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Least squares analysis

Using the  least squares principle,  the normal equations for the       of the model

are obtained as 
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So, for any given point in the ER given by    we obtain the predicted response

with variance

In order to know that which of the  factors are influential and also to know the response surface  given by we need to 

obtain an estimate of . This is achieved, as usual, through the ANOVA as given in the following table with notations 
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ANOVA for first-order response surface design 

Source   Degrees of freedom  Sum of squares 
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Note that the SSE consists of following two parts:

i. The usual error sum of squares for a CRD, denoted here by SS(PE) and

ii. The lack of fit (LOF) sum of the sums of squares for all the interactions for the 2k factorial denoted here by SS(LOF).

This sum of squares can be used to test whether the postulated model

provides a sufficiently good enough fit to the data.

To test whether the ith factor contributes in explaining the response, we use the following F - statistic

which follows the F-distribution with 1 and (N – k – 1) degrees of freedom. Suppose without loss of generality, only the first

k1 factors are important. Then instead of using the model the following

model based on k1 factors is used:

and the predicted response then becomes

with the estimated variance as
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Then  the responses for two different sets of input variables,  and                                are compared by 

considering the difference in the predicted values  based on these input variable as

and  its estimated variance is given by

Similarly, the experimenter can also consider the differences in responses if some of the input variables are kept constant

at a desired level and the remaining input variables are varied to achieve optimum response in ER.

Since the true response surface is being approximated and due to experimental error, there may not exist a single level

combination which achieves the optimum response. Instead of this, there may exist a neighbourhood in which the optimum

may lie and this optimum may not be significantly different from each other.
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Alternative Design
It may not be a good idea to use the full 2k factorial to estimate the parameters of a first-order response surface as this

may involve large number of observations to handle. There are basically two ways to reduce the number of experimental

points. One way is to replicate each design point only once and in such case

SS(PE) = 0 and SS(E) = SS(LOF).

Another alternative is to use only a fraction of a 2k factorial either as a  single replicate or as a CRD with more than one 

replications. In either case, the experimenter has  to choose a fraction such that all the k main effects are estimable  with 

sufficient degrees of freedom for error so that comparisons like   can be made with satisfactory  statistical 

power as measured by its variance. This means that if we need  to choose a very small fraction, then this can be achieved 

by fractional factorials, with  several replications for each design point.

An important aspect in a 2k factorial is that the blocking can be introduced easily without sacrificing the estimation of the

main effects. This will help in reducing the experimental material as well as the cost and provide simplicity in the

experimentation. We discussed this aspect in fractional factorial module.

1 2( , ,..., )kx x x

The method of steepest ascent
In many experimental conditions, the initial estimate of the optimum operating conditions for the system may be away from

the actual optimum. In such conditions, one would like to move rapidly to the general vicinity of the optimum. It is expected

to have a procedure which is simple to use and economically efficient. When the experimenter is remote away from the

optimum, then usually it is assumed that a first-order model is an adequate approximation to the true surface in a small

region of the x’s.
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First order response surface and path of steepest ascent

This figure is reproduced with permission of John Wiley & Sons, Inc. from Montgamery, Douglas, C., 2001, ‘Design and analysis of experiments’, 5th edition. The 
author gratefully  acknowledges the support.

The method of steepest ascent is a procedure for moving sequentially along the path of steepest ascent, i.e., in the

direction of the maximum increase in the response. If minimization is desired, then this technique is called as the method

of steepest descent. The fitted first-order model is

and the first-order response surface can be represented as  the contours of  . The contours are a series of parallel lines 

such as  shown in  following figure:
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The direction of steepest ascent is the direction in which increases most rapidly. Such direction is parallel to the normal

to the fitted response surface.

The experimenter usually takes as the path of steepest ascent the line through the center of the region of interest and

normal to the fitted surface. Thus, the steps along the path are proportional to the regression coefficients . The actual

step size is determined by the experimenter based on process knowledge or other practical considerations.

ŷ
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The experiments are continued to be conducted along the path of steepest ascent until no further increase in response is

observed.

Then a new first-order model which may be a fit, a new path of steepest ascent determined, and the procedure continued.

Finally, the experimenter will arrive in the vicinity of the optimum.

This is judged by the lack of fit test of a first-order model. Some additional experiments are conducted to obtain a more

precise estimate of the optimum at this point.
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