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Analysis of variance table 

Under the null hypothesis               ,  the design is one way analysis of variance  set up with blocks as classifications. In 

this setup, we have the following:
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[Using normal equations, other terms will be zero]  
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we have
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The degrees of freedom associated with the different sum of squares are as follows:

Block SS (unadjusted)    : b – 1

Treatment SS (adjusted) : v – 1  

Error SS : n – b – v + 1 

Total SS : n – 1

Under  0
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The adjusted treatment sum of squares and the sum of squares due to error  are independently distributed and follow a chi-

square distribution with (v – 1)  and  (n – b – v + 1) degrees of freedom, respectively. 
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The analysis of variance table for                  is as follows:0 : 0H τ =

Source Degrees of freedom Sum of 
squares

Mean 
squares

F - value

Treatments v – 1

Blocks b – 1

Error (n – b – v + 1)

Total n – 1

Analysis of variance table
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Thus in an incomplete block design, it matters whether we are  estimating the block effects first  and then the treatment 

effects are estimated

or

first  estimate the treatment effects and then the block  effects are estimated.

In complete block design, it doesn’t matter at all. So the test of hypothesis related to the block and treatment effects can 

be carried out at the same time.

A reason for this is as follows: In an incomplete block design, either the 

 Adjusted sum of squares due to treatments, unadjusted sum of squares due to blocks and corresponding sum of 

squares due to errors  are orthogonal 

or

 Adjusted sum of squares due to blocks,  unadjusted sum of squares due to treatments and corresponding sum of 

squares due to errors  are orthogonal .

Note that the adjusted sum of squares due to treatment and the adjusted sum of squares due to blocks  are not 

orthogonal. So 

either 

Error S.S = Total SS– SS block (Unadjusted) – SS treat (Adjusted)

holds  true

or

Error S.S = Total  SS – SS block (Adjusted) – SS treat (Unadjusted)

holds true due to  Fisher Cochran theorem.
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We will confine our attention to those designs for which rank(C) = v - 1.  These are called connected designs and for 

which all contrasts in the treatments, i.e., all linear combinations   where                have unique least squares solutions.

This we prove now as follows.

'l τ 1' 0vl E =



8
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Let  G* and H*  be any two generalized inverses of C by which we mean that  they are square matrix of order v such that 

G*Q and H*Q are both  the solution vectors to the intrablock equation, i.e., ˆ ˆ* * .G Q H Qτ τ= =and
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because the block totals are mutually orthogonal, see how:
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Theorem: The adjusted treatment totals are orthogonal to the block totals.

Proof: It is enough to prove that
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As   have       observations  in common and the observations are mutually independent, soandi jB V
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Hence proved.
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