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Design for fitting the first-order model
Consider the following first-order model in k variables for fitting

There is a unique class of designs that minimize the variance of the regression coefficients These are the orthogonal

first–order designs. A first-order design is orthogonal if the off-diagonal elements of the (X’X) matrix are all zero. This

implies that the cross-products of the columns of the X matrix sum to zero.

The 2k factorial and fractions of the 2k series in which main effects are not aliased with each other belongs to the class of

orthogonal first-order designs. Assume that the low and high level of the k factors are coded as levels to use is such

designs.

The 2k design cannot provide an estimate of the experimental error unless some runs are replicated. A method of

including replication in the 2k design is to augment the design with several observations at the center which is

the point The estimates of are not affected by adding the center points to the 2k design.

Only estimate of changes as it becomes the average of all the observations. The addition of center points does not alter

the orthogonally property of the design.
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Another orthogonal first-order design is the simplex. The simplex is a regularly sides figure with k + 1 vertices in k

dimensions. Thus, for k = 2 the simplex design is an equilateral triangle and for k = 3 it is a regular tetrahedron. Simplex

designs in two and three dimensions are shown in the following figure:

 

         
The simplex design for k = 2 variables The simplex design for k = 3 variables 

 

This figure is reproduced with permission of John Wiley & Sons, Inc. from Montgamery, Douglas, C., 2001, ‘Design and analysis of experiments’, 5th edition. The 
author gratefully  acknowledges the support.



          
The central composite design for k = 2 variables The central composite design for k = 3 variables 
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Designs for fitting the second-order model

The  central composite design or CCD are used for fitting a second-order model. The CCD consists of a 2k factorial  with 

nF runs, 2k axial or star runs , and nc center runs.  Following figure shows the CCD for  k = 2 and k = 3 factors.

This figure is reproduced with permission of John Wiley & Sons, Inc. from Montgamery, Douglas, C., 2001, ‘Design and analysis of experiments’, 5th edition. The 
author gratefully  acknowledges the support.
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The CCD is developed through sequential experimentation. Suppose a 2k is used to fit a first-order model and

suppose this model exhibits lack of fit. Then axial runs is added to allow the quadratic terms to be incorporated into the

model. The CCD is a very efficient design for fitting the second-order model. There are two parameters in the design that

must be specified:

 the distance of the axial runs from the design center and

 the number of center points nc.

We now discuss the choice of these two parameters.

α

Readability
It is  important for the second-order model to provide good predictions throughout the region of interest. One way to define 

“good” is to have  the model  which is a reasonably consistent and has stable variance of the predicted response at points 

of interest. The variance of the predicted response at some point x is

It is suggested that a second-order response surface design should be rotatable. This means that the

is the same at all points x that are at the same distance from the design center. That is, the variance of predicted

response is constant on spheres.
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Following figure shows contours of constant for the second-order model fit using the CCD.[ ]ˆ( )Var y x

Contours of constant standard deviation  of predicted response for the rotatable CCD

This figure is reproduced with permission of John Wiley & Sons, Inc. from Montgamery, Douglas, C., 2001, ‘Design and analysis of experiments’, 5th edition. The 
author gratefully  acknowledges the support.
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Notice that the contours of constant standard deviation of predicted response are concentric circles. A design with this

property will leave the variance of unchanged when the design is rotated about the center (0, 0,…,0). Hence it is termed

as rotatable design.

Rotatability is an important criterion for the selection of a response surface design. The aim of RSM is optimization and the

location of the optimum is unknown prior to running the experiment, so it makes sense to use a design that provides equal

precision of estimation in all the directions. In fact, any first–order orthogonal design is rotatable.

ŷ

A central composite design is made rotatable by the choice of . The value of for rotatability depends on the number of

points in the factorial portion of the design. The choice yields a rotatable central composite design where nF is

the number of points used in the factorial portion of the design.
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The spherical CCD

Rotatability is a spherical property. It is an important design criterion when the region of interest is a sphere. It is not

important to have the exact rotatability to have a good design. The best choice of for a spherical region of interest from

a prediction variance view point for the CCD is to set This design called a spherical CCD. This puts all the

factorial and axial design points on the surface of a sphere of radius

.kα =

.k

α

Center runs in the CCD                                                    
The choice of      in the CCD is dictated primarily by the region of interest. When this region is a sphere, the design must 

include center runs to provide reasonably stable variance  of predicted response. Generally, three to five center runs are 

recommended.

α
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Blocking in response surface designs
When using the response surface designs, it is often necessary to consider blocking to eliminate nuisance variables. Such

problem may occur when a higher order, say second-order design is assembled sequentially from lower order, say. Such

necessity arises due to various reasons. For example, considerable time may elapse between the running of the first-order

design and the running of the supplemental experiments which are required to build up a second-order design, and during

this time, the test conditions may change which makes necessary to use blocking.

A response surface design is said to be block orthogonally if it is divided into blocks such that block effects do not affect

the parameter estimates of the response surface model. If a 2k or 2k - p design is used as a first-order response surface

design, the center points in these designs should be allocated among the blocks.

For a second-order design to block orthogonally, two conditions must be satisfied. If there are observations in the bth

block, then these conditions are

1. Each block must be a first-order orthogonal design; that is,

where xiu and xju are the levels of ith and jth variables in the uth run of the experiment with x0u = 1 for all  u.

2. The fraction of the total sum of squares for each variable contributed by every block must be equal to the fraction of the

total observations that occur in the block; that is,

where N is the number of runs in the design.
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