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Orthogonal regression method (or major axis regression method) 
 
The direct and reverse regression methods of estimation assume that the errors in the observations are either in x-direction 

or y-direction. In other words, the errors can be either in dependent variable or independent variable. There can be 

situations  when uncertainties are involved in dependent and independent  variables both. In such situations, the orthogonal 

regression is more appropriate. In order to take care of errors in both the directions, the least  squares principle in 

orthogonal regression minimizes the squared perpendicular distance between the observed data points and the line in the 

following scatter diagram to obtain the estimates of regression coefficients. This is also known as major axis regression 

method. The estimates obtained are  called as orthogonal regression  

estimates or major axis regression estimates of regression coefficients. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

If we assume that the regression line to be fitted is                           , 

then it is expected that all  the observations    

lie on this line.  But these points deviate from the line and in such a 

case, the squared perpendicular distance of observed data  

                                from the line is  given by  

where               denotes the         pair of observation without any error 

which lie on the line. 
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The objective is to minimize  the sum of squared perpendicular distances given by                 to obtain the estimates of  

      and      . 

The observations                                  are expected to lie on the line 
   
so let 

 

The regression coefficients are obtained by minimizing            under the constraints           using the Lagrangian’s multiplier 

method. The  Lagrangian  function is 

 

 

where                 are the Lagrangian multipliers.   

The set of equations  are obtained by setting 

 

 

Thus we find 
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Since 

 

 

so substituting these values in     , we obtain 

 

 

 

Also using this       in the equation                  we get  

 

 

 

and using                                                             we get 

 

 

Substituting       in this equation, we get  
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The solution provides  an orthogonal regression estimate of        as 

   

where           is an orthogonal regression estimate of   

  

Now, substituting            in equation (1),  we get 
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Solving this  quadratic equation provides the orthogonal regression estimate of        as 

 

 

where sign         denotes the sign of       which can be positive or negative. So  

 

 

 Notice that this gives two solutions for         . We choose the solution which minimizes                                            

The other solution maximizes             and is in the direction perpendicular to the optimal solution. 
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Reduced major axis regression method 
 
The direct, reverse  and orthogonal methods of estimation minimize the errors in a particular direction which is usually the 

distance between the observed data points and the line in the scatter diagram. Alternatively, one can consider the area 

extended by the data  points in certain neighbourhood and instead of distances, the area of rectangles defined between 

corresponding  observed data point and nearest point on the line in the following scatter diagram can also be minimized. 

Such  an approach is more appropriate when the  uncertainties are present in study as well as explanatory variables. This 

approach is termed as reduced major axis regression. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose the regression line is                          on which all the observed points are expected to lie. Suppose the points   

                                are observed which lie away from the line.  

 

0 1i iY Xβ β= +

( , ), 1, 2,...,i ix y i n=



8 

The area of rectangle extended between the  ith  observed data point and the line  is 

   

where              denotes the ith  pair of observation without any error which lie on the line. 

The total area extended by n data points is  

All observed data points                                   are expected to lie on the line 

   

and let 

 

So now the objective is to minimize  the sum of areas under the constraints        to obtain the reduced major axis estimates 

of regression coefficients. Using the Lagrangian multiplies method, the Lagrangian function is 
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Thus 

 

 

 

 

 

Now 

 

 

 

 

 

 

 

Substituting       in                  , we get the reduced major axis regression estimate of        is obtained as  

  
 

where             is the reduced major axis regression estimate of     .  Using                             and              in    

we get 
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Let                                                 then this equation can be re-expressed as 

Using                                we get 

 

   

 

Solving this equation, the reduced major axis regression estimate of        is obtained as 
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Least absolute deviation regression method 
 

The least squares principle advocates the minimization of sum of squared errors. The idea of squaring the errors is useful in 

place of simple errors because the random errors can be positive as well as  negative. So consequently their sum can be  

close to zero indicating that there is no error in the model which can be  misleading.  Instead  of the sum of random errors, 

the sum of absolute  random errors can be considered which avoids the problem due to positive and negative random 

errors.  

In the method of least squares, the estimates of the parameters       and       in the model   

are chosen such that the sum of squares of deviations            is minimum. In the method of least absolute deviation (LAD)  

regression, the parameters        and       are estimated such that  the  

sum of absolute deviations              is minimum. It minimizes the  

absolute vertical sum of errors as in the following scatter diagram: 
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The LAD estimates          and          are the values      and     , respectively which minimize 
   
for  the given observations  
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Conceptually, LAD procedure is simpler than OLS procedure because |e| (absolute residuals) is a more straightforward 

measure of the size of  the residual than e2 (squared residuals).  The LAD  regression estimates of    and    are not 

available in  closed form. Rather they can be obtained numerically based on algorithms. Moreover, this creates the 

problems of non-uniqueness and degeneracy in the estimates. The  concept of non-uniqueness relates to more than one 

best lines passing  through a data point. The degeneracy concept describes that the best line  through a data point also 

passes through more than one other data points.  The non-uniqueness and degeneracy  concepts are used in algorithms to 

judge the quality of the estimates. The algorithm for finding the estimators generally proceeds in steps. At  each step, the 

best line is found that passes through a given data point.  The best line always passes through another data point, and this 

data point  is used in the next step. When there is non-uniqueness,  then there are more  than one best lines.  When there 

is degeneracy, then the best line passes  through more than one other data point. When either of the problem is  present, 

then there is more than one choice for the data point to be used in the next step and the algorithm may go around in circles 

or make a  wrong choice of the LAD regression line.  The exact tests of hypothesis and  confidence intervals for the LAD 

regression estimates can not be derived  analytically.  Instead they are derived analogous to the tests of hypothesis  and 

confidence intervals related to ordinary least squares estimates.  

0β 1β
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Estimation of parameters when X  is stochastic 
 

In a usual linear regression model, the study variable is supped to be random and explanatory variables are assumed to be 

fixed. In practice, there may be situations in which the explanatory variable also becomes random. 

Suppose both dependent and independent variables are stochastic in the simple linear regression model 

   

 

where     is the associated random error component.  The observations                                are assumed to be jointly 

distributed. Then the  statistical inferences  can be drawn in such  cases which are conditional on X. 

  

Assume the joint distribution of  X and y to be bivariate normal                                 where       and       are the means of  X 

and           and         are the variances of  X  and y, and      is the correlation coefficient between X and y.  Then the 

conditional distribution of y  given  X = x  is  univariate normal conditional mean 

 

   

and conditional variance of  y  given X = x  is 
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Moreover, the correlation coefficient 

   

 

can be estimated by the sample correlation coefficient 

 

 

 

 

 

 

 

 

14 
When both X and  y are stochastic, then the problem of estimation of parameters  can be reformulated as follows. Consider 

a conditional random variable y|X = x  having a normal distribution with  mean as conditional mean           and variance as 

conditional  variance                                 . Obtain n  independently distributed observation                                 from   

                       with nonstochastic  X. Now the  method of maximum  likelihood can be used to estimate the parameters 

which yields the estimates of       and      as earlier in the case of nonstochastic X  as 
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Thus 

 

 

 

 

 

 

 

 

which is same as the coefficient of determination.   

 

Thus R2 has the same expression as in the case when X is fixed.   

 

Thus R2 again measures the goodness of fitted model even when X  is stochastic. 
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