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In general, the explanatory variables in any regression analysis are assumed  to be quantitative in nature.  

 

For example, the variables like temperature, distance, age etc. are quantitative in the sense that they are recorded on a well 

defined scale. 
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In many applications, the variables can not be defined on a well defined  scale and they are qualitative in nature. 

 

For example, the variables like sex (male or female), colour (black, white), nationality,  employment status (employed, 

unemployed)  are defined on a nominal scale. Such variables do not have any natural scale  of measurement. Such 

variables usually  indicate the presence or absence of  a “quality” or an attribute like employed or unemployed, graduate or 

non-graduate, smokers or non- smokers, yes or no,  acceptance or rejection, so they are defined on a nominal scale. Such 

variables  can be quantified by artificially constructing  the variables that take the values, e.g.,  1 and 0 where “1” indicates 

usually the presence of attribute and “0” indicates  usually the absence of attribute. For example, “1” indicates that the 

person is male and “0”  indicates that the person is female.  Similarly, “1” may indicate that  the person is employed and 

then “0” indicates that the person is unemployed. 

Such variables classify the data into mutually  exclusive categories. These variables are called indicator variables or 

dummy variables. 
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Usually, the indicator variables take on the  values 0 and 1 to identify the mutually exclusive classes of the  explanatory 

variables. For example, 

It  is also not necessary to choose only 1 and 0 to denote the category. In fact, any distinct value of  D will serve the 

purpose. The choices of 1 and 0 are preferred as  they make the calculations simple, help in easy interpretation of the 

values and usually turn out to be a satisfactory choice. 

  

In a given regression model, the qualitative and quantitative variables may also occur together, i.e., some  variables may be 

qualitative and others  quantitative. 
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D
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Here we use the notation D in place of  X  to denote the dummy variable.  The choice of 1 and 0 to identify a category is 

arbitrary. For example,  one can also define the  dummy variable in above examples as  
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When all explanatory variables are 

 quantitative, then  the model is called   a  regression model, 

 qualitative, then the model is called   an  analysis of variance model and  

 quantitative and qualitative both, then the model is called   a analysis of covariance model. 

  

Such models can be dealt within the framework of regression analysis.  The usual tools of regression analysis can be used 

in case of dummy variables. 

Example: 
Consider the following  model with x1 as quantitative and D2 as indicator variable 

 

 

 

   

The interpretation of result is important. We proceed as follows: 

If  D2 = 0 then   

  

 

 

  

which is a straight line relationship with intercept         and slope      . 
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If  D2 = 1  then 

   

 

 
 
which  is a straight line relationship with intercept                and slope  
  

The quantities E(y|D2 = 0) and  E(y|D2 = 1) are the average responses  when an observation belongs to group A and  

group B, respectively. Thus 

 

which has an interpretation as the difference between the average values of  y with D2 = 0 and D2 = 1. 

    

Graphically, it looks like as in the  following figure. It describes two parallel regression lines with same variances . 
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If  there  are three explanatory variables in the model with two indicator variables  D2 and D3 then they will describe three  

levels, e.g., groups A, B and   The levels of indicator variables are as follows: 

 

1.  

 

2.  

 

3.  

 

The concerned regression model is 

   

 

In general, if a qualitative variable has m levels, then (m - 1) indicator variables are required and each of them takes 

value 0 and 1. 

2 30, 0 .if the observation is from groupD D A= =

2 31, 0 .if the observation is from groupD D B= =

2 30, 1 .if the observation is from groupD D C= =

2
0 1 1 2 2 3 3 , ( ) 0, ( ) .y x D D E Varβ β β β ε ε ε σ= + + + + = =
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Consider the following examples to understand how to define such indicator variables and how they can be handled. 

Example: 
Suppose y denotes the monthly salary of a person and D denotes whether the person is graduate or  non-graduate. The 

model is 

   

With  n  observations, the model is  

   

 

 

 

 

Thus 

         -         measures the mean salary of a non-graduate 

         -         measures the difference in the mean salaries of a graduate and non-graduate person. 

 
 
 
 
 
 

Now consider the same model with two indicator variables defined in the following way: 
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The model with n observations is  

   

Then we have  

1.                 Average salary of non-graduate 

2.                 Average salary of graduate 

3.              :  cannot exist 

4.    cannot exist. 

Notice that in this case 

   for all i 

which is an exact constraint and  indicates the contradiction as follows: 

   person is graduate 

   person is non-graduate. 

So multicollinearity is present in such cases.  Hence the rank of matrix of explanatory variables falls short by 1. So         

and       are indeterminate and least squares method  breaks down.  So the proposition of  introducing two indicator 

variables is useful but they  lead to serious consequences. This is known as dummy variable trap. 
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If the intercept term is ignored, then the model becomes 

 
 
then 
  

 

 

So when  intercept term is dropped, then       and       have proper interpretations as the average salaries of a graduate 

and  non-graduate persons, respectively. 

 

Now the parameters can be estimated using ordinary least squares principle and standard procedures for drawing  

inferences can be used. 

 

Rule: When the explanatory variable leads to m mutually exclusive categories classification, then use (m - 1) indicator 

variables for its representation. Alternatively, use  indicator variables  but drop the intercept term.  
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Interaction term 
Suppose a model has two explanatory variables – one quantitative variable and other an indicator variable. Suppose both 

interact and an explanatory variable as the interaction of them is added to the model. 

  

 

To interpret the model parameters, we proceed as follows: 

Suppose the indicator variables are given by 

  

 
  
                   yi  =  salary of  ith  person. 
Then 

 

   

This is a straight line with intercept       and slope      .  Next 

   

 

This is a straight line with intercept term                and slope  

The model 

   

has  different slopes and different intercept terms. 
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Thus 

       reflects the change in intercept term associated  with the change in the group of person i.e., when group 

 changes from A to B. 

       reflects the  change in slope associated with the  change  in the group of person, i.e., when group changes  

  from A to B. 
  
Fitting of the model 
   
is equivalent to fitting two separate regression models corresponding to Di2=1 and Di2=0, i.e., 
 

 

and 

 

 

respectively.  

The test of hypothesis becomes convenient by using an indicator variable. For example, if we want to test  whether the 

two regression models  are identical, the test of hypothesis involves testing 

 

 

 

Acceptance of  H0 indicates that only single model is necessary to  explain the relationship. 

In another example, if the objective is to test that the two models differ with  respect to intercepts only  and they have 

same  slopes, then the test of hypothesis involves testing   
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