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Analytical methods for selecting a transformation on study variable  

 
The Box-Cox method 
Suppose the normality and/or constant variance of study variable y  can be corrected through a power transformation 

on y.  This means  y  is  to be transformed as        where       is the parameter to be determined. For example, if           

then the transformation is square root and         is used as study variable in place of y. 

Now the linear regression model has parameters                         Box and Cox method tells how to estimate 

simultaneously the       and parameters of the model using the method of maximum likelihood. 

 

Note that as    approaches zero,        approaches to  1. So there is  a problem at            because  this makes all the 

observation y to be unity. It is  meaningless  that all the observation on study variable are constant.  So there is a 

discontinuity at            .  One approach to solve this difficulty is to use               as a study variable.   

 

 

 

Note that as                                         .   So a possible solution is to use the transformed study variable as  
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So family W is continuous.  Still it has a drawback. As      changes, the value of W change dramatically. So it  is  difficult 

to  obtain the best value of     . If different analyst obtain different values of        then it will fit different models. It may then 

not be appropriate to compare the models with different values of     . So it is preferable to use an alternative form  

   

 

 

 

where  y*  is the geometric mean of        ‘s   as                                    which is constant. 

  

For calculation purpose, we can use  

   

  

When V is applied to each yi, we get                               as a vector of  observation on transformed study variable  and 

we use it to fit a linear model                         using least squares or maximum likelihood method. 
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We want to convert yi  into          as 
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In general,  

    

 

The Jacobian of transformation is given by 
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Since this is a Jacobian when we want to transform the whole vector y to whole vector W.  If an individual yi is to be 

transform into Wi, then take its geometric mean as 
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The quantity                                      

 

ensures that unit volume is preserved moving from the set of  yi  to the set of  Vi.   This is a factor which scales and ensures 

that the residual sum of squares obtained from different values of      can be compared. 
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To find the appropriate family, consider 

 

where 

 

 

Applying method of maximum likelihood  for likelihood function for  
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Solving 

 

 

 

 

   

gives the maximum likelihood estimators 

  

 

  

for a given value of     . 
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Substituting these estimates in the log likelihood function                      gives 

 

 

where                  is the sum of squares due to residuals which is a function of     .  Now maximize            with respect to     

It  is difficult to obtain any closed form of the estimator of     .  So we maximize it numerically. 

 

The function                               is called as the Box-Cox objective function. 
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Let         be the value of       which maximizes the Box-Cox objective function. Then under fairly general conditions, for any 

other   

   

 

has approximately            distribution. This result is based on the large sample behaviour of the likelihood ratio statistic.  

This is explained as follows: 

The likelihood ratio test statistic in our case is 
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where 
 
 
 
 
 
 
 

Since under certain regularity conditions,                converges in distribution to              when the null hypothesis is true, so 
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