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Autocorrelation 



One of the basic assumptions in linear regression model is that the random error components or disturbances are 

identically and independently distributed. So in the model                      it is assumed that 

   

 

i.e., the correlation between the successive disturbances is zero. 

 

In this assumption, when                                    is violated, i.e., the variance of disturbance term does not remains constant, 

then problem of heteroskedasticity arises.   

 

When                            is violated, i.e., the variance of disturbance  term remains constant though the successive 

disturbance terms are correlated,  then such problem is termed as problem of autocorrelation. 
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When autocorrelation is present, some or all off diagonal elements in              are nonzero. 

 

Sometimes the study and explanatory variables have a natural sequence order  over time, i.e., the data is collected with 

respect to time. Such  data is termed as time series data.  The disturbance terms in time series data are serially 

correlated. 
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Assume       and       are symmetrical in s, i.e., these coefficients are constant over time and depend only on length of lag s.     

 

The autocorrelation between the successive terms  (u2  and u1), (u3  and u2),…, (un  and un-1) gives the autocorrelation of  

order one, i.e.,      .  

 

 Similarly, the  autocorrelation between the successive  terms  

 gives the autocorrelation of order two, i.e.,      . 
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The autocovariance at lag s is defined as 

   

 

At zero lag, we have constant variance, i.e.,  
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Source of autocorrelation 
 
Some of the possible reasons for the introduction of autocorrelation in the data are as follows: 
 
1. Carryover of effect, atleast in part, is an important source of autocorrelation. For example, the monthly data on 

expenditure on household is influenced by the expenditure of preceding month.  The autocorrelation is present in cross-

section data as well as time series data. In the  cross-section data, the neighboring units tend to be similar with respect 

to the characteristic under study. In time series data, the time is the factor that produces autocorrelation. Whenever 

some ordering of sampling units is present, the autocorrelation may arise. 

 

2. Another source of autocorrelation is the effect of deletion of some variables.  In regression modeling, it is not possible 

to include all the variables in the model. There can be various reasons for this, e.g., some variable may  be qualitative, 

sometimes direct observations  may not be available on the variable etc. The joint effect of such deleted variables gives 

rise to autocorrelation in the data. 

 

3. The misspecification of the form of relationship can also introduce autocorrelation in the data. It is assumed    that the 

form of relationship between study and explanatory variables is  linear. If there are log or exponential  terms present in 

the model so that the linearity of  the model is questionable then this also  gives rise to autocorrelation in the data. 

 

4. The difference between the observed and true values of variable is  called measurement error or errors–in-variable.  

The presence of measurement errors  on the dependent  variable may also introduce the autocorrelation in the data. 
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Structure of disturbance term 
Consider the situation where the disturbances are autocorrelated, 
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Observe that now there are (n + k) parameters-                                                  These (n + k) parameters are to be 

estimated on the basis of available n observations.  Since the number of parameters are more than the number of 

observations, so the situation is not good from the statistical point of view.  In order to handle the situation,  some special 

form and the structure of the disturbance term is needed to be  assumed so that the number of parameters in the 

covariance matrix of disturbance term can be reduced. 

The following structures are popular in autocorrelation: 

1.  Autoregressive (AR) process. 

2.  Moving average (MA) process. 

3.  Joint autoregressive moving average (ARMA) process. 
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Estimation under the first order autoregressive process 
Consider a simple linear regression model 

   

Assume ut ‘s  follow a first order autoregressive scheme defined as  

   

where      

   

 

 

for all                       where       is the first order autocorrelation between      and                             Now  
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Note that the disurbance terms are no more independent and                          The disturbance are nonspherical. 2( ') .E uu Iσ≠
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Consequences of autocorrelated disturbances 

Consider the model with first order autoregressive disturbances 

  

 

  

with assumptions 

  

 

  

where        is a positive definite matrix. 

The ordinary least squares estimator of      is 

   

 

 

 
 
So OLSE remains unbiased under autocorrelated disturbances. 
 
The covariance matrix of  b is 
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The residual vector is 
  

 

 

 

 

Since                     so 

 

  

 

so s2  is a biased estimator of       .  In fact,  s2  has downward bias. 
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Application of OLS fails  in case of autocorrelation in the data and leads to serious consequences as 

 overly optimistic view from  R2. 

 narrow confidence interval. 

 usual t-ratio and F - ratio tests provide misleading results. 

 prediction may have large variances. 
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Since disturbances are nonspherical, so generalized  least squares estimate of       yields more efficient estimates than 

OLSE. 

The GLSE of      is 

   

  

 

The GLSE is best linear unbiased estimator of     . 
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