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Maximum likelihood estimation
In the model it is assumed that the errors  are normally and independently distributed  with constant variance   

i.e., 

The normal density function for the errors is

The likelihood function is the joint density of  given as

Since the log transformation is monotonic, so we maximize  instead of .
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The maximum likelihood estimators (m.l.e.) of   and       are obtained by equating the  first order derivatives of  

with respect to  and       to zero as follows:

The likelihood equations are given by
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Since                        so that the unique m.l.e. of       and       are obtained as

Next we verify that these values maximize the likelihood function. First we  find
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Thus the Hessian matrix of second order partial derivatives of   with respect to  and        is

which is negative definite at and               . 

This ensures that the likelihood function is maximized at  these values.

Comparing with OLSEs, we  find that

i. OLSE and m.l.e. of are same.  So m.l.e. of   is also  an unbiased estimator of  .

ii. OLSE of  is  which is related to m.l.e. of   as                           So m.l.e.  of   is a biased estimator of      .
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Consistency of estimators

(i) Consistency of b

Under the assumption that   exists as a nonstochastic and nonsingular matrix (with finite elements), we 

have

This implies that OLSE converges to in quadratic mean. 

Thus OLSE is a consistent estimator of . 

This  holds true for maximum likelihood estimators  also.

Same conclusion can also be proved using the concept of  convergence in probability. 
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Since

So

Thus b is a consistent estimator of . The same is true for maximum likelihood estimator also.
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An estimator converges to in probability if

and is denoted as

The consistency of OLSE can be obtained under the following weaker assumptions:

(i) exists and is a nonsingular and nonstochastic matrix.

(ii)
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(ii) Consistency of s2

Now we look at the consistency of s2 as an estimate of       . We have

Note that consists of terms is a sequence of independently and identically

distributed random variables with mean . Using the law of large numbers

Thus s2 is a consistent estimator of . The same holds true for maximum likelihood estimator also.
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Cramer-Rao lower bound
Let  .  Assume that  both  and         are unknown. If                , then the Cramer-Rao lower bound for  is  

greater than or equal to  the matrix  inverse of

Then

is the Cramer-Rao lower bound matrix of   and 
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The covariance matrix of OLSEs of   and        is

which means that the Cramer-Rao bound is attained for the covariance  of  b but not for s2.
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