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1. Obtain more data 
The harmful multicollinearity arises essentially  because rank of  X’ X  falls below  k  and then |X’ X|  = 0 which clearly 

suggests the presence of linear dependencies in the columns of X.  It is the case when |X’ X|  is close to zero which needs 

attention. Additional data  may help in reducing the sampling  variance of the estimates. The data need to be collected such 

that it  helps in  breaking up the multicollinearity in the data. 

It is always not possible to collect additional data to various  reasons as follows. 

 The experiment and process have finished and no longer available. 

 The economic constrains may also not allow to collect the additional data. 

 The additional data may not match with the earlier collected data and  may be unusual. 

 If the data is in time series, then longer time series may force to take data that is too far  in the past. 

 If multicollinearity is due to any identity or exact relationship, then increasing the sample size will not help. 

 Sometimes,  it is not advisable to use the data even if it is available.  For example, if the data on consumption  

pattern is available for the years 1950-2010,  then one may not like to use it as the consumption pattern usually 

does not remains same for such a long period. 

Remedies for multicollinearity 
Various techniques have been proposed to deal with the problems resulting from the presence of multicollinearity in the 

data. 



3. Use some relevant prior information 
One may search for some relevant prior information about the regression coefficients.  This may lead to specification of 

estimates  of some coefficients. More general situation includes the specification of some exact  linear restrictions and 

stochastic  linear restrictions. The procedures like  restricted regression and mixed regression can be used for this purpose.  

 

The relevance and correctness of information plays an important role in such analysis but it is difficult to ensure it in 

practice. For  example, the estimates derived in U.K. may not be valid in India.  
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2. Drop some variables that are collinear 
 
If possible, identify the variables which seems to causing multicollinearity. These collinear variables can be dropped so as  

to match the condition of fall rank of  X-matrix. The process of omitting the  variables may be carried out on the  basis of 

some kind of ordering of  explanatory variables, e.g., those variables  can be deleted first which have smaller value of t-

ratio.   

 

In another example, suppose the experimenter is not interested in all the parameters. In such cases, one can get the 

estimators of the parameters of interest which have smaller mean squared errors than the variance of OLSE  of full vector  

by dropping some variables. If some variables are eliminated, then this may reduce the predictive power of the model. 

Sometimes there is no assurance that how the model will exhibit less multicollinearity. 



5. Use of principal component regression 

The principal component regression is based on the technique of principal component analysis. The   explanatory variables 

are transformed into a new set of orthogonal variables called as principal components.  Usually this technique is used for 

reducing the dimensionality  of data by retaining some levels of variability  of explanatory variables which is expressed by the 

variability in study variable. The principal  components involves the determination of  a set of linear combinations of 

explanatory variables  such that they retain the total variability of the system and these linear combinations are mutually 

independent of each other.  Such obtained principal components are ranked  in  the order of their importance. The importance  

being judged in terms of variability  explained by a principal component relative to  the total variability in the system. The 

procedure then involves eliminating some of the principal components which contribute in explaining relatively less variation. 

After elimination of the least  important principal components, the set up of multiple regression is used  by replacing the 

explanatory variables with  principal components.  
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4. Employ generalized inverse 
If  rank                  , then the generalized  inverse can be used to find the inverse of            .  Then      can be estimated by  

 

 

In such case, the estimates  will  not be unique except in the case of use of Moore-Penrose inverse of                Different 

methods of  finding generalized inverse may give different results.  So applied workers  will get different results. Moreover, it  

is also not known that which method  of finding generalized inverse is optimum.  

( ' )X X k< 'X X β
ˆ ( ' ) ' .X X X yβ −=

( ' ).X X
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Suppose there are k explanatory variables                        Consider the linear function of                       like 

   

 

 

 

 

The constants                    are determined  such that the variance of       is maximized  subject to the normalizing condition 

that                  The constant                 are determined  such that the variance of       is maximized subject to the normality 

condition that                 and is independent of the first  principal component.   

1 2, ,..., .kX X X 1 2, ,.., kX X X

1
1

2
1

etc.

k

i i
i

k

i i
i

Z a X

Z b X

=

=

=

=

∑

∑

1 2, ,..., ka a a 1Z
2

1
1.i

i
a

=

=∑ 1 2, ,..., kb b b 2Z

2

1
1i

i
b

=

=∑

Then study variable  is regressed against the set of selected  principal components using ordinary least  squares method. 

Since all the principal components  are orthogonal, they are mutually independent  and so OLS is used without any problem.  

Once the estimates of regression coefficients  for the reduced set of orthogonal variables  (principal components) have been 

obtained, they  are mathematically transformed into a new set of estimated regression coefficients that  correspond to the 

original correlated set  of variables. These new estimated coefficients  are the principal components estimators of  regression 

coefficients. 
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 Let                     be the eigenvalues of                                                 is            diagonal matrix, V  is a            orthogonal  

matrix whose columns  are the eigenvectors associated with                     .   
1 2, ,..., kλ λ λ 1 2' , ( , ,..., )kX X diag λ λ λΛ = k k× k k×

1 2, ,..., kλ λ λ

Consider the canonical form of the  linear model 
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Columns of                                   define a new set of explanatory variables which are  called as principal component.  
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We continue with  such process and obtain k such linear combinations such that they are orthogonal to their preceding linear 

combinations and satisfy the normality condition. Then we obtain their variances. Suppose such linear combinations are   

                     and for them,                                                      The linear combination  having   the    variance is the first 

principal component. The linear combination  having the second  largest variance is the second largest principal component 

and so on.   These principal components have the property that                                      Also, the                        are correlated 

but                    are orthogonal or uncorrelated. So there will be zero multicollinearity among                   . 

 

The problem of multicollinearity arises because                           are not independent. Since the principal components based 

on                          are  mutually independent, so they can be used as explanatory variables and such regression will combat 

the multicollinearity. 
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Note that       is the variance of          principal component and                                     . 

   

A small eigenvalue of X’X means that the linear relationship between the original explanatory  variable exist and the variance 

of corresponding orthogonal regression coefficient is large which indicates that the multicollinearity exists. If one or more     

are small, then it indicates that multicollinearity is present. 
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Retainment of principal components 
 

The new set of variables, i.e., principal components are orthogonal, and  they retain the same magnitude of  variance as of 

original set. If  multicollinearity is severe, then there will  be at least one small value of eigenvalue. The elimination of one or 

more principal components associated with smallest eigenvalues will reduce the total variance in the model. Moreover, the 

principal components responsible for creating multicollinearity will be removed  and the resulting model will be appreciably 

improved.  

The principal component matrix                               with                      contains exactly the same information as  the original 

data in X in the sense that the total variability in X and Z is same.  The difference between  them is that the original data are 

arranged into a  set of new variables which are uncorrelated  with each other and can be ranked with  respect  to the 

magnitude of their eigenvalues. The         column vector         corresponding to the largest       accounts for the  largest 

proportion of the variation in the original  data. Thus the       ’s  are  indexed so that                                 and        is the 

variance of       . 

A strategy of elimination of principal components is to begin by discarding the  component associated with the smallest 

eigenvalue. The idea behind to do this is that  the principal component with smallest eigenvalue is contributing the  least 

variance and so is least informative. 
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Using this procedure, principal components are eliminated until the remaining components explain some preselected variance 

is terms of percentage of total variance. For example, if 90% of total variance is needed, and suppose r principal components 

are eliminated which means that( k – r)  principal components contribute 90%  of the total variation, then r is selected to 

satisfy    

 

 

 

Various strategies to choose required number of principal components are also  available in the literature. 

Suppose after using such a rule, the r principal components are eliminated.  Now  only (k- r) components will be used for  

regression. So Z  matrix is partitioned as 

  

where  submatrix Zr  is of order n x r and contains the principal  components to be eliminated. The submatrix  Zk-r  is  of order   

n x  (k – r) and  contains the principal components to be retained. 
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The reduced model obtained after the elimination of  r  principal components can be expressed as 

 

The random error component is  represented as         just to distinguish with    .  The reduced  coefficients contain the 

coefficients associated with retained  Zj’s. So 
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Using OLS on the model with retained principal components, the OLSE of          is 

 
  . 
Now it is transformed back to original explanatory variables as follows: 
   

 

 

 

which is the principal component regression estimator of   

This method improves the efficiency as well as combats multicollinearity. 
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