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The fitting of linear regression model, estimation of parameters testing of hypothesis properties of the estimator are based 

on following major assumptions: 

1. The relationship between the study variable and explanatory variables is linear, atleast approximately. 

2. The error term has zero mean. 

3. The error term has constant variance. 

4. The errors are uncorrelated. 

5. The errors are normally distributed. 
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The validity of these assumption is needed for the results to be meaningful.  

If these assumptions are violated, the  result can be incorrect and may have serious consequences.  

If these departures are small, the final result and conclusions may not be affected much.  

But if the departures are large, the model obtained may become unstable in the sense that a different sample could lead to 

an entirely  different model with different conclusions.  

So such underlying assumptions have to be verified before attempting to regression modeling.  

Such information is not available from the summary statistic such as t-statistic,  F-statistic or coefficient of determination. 

  

One important point to keep in mind is that these assumptions are for the population and we work only  with a sample.  

So the main issue is to take a decision about the population on the basis of a sample of data. 

  

Several diagnostic methods to check the violation of regression assumption are based on the study of   model residuals 

with the help of various types of graphics. 
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If there is only one explanatory variable in the model, then it is easy to 

check the existence of linear relationship  between  y  and X  by scatter 

diagram of the available data. 

  

If the scatter diagram shows a linear trend, it indicates that the relationship  

between  y  and X  is linear. If the trend is not linear, then it  indicates that 

the relationship between y and X  is nonlinear. For example, the following 

figure  indicates a linear trend. 

 
 
The following figure indicates a nonlinear trend: 

Checking of linear relationship between study and explanatory variables   

Case of one explanatory variable 

Linear trend 

Nonlinear trend 
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2. Case of more than one explanatory variables 
 

To check the assumption of linearity between study variable and explanatory variables, the scatter plot matrix of the data 

can be used.  

 

A scatter plot matrix is a two dimensional array of two dimension plots where  each form contains a scatter diagram except 

for the diagonal.  

Thus, each plot sheds  some light on the relationship between  a pair of variables.  

 

It gives more information than the correlation coefficient between  each pair of variables because it gives a sense of 

linearity or nonlinearity of the relationship and some awareness  of how the individual data points are  arranged  over the 

region.  

 

It is a scatter diagram of  (y  versus X1), (y  versus X2),…, (y  versus Xk). 

    

Another option to present the    

-- scatter plots in the upper triangular part of plot matrix. 

-- Mention the corresponding correlation coefficients in the lower triangular part of the matrix. 

 

Suppose there are only two explanatory variables  and the model is                                     then the scatter plot matrix looks 

like as follows: 
1 1 2 2 ,y X Xβ β ε= + +
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Scatter plot matrix for   two variables case 
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Such arrangement helps in examining of plot and corresponding correlation coefficient together.  

 

The pairwise correlation coefficient  should always be interpreted in conjunction with the corresponding scatter plots  

because  

   the correlation coefficient measures only the linear relationship and  

   the correlation coefficient is non-robust, i.e., its value can be substantially influenced by one or two observations 

     in the data. 

 

The  presence of linear patterns is reassuring but absence of  such patterns  does not imply that linear model is incorrect.   

 

Most of the statistical software provide the option for creating the scatter plot matrix. The view of all the plots provides an 

indication that a multiple linear regression model may  provide a reasonable fit to the data.  

 

It is to be kept is mind that we get only the information on pairs of  variables through the scatter plot of  (y  versus X1),  

(y  versus X2),…, (y  versus Xk) whereas the assumption of linearity is between y and jointly with  (X1, X2,..., Xk). 

 

If some of the explanatory variables are themselves interrelated, then these scatter diagrams can be   misleading. Some 

other methods of  sorting  out the relationships between several explanatory variables and a study variable are  used.  
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Residual analysis 
 
The residual is defined as the difference between the observed and fitted value of study variable. The ith residual is defined 
as 
 

where yi is an observation and       is the corresponding fitted value. 

We consider it as  

Residual can be viewed as the deviation between the data and the fit.  

So it  is also a measure of the variability in the  response variable  that is not explained by the regression model. 

  

Residuals can be thought as the  observed values of the model errors.  

So it can be expected that if there  is any departure from the assumptions on random errors, then it  should be shown  up 

by the residual. Analysis of residual helps is finding the model inadequacies. 

Assuming that the regression coefficients in the model                       are estimated by the OLSE, we find that: 

•  Residuals have zero mean as 
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•   Approximate average variance of residuals is estimated by 

   

 

Residuals are not independent as  the n residuals have only n – k degrees of freedom.  

The nonindependence  of the residuals has little effect on their use for model adequacy checking as long as n is not  

small  relative to k. 
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Methods for scaling residuals 

Sometimes it is easier to work with scaled residuals.  

We discuss four methods for scaling the residuals . 

1. Standardized residuals   
 
The residuals are standardized based on the concept of residual minus its  mean and divided by its standard  deviation.  

 

Since E(ei) = 0 and MSres  estimates the approximate average variance,  so logically the scaling of residual is  

  

 
 
 
is called as standardized residual for which 
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Thus                          , so residuals are the same linear transformation of y  and      . 
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2. Studentized residuals   
 
The standardized residuals use the approximate variance of  ei  as MSres.  The studentized residuals use the exact 

variance of  ei. 

  

We first find the variance of  ei. 

y X β ε= + 1( ' ) 'b X X X y−=βIn the model                     , the OLSE of        is                                and the residual vector is  



If  hii is the ith diagonal element of hat matrix  H and  hij  is the (i, j)th element of H, then 
   
 
 
 
 
Since                    so if  MSres is used to estimate the Var(ei) then 
   
 
 
 
 
 
Now we discuss that  hii  is a measure of location of the ith point in x-space. 
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The covariance matrix of residuals is 

2
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The matrix (I - H)  is symmetric and idempotent  but generally not diagonal. So residuals have different variances  and they 

are correlated. 

2( ) .V Iε σ=
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