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Interpretation of parameters 
 
To understand the interpretation of the related          in the logistic regression model, first consider a simple case  with only 

one variable as 

  

After fitting of model,                     are obtained as the estimators of                  respectively.  Then the fitted linear predictor 

at  x = xi  is 

 
   
which is the log-odds at  x = xi . The fitted value at  x = xi + 1 is  
 
 

which is the log-odds at  x = xi + 1. 

Thus 

 

 

 

 

 

 

 

 

' sβ

0 1( ) .x xη β β= +

0 1
ˆ ˆβ βand 0 1β βand

0 1
ˆ ˆˆ( 1) ( 1)i ix xη β β+ = + +

0 1
ˆ ˆˆ( )i ix xη β β= +

[ ] [ ]
1

1

ˆ ˆ ˆ( 1) ( )

ln ( 1) ln ( )

1)ln
( )

1) ˆexp( ).
( )

odds odds

odds(
odds

odds(
odds

i i

i i

i

i

i

i

x x

x x

x
x

x
x

β η η

β

= + −

= + −

 +
=  

 

+
⇒ =



3 

This is termed as odd ratio which is the estimated increase in the probability of  success when value of explanatory 

variable changes by one unit. 

  

When there are more than one explanatory variables in the model, then the interpretation of           is similar as in the case 

of single  explanatory variable case.  The odds ratio  is exp        associated with explanatory  variable xj  keeping  other  

explanatory variables constant. This  is similar to the interpretation of       in multiple linear regression model. 

  

If  there is  a m  unit change is the explanatory variable, then the  estimated increase in odds ratio is  exp  
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Test of hypothesis 
The test of hypothesis for the parameters in the  logistic regression model is based on asymptotic theory.  It is a large 

sample test based  on likelihood ratio test statistic termed as deviance.  
 
A model with exactly  p  parameters that perfectly fits to the sample data is termed as saturated model. 
  
The statistic that compares the log-likelihoods  of fitted and saturated models  is called as model deviance.  It is  defined 

as 

    

where             is the log-likelihood and      is the maximum likelihood estimate of     . 

In case of logistic regression model, yi = 0  or 1 and      ’s  are  completely unrestricted. So the likelihood  will be maximum 

at                and the maximum value of  L(saturated model) is  

            

  

Let       be the maximum likelihood estimator of    , then log-likelihood  is maximum at            ,  and  

  

 

 

Assuming that the logistic regression function is correct, the large sample  distribution of likelihood ratio test  statistic          

is approximately distributed as                 , when  n  is large. 
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Assuming that the logistic regression function is correct, the large sample  distribution of likelihood ratio test  statistic          

is approximately distributed as                 , when n is large. 

 

Large value of            implies model is incorrect.  Small value of           implies that model is  well fitted and is as good as the 

saturated model. Note that generally the fitted model will be having smaller  number of parameters than the saturated 

model that is based on all the parameters. Thus at          level of significance. 
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The usual regression model is based on the assumption that the random errors are normally distributed  and hence the 

study variable is normally distributed. In case, the study variable is  a dichotomous variable taking only binary  values, viz., 

0 and 1, then logistic regression is used where study variable follows a Bernoulli distribution. 

 

Similarly, we consider the situations  where the  study variable is a count variable that represents the count of some 

relatively  rare event. For example, the study variable  can be a count of patients with some  rare type of disease with one 

or more explanatory variables like age of variables, hemoglobin level, blood sugar etc.  In an another example, the study  

variable can be the number of defects  in the car engine of a reputed car  maker which again depends on one or more 

explanatory variables. 
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Assumption of normal or Bernoulli distribution for study variable will not be appropriate in such situations.  The Poisson 

distribution describes such situations more appropriately. So we assume that the study  variable yi is a count variable and  

follows a Poisson distribution with parameter           as 

  

 

Note that the mean and variance of a Poisson random variable are same and related as 
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We can define a link function g that relates to the mean of study variable to a linear predictor as 
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where  x1i  = 1  for all  i = 1, 2, …,n will denote the intercept term. 

The identity link function is 

   
 
 
The log-link function is  
   

   

  

Note that in identity link function, the predicted values of y can be negative  but in log-link function, the  predicted values of 

y are nonnegative. 
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Based on a sample                       , we can write 

   

and express the Poisson regression model as 

   

where          are disturbance  terms. 
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Maximum likelihood estimation of parameters 
 
We use the method of maximum likelihood estimation to estimate the parameters  of the  Poisson regression model.  The 

likelihood  function is based on Poisson distribution  with parameter       and then       ‘s  are estimated through the link  

function. 

The likelihood function of                          is 
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The parameter      can be related to          through the link function 

   

After choosing the proper link function, the log-likelihood function can be  maximized using some numerical optimization 

techniques for a given set of data.  Let       be the obtained maximum likelihood estimator of     .   
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Then the fitted Poisson regression model is 

1 ' ˆˆ ( ).i iy g x β−=

In case of  identity link, 

   

In case of  log-link, 
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Testing of hypothesis  
The test of hypothesis is case of Poisson  regression model is similar to the case of  logistic regression model.  It is 

constructed  as model deviance which is based on large sample test  using likelihood ratio test statistic. 

The model deviance is defined as 

     

where saturated model is based on all the  p parameters of the model and it fits to the data perfectly. 

  

The statistic              has approximately                   distribution when n  is large.  The large value of              indicates that  

the model is not correctly fitted to  the given data whereas small  values of               indicate that model  is well fitted to the 

given set of  data in the sense that it is as good  as the saturated model. 

  

If                                 fitted model is adequate 

and  if                                fitted model is not adequate 

at         level of significance. 
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