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An example to motivate the use of split plot design is as follows.

Suppose we wish to study two factors, say methods of cultivation and varieties of wheat. Suppose, the first factor has t

levels and the second factor consists of s varieties.

The first factor requires the use of a large complex equipment and consequently, relatively large plots of land are needed.

This will require higher cost and puts a restriction on the number of plots to be used. Because of the nature of the

equipment used for planting the wheat, the second factor can be accommodated in much smaller plots. To achieve this, the

large plots are split into smaller plots at the planting stage.
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This means that since the plots are close together, so less variability is expected among the plots and in turn, more plots

and less variability among plots is expected, which implies that the contrasts will have more information in terms of smaller

standard errors.

This suggests that the experiment can be conducted with two strata. The whole-plot stratum consists of large plots in which

the plots can be assigned as per any standard design, e.g. CRD, RBD, or Latin square design.

Next stratum is the split-plot stratum which consists of the split-plots. There are the smaller plots that are obtained by

splitting each of the large plots into s parts. The treatments assigned to the large whole-plots are replicated r times, and

treatments assigned to the split-plots are replicated rt times.

Now much more information on the split-plot factor is available because of the extra replication, and in turn, a smaller split-

plot-to-split-plot variance is expected. The interaction contrasts between whole- and split-plot treatment also fall into the

split-plot stratum and benefit due to smaller variance.
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There are two distinct randomizations in the split plot designs: 

i. The first  randomization takes place in stratum 1,  when  the levels of the whole-plot treatment are randomly assigned 

to the whole–plots. 

ii. The second  randomization takes place in stratum 2 where  the levels in the split-plot treatment are  randomly assigned 

in the split-plot. 

Many split-plot plans can easily be modified to  become strip-plot experiments. These have their own advantages and 

disadvantages.

Examples 

Following examples have been opted from Giesbrecht and Gumpertz (2004).

“Consider a hypothetical cake baking study in an  industry. Assume that there are r recipes and  c baking  conditions are 

to be studied.  A simple split- plot experiment with the recipes as a whole-plot factor and the baking condition as a split-plot

factor can be set up if cake batters are made up using recipes in a random order. Each batch of batter is then split into c

portions. The portion sare then baked under the c conditions. A new random baking order is selected for each  batter. 

Replication is provided by repeating recipes.

Another option is  to make up enough batter to make one cake from each of the r recipes. All cakes based on r  recipes  are 

then baked at one time in an oven at one of the c conditions. Now we have an experiment with baking conditions as a 

whole-plot factor and recipe as a split-plot factor.
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In case of a strip-plot design, the experimenter would make up batches of each of the batters large enough. Then partition

each batch into c cakes and then bake the cakes in sets, with one cake of each recipe in each set. In terms of row-column

structure of design, the rows represent recipes and the columns represent baking conditions. The advantage here is that in

the absence of replication, only r batches of batter need be mixed and the oven need only be set up c times.

In another example of a split-plot experiment in industrial quality research is as follows:

The object of the project is to develop a packaging material that would give a better seal under the wide range of possible

sealing process conditions used by potential customers. The package manufacturer identifies a number of factors which

can affect the quality of the seal. In the whole-plot part of the experiment, the sample lots of eight different packaging

materials are produced. These lots of material are then sent to a customer’s plant, where each of them is subdivided into

six subplots. The subplots are used in six different sealing processes. This constitutes the split-plot part of the study.
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Statistical analysis of split-plot experiments

Split-plot  experiment with whole-plots in a CRD

Statistical Model

The statistical model for a split-plot consists of the two randomization steps in the split-plot experiment, one in each

stratum. So it is a model with two terms. We consider an experiment with whole-plots arranged in a CRD. Suppose W

represents the whole-plot treatment and S represents the split-plot treatment, then the linear statistical model is written as

where                and              are identically and independently distributed random errors, each with mean 0 but different 

variances                     respectively,                                         and                     .  Moreover,     and                are 

mutually independent.

The whole-plot stratum of the model contains the whole-plot treatment effects        and the whole-plot error terms             

If we include the mean     , this part  of the model is similar to the case in one way model for  CRD. The  split-plot stratum 

contains the split-plot treatment effects      ,  the interaction effect  of w  and  s  as                and  the experimental error 

associated with individual split-plots             . All the terms  on the right-hand side of the model (except      ) are assumed to 

have observations measured as the  deviation from the respective mean.
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Analysis of variance
The analysis of variance for the split-plot experiment in the CRD is like an extended analysis for the CRD. This can be

considered as two separate analysis of variance for each of two strata with two separate error terms. This is illustrated in

the following table.

ANOVA table for  a split-plot experiment with whole-plots arranged in a CRD
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The quantities              and         represent quadratic forms as follows:

These quadratic forms will  be zero under the appropriate null hypotheses.  It is clear from the expected mean squares  that 

- error (1) is used to test the hypothesis of no whole-plot  treatment effect and error and

- error  (2) is used to test the hypotheses of no interaction or split–plot  treatment effects.

The test for interaction is performed first, otherwise other tests of hypothesis are doubtful.

Note that since all the levels of each factor are tested in combination with every level of the other factor, so the analysis in

the whole-plot stratum and the split-plot stratum are orthogonal. The estimates of interactions between whole-and split-unit 

factors are the contrasts that are orthogonal to both whole-plot and split-plot treatment contrasts.
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Note that the sum of squares due to W x S is where SSW is the whole-plot treatment

sum of squares and SSS is the split-plot treatment sum of squares. The error(2) sum of squares is obtained by subtraction.

The mean squares are obtained by dividing the sum of squares entries by respective degrees of freedom.
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For the case ck = 1 and ck = -1, the contrast is                   where           .  It follows that

The  confidence intervals computed for the contrasts are based on  t(r – 1)(s – 1) degrees of freedom.
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Standard errors of main-effect contrasts
The standard errors in the split-plot are more complex than in other designs. We  first consider the  contrasts among levels 

of the split-plot treatment. We write the general form of a split-plot contrast as 

Then

and 

Since                              it follows that the estimated standard error  (s.e) of a split-plot treatment contrast is of the form
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The general form of a whole-plot treatment contrast takes the form                 We  have.i ioo
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Since                                     , it follows that the estimated standard error of a whole-plot treatment contrast of the form 

is

For the whole-plot treatment  difference, the estimate of standard error is 
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