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 Plots of residuals in time sequence 
If the time sequence in which the data were collected is known, then the residuals can be plotted against the time order. We 

proceed as follows: 

  Consider the residuals on Y - axis and time order on X – axis. This is the same way as we have plotted the residuals 

against       In place  of        , just use the time order. 

  Interpretation of the plots is same as in the case of plots of residuals  versus         .  This is as follows. 

  

If all the residuals are contained in a  

  horizontal band and the residuals  fluctuate more or less in a random fashion within this band, then it is desirable and  

indicates that there are no obvious model deflects. 

 

  Outward opening or inward opening funnel indicates that the  variance is not constant but  changing with time. 

 

  Double bow pattern or nonlinear pattern  indicates that the assumed relationship is nonlinear. In such a case, the linear 

or quadratic terms in time should be added to the model. 

  

The time sequence plot of residuals may indicate that the errors at one time period are  correlated with those at other time 

periods. The correlation between  model errors at different time periods  is called autocorrelation.  

  

If  we  have a plot like following, then it indicates the presence of autocorrelation. 

ˆiy ˆiy
ˆiy
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Following type of figure indicates the presence of  

positive autocorrelation: 

 

 

 

 

 

 

 

Following type of figure indicates the presence of  

negative autocorrelation: 

 

 

 

 

 

 

The methods to detect the autocorrelation and to deal with the time dependent data are available under time series 

analysis. Some  measures are discussed  further in the module on autocorrelation 
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Partial regression and partial residual plots 
Partial regression plot (also called as added variable plot or adjusted variable plot) is a variation of the plot of residuals 

versus the predictor.   

It helps better to study the marginal relationship of an explanatory  variable given the other variables that are in the model.  

A limitation  of the plot of residuals versus an explanatory variable is that it may not completely show the correct  or 

complete marginal effect of an  explanatory variable given the other  explanatory variables in the  model.  

The partial regression plot  in helpful in evaluating whether  the relationship between study and explanatory variables is 

correctly  specified.   

They provide the information about the marginal usefulness of a variable that is not currently in the model. 

In partial regression plot 

 Regress y on all the explanatory variable except the jth  explanatory variables Xj and  obtain the residuals  e[y/X(j)], say  

where  X(j)  denotes the X - matrix with  Xj removed . 

 Regress Xj  on all other explanatory variables and obtain the residuals e[ Xj / X(j)],  say 

 Plot both  these residuals  against e[ Xj / X(j)]. 

 

These plots provide the information about the nature of the marginal  relationship for jth  explanatory  variable Xj under 

consideration. 

 

If  Xj  enters into the model linearly, them the partial regression plot should  show a linear relationship, i.e., the  partial 

residuals will fall along a straight line with a nonzero slope. 
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where                                                                                            is the H-matrix based on          .   

Premultiply                       by                   and noting that                             0,  we have 

 

 

 

 

where     

This suggests that a partial regression plot which is a plot between                     and                         (like between y and X) 

should have slope       .  Thus if  Xj enters the regression in a linear fashion, the partial regression plot should show linear 

relationship passing through origin.  For example, like 
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If  Xj  is a candidate variable which is considered for inclusion in  the  model, then a horizontal band on the regression plot 

indicates that there is no additional  useful information in Xj  for predicting  y. This indicates that        is nearly zero. 
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If the partial regression plot shows a curvilinear band, then higher order terms in Xj  or a transformation may be helpful. 
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Example: Consider a model 

   

We want to know about the nature of marginal relationship for  X1 and also want to know whether the relationship between  

y  and  X1  is correctly specified or not?  

  

To obtain the partial regression plot. 

 Regress  y  on  X2  and obtain the  fitted values and residuals 

 

 

 

 Regress X1  on  X2 and find the residuals 

 

 

 

 Plot                   against the X1  residuals                   . 

 If  X1 enters into the model linearly, then the plot will look like as follows: 
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 If  X1   is a candidate variable which is considered for inclusion in the model, then a horizontal band on the regression plot 

indicates that there  is no additional useful information for predicting y. 
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 The slope of this line is the regression coefficient of X1 in the multiple linear regression model. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 If the partial regression plot shows a curvilinear band, then higher order terms in  X1  or a transformation X1 may be 
helpful. 
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Some comments on partial regression plots   

1. Partial regression plots need  to be used with caution as they only suggest possible relationship between study and 

explanatory variables. The plots may not give information about the proper form of the relationship of several variables 

that are already in the model but not correctly specified.  

 

     Some alternative forms of relationship between study and explanatory variables should also be   examined with several  

     transformations. 

 

     Residual plots for these models  should also be examined to identify the best relationship  or transformation. 

 

2. Partial regression plots will not, in general, detect interaction effect among the regressors. 

 

3. Partial regression plots are affected by the existence of exact relationship among explanatory variables (termed as 

problem of multicollinearity) and the  information about the relationship between study and explanatory variables may 

     be incorrect. 

 

 

 

 

 

In such cases, it is better to construct a scatter plot of explanatory variables like Xi verus Xj. If they  are highly 

correlated, multicollinearity is introduced and properties of  estimators like ordinary least squares of regression 

coefficients are disturbed. 
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Partial regression 
 

A residual plot closely related to the partial regression plot is the partial residual plot. It is designed to show the relationship 

between the study and explanatory variables. 

  

Suppose the model has k explanatory  variable and we are interested in jth explanatory variable Xj.  Then   

where X( j )  is the X - matrix with X j  removed. The model is 

 

 

where          is the vector of all                     except      .  The fitted model is  

 

 

or   

where e  is the residual based on all k  explanatory variables. 

 

Then partial residual for                             is given by 
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Partial residuals plots   

 

A residual plot closely related to the partial regression plot in the partial  residual plot. It is designed to show  the 

relationship between the study and explanatory variables. 

  

Suppose the model has k explanatory variables                          The partial residuals for Xj are  defined as 

   

 

where ei  are the residuals from the model containing all the k explanatory  variables and       is the estimate of  jth 

regression coefficient. 

 

When ei
*(y / Xj) are plotted against xij,  the resulting display has slope       . The interpretation of partial residual plot is very 

similar to that  of the partial regression plot. 
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Statistical tests on residuals 
We may apply certain statistical tests to the residuals to obtain quantitative measure of some of the model inadequacies.  

They are not widely used. In many  applications, residual plots are more informative than the corresponding tests.  

However, some residual plots do require some skill and experience  to interpret. In such cases, the statistical tests  may 

prove useful. 
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The PRESS statistic   

 

The PRESS residuals are defined as 

   

where          is the predicted value of the ith  observed study variable based on a model fit to the remaining  (n - 1)  points.  

The  large residuals are useful in identifying those observations where the model does not fit well or the observations for 

which the model is likely to provide poor predictions for future values. 

The prediction sum of squares is defined as the sum of squared PRESS  residuals and is called as PRESS statistic as 

 

 

 

   

The PRESS statistic is a measure of how well a regression model will perform in predicting new data. So this is also a 

measure of model quality. A model with small value of PRESS is desirable. This can also be used for comparing regression 

models. 

R2  for prediction based on PRESS 
The PRESS statistic can be used to compute an R2-like statistic for prediction, say 
 
where SST is the total sum of squares. This statistic gives some indication of the predictive capability of the  regression 

model. For example, if  R2 = 0.89, then it indicates that the model is expected to explain about 89% of the variability in 

predicting new observations. 
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Detection and treatment of outliers   
 
 An outlier is an extreme observation. 

 Residuals that are considerably larger  in absolute value than the others, say, 3 or 4 times of standard deviation from the 

mean indicate potential outliers in y-space. This  idea is derived from the 3-sigma or 4-sigma limits. 

 Depending on their location, outliers can have moderate to severe effects on the regression model. 

 Outliers may indicate a model failure for these points. 

 Residual plots against        and normal probability plots help in identifying outliers. Examination  of scaled residuals, e.g., 

studentized and R-student residuals are more helpful as they have mean zero and variance one. 

 Outliers can also occur in explanatory variables in X-space. They can also affect the regression results. 

 Sometimes outliers are “bad” values occurring as a “a result of unusual  but explainable events. For example, faulty 

measurements, incorrect  recording  of data, failure of measuring instrument etc. 

 Bad values need to be discarded  but should have strong nonstatistical evidence that the outlier is a  bad value before it 

is discarded. Discarding bad values is desirable because least squares pull the fitted  equation toward the outlier. 

 Sometimes outlier is an unusual but perfectly plausible observation. If such observations are deleted, then it  may give a 

false impression of improvement in fit of equation. 

 Sometimes the outlier is more important than the rest of the data because it may control many key model properties. 

 The effect of outliers on the regression model may be checked by dropping these points and refitting the regression  

equation. 

 The value of  t - statistic,  F - statistic, R2  and residual mean square may be sensitive to outliers. 

ˆiy
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