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5. Akaike’s information criterion (AIC) 

The Akaike’s information criterion statistic is given as 

  

  

where     

 

is based on the subset model                        derived from the  full model  

Now we derive the given expression for AIC. In general, the AIC is defined as 

               AIC =  -2(maximized log likelihood) + 2(number of parameters). 

In linear regression model with                        , the likelihood function is  

   

 

and log – likelihood is 
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The log-likelihood is maximized at 

  

 

  

where       is maximum likelihood estimate of      which is same as OLSE,        is maximum likelihood estimate of        and      

is OLSE of      . 
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So 

 

 

where 

 

The term                       remains same for  all the models under comparison if  same observations y are compared. So it is 

irrelevant for AIC. Hence we get the required expression for AIC. A model with smaller value of AIC is preferable. 
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6. Bayesian information criterion (BIC) 
Similar to AIC, the Bayesian information criterion is based on maximizing  the posterior distribution of model given the  

observations y.  In the case of linear regression model with p selected explanatory variables is defined as 

 

   

A model with smaller  value of BIC is preferable. 
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7. PRESS statistic 
Since the residuals and residual sum of squares act as a criterion for subset model selection, so similarly the PRESS  

residuals and prediction sum of squares can also be  used as a basis for subset model selection. The usual residual and 

PRESS  residuals have their own characteristics which are used is regression modeling. 

The PRESS statistic based on a subset model with  p explanatory variable is  given by 

 

 

 

where hii is the ith element in                                 This criterion is used on the similar lines as in the case of                    

A subset regression model  with smaller value of  PRESS(p)  is preferable. 
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Partial F- statistic 
The partial F-statistic is used to test the hypothesis about a subvector of the regression coefficient.  Consider the model 

   

which includes an intercept term and (k – 1) explanatory variables. Suppose  a subset of r < (k - 1) explanatory  variables is 

to be obtained which contribute significantly to the regression model. So partition 

   

 

where                    are matrices of order                    and            respectively;       and        are the vectors of order           

and           respectively. 

The objective is to test the null hypothesis 

 

   

Then 

   

is the full model and application of least squares gives the OLSE of       as 

 
 
The corresponding sum of squares due to regression with k degrees of freedom is 
   
 
and the sum of squares due to residuals with  (n - k) degrees of freedom is 
 

 

and                                          is the mean square due to residual.       
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The contribution of explanatory variables in       in the regression can be found by considering the full model under    

Assume that                   is true, then the full model becomes 

   

 

which is the reduced model. Application of least squares to reduced model yields the OLSE of        as  

   

and corresponding sum of squares due to regression with              degrees of  freedom is  

 

The sum of squares of regression due to       given that        in already in the model can be found by 

   

 

where                  and                  respectively are the sum of squares due to regression with all explanatory variables 

corresponding  to     is the model and the sum of squares due to explanatory variables corresponding to        in the model. β

The term                        is called as the extra sum of  squares due to      and has degrees of  freedom                            It 

is independent  of            and is a measure of regression sum of squares that results from  adding the explanatory variables    

                        in the model when the  model has already                         explanatory variables. 
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The null hypothesis                     can be tested using the statistic 
   
 
 

which follows  F - distribution with r and (n – k) degrees of freedom under H0.  The decision rule is to reject  H0 whenever 
 
   
This is known as the partial F – test. It measures the contribution of  explanatory variables in  X2  given that  the other 
explanatory variables in  X1 are already in the model. 
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1. Use all possible explanatory variables 
This methodology is based on following steps: 

 Fit a model with one explanatory variable. 

 Fit a model with two explanatory variables. 

 Fit a model with three explanatory variables. 

and so on.  

Choose a suitable criterion for model selection and evaluate each  of the fitted regression equation with the  selection 

criterion. The total number of models to be fitted  sharply rises with increase in k.  So  such models can be evaluated using  

model selection criterion with the help of an efficient computation  algorithm on computers. 

Computational techniques for variable selection 
In order to select a subset model, several techniques based on computational procedures and algorithm are available. They 

are essentially based on two ideas – select all possible  explanatory variables or select the explanatory  variables stepwise. 

2. Stepwise regression techniques 
This methodology is based on choosing the explanatory variables in the subset model in steps which  can be either adding 

one variable at  a time or deleting one variable at a  times. Based on this, there are three procedures. 

 forward selection 

 backward elimination and 

 stepwise regression. 

These procedures are basically computer intensive procedures and are executed using a software. 
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 Consider only intercept term and insert one variable at a time. 

 Calculate the simple correlations of   

 Choose xi which has largest correlation with y. 

 Suppose x1 is the variable which  has highest correlation with  y. Since F - statistic given by 

    so  x1 will produce the largest value of  F0  in testing the significance  of regression. 

 Choose a prespecified value of  F  value, say FIN (F – to – enter). 

 If  F >FIN,  then accept x1 and so x1 enters into the model. 

 Adjust the effect of  x1 on  and re-compute  the correlations of remaining xi ‘s with y and obtain the partial 

correlations as follows. 

 Fit the regression                        and obtain the residuals. 

 Fit the regression of  x1 on other  candidate explanatory variables as 

    

    and  obtain the residuals. 

  Find the simple correlation between the two residuals. 

  This gives the partial correlations. 

 Choose xi  with second largest  correlation with y, i.e., the variable  with highest value of  partial  correlation with y. 

 Suppose this variable is  x2.  Then the largest partial F - statistic is 

 

 

Forward selection procedure 
This methodology assumes that  there is no explanatory variable  in the model except an intercept  term. It adds variables  

one by one and test the fitted  model at each step using some  suitable criterion. It has following steps.  
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 It F >FIN then  x2 enters into the model. 

 These steps are repeated. At each step, the partial correlations are  computed and explanatory   variable   corresponding 

to highest partial  correlation with  y  is chosen to be added into the model.  Equivalently, the partial F -statistics are 

calculated  and largest F - statistic given the  other explanatory variables in the  model is chosen. The corresponding  

explanatory variable is added into the model if partial F-statistic  exceeds FIN. 

 Continue with such selection as long as either at particular step, the partial F - statistic does not exceed FIN or  when the 

last explanatory variable is added to the model. 

 

Note:  The SAS software choose FIN by choosing a type I error rate       so that the explanatory  variable with  highest 

partial correlation coefficient with y  is added to model if partial F - statistic exceeds                     . 

α
(1, ).F n pα −



10 

Backward elimination procedure 

This methodology is contrary to forward selection procedure. The  forward selection procedure starts with  no explanatory 

variable in the model and keep on adding one variable at  a time until a suitable model is obtained .  

The backward elimination  methodology begins with all explanatory  variables and keep on  deleting one  variable at a time 

until a suitable model is obtained. 

It is based on following steps: 

 Consider all k explanatory variables and fit the model. 

 Compute partial F - statistic for each explanatory variables as if it were the last variable to enter in the model. 

 Choose a preselected value FOUT (F - to-remove). 

 Compare the smallest of the partial F - statistics with FOUT.  If it is less than FOUT, then remove the  corresponding 

explanatory variable  from the model. 

 The model will have now  (k - 1) explanatory variables. 

 Fit the model with these (k - 1)  explanatory variables, compute the partial F - statistic for the new model and 

compare it with FOUT.  If it is less them FOUT, then remove the corresponding variable from the model. 

 Repeat this procedure. 

 Stop the procedure when smallest partial  F - statistic exceeds FOUT. 
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Stepwise regression procedure 
A combinations of forward selection and backward elimination procedure is the stepwise regression.  It is a modification of 

forward selection procedure and has following steps. 

 Consider all the explanatory variables entered into to the model at previous step. 

 Add a new variable and regresses  it via  their partial F - statistics. 

 An explanatory variable that was added at an earlier step may  now become insignificant  due to its relationship 

with currently present explanatory variables in the model. 

 If partial F - statistic for an explanatory variable is smaller than FOUT, then  this variable is deleted from the model. 

 Stepwise needs two cut-off values, FIN and FOUT .  Sometimes FIN = FOUT  or  FIN > FOUT  are considered.  The 

choice FIN > FOUT  makes relatively more difficult to add an explanatory  variable than to delete one. 

General comments 
1. None of the methods among forward  selection, backward elimination or  stepwise regression guarantees the 

best subset model. 

2. The order in which the explanatory variables enter or leave the  models does not indicate the order of importance 

of explanatory variable. 

3. In forward selection, no explanatory variable can be removed if entered in the model.  Similarly in backward 

elimination, no explanatory variable can be added if removed from the model. 

4. All procedures may lead to different models. 

5. Different model selection criterion may give different subset models. 



12 

Comments about stopping rules 

 Choice of  FIN  and/or  FOUT  provides stopping rules for algorithms. 

 Some computer software allows analyst to specify these values directly. 

 Some algorithms require type I errors to generate FIN  or/and   FOUT. Sometimes, taking       as level of significance 

can be misleading because several correlated partial F - variables are considered  at  each step and maximum 

among them is examined. 

 Some analyst  prefer small values of  FIN  and FOUT  whereas some prefer extreme values.  

    Popular choice is  FIN = FOUT = 4  which is corresponding  to 5% level of significance of F - distribution. 

α
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