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An outlier test based on R-student   
 
A common way to model an outlier is the mean shift outlier model. 

Suppose we fit a model 

when the true model is 

   

where       is a           vector of zeros except  for the         observation which has a value         Thus 

   

  

Assume                          for both the models we fit.  Our objective is to  find an appropriate statistic for  testing  

                                             .   This procedure assumes that  we are specifically interested is        observation, i.e., that we 

have a priori information that the        observation may be an outlier. 

First we find an appropriate estimate of         Consider         residual as its estimate. The            residual vector is 
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is an unbiased estimator of        where         is the         diagonal element of  H. 

 

It may be observed that        is simply the           PRESS residual. Further, the covariance matrix of  e  is 
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Also  e  is a linear combination of normally distributed  y.  So  e  is also normally distributed. Thus        is also  normally 

distributed. 
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Consequently, under                     ,  

   

 

 

 

 

The quantity                   is simply an example of studentized residual. Since         is unknown and                is a Chi-square  

random variable, so a candidate test statistic is  

    

 
 
which follows a t-distribution if                        and                                    are  independent. Since 
  

 

so  e and            are not actually independent. 

We already have developed         which is related to residual mean square in a regression model with  ith  observation 

withheld given by 

   

 

This estimate of         is independent of   eu    by the basic independence  assumption on random errors.   So         can be 

replaced by         and an appropriate test statistic for the mean shift outlier model is  

 

 

which is the  externally studentized residual or  R - student. 
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i.e., t-distribution with (n  - k) degrees of freedom and  noncentrality parameter 

 

   

 

Note that the power of this test depends on       . If we fit an intercept to our model, then                  .  So maximum power 

occurs when             , i.e., at the center of the data cloud is terms of the          As             , the power goes to 0.  

 

 In other words, this test has  less ability to detect  outliers at the high leverage  data points (Note that the concept of 

leverage point is  discussed in later sections). 
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Test for lack of fit of a regression model 
This test for lack of fit of a regression model is based on the assumptions of normality, independence and constant  

variance which are satisfied. Only the first order or straight line  character of the relationship is in doubt . For example, the 

data in the following  scatter plot where the indication is there that straight line fit is not  very satisfactory.   

The test procedure determines if systematic curvature is present. The test 

requires replicate observations  on  y for at least one level of  x and they 

should be true replications and not just the duplicate readings or 

measurement of  y. 

The true replications consists of running ni separate experiments at  x = xi 

and observe y.  It is not just running a single experiment at  x = xi  and 

measuring  y   ni times in which the information only on the variability of the 

method of measuring  y is obtained. These replicated  observations are used 

to obtain a  model-independent estimate of        . 

 

Suppose we have ni observations on  y at the ith  level of                              

Let yij  be the jth  observation on y at  xi,   

is the total number of observations. 
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Let       be the mean of  ni  observations on  xi.  Then the             residual is  
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If assumption of constant variance is satisfied,  then  SSPE is a model independent measure of pure error because only 

the variability of  y’s  at each  x  level is used to compute SSPE. 

 

Since there are              degrees of freedom for pure error at each level of      , the number of degrees of freedom 

associated with                                        .            is a weighted sum of squared deviations between      at each level of  x 

and corresponding fitted value. 
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If        are close  to      , then there is a strong indication that  the  regression function is linear. 

If        deviate greatly from       then it is likely that the regression function is not linear.  The degrees of freedom associated 

with  SSLOF  is  m – 2  because there are m levels of  x and two degrees of  freedom are lost because  two parameters must 

be estimated to obtain  

Computationally, 

  . 

The test statistic for lack of fit is 

   

  

 

 

 

 

 

If true regression is linear, then                              and  

If true regression is nonlinear, then                               and                         . 

If true regression function is linear, then 

   

So to test for lack of fit, compute F0  and conclude that regression function is not linear if                                   at      level of 

significance.  

If we conclude that regression function is not linear then the tentative model must be abandoned and  we attempt to  find a 

more appropriate model. If                                    then there is no strong evidence of lack of fit.   

The mean sum of squares MSPE  and  MSLOF  are often combined to estimate     . 
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If  F ratio for lack of fit is not significant and                      is rejected, then this  does not guarantee that model will be 

satisfactory for prediction. It is suggested that the F - ratio must be at least four or five times  of                           if the 

regression model is to be useful for prediction. 

  

A simple measure of potential prediction performance is found by comparing the range of fitted values, i.e.,  

to their average  standard error. Regardless of the term of the model, the average variance  of the fitted values is 

   

 

where k  is the number of parameters in the model. 

 

In general,  the model is not likely to be satisfactory predictor  unless the range of        is large  relative to estimated 

standard  error              where        is a  model-independent estimate of error variance. 
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Estimation of pure error from near-neighbours 
 
In test of lack of fit 
 

SSPE is computed using responses at repeat  observations at some level of x. This is model independent estimate of      .   

This general principle can be applied to any regression model.  

Calculation of  SSPE requires repeat observations on the  response y at the same set of levels on the explanatory 

variables                     i.e., some of the rows of  X - matrix must be same. 

In practice, repeat observations do not often occur in multiple regression and the procedure of lack of fit is not often 

useful.  

A method to obtain a model independent estimate of error when there are no exact repeat points are the procedures 

which search for those points is x - space that are  near-neighbours. 
  
This is the sets of observations that have been taken  with near identical levels of                       . The response   from 

such near-neighbours can be considered as repeat points and used to obtain an estimate of pure error. 

As a measure of the distance between any two points,                    and                         , use weighted sum of squared 

distance (WSSD) 
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The pairs of points with small values of        are “near neighbours” , i.e., they are  relatively close together in x-space.   

 

Pairs of points for which        is large (e.g.,                are widely separated is x-space.  The residuals at two points with a 

small value of        can be  used to obtain an  estimate of pure error. 

 

The estimate is obtained from the range of residuals at the points i and  i’,  say 

             . 

There is a relationship between the range of a sample from a normal population and the population standard deviation.  

 

For example,  for sample size = 2, this relationship is  

                  

 

The quantity        so obtained is an estimate of standard deviation of pure error. 

An efficient algorithm may be used to compute this estimate like as follows: 

            - First arrange the data points                 in  order of increasing     . 

            - Note that points with different values of        cannot be near neighbour but those with similar values of        could    

              be neighbours  (or they could be near the same contour  of constant       but for apart in some x -coordinates). 
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Then 

1. Compute the values of         for all             pairs of points with adjacent values of      . Repeat this calculation for the  

pairs of points separated by one, two and three intermediate     values.  This will produce                 values of   

2. Arrange the                 values of         found is step 1.  Let                                        be the range of the residuals at these 

points. 

3. For the first  m  values of      , calculate an estimate of the standard deviation of pure error as 

       

 

 

Note that       is based on the average  range of the residuals associated  with the m  smallest values of             must be 

chosen after inspecting the values of          One should not  include values of        is the calculation  for which the weighted 

sum of squared distance is too large.  
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