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In the linear regression model              ,        there are two types of variables – explanatory variables                                   

and study variable y.  These variables  can be measured on a continuous scale  as well as like an  indicator variables.   

 

When the explanatory  variables are qualitative, then their values are  expressed as indicator variables and then dummy 

variable models are used.  

 

When the study variable is  qualitative variable, then its values can be  expressed using an indicator variable taking only  

two possible values 0 and 1. In such a case, the logistic regression is used.  

 

For example,  y can denotes the values like  success or failure, yes or no, like or  dislike which can be denoted by two  

values 0 and 1. 
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Consider the model 
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Usually xi1 = 1 for all i = 1, 2, …, n which corresponds to the intercept turn in the model. 
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Logistic regression model 
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The study variable takes two values as   yi =  0 or 1.  Assume that yi follows a Bernoulli distribution with parameter       so its 

probability distribution is  
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From the model                        we have 
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Thus response function E(yi) is simply the probability that yi = 1.  

Note that                          so  

   

   

Recall that earlier       was assumed to  follow a normal distribution when y was not an indicator variable. 

 

When y is an indicator variable, then      takes only two values, so it cannot be assumed to follow a normal distribution. 
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In usual regression model, the errors are homoskedastic, i.e.,                        and so                       .  When  y  is an  

indicator  variable, then 

 
 
 
 
 
 
 
 
 
 
 

Thus Var(yi) depends on yi and is a function mean of  yi.  Moreover, since                    and       is the  probability, so    

                  and thus there is a constraint on  E(yi)  that                         

 

 

This puts a  big constraint on the choice of linear  response function. One cannot fit a model in which the predicted values 

lie outside the interval of 0 and 1. 
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When y is a dichotomous variable, then empirical evidences suggest that the function E(y) on the whole real line that can 

be mapped to [0, 1] has the sigmoid shape. It is a nonlinear S-shape like 

 
 
 
 
 
 
 

A natural choice for E(y)  would be the cumulative distribution function of a random variable. In particular, the logistic  

distribution, whose cumulative  distribution function is the simplified  logistic function yields a good link  and is given by 
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Linear predictor and link functions 
 
The systematic component in E(y) is the linear predictor and is denoted as 
 
 
 
 
The link function in generalized linear model relates the linear predictor       to the mean response      . 
 
Thus 
 
 
 

In the usual linear models based on the normally distributed study variable,  the link                    is used  and is called as 

identity link. A link function maps the range of      onto the whole real  line, provides good empirical approximation and 

carries meaningful interpretations in real applications. 

  

In case of logistic regression, the link function is defined as 

   

 

 

This transformation is called as the logit transformation of probability       and            is called as odds.  

 

The link     is also called as log-odds. This link  function is obtained as follows: 
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Note:  Similar to logit function, there  are other functions also which have  same shape as of logistic function. These functions 

can also be  transformed  through     .   

 

There are two such popular functions – probit transformation and complementary log-log transformation. The probit 

transformation is based on the transformation of       using the cumulative distribution function of normal distribution and 

based on this is the probit regression model. 

  

The complementary log-log transformation of      is                           . 
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Maximum likelihood estimation of parameters 

Consider the general form of the logistic regression model 

   

where yi’s are independent Bernoulli random variable with parameter       with 

 

 

 

The probability density function of yi is  
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The likelihood function is 
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so 

 

 

Suppose  repeated observations are available at each level of the x-variables. Let yi be the numbers of 1’s observed  for ith 

observation and  ni  be the  number of trials at each  observation. Then 

   

 
 
The maximum likelihood estimate       of       is obtained by the numerical maximization. 
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If                    is known, then asymptotically  

  

 

  

 

After obtaining     , the linear predictor is estimated by 

  
  
The fitted value is 
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