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Regression variable hull (RVH)   
It is the smallest convex set containing  all the original data  

The hii depend on the Euclidian distance of  xi  from the centroid and on the density of the points in RVH. 

  

In general, if a point  has largest value of  hii, say hmax, then it will lie on the boundary of the RVH in a region of the x-space. In 

such region, where the density of the observations is relatively low. The set of points x (not necessarily the data points used 

to fit the model) that satisfy                                      is an ellipsoid enclosing all points  inside the RVH. So the location of  a 

point, say,                                     relative to RVH is rejected by 

   

Points for which h00 > hmax  are outside the ellipsoid containing RVH.  If  h00 < hmax   then the point is inside  the RVH.  

Generally, a smaller the value of  h00  indicates that  the point x0 lies closer to the centroid of the x-space. 

Since hii  is a measure of location of the ith point in x-space, the variance of  ei  depends on where the point xi  lies.  If hii  is 

small, then Var(ei) is larger which indicates a  poorer fit. So the points near the center of the x-space have poorer least 

squares fit  than the residuals at more remote  locations. Violation of model assumptions are more likely at  remote points and 

these violations may be hard to detect from the  inspection of ordinary residuals ei (or the standardized residuals di)  because 

their residuals will usually be smaller. 

So a logical procedure is to examine the studentized residuals of the form                                      in place of  ei (or di).  

For  ri, 

           E(ri) = 0 

           Var(ri) = 1 
  
regardless of the location of xi when the form of the model is correct. 
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In many situations, the variance of residuals stabilizes (particularly in large data sets) and there may be little  difference 

between di  and ri. In  such cases di  and  ri  often convey equivalent information. 

 

However, since any point with a  

   large residual and 

   large hii 

is potentially highly influential on the least-squares fit, so examination of  ri  is generally recommended. 

  

If there is only one explanatory variable then 
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   When xi  is close to the midpoint of x-data, i.e.,              is small  then estimated standard deviation of ei  is large. 

 

   Conversely, when xi is near the extreme ends of the range of x-data, then             is large and estimated standard  

deviation of  ei  is small. 

 

   When n is really large, the effect of                 is relatively small. So  in big data sets, ri may not differ dramatically from  di. 
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PRESS  residuals 
The PRESS residuals are defined as                where         is the fitted value of the ith  response based of all the observation 

except the ith  one. 

 

Reason:  If  yi is really unusual, then the regression model based on all the observations may be overly influenced  by this 

observations. This could produce a       that is very similar  to  yi  and consequently ei will be  small.  So it will be difficult  to 

detect any outlier. 

  

If  yi  is deleted, then        cannot be influenced by that observation, so  the resulting residual should be likely to indicate the 

presence of  the outlier.   

Procedure 
  Delete  the  ith  observation. 

  Fit the regression model to remaining  (n -1) observations. 

  Calculate the predicted value of  yi  corresponding to the deleted observation. 

  The corresponding prediction error 

  Calculate e(i) for each  i = 1,2,…,n. 

  

These prediction errors are called PRESS residuals because they are used in computing the prediction error sum of 

squares. They are also called as deleted residuals. 

 

Now we establish a relationship between ei  and e(i). 
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Relation between  ei  and e( i )  
  
  
Let  b(i) be the vector of regression coefficients estimated by with holding the ith observations. Then 
   
where X(i) is the X-matrix  without the  vector of  ith observation   and  y(i) is the y-vector  without the ith  observation.  Then 
    
 
 
 
 
 
 
 
We use the following result in further analysis. 
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Result:  If           is a  k x k  matrix and  x  be its ith  row vector then                     denotes the          - matrix with the ith  

row withheld. Then 

  

 

Using this result, we can write 
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Using                                                                      we can write 
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Looking at the relationship between ei  and  e(i), it is clear that calculating the PRESS residuals does not require fitting  in 

different regressions. The e(i)’s are just the ordinary residuals weighted according to the diagonal elements hii  of  H.   

 

It is possible to calculate the PRESS residuals from the residuals of a single least squares fit to all  n  observations.  

  

Residuals associated with points for which hii is large will have large  PRESS residuals. Such points will generally be high 

influence points. 

  

Large difference between ordinary residual and PRESS residual indicates a point where the model fits to the data well and 

a model without that point predicts poorly. 

Now  

 

 

 

 

 

 

 

 

The standardized PRESS residual is 

   

which is same as the Studentized residuals. 
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4. R-student 
The studentized residual ri is often considered as an outlier diagnostic and MSres  is used as an estimate of      in computing 

ri. This is referred  to as internal scaling of the  residuals because MSres is an internally generated estimate of       obtained 

from the fitting the model to all n observation . 

  

Another approach is to use an estimate of        based on a data set with ith observation removed, say   

First we derive an expression for        . Using the identity 

 

 

Post multiply both sides by                         we get 
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Now consider 
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This estimate of         is used instead of MSres to produce an externally studentized residual, usually called R-student 

given by 

 

 

   

In many situations, ti will differ little with ri. However, if  ith  observation is influential , then          can differ significantly from  

MSres  and the R - student statistic  will be more sensitive to this point. 

  

Under usual regression assumption,  t follows a t-distribution with (n – k – 1) degrees of freedom. 
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