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Testing of hypothesis 
There are several important questions which can be answered through the test of hypothesis concerning the regression 

coefficients.  

 

For example 

1. What is the overall adequacy of the model? 

2. Which specific explanatory variables  seems to be important?   

etc. 

 

In order to the answer such questions, we first develop the test of hypothesis  for a general framework, viz., general linear 

hypothesis.  

 

Then several  tests of hypothesis can be derived as  its special cases.  

 

So first we discuss the test of a general linear hypothesis. 
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Some special cases and interesting example of                        are as follows: 

(i)   

          Choose                                                             where 1 occurs at the ith position is R. 

          This particular hypothesis explains whether Xi has any effect on the linear model or not. 

 

(ii)   

            

          Choose  

Test of hypothesis for 

We consider a general linear hypothesis that the parameters in       are contained in a subspace of parameter space for 

which                  where R  is a  (J x k) matrix of known elements  and r is a (J x 1)  vector of known elements. Note that the 

matrix  X’X  is of full rank. In general, the null hypothesis 

 

is termed as general linear hypothesis and 

   

is the alternative hypothesis. 

We assume that rank (R) = J,  i.e., R  is  of full column rank, so that there is no linear dependence in the hypothesis. 

0 :H R rβ =

β

,R rβ =

0 :H R rβ =

1 :H R rβ ≠

0 :H R rβ =

0 : 0iH β =

1,  0,  [0,0,...,0,1,0,...,0]J r R= = =

0 3 4 0 3 4: : 0orH Hβ β β β= − =

1,   0,   [0,0,1, 1,0,...,0]J r R= = = −
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(iii)   

or    

 

           Choose   

 

(iv)   

            Choose   
 
(v) 
  

  

 

 

 

 

0 3 4 5:H β β β= =

0 3 4 3 5: 0, 0H β β β β− = − =

0 0 1 1  0 0 ... 0
2,   (0,   0) ',   .

0 0 1   0 1  0 ... 0
J r R

− 
= = =  − 
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0 2 3

1

( 1)

: ... 0

1
(0, 0,...,0) '

00 1 0 ... 0
00 0 1 ... 0

.

0 0 0 ... 1 0

Choose

  
    
    
   
    

k

k

k k

H

J k
r

I
R

β β β

−

− ×

= = = =

= −
=

  
  
  = =
  
  

   

     

This particular hypothesis explains the goodness of fit. It tells whether    has linear effect or not and are they of any 

importance. It also tests whether                          have any  influence in the determination of y or not.   Here              is 

excluded because this involves additional implication that the mean level of y is zero. Our main concern is  to know whether 

the explanatory variables help  in explaining  the variation in  y  around its  mean value or not. 
  
We develop the likelihood ratio test for  

iβ

2 3, ,..., kX X X 1 0β =

0 : .H R rβ =
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Likelihood ratio test 
 
The likelihood ratio test statistic is 

   

 

where      denotes the whole parametric space and       denotes the sample space. 

 

If both the likelihoods are maximized, one constrained and the other unconstrained, then the value of the unconstrained will 

not be smaller than  the value of the constrained. Hence    

First we discus the likelihood ratio test for a simpler case when   

This will give us better  and detailed understanding for the minor details and then we generalize it for             , in general. 

2

2

ˆmax ( , | , ) ( )
ˆmax ( , | , , ) ( )

L y X L
L y X R r L

β σλ
β σ β ω

Ω
= =

=

Ω ω

1.λ ≥

0 0, . ., . and   kR I r i eβ β β= = =

R rβ =

 
Likelihood ratio test for                   
 
Let the null hypothesis related to          vector       is 

   

where        is specified by the investigator. The elements of        can take on any value, including zero.  

The concerned alternative hypothesis is 

   

Since                            in                                                             Thus the whole parametric space and sample space are   

                 respectively given by 

 

 

0 0:H β β=

1k × β 0 0:H β β=

0β 0β

1 0: .H β β≠

2~ (0, )N Iε σ 2, so ~ ( , ).y X y N X Iβ ε β σ= +
and ωΩ

{ }
{ }

2 2

2 2
0

: ( , ) : , 0, 1, 2,...,

: ( , ) : , 0 .

i i kβ σ β σ

ω β σ β β σ

Ω −∞ < < ∞ > =

= >
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The unconstrained likelihood under         is 

 

 

  

This is maximized over       when 

 

 

   

 

where       and         are  the maximum likelihood estimates of       and         which are the values  obtained by maximizing 

the likelihood function. Thus  

 

 

 

 

 

 

 

 

Ω
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The constrained likelihood under       is 
 
 
 
 
 
 
Since        is known, so the constrained likelihood function has an optimum variance estimator 
   
 
 
 
 
 
 
 

The likelihood ratio is 
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where 

 

 

is the ratio  of the quadratic forms.  Now we simplify  the numerator of        as follows: 

 

 

 

 

 

Thus 

 

 

 

 

 

 

 

where  
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Distribution of ratio of quadratic forms 
 
Now we find the distribution of the quadratic forms involved in       to find the distribution  of       as follows: 

  

 

 

 

 

  

 

 

 

Result:  Let  Z  is a  n x 1  random vector that is distributed as                    and  A is any  symmetric idempotent n x n  

matrix  of rank p then                              Let  B  is  another n x n  symmetric idempotent  matrix  of  rank q,  then     

 

If  AB = 0 then Z’AZ is distributed independently of  Z’BZ. 

So using this result, we have  
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Further, if  H0 is true, then               Substituting                in this expression, we have the quantity which is same as the 

numerator of      .  The numerator of       can be rewritten in a general  form for any       as  

 

 

 

where H  is an  idempotent matrix with rank k.  

Thus using this  result,  we have  

   

 

 

Furthermore, the product of the quadratic form matrices in the numerator               and in the denominator                  of        

is 

 

 

and hence the        random variables  in numerator and denominator of        are independent.  Dividing each of the     

random variable by their respective degrees of freedom, we get 

0.β β=

0λ 0λ

1 1

1

( ) ' ' ( ) ' ( ' ) ' ( ' ) '

' ( ' ) '

'

X X X X X X X X X X

X X X X

H

β β β β ε ε

ε ε

ε ε

− −

−

− − =

=

=

 

1
2

2 2

' ' '( ' ) ' ~ ( ).H X X X X kε ε ε ε χ
σ σ

−

=

( ' )Hε ε ( ' )Hε ε 0λ

1 1 1 1 1( ' ) ' ( ' ) ' ( ' ) ' ( ' ) ' ( ' ) ' 0I X X X X X X X X X X X X X X X X X X X X− − − − − − = − = 

2χ 2χ0λ

0β β=

β



11 

  

 

 

 

 

 

 

 

 Note that 

 

   

Numerator of       : Difference between the restricted and unrestricted error sum of   squares. 

  

The decision rule is to reject                     at       level of significance  whenever  

 

   

where                       is the upper critical points on the central F-distribution with k and  n - k  degrees of freedom. 
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