) .
1 / 2 1

Cov Hτ λ σ σ−  
= =  

 

1/ 21 1ˆˆ( , ) .1 0.707.
2 2

ρ τ λ  = = 
 

τ̂ λ̂

The estimation of      is always twice as accurate as the estimation of     . Note that       uses the data of the first period only  

and is confounded with the difference between the two groups (sequences).

Remark

In fact, parameterization number 1 is a three-factorial design with the main effects          and      and with     and   being 

correlated.  On the  other hand, the classical approach uses the split-plot model in addition to the classical 

parameterization. So  it is obvious that we will get different results depending on which of the parameterization is used.
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,π τ λ τ λ
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