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Maximum likelihood estimation

In the model Y = X B+ ¢, it is assumed that the errors are normally and independently distributed with constant variance o’

ie.,
&~ N(0,5°I).
The normal density function for the errors is
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The likelihood function is the joint density of &;,¢&,,...,&, given as
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Since the log transformation is monotonic, so we maximize InL(5,5°) instead of L(3,5?).

L (y-XB)(y-Xp).

207

In L(8,0?) :—gm(zmz)—



The maximum likelihood estimators (m.l.e.) of B and o are obtained by equating the first order derivatives of InL(f5,c°)

with respectto £ and o to zero as follows:
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The likelihood equations are given by

X'XB=X"y

5 ==(y-Xp) (y- X ).

Since rank(X) =k, so that the unique m.l.e. of 8 and o’ are obtained as
B=(X"X)"X"y
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Next we verify that these values maximize the likelihood function. First we find
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Thus the Hessian matrix of second order partial derivatives of In L(8,o?) with respect to f and o’ is

0% InL(B, o2 0% InL(B, o2
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which is negative definite at [ = B and o’ =35>

This ensures that the likelihood function is maximized at these values.

Comparing with OLSESs, we find that

i. OLSEandm.le.of f# are same. Som.l.e. of [ is also an unbiased estimator of p.

ii. OLSE of o-2 is 52 which is related to m.l.e. of 02 as 6% =——¢°,

n

So m.l.e. of 0'2 is a biased estimator of 02.



Consistency of estimators

(i) Consistency of b

Under the assumption that Ilm( j = A exists as a nonstochastic and nonsingular matrix (with finite elements), we
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This implies that OLSE converges to ﬂ in quadratic mean.
Thus OLSE is a consistent estimator of /3.

This holds true for maximum likelihood estimators also.

Same conclusion can also be proved using the concept of convergence in probability.



An estimator én converges to @ in probability if

lim Pﬂén —9‘25J:0 forany 6 >0
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and is denoted as
plim(@,) = 6.

The consistency of OLSE can be obtained under the following weaker assumptions:

. (X'X
0] pllm(Tj =A. exists and is a nonsingular and nonstochastic matrix.
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Thus b is a consistent estimator of /. The same is true for maximum likelihood estimator also.



(ii) Consistency of s2

Now we look at the consistency of s2 as an estimate of o’ . We have
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distributed random variables with mean &2 Using the law of large numbers
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Thus s2 is a consistent estimator of ¢>. The same holds true for maximum likelihood estimator also.



Cramer-Rao lower bound

Let 6=(B,0°)". Assumethat both f and o are unknown. If E(é):e, then the Cramer-Rao lower bound for @ is

greater than or equal to the matrix inverse of
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is the Cramer-Rao lower bound matrix of £ and o’



The covariance matrix of OLSEs of £ and o’ is

o’ (X' X)™ 0
ZOLS: 26"
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which means that the Cramer-Rao bound is attained for the covariance of b but not for s2.
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