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Confidence interval estimation 
 

The confidence intervals in multiple regression model can be constructed for individual regression coefficients as well as 

jointly . We consider both of them as follows: 
 

Confidence interval on the individual regression coefficient 

Assuming           are identically and independently distributed following                  in                        ,  we have 
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So the                         confidence interval for                             is obtained as follows: 

 

 

 

 

So the confidence interval is 
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Simultaneous confidence intervals on regression coefficients 
A set of confidence intervals that are true simultaneously with probability               are called simultaneous or joint 

confidence intervals. 

It is relatively easy to define a joint confidence region for      in multiple regression model. 

Since 

  

 

 

 

  

So a 100                  joint confidence region for all of the parameters in      is 

 

 

 

which describes an elliptically shaped region. 
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Coefficient of determination (R2) and adjusted R2 
 
Let R be the  multiple correlation coefficient between y and                        Then square of multiple correlation coefficient 

(R2)  is called as coefficient of determination.  The  value of  R2 commonly describes that how  well the sample regression 

line fits to the  observed data. This is also treated as a measure of goodness of fit of the model. 

Assuming that the intercept term is present in the model as 

 

then 

 

 

 

 

 

 

where 

  : sum of squares due to residuals, 

  : total sum of squares, 

  : sum of squares due to regression. 

 

R2  measure the explanatory power of the model which in turn  reflects the goodness of  fit of the model.   

It reflects the model  adequacy in the sense that how much is  the explanatory power of explanatory variable. 
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Since 

  

  

   

  

 

Thus 
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The limits of  R2 are 0 and 1, i.e.,  

•  R2  = 0 indicates the poorest fit of the model. 

•  R2  = 1 indicates the best fit of the model. 

•  R2  = 0.95 indicates that 95% of the variation in y is explained by the explanatory variables.  In  simple words, the model is 

   95% good. 

•  Similarly any other value of  R2 between  0 and 1 indicates the adequacy of fitted model. 
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Adjusted R2 
If more explanatory variables are added to the model,  then  R2   increases.  In case the variables are irrelevant, then R2 will 

still increase and gives an overly optimistic picture. 

With a purpose of correction in overly optimistic picture, adjusted R2, denoted as        or adj R2  is used which is defined as 
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Another limitation of adjusted  R2  is that it can be negative also.  For example if                                       then 

   

 

which has no interpretation. 
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 Limitations 

1. If constant term is absent in the model, then R2 can not be defined.  In such  cases,  R2 can be negative. Some 

ad-hoc measures based on  R2 for regression line through origin have been proposed in the literature. 

2. R2 is sensitive to extreme values, so  R2 lacks robustness. 

3. Consider a situation where we have following two models: 

                  The question is now which model is better? 
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             As such                     are not comparable.  

             If still, the two models are needed to be compared, a better proposition to define R2 can be as follows: 

  

 

 

 

                 where                   .  Now                      on comparison may give an idea about the adequacy of the two models. 
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Relationship of analysis of variance test and coefficient of determination 
 

Assuming        to be an intercept term, then for                                             the  F-statistic in analysis of variance test is 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where R2 is the coefficient of determination. 

So  F and  R2 are closely related. When R2 = 0, then F = 0. 

 

In limit, when                       .  So both  F and R2 vary directly. Larger R2 implies greater F value.  

 

That is why the F test under analysis of variance is  termed as the measure of overall  significance of estimated regression.  

 

It is also a test of significance of R2.  If  F is highly significant, it implies  that we can reject H0, i.e. y is  linearly related to 
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Prediction of values of study variable 
The prediction in multiple regression model has two aspects  

1. Prediction of average value of study variable or mean  response. 

2. Prediction of actual value of  study variable. 

1. Prediction of average value of y 

We need to predict E(y) at a given  

The predictor as a point estimate is 
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The confidence interval on the mean response at a particular point, such as                            can be found as follows: 

 

Define                                      

 

The fitted value at        is   
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The                       confidence interval on the mean response at the point                         , i.e.,                  is 
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2. Prediction of actual value of  y 

We need to predict y  at a given  

The predictor as a point estimate is 

 

 

 

 

 

 

 

The                        confidence interval for this future observation is  
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