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The graphical methods help in detecting the violation of basic assumptions in regression analysis.  

 

Now we consider the methods and procedures for building the models through data transformation when  some of the 

assumptions are violated. 
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Variance stabilizing transformations 
 
In regression analysis, it is assumed that the variance of disturbances is constant, i.e.,  

 

Suppose this assumption is violated.  

 

A common reason for such isolation is that the study variable follows a probability distribution in which the variance is 

functionally related to mean. 

  

For example, if study variable (y) in the model is Poisson random variable in a simple linear regression model, then  its 

variance is same as mean. Since  mean  of  y  is related to explanatory  variable x  so the variance of  y  will be proportional 

to  x.  In such cases, variance stabilizing transformations are useful. 

  

In another example, if  y  is proportion, i.e.,                 then in such cases the variance of  y  is proportional to     

In such case, the variance – stabilizing transformation is useful.  

 

2( ) , 1, 2,..., .iVar i nε σ= =

0 1iy≤ ≤ ( )[1 ( )].E y E y−



Some commonly used variance-stabilizing transformations in the order of their strength are as follows: 
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After making the suitable transformation, use y* as a study variable in respective case. 

 

The strength of a transformation depends on the amount of curvature present in the curve between study and explanatory 

variable. The transformation mentioned here range  from relatively mild to relatively strong.  The square root transformation  

is relatively mild and  reciprocal transformation is relatively strong. 
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In the presence of nonconstant variance, the OLSE will remain unbiased but will loose the minimum variance property. 

  

When the study variable has been transformed as  y*, then the predicted values are in the transformed scale.  It is often 

necessary to convert the predicted values back to the original units (y).  

  

When inverse transformation is directly applied to the original values, then it gives an estimate of the median of the 

distribution of study variable instead   of mean. So one needs to be careful while doing so. 

  

Confidence interval and prediction interval may be directly converted  from one metric to another.  Reason being that the 

interval estimates are percentile of a distribution and  percentiles are unaffected by transformation. One may note that the 

resulting intervals may or may not  remain the shortest possible intervals. 

In general, a mild transformation applied  when the minimum and maximum values do not range much (e.g. ymax / ymin< 2,3)  

and such transformation has little effect on the curvature.  

 

On the other hand when the minimum and maximum vary much then, a strong transformation is needed that will have a 

strong effect on the analysis. 
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Transformations to linearize the model  
The basic assumption in linear regression analysis is that the relationship between study variable and explanatory variables 

is linear.  

 

Suppose this assumption is violated. Such violation can be checked by scatter plot matrix, scatter diagrams, partial 

regression plots, lack of fit test etc.  

 

In some cases, a nonlinear model can be linearized by using  a suitable transformation. Such nonlinear models are called 

intrinsically or transformably linear.  

 

The advantage of transforming the nonlinear function into linear function is that the statistical tools are developed for the 

case of linear regression model.  For example, exact tests for test of hypothesis, confidence interval estimation etc. are 

developed for the case of linear regression model. Once the nonlinear function is transformed to a linear function, all such 

tools can be readily applied  and there is no need to develop them separately.  

 

Some linearizable functions are as follows: 
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then the possible linearizable function is of the form 

   

Using the transformation                                      i.e.,  by taking log on both sides, the model becomes 

 

 

 

where                       and the model becomes a linear model.  Note that the parameter        changes to               in the 

transformed model. 

1
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0 1log log logy xβ β= +
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2.    If the curve between y  and x  is like as follows 

 

 

 

 

 

 

 

 

 

 

 

 

then the possible linearizable function is of the form   

 

   

Taking loge (ln)  on both sides, 

    

                     

  where    

 So                   is the transformation needed in this case.  The intercept term         becomes              in the transformed 

model. 
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0 1
*
0 1
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3.   If  the  curve  between y  and  x  is like as follows 

 

 

 

 

 

 

 

 

 

 

 

 

 then the possible linearizable function is of the form 

    

      which can be written as 

    

      using the transformation  
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* log .x x=
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4.   If  the  curve  between y  and  x  is like as follows 

 

 

 

 

 

 

 

 

 

 

 

 

then the possible linearizable function is of the form 

which can be written as 

 

or     

 

which becomes a linear modelby using the transformation   
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 With the observed behaviour  of the plots, one can choose any such curve and use the linearized form of the 

function. 

 When such transformations are used, many times the form of       also gets changed. For example, in case of  

  

  

 

             or        

 

    This implies that the multiplicative error in original model is log normally distributed in the transformed model. Many 

times, we ignore this aspect and continue to assume that the random errors are still normally distributed. In such 

cases, the  residuals from the transformed model  should be checked for the validity of the assumptions. 

 

 When such transformations are used, the  OLSE  has the  desired properties with  respect to the transformed data 

and not the original data. 

ε

0 1exp( )y xβ β ε=

0 1ln ln lny xβ β ε= + +

* *
0 1* .y xβ β ε= + +
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