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2.  DFFITS  and  DFBETAS 
 

Cook’s distance measure is a deletion diagnostic, i.e., it measures the  influence of ith observation if it is   

removed from the sample. 

There are two more statistics: 

(i)  DFBETAS which indicates that how much the regression coefficient changes if the ith observation  were deleted. Such 

change is measured in terms of standard deviation units.  This statistic is  

 

 

      

where Cjj is the jth diagonal element of                  and          regression coefficient computed without use of ith observation. 

Large (in magnitude) value of                      ,  indicates that  ith observation has considerable influence on the jth  regression 

coefficient. 

i. The values of                       can be expressed in a n x k  matrix that conveys similar information to the  composite 

influence information  in Cook’s distance measure. 

ii. The n elements in the jth  row of  R  produce the leverage that the n  observations in the sample  have on      . 

                           is the jth  element of                divided by a standardization factor 

 

 

       The jth element of                can be expressed as 
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rij  = ((R))  denotes  the (i, j)th  elements of  R 
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where ti is the ith R-student residual.  Now if                                 , then it indicates that ith observation warrants examination. 
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2. DFFITS 
The deletion influence of  ith observation on the predicted or fitted value can be investigated by using diagnostic by Belsley, 

Kuh and Welsch as  

   

 

where         is the fitted value of  yi obtained without the use of the ith observation. The denominator is  just a 

standardization, since   

 

This  DFFITSi  is the number of  standard deviations that the fitted value       changes if  ith observation is removed. 

( )

2
( )

ˆ ˆ
, 1, 2,...,i i

i

i ii

y y
DFFITS i n

S h

−
= =

( )ˆ iy
2ˆ( ) .i iiVar y hσ=

ˆiy

Computationally, 

  

 

 

 

 

 

where  ti  is R-student. 
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 If the data point is an outlier, then R-student will be large is magnitude. 

 If the data point has high leverage, then hii will be close to unity. 

 In either of these cases, DFFITSi  can be large. 

 If              then the effect of  R-student will be moderated. 

 If R-student is near to zero, then combined with high leverage point,  the value of  DFFITSi  can be small. 

 Thus DFFITSi   is affected by both leverage and prediction error. Belsley, Kuh and Welsch suggest that any 

observation for which  

 

    

   warrants attention. 
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Note: The  cutoff values of This  DFFITSj,i   and This  DFFITSi are only guidelines.  It is very difficult to provide cutoffs that 

are correct for all cases.  So analyst is recommended to utilize information about both  what is diagnostic means  and the 

application environment in selecting a cutoff. 



For example, if DFFITSi = 1, say, we could translate this into actual response units to determine just how much       is 

affected by removing the ith observation. 

 

Then use DFFITSj,i to see whether this observation is responsible for  the significance (or perhaps nonsignificance) of 

particular coefficients or for changes is sign  in a regression coefficient. 

                    

DFFITSj,i  can be used to determine how much change in actual  problem-specific units a data point has on the regression 

coefficient. Sometimes these changes will be of  importance  in a problem-specific context even though the diagnostic 

statistic  do  not exceed the formal cutoff. 

 

The recommended cutoff are a function of sample size n.  Certainly, any formal cutoff should be a function of sample size.  

 

However, is practice, these cutoffs often identify more  data points than an analyst may  wish to analyze. This is particularly 

true in small samples. The cutoff values provided  by Belsley, Kuh and Welsch make  more sense for large  samples. When  

n  is small, then diagnostic views are preferred.  
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To express the role of  ith  observation on the precision of estimation, define 

  

 

 

If                                      observation improves the precision of estimation. 

If                                      inclusion of  ith observation degrades the precision computationally, 

 

 

   

where    

 

 

A measure of model performance generalized variance 
The diagnostics Di , DFFITSj,i    and DFFITSi   provide insight  about the effect of observations on the estimated coefficient  

       and fitted values       They do not provide any information about overall precision of estimation. 

  

The generalized variance is defined as the determinant of covariance matrix and is a convenient scalar  measure of 

precision. The generalized  variance of OLSE  b  is 
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 So high leverage point will make                       large. This is logical, since a high-leverage point will improve the 

precision  unless the point is an outlier in y-space. 

 If  ith observation is outlier, then             will be much less than unity. 

 Cut-off values for COVRATIO are not easy to obtain.  It is suggested that 

  

 

 

   

               then  ith  point should be considered influential. The lower bound is only appropriate when    

  

        These cut-offs are only recommended for large samples. 
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