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The complete regression analysis depends on the explanatory variables present in the model. It is understood in the  

regression analysis that only correct and important explanatory  variables appear in the model. In practice,  after ensuring 

the correct functional  form of the model, the analyst usually  has a pool of explanatory variables   which possibly influence 

the process or  experiment.  Generally, all such  candidate variables are not used in the  regression modeling but a subset 

of  explanatory variables is chosen from this  pool.  How to determine such an  appropriate subset of  explanatory variables  

to be used in regression is called  the problem of variable selection. 

While choosing a subset of explanatory variables, there are two possible options: 

1. In order to make the model as realistic as possible,  the analyst may include as many as possible explanatory  

     variables. 

2.  In order to make the model as simple as possible, one may include only fewer number  of explanatory variables. 
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Both the approaches have their own consequences. In fact, model building and subset selection have contradicting 

objectives. When large number of variables  are included in the model, then these factors can influence the prediction of 

study variable y.  On the other hand, when small number of  variables are included then the predictive  variance of    

 decreases.  Also,  when the observations on more number  are to be collected, then it involves more cost, time, labour etc.  

A compromise between these consequences is striked  to select the “best regression equation”.  

 

ŷ



The problem of variable selection is addressed assuming that the functional  form of the explanatory variable, e.g.,            

 etc., is known and  no outliers or influential observations are  present in the data.  Various statistical tools like residual 

analysis, identification of influential or high leverage  observations, model adequacy etc. are linked  to variable selection.  In 

fact, all these  processes should be solved  simultaneously. Usually,  these steps are iteratively employed. In the first step, a  

strategy for variable selection is opted  and model is fitted with selected variables. The fitted  model is then checked for the  

functional form, outliers, influential  observations etc.  Based on the outcome, the model is re-examined and selection of  

variable is reviewed again. Several  iterations may be required before the final adequate model is decided.  

3 

2 1, , logx x
x

There can be two types of incorrect model specifications. 

1. Omission/exclusion of relevant variables. 

2. Inclusion of irrelevant variables. 

Now we discuss the statistical  consequences arising from both the situations. 
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1. Exclusion of relevant variables 

In order to keep the model simple, the analyst may delete some of the  explanatory variables which may be  of importance 

from the point of view of theoretical  considerations. There can be several  reasons behind such decision, e.g.,  it may be 

hard to quantity the  variables like taste, intelligence etc.  Sometimes it may be difficult to take  correct observations on the 

variables  like income etc.  

 

Let there be k candidate explanatory variables out of which suppose r  variables  are included and (k – r) variables are to be 

deleted from the model. So partition  the X and      as 
 
 
 
 
The model                                                        can be expressed as   
   
 
which is called as full model or true model. 
  
After dropping the r explanatory variable in the model, the new model is 
   
 
which is called as misspecified model or false model. 
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Applying OLS to the  false model, the OLSE of      is 

   

The estimation error is obtained as follows: 
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which is a linear function of      , i.e., the coefficients of  excluded variables. So        is biased, in general. The bias vanishes 

if                   i.e., X1  and  X2 are orthogonal or uncorrelated. 

The mean squared error matrix of  b1F  is 

 

 

   

  

 

 

So efficiency generally declines. Note that the second term is the conventional form of MSE. 
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The residual sum of squares is  

 

 

where 

 

 

Thus 

  

 

   

  

 

Thus  s2  is a biased estimator of       and  s2 provides an over estimate of       .  Note that even if                   then also  s2 

gives an overestimate  of      .  So the statistical inferences based  on this will be faulty. The t-test and confidence region will 

be invalid in this case. 
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If the response is to be predicted at                      then using the  full model, the predicted value is  
  
  
with 
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When subset model is used then the predictor is 

 

and then 

 

 

 

 

 

 

Thus      is a biased predictor of  y.  It is unbiased when                  The MSE of predictor is 

  . 

Also 

  

provided                        is  positive semidefinite. 
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1ŷ '
1 2 0.X X =

( )22 ' ' 1 ' '
1 1 1 1 1 1 2 2ˆ( ) 1 ( ) .MSE y x X X x x xσ θ β− = + + − 

1ˆ ˆ( ) ( )Var y MSE y≥

'
2 2 2

ˆ( )V β β β−



8 

2. Inclusion of irrelevant variables 
 
Sometimes due to enthusiasm and to make the model more realistic, the analyst may include some explanatory variables 

that are not very relevant  to the model. Such variables may  contribute very little to the explanatory  power of the model. 

This may  tend to reduce the degrees of freedom (n - k) and consequently the validity  of inference drawn may be 

questionable. For example, the value of coefficient of determination will increase indicating that the model  is getting better 

which may not really be true. 

Let the true model be  

   

which comprise  k  explanatory variable.  Suppose now r additional explanatory  variables are added to the model and  

resulting model becomes 

   

where  Z  is a           matrix of  n  observations on each of the r explanatory variables and      is            vector of regression 

coefficient associated with Z and       is  disturbance term. This model is termed as false model. 

Applying OLS to false model, we get 
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Premultiply equation (2) by                       we get 

                                             

Subtracting equation (1) from (3), we get 
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The estimation error of  bF  is  

 

 

 

Thus 

 

so bF  is unbiased even when some irrelevant variables are added  to the model. 

 

The covariance matrix is 
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If  OLS is applied to true model, then 

   

with   

   

  

To compare bF  and  bT we use the following result. 

  

Result:  If A and B are two positive definite matrices then A – B  is  atleast positive semi definite if                    is also 

atleast positive  semi definite. 
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which is atleast  positive semi definite  matrix. This implies that the efficiency declines unless X’Z = 0.  If X’Z = 0, i.e., X  and 

Z are orthogonal, then both are equally efficient. 

 

The residual sum of squares under false model is  

 

1( ' ) 'Tb X X X y−=

( )TE b β=
2 1( ) ( ' ) .TV b X Xσ −=

1 1B A− −−

1

1

1 1

1

1

( ' )

( ' )

' '

' ' ' ( ' ) '

' ( ' ) '

Z

Z

A X H X

B X X

B A X X X H X

X X X X X Z Z Z Z X

X Z Z Z Z X

−

−

− −

−

−

=

=

− = −

= − +

=

'
res F FSS e e=



11 

where 
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Thus  

 

 

 

 

 

 

 

 

 

 

So                  is an unbiased estimator of       . 

 

A comparison of exclusion and inclusion of variables is as follows: 
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 Exclusion type Inclusion type 

Estimation of coefficients Biased Unbiased 

Efficiency Generally declines Declines 

Estimation of disturbance 

term 
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Conventional test of 

hypothesis and confidence 

region 

Invalid and faulty inferences Valid though erroneous 
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