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Multicollinearity diagnostics 
An important question that arises is how to diagnose the presence of multicollinearity in the data on the basis of given 

sample information. Several diagnostic measures are available  and each of them is based on a particular approach. It 

is difficult to say that which  of the diagnostic is the best or ultimate. Some  of the popular and important diagnostics are  

described further.  

 

The detection of multicollinearity involves 3 aspects: 

(i)    Determining its presence. 

(ii)   Determining its severity. 

(iii)  Determining its form or location. 

1. Determinant of          
This measure is based on the fact that the matrix           becomes ill conditioned in the presence of multicollinearity.  The 

value of  determinant of         , i.e.,            declines as  degree of multicollinearity increases. 

  

If  rank                       then             will be singular and so                .  So as                    ,  the degree of multicollinearity 

increases and it becomes exact or perfect at                 .  Thus               serves as a measure of multicollinearity and           

                indicates that perfect multicollinearity exists.  
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Limitations: 
This measure has following limitations 

i. It is not bounded as  

ii. It is affected by dispersion of explanatory variables. For example, if k = 2, then 

            

            

 

 

 

 

 

                    where r12 is the correlation coefficient between  X1 and X2. So             depends on correlation coefficient and  

                    variability of explanatory  variable. If explanatory variables have  very low variability, then            may tend to  

                    zero which will indicate the presence of multicollinearity and which is  not the case so. 

  

         iii.  It gives no idea about the relative effects on  individual coefficients. If multicollinearity is present,  then it will not  

               indicate that which variable in             is causing multicollinearity  and is hard to determine. 
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2. Inspection of correlation matrix 
The inspection of off-diagonal elements  rij  in         gives an idea about the presence  of multicollinearity.  If  Xi and Xj  are 

nearly  linearly dependent then |rij| will be close  to 1.  Note that the observations in X are standardized in the sense that  

each observation is subtracted from mean of that variable and divided by the  square root of corrected sum of squares of  

that variable.  

 

When more than two explanatory variables are considered and if they are  involved in near-linear dependency, then  it is not 

necessary that any of the rij will be large. Generally, pairwise inspection of  correlation coefficients is not sufficient for  

detecting multicollinearity in the data. 

Limitation: 

It gives no information about the number  of linear dependencies among explanatory variables. 

 

3. Determinant of correlation matrix 
Let D be the determinant of correlation matrix then  

If  D = 0 then it indicates the existence of exact linear dependence among explanatory variables. 

If  D = 1 then the columns of  X  matrix are orthonormal. 

Thus a value close to 0 is an indication of  high degree of multicollinearity. Any value  of  D between 0 and 1 gives an idea 

of  the degree of multicollinearity. 
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4. Measure based on partial regression 
A measure of multicollinearity can be  obtained on the basis of coefficients of determination based on partial regression.  Let 

R2 be the coefficient of determination in the full model, i.e., based on all explanatory  variables and       be the coefficient  of 

determination in the model when ith explanatory variable is dropped, i=1,2,…,k, and    

Advantages over   
     
    (i)   It is a bounded measure  
 
    (ii)  It is not affected by the dispersion of explanatory variables. For example, when k = 2, 
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Procedure: 
i. Drop one of the explanatory variable among k variables, say X1. 

ii. Run regression of  y over rest of the (k - 1) variables X2, X3,…, Xk. 

iii. Calculate    

iv. Similarly calculate   

v. Find   

vi. Determine  

 

The quantity                  provides a measure of multicollinearity. If multicollinearity is  present,       will be high. Higher the 

degree of multicollinearity, higher the value  of         So in the presence of multicollinearity,                  be low. 

 

Thus if                   is close to 0, it indicates the high degree of multicollinearity. 

Limitations: 
i. It gives no information about the underlying relations about explanatory  variables, i.e., how many relationships are 

present or how many explanatory  variables are responsible for the multicollinearity. 

ii. Small value of                   may occur  because of poor specification of the  model also and it may be inferred in  

such situation that multicollinearity is present. 
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5. Variance inflation factors (VIF) 
The matrix           becomes ill-conditioned in the presence of multicollinearity in the data. So  the diagonal elements of                     

                   helps in the detection of multicollinearity.  If     denotes the coefficient of determination obtained when Xj is 

regressed on the  remaining (k - 1) variables  excluding Xj , then the  jth diagonal element of C is  

   

 

 

If  Xj is nearly orthogonal to remaining  explanatory variables, then        is small and consequently Cjj is close to 1. 

  

If  Xj  is nearly linearly dependent on a subset of remaining explanatory variables, then        is close to 1 and consequently 

Cjj is large. 

Since the variance of  jth OLSE of       is  

So Cjj is the factor by which the variance of  bj  increases when the explanatory variables are near linear dependent. Based 

on this concept, the variance inflation factor for the jth explanatory variable is  defined as 

 

   

This is the factor which is responsible for inflating the sampling variance. The combined effect of dependencies among the 

explanatory  variables on the variance of a term is  measured by the VIF of that  term in the model. 

One or more large VIFs indicate the presence of multicollinearity in the data.  
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In practice, usually a                or 10 indicates that the associated regression coefficients are poorly estimated because of 

multicollinearity.  If regression coefficients are estimated by OLSE and its variance is                     So VIF indicates that a 

part of this variance is  given by VIFj. 
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Another interpretation of  VIFj 
The VIFs can also be viewed as follows. 

 

The confidence interval of  jth  OLSE of        is given by 

 

 

The length of the confidence interval is 

   

 

Now consider a situation where X is an orthogonal matrix, i.e.,                 so that Cjj = 1, sample size is same as  earlier and 

same root mean squares                             , then the length of confidence interval becomes 

   

Consider the ratio 

   

Thus              indicates the increase in the  length of confidence interval  of  jth  regression coefficient due to the presence of 

multicollinearity. 

Limitations: 
(i)     It sheds no light on the number of dependencies  among the explanatory variables. 

(ii)    The rule of  VIF > 5 or 10 is a rule of thumb which may differ from one situation to another situation. 
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6. Condition number and condition index 
Let                       be the eigenvalues (or characteristic roots) of             Let 

   

 

 

The condition number (CN) is defined as   

 

 

The small values of characteristic roots indicates the presence of near-linear  dependencies in the data. The CN provides a 

measure of spread in the spectrum of characteristic roots of X’X. 

The condition number provides a measure of multicollinearity. 

 If CN < 100, then it is considered as non-harmful multicollinearity. 

 If 100 < CN < 1000, then it indicates  that the multicollinearity is moderate to severe (or strong). This range is 

referred to  as danger level. 

 If  CN > 1000,  then it indicates a severe (or strong)  multicollinearity. 
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The condition number is based only or two eigenvalues:                         .  Another measures are condition indices which 

use information on other  eigenvalues as well. 

The condition indices of  X’X  are defined as 
 
In fact, largest Cj = CN.  
The number of condition indices that are large, say more than 1000, indicate the number of near-linear dependencies in  

X’X.  A limitation of  CN  and  Cj  is that they are unbounded measures as                     ,                   . 
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7. Measure based on characteristic roots and proportion of variances 
Let                        be the eigenvalues  of                                                     is             matrix and V is a             matrix 

constructed by the eigenvectors of X’X.  Obviously, V is an orthogonal matrix.  Then X’X  can be decomposed as    

                     .  Let                       be the column of  V.  If  there is near-linear dependency in the  data,  then        is close to 

zero and the nature of linear dependency is described by the elements of  associated eigenvector Vj. 

 

The covariance matrix of OLSE is 

 

 

 

 

 

 

where                          are the  elements in V. 

  

The condition indices are 
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Procedure:  
i. Find condition index  

ii. (a)   Identify those           for which        is greater than the danger level 1000. 

       (b)   This gives the number of linear  dependencies. 

       (c)   Don’t consider those            which are below the danger level. 

iii. For such         with condition index above the danger level, choose one such eigenvalue, say  

iv. Find the value of proportion of variance corresponding to        in                                              as 

 

 

 

        Note that             can be found from the  expression 

     

 

        i.e., corresponding to       factor. 

        The proportion of variance         provides a measure of multicollinearity. 

 

If                   it indicates that       is adversely affected by the multicollinearity, i.e., estimate of       is influenced by the 

presence of multicollinearity. 

 

It is a good diagnostic tool in the sense that it tells about the presence of harmful multicollinearity as well as  also indicates 

the number of linear dependencies  responsible for multicollinearity. This  diagnostic is better than other diagnostics. 
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12 The condition indices are also defined  by the singular value decomposition of  X  matrix as follows: 

   

 

where U   is            matrix, V  is  matrix,  is            matrix                                         is            matrix,    

and                    are the  singular values of            is a matrix whose columns are eigenvectors corresponding to 

eigenvalues of  X’ X   and  U  is a matrix whose columns are the eigenvectors associated with  the  k  nonzero eigenvalues 

of  X’ X.  

The condition indices of  X  matrix are defined as 
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The ill-conditioning in  X   is reflected  in the size of singular values. There will  be one small singular value for each  non-

linear dependency. The  extent of ill conditioning is described by how small is         relative to        

 

It is suggested that the explanatory variables should be scaled to unit length but should not be centered  when computing     

     . This will help in diagnosing the role of intercept term in near-linear dependence. No unique guidance  is available in 

literature on the issue of centering  the explanatory variables. The centering makes the  intercept orthogonal to explanatory 

variables. So this may remove the ill conditioning due to intercept term in the model. 
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