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A basic assumption in multiple linear regression model is that the rank of the matrix of observations on explanatory

variables is same as the number of explanatory variables. In other words, such matrix is of full column rank. This in turn

implies that all the explanatory variables are independent, i.e., there is no linear relationship among the explanatory

variables. It is termed that the explanatory variables are orthogonal.

In many situations in practice, the explanatory variables may not remain independent due to various reasons. The

situation where the explanatory variables are highly intercorrelated is referred to as multicollinearity.
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Consider the multiple regression model

with  k explanatory variables X1,X2,…,Xk with usual assumptions including rank(X) = k.
Assume the observations on all  Xi’s and  yi’s are centered and scaled to unit length. So

 X’ X becomes a k x k matrix of correlation coefficients between the explanatory variables  and

 X’ y becomes a k x 1 vector of  correlation coefficients between explanatory and study variables.
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Let  X = [ X1, X2,…,Xk ]  where Xj is the jth column of  X denoting the n observations on Xj. The column  vectors X1, X2,…,Xk

are  linearly dependent if there exists a set of constants not all zero, such that1 2, ,..., ,k  
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If this holds exactly for a subset of the X1, X2,…,Xk , then rank (X’X) < k. Consequently ( X’X)-1 does not exist. If the condition

is approximately true for some subset of X1, X2,…,Xk , then there will be a near-linear dependency in X’X. In

such a case, the multicollinearity problem exists. It is also said that X’X becomes ill-conditioned.
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Source of multicollinearity
1. Method of data collection
It is expected that the data is collected over the whole cross-section of variables. It may happen that the data is  collected 

over a subspace of the explanatory variables where the variables are linearly dependent. For example, sampling is done  

only  over a limited range of explanatory  variables  in the population.
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3. Existence of identities or definitional relationships
There may exist some relationships among the variables which may be due to the definition of variables or any identity

relation among them. For example, if data is collected on the variables like income, saving and expenditure, then

income = saving + expenditure.

Such relationship will not change even when the sample size increases.

2. Model and population constraints
There may exists some constraints on the model or on the population from where the sample is drawn. The sample may be 

generated from that part of population having linear combinations.
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5. An over-determined model
Sometimes, due to over enthusiasm, large number of variables are included in the model to make it more realistic and 

consequently  the number of observations (n) becomes  smaller than the number of explanatory variables (k). Such 

situation can arise in medical research where the number of patients may be small but information is collected on a large 

number of variables.  In another example, if there is time series data for 50 years on consumption pattern, then it is 

expected that the  consumption pattern does not remain  same for 50 years. So better option is to choose smaller number 

of variables  and hence it results into n < k. But this is not always advisable. For example, in microarray experiments, it is 

not advisable to choose smaller number of variables. 

4. Imprecise formulation of model
The formulation of the model may unnecessarily be complicated. For example, the quadratic (or polynomial) terms or cross

product terms may appear as explanatory variables. For example, let there be 3 variables X1, X2 and X3, so k = 3.

Suppose their cross-product terms X1 X2 , X2 X3 and X1 X3 are also added. Then k rises to 6.
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Consequences of multicollinearity

To illustrate the consequences of  presence of  multicollinearity, consider a model

where x1, x2 and y are scaled to length unity.

The normal equation in this model becomes

where  r is the correlation coefficient between x1 and x2; rjy is the correlation coefficient between xj and  y ( j = 1, 2) and     

b = (b1  b2)’  is the  OLSE of     .
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If x1 and  x2 are uncorrelated, then r = 0 and

rank(X’ X) = 2. 

If  x1 and  x2 are perfectly correlated, then and  rank(X’ X) = 1.

If                then 

So if variables are perfectly collinear, the variance of OLSEs becomes large. This  indicates highly unreliable estimates and

this is an inadmissible situation.
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Consider the following result

The standard errors of b1 and b2 rise sharply as   and they break  down at because X’X becomes non-

singular.

 If  r is close to 0, then multicollinearity does not harm and it is termed as non-harmful multicollinearity .  

 If  r is close to  +1 or -1 then multicollinearity inflates the  variance and it rises terribly. This is  termed as harmful 

multicollinearity. 

1r →± 1r = ±

r 0.99 0.9 0.1 0

Var(b1) = Var(b2) 250σ 25σ 21.01σ 2σ
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There is no clear cut boundary to distinguish between the harmful and non-harmful multicollinearity. Generally, if  r is  low, 

the multicollinearity is considered as non-harmful and if r is high, the multicollinearity is  considered as harmful.

In case of near or high multicollinearity, following possible consequences are encountered.

1. The OLSE remains an unbiased estimator  of but its sampling  variance becomes  very large. So OLSE 

becomes imprecise and property of BLUE does not hold anymore.

2. Due to large standard errors, the regression coefficients may not appear  significant.  Consequently, important 

variables may be dropped.

For example, to test   we use t - ratio as

Since               is large, so t0 is small and consequently H0 is more often accepted.

Thus harmful multicollinearity intends  to delete  important variables.

3. Due to large standard errors, the large confidence region may arise. For example, the  confidence interval is

given by . When  becomes large, then  confidence   interval becomes wider.

4. The OLSE may be sensitive to small changes in the values of explanatory variables. If some observations are

added or dropped, OLSE may change considerably in magnitude as well as in sign. Ideally, OLSE should not

change with inclusion or deletion of few observations. Thus OLSE loses stability and robustness.
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When the number of explanatory variables are more than two,  say  k as   X1, X2,…,Xk then the  jth diagonal element of  

is

where is the multiple correlation coefficient  or coefficient of determination from the  regression of  Xj on the remaining 

(k - 1) explanatory variables.

If  Xj is highly correlated with any subset of other (k - 1)  explanatory variables then is high and close to 1. 

Consequently variance of jth OLSE  

becomes  very high. The covariance  between bi and  bj will also be large  if  Xi and  Xj are involved in  the linear 

relationship leading to   multicollinearity.

The least squares estimates  bj become too large in absolute value in the presence of multicollinearity. For example, 

consider the squared distance between b and       as
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The trace of a matrix is  same as the sum of its eigenvalues.  If                      are the eigenvalues of  (X ’X), then   

are the eigenvalues of  (X ’X)-1 and hence

If  (X ’X) is ill-conditioned due to the  presence of multicollinearity then at least one of the eigenvalue will be small. So the 

distance between b and  may  also be large. Thus

is generally larger in magnitude than 

OLSE are too  large in absolute value.
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The least squares produces bad estimates of parameters in the presence of multicollinearity. This does not imply that the

fitted model produces bad predictions also. If the predictions are confined to X-space with non-harmful multicollinearity,

then predictions are satisfactory.
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