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A model is said to be linear when it is linear in parameters. So the model 

   

and 

   

are also the linear model.  In fact, they are the second order  polynomials in one and two variables respectively. 

 

The polynomial models can be used  in those situations where the relationship between study and explanatory variables  is 

curvilinear. Sometimes a nonlinear  relationship in a small range of explanatory variable can also be modeled  by 

polynomials. 
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Polynomial models in one variable 
The kth order polynomial model in one variable is given by 

   

If                                      then the model is multiple linear regressions model in k explanatory variables                                 

So the linear regression model                        includes the polynomial regression model. Thus the techniques for fitting 

linear regression model can be used for fitting the polynomial regression model. 

For example: 

   

or 

   

is a polynomial regression model in one variable and is called as second order model or quadratic model.  The  

coefficients       and         are called the linear effect parameter and quadratic effect parameter  respectively. 

2
0 1 2y x xβ β β ε= + + +

2 2
0 1 1 2 2 11 1 22 2 12 1 2y x x x x x xβ β β β β β ε= + + + + + +

2
0 1 2 ... .k

ky x x xβ β β β ε= + + + + +

, 1, 2,..., ,j
jx x j k= = 1 2, ,..., .kx x x

y X β ε= +

2
0 1 2y x xβ β β ε= + + +

2
0 1 2( )E y x xβ β β= + +

1β 2β



3 

The interpretation of parameter        is                     when  x = 0 and it can be included in the model  provided the range of 

data includes x = 0.  If x = 0   is not included, then     has no interpretation. An example of  quadratic model is like as 

follows: 

0β 0 ( )E yβ =

0β

 

 

 

 

 

 

 

 

 

 

 

 

The polynomial models can be used to  approximate a complex nonlinear relationship. The polynomial models is just the 

Taylor series expansion of the unknown nonlinear function in such a case. 
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Considerations in fitting polynomial in one variable 
 
Some of the considerations in fitting  polynomial model are as follows: 

1. Order of the model 
The order of the polynomial model is kept as low as possible. Some transformations can be used to keep the model to be  

of first order.  If this is not satisfactory, then second order polynomial is tried. Arbitrary fitting of higher order polynomials 

can be a serious abuse of regression analysis. A model which is consistent  with the knowledge of data and its 

environment should be taken into account. It is  always possible for a polynomial of order (n – 1) to pass through  n points  

so that a polynomial of sufficiently high degree can always be found that  provides a “good” fit to the data. Such  models 

neither enhance the understanding of the unknown function nor be a good  predictor. 

2. Model building strategy 
A good strategy should be used to choose the order of an approximate polynomial. 

One possible approach is to successively fit the models in  increasing order and test the significance of  regression 

coefficients at each step of model fitting. Keep the order increasing  until t-test for the highest order term is nonsignificant. 

This is called  as forward selection procedure. 

 

Another approach is to fit the appropriate  highest order model and then delete  terms one at a time starting with highest 

order. This is continued  until the highest order remaining term  has a significant t-statistic. This  is called as backward 

elimination procedure.  

 

The forward selection and backward elimination procedures does not necessarily lead to same model. The first and 

second  order polynomials are mostly used in practice. 
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3. Extrapolation  
One has to be very cautious in extrapolation with polynomial models. The curvatures in the region of data and region of 

extrapolation can  be different. For example,  in the following figure, the trend of data in the region of original data is 

increasing but it is  decreasing in the region of extrapolation. So  predicted response will not be  based on the true 

behaviour  of the data.  

A 
 
 
 
 
 
 

In general, polynomial  models may have unanticipated  turns  in  inappropriate  directions. This  may provide incorrect 

inferences in interpolation as well as extrapolation. 



4. Ill-conditioning  
A basic assumption in linear regression analysis is that  X-matrix is of full column rank. In polynomial regression models, as 

the order increases, the X’X  matrix becomes ill-conditioned. As a result, the matrix (X’X)-1 may not be accurate and the 

parameters will be  estimated with considerable error. 

  

If values of x lie in a narrow range then the degree  of ill-conditioning increases and multicollinearity in the columns of X 

matrix  enters. For example, if  x varies between  2 and 3 , then x2 varies between 4  and 9.  This introduces strong  

multicollinearity between x  and  x2. 
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5. Hierarchy  
A model is said to be hierarchical if it contains the terms x, x2, x3, etc. in a hierarchy. For example, the model 

   

is hierarchical as it contains all the terms upto  order four. The model 

   

is not hierarchical as it does not contain the term of x3. 

It is expected that all polynomial models should  have this property because only hierarchical models are invariant under 

linear transformation. This requirement is more attractive from mathematics point of view. In many  situations, the need of 

model may  be different.  For example, the model 

   

needs a  two factor interaction  which is provided by the cross-product term.  A hierarchical model would need inclusion of  x2 

which is not needed from the point of view of statistical significance perspective. 
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Orthogonal polynomials 
While fitting a linear regression model to a given set of data, we begin with simple linear regression model. Suppose 

later we decide to change it to a quadratic  or wish to increase the order from quadratic  to a cubic model etc. In each 

case, we have to begin the modeling from scratch, i.e., from simple linear regression model.  It would be preferable to 

have a situation  in which adding an extra term merely refine the model in the sense that by increasing  the order, we do 

not need to do all the calculations from the scratch. This aspect was of more importance in pre-computer era  when all 

the calculations were done manually. This cannot be achieved by using the powers                              in succession. 

But it can be achieved by a system of orthogonal polynomials. The kth orthogonal polynomial has degree k.  Such 

polynomials may be constructed  by using Gram-Schmidt orthogonalization . 

0 2 31, , , ...x x x x=

Another issue in fitting the polynomials in one variable is ill conditioning. An assumption in usual multiple linear 

regression analysis is that all the independent variables are independent. In polynomial regression model,  this 

assumption is not satisfied.  Even if the ill-conditioning is removed by centering,  there may still exist high levels of  

multicollinearity. Such difficulty is  overcome by orthogonal polynomials. 

  

The classical cases of orthogonal polynomials of special kinds are due to Legendre, Hermite and Tehebycheff 

polynomials.  These are continuous orthogonal polynomials (where the orthogonality relation involve  integrating) 

whereas in our case,  we have discrete orthogonal polynomials (where the orthogonality relation involves  

summation). 
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Analysis 

Consider the polynomial model of order k is one variable as 

   

When writing this model as 

   

the columns of  X  will not be orthogonal.  If we add another terms                 then the matrix                 has to be 

recomputed and consequently, the lower order parameters                       will also change. 

Consider the fitting of following model: 

   

 

where         is the uth order orthogonal polynomial defined as 

   

  

 

In the context of                         the X-matrix in this  case is given by 
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Since this X-matrix has orthogonal columns, so  X’X  matrix becomes 
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The ordinary least squares estimator is                                 which for        is 

 

 

 

 

and its variance is obtained from                                     as 

 

 

 

 

When        is unknown, it can be estimated from analysis of variance table. 

Since             is a polynomial of order zero,  set it as                   and consequently 
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The residual sum of squares is  

 

 
The regression sum of squares is  
 

 

 

 

 

This regression sum of squares does  not depend on other parameters in the model. 

The analysis of variance table in this case is given as follows 
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Source of variation       Degrees of freedom      Sum of squares            Mean squares 

  

0α̂           1            0ˆ( )SS α             - 

1α̂                     1            1ˆ( )SS α    1ˆ( )SS α  

2α̂               1            2ˆ( )SS α    2ˆ( )SS α  

                                             

ˆkα           1            ˆ( )kSS α    ˆ( )kSS α  

      Residual                        1n k− −        ( ) (by subtraction)resSS k    resSS   

____________________________________________________________________________                                                     

Total          n               TSS  

____________________________________________________________________________     
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If  we add another term                      in the model, then the  model is 

   

and then we just need          which can be obtained as  
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Notice that: 

 We need not to bother for other terms in the model. 

 Simply concentrate on the newly added term only. 

 No re-computation of                   or any other                        is necessary due to orthogonality  of polynomials. 

 Thus higher order polynomials can be fitted with ease. 

 Terminate the process when a suitably fitted model is obtained. 

1( ' )X X − ˆ ( 1)j j kα ≠ +
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