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Properties of the direct regression estimators 

Unbiased property 

Note that                                              are the linear combinations of   

Therefore 

 

 

 

 

 

 

 

 

Thus b1 is an unbiased estimator of      . Next   
 

 

 

 

 

Thus  b0 is an unbiased estimators of 
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Variances   

 Using the assumption that          are independently distributed, the variance of b1 is 
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Similarly, the variance of  b0  is 

 
First we find that 

 

 

 

 
 
 
so 
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Covariance 
 
 The covariance between b0  and  b1  is 
 

 

 

It can further be shown that the ordinary least squares estimators  b0  and  b1 possess the minimum variance in the class of 

linear and unbiased estimators.  So they are termed as the Best Linear Unbiased Estimators (BLUE).  Such  a property is 

known as  the Gauss-Markov theorem which is discussed later in multiple linear regression model. 
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Residual sum of squares 
The residual sum of squares is given as 
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Estimation of   
The estimator of         is  obtained from residual sum of squares as follows. Assuming that Since yi  is normally distributed, 

so SSres has a         distribution with (n - 2) degrees  of freedom, so 

                                         

 
      
Thus using the result about the expectation of a chi-square random variable, we have 
 
 
Thus an unbiased estimator of       is 
 
 
 
 
Note that  SSres  has only (n - 2) degrees of freedom. The two degrees of freedom are lost due to estimation of  b0  and  b1.  

Since  s2  depends on the estimates  b0 and b1, so it is a model dependent estimate of        . 
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Estimate of variances of  b0  and  b1 
 
The estimators of variances of  b0  and  b1 are obtained  by  replacing        by                as follows: 
   
 
 
 
and 
 
 
    

It is observed that since                              so                      In the light of this property,      can be regarded as an estimate 

of unknown                       . This helps in verifying the different model assumptions on the basis of  the given sample 
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Centered model 
Sometimes it is useful to measure the independent variable around its mean. In such a case, model   

has a centered version as follows: 
 
 
 
 
 
where                       . The sum of squares due to error is given by  
  
 
  
Now  solving 

 

 

 

 

we get the direct regression least squares estimates of                   as 

 

 

and 

   

respectively. 

0 1i i iy Xβ β ε= + +

0 1 1

*
0 1

( ) ( 1,2,..., )

( )

i i

i i

y x x x i n

x x

β β β ε

β β ε

= + − + + =

= + − +

*
0 0 1xβ β β= +

2
* 2 *
0 1 0 1

1 1
( , ) ( ) .

n n

i i i
i i

S y x xβ β ε β β
= =

 = = − − − ∑ ∑

*
0b y=

1
xy

xx

s
b

s
=

*
0 1

*
0

*
0 1

*
1

( , ) 0

( , ) 0,

S

S

β β
β

β β
β

∂
=

∂

∂
=

∂
*
0 1andβ β



9 

Under the assumption that                                                                                                        It follows that 

 

 

   

In this case,  the fitted model of                                        is 

   

and the predicted values are 

   

Note that  in centered model  
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Thus the form of the estimate of slope parameter      remains same in usual and centered model whereas the form of the 

estimate of intercept term changes in the usual and centered models. 

  

Further, the Hessian matrix of the second order partial derivatives of                  with respect to                  is positive definite 

at                and             which ensures that                  is minimized at               and            . 
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No intercept term model 
Sometimes in practice  a model without an intercept term is used in those situations when                              for all  

                    .  A no-intercept model is  

 

For example, in analyzing the relationship between  illumination of bulb (y) and electric current (X), the illumination of bulb is 

zero when current is zero. 

Using the data                                  the direct regression least squares  estimate of       is obtained by minimizing    

                                              
 
 
and solving 

  

 
gives the estimator of       as 

 

 

 

The second order partial derivative of            with respect to      at              is positive which ensures that b1 minimizes  
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This       is an unbiased estimator of      .  The variance of       is obtained as follows: 

 

 

 

 

 

 

 

and an unbiased estimator of        is 

11 

Using the assumption that                                                                                                     , the properties of       can be 

derived as follows: 
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