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Standardized regression coefficients 
 
Usually  it is difficult to compare the regression coefficients because the magnitude of        reflects the units  of 

measurement of jth explanatory variable Xj.  For example, in the following fitted regression model  

              

 

y is measured in liters, X1  is milliliters and  X2  in liters. Although                  but effect of both explanatory variables is 

identical.  One liter change in either X1 and X2 when other variable is held  fixed produces the same change in      . 

  

Sometimes it is helpful to work with scaled explanatory  and study variables  that produces  dimensionless regression 

coefficients.  

 

These dimensionless regression coefficients are called as standardized regression coefficients. 

 

There are two popular approaches for scaling  which gives standardized regression coefficients.  

We discuss them as follows: 
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1. Unit normal scaling 
Employ unit normal scaling to each explanatory variable and study variable . 

 

So define 

       

 

 
 
where                                                and    
 
are  the sample variances of jth  explanatory  variable and study variable, respectively. 
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All scaled explanatory variables and the scaled study variable have mean   zero and sample variance unity, i.e., using these 

new variables, the regression   model becomes 

 

 

Such centering removes the intercept term from the model. The least squares estimate of                                 is        
  
 

This scaling has a similarity to standardizing a normal random variable, i.e., observation minus its  mean and divided by its 

standard deviation.  So it is called as a unit normal scaling.  
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2. Unit length scaling 

In unit length scaling, define 

 

 

 

 

where 

        

 

is the corrected sum of squares for        explanatory variables         and  

 

 

is the total sum of squares. 

In  this scaling, each new explanatory  variable          has mean                                      and length  

 

 

 

In terms of these variables, the regression model is 
        
 
 
The least squares estimate of regression coefficient                                 is 
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In such a case, the matrix             is in the form of correlation matrix, i.e., 

 

 

 

 

where 

 

 

 

is the simple correlation coefficient between the explanatory variables Xi  and Xj.   
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Similarly, 

where 

 

 

is the simple correlation coefficient between jth explanatory variable  Xj and study variable y. 

Note that it is customary to refer  rij and rjy  as correlation coefficient though Xi ‘s are not  random variable. 
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 If unit normal scaling is used, then   

         

So the estimates of regression coefficient in unit normal scaling (i.e.,     ),  and unit length scaling (i.e.,      ),  are identical.  

 

So it does not matter  which scaling is used, this             . 

  

 

The regression coefficients obtained after such scaling, viz.,      or        are usually called standardized regression 

coefficients. 
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The relationship between the original and standardized regression coefficients is 
         
 
 
 
 
and              
   
 
 
      
where  b0  is the OLSE of intercept term and  bj are the OLSE of slope parameters 
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The model in deviation form 
The multiple linear regression model can also be expressed in the deviation form. 

First all the data is expressed in terms of deviations from sample mean. 

The estimation of regression parameters is performed in two steps: 

First step:  Estimate the slope parameters. 

Second step : Estimate the intercept term.   

The multiple linear regression model in deviation form is expressed as follows: 
 
Let 
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Thus pre-multiplication of any column vector by  A  produces a vector showing those observations in deviation form. 

Note that 

  

 

 

 

 

 

and A  is symmetric and idempotent matrix. 

In the model 
  
  
the OLSE of      is 
 
 
   
and residual vector is 
   
 
 
Note that     
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Let  the           matrix  X is partitioned as 

 

where          vector with all elements unity representing  the intercept term ,       is                  

matrix of observations of               explanatory variables              and OLSE                        is suitably partitioned  

with OLSE of  intercept term      as                                         vector of OLSEs associated with  

Then  

 

Premultiplication by A  gives 

 

 

Further, premultiplication by         gives 

 

 

Since  A  is symmetric and idempotent, so 

 

This equation can be compared with the normal equations           in the model                     . Such a comparison 

yields the following conclusions: 
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       is the sub-vector of OLSE. 

 Ay  is the study variables vector  in deviation form. 

        is the explanatory variable matrix in deviation form. 

 This is normal equation in terms of deviations.  Its  solution gives OLS of slope coefficients as 

 

The estimate of intercept term is obtained in the second step as follows:  

Premultiplying                  gives 
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Since 
 
 
 
 
 
 
 
 
 
 
 

where  the sum of squares due to regression is 
   
 
 
and the sum of squares due to residual is 
 
 
   

( )

( ) ( )

* *
2 2

* *
2 2

* *
2 2

* * * * * *
1 1 2 2 2 2 1 1 2 2

* * * *
2 2 2 2

' ' '

' '

' '

' ' '

reg res

Ay AX b e

y Ay y AX b y e

Xb e AX b y e

X b X b e AX b X b X b e e

b X AX b e e

TSS SS SS

= +

= +

= + +

= + + + + +

= +

= +

* * * *
2 2 2 2' 'regSS b X AX b=

' .resSS e e=

Now we explain the various sums of squares in terms of this model. 
 
The total sum of squares is 
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