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The usual linear regression model assumes that all the random error components are identically and independently 

distributed with constant variance. When this assumption is violated, then ordinary least squares estimator of regression 

coefficient looses its property of minimum variance in the class of linear and unbiased estimators. The violation of such 

assumption can arise in anyone of the following situations: 

            1. The variance of random error components is not constant. 

            2. The random error components are not independent.  

            3. The random error components do not have constant variance as well as they are not independent.  
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In such cases, the covariance matrix of random error components  does not remain in the form of an identity matrix but can 

be considered as any positive definite matrix. Under such assumption, the OLSE does not remain efficient as in the case of 

identity covariance matrix. The generalized  or weighted least squares method is used in such situations to estimate the 

parameters of the model. 

 

In this method, the deviation between the observed and expected values of yi  is  multiplied by a weight        where                  

is chosen to be inversely  proportional to the variance of  yi. 

 

For simple linear regression model, the weighted least squares function is  

 

The least squares normal equations are  obtained by differentiating                 with respect to                    and equating 

them to zero as 

 

   

 

Solution of these two normal equations give the weighted least squares estimate of                  . 
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Suppose in  usual  multiple regression model 

                                           , 

the assumption                      is violated and become  

   

where      is a known             nonsingular, positive definite and symmetric matrix. 

  

This structure of       incorporates both the cases. 

 when        is  diagonal but with unequal variances and  

 when        is not necessarily diagonal depending on the presence of correlated errors, then the off - diagonal 

elements are nonzero. 

The OLSE of       is 
  
 
 
In such cases OLSE gives unbiased estimate but  has more variability as 
 
 
 
   
 
Now we attempt to find better estimator as follows: 
 
   

Generalized least squares estimation   
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Since       is positive definite, symmetric, so there exists a nonsingular matrix  K  such that 
  
 

Then in the model 

    

premutliply by          gives 

  

or                       

 

where                                                  .  Now observe that 

 

 

 

 

 

 

 

 

 

 

Thus the elements of g  have 0 mean, common variance         and they are uncorrelated. 

,y X β ε= +
1K −

1 1 1K y K X Kβ ε− − −= +

z B gβ= +
1 1 1, ,z K y B K X g K ε− − −= = =

{ }{ }

1)

1 1

1 1

2 1 1

2 1 1

2

( ) ( ) 0

( ) ( ) ( ) '

( ')

' '

( ') '

'

' '

.

E g K E

V g E g E g g E g

E gg

E K K

K E K

K K

K KK K

I

ε

εε

εε

σ

σ

σ

−

− −

− −

− −

− −

= =

= − −  

=

 =  

=

= Ω

=

=

Ω

'  .KK = Ω

2σ



5 

 

 

 

 

 

 

 

 

 

Alternatively, we can apply OLS to transformed model and obtain OLSE of       as 

   

 

 

 

This is termed as generalized least squares estimator (GLSE) of      . 

 

The estimation error of GLSE is 
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Then  

  
 
which shows that GLSE is an unbiased estimator of     . The covariance matrix of GLSE  is given by 
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 The Gauss-Markov theorem for the case  
The Gauss-Markov theorem establishes that the generalized least-squares (GLS) estimator of      given by 

                                          is BLUE (best linear unbiased estimator). By best    ,  we  mean that        minimizes the 

variance for any linear combination of the estimated coefficients,         . We note that  

Thus      is an unbiased estimator of      .  

The covariance matrix of       is given by 
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Consequently,       is unbiased if and only if both             and               The covariance matrix of        is 

Let       be another unbiased estimator of        that is a linear combination of the data. Our goal, then, is to show that   

                                            with at least one      such that                                             . 

We first note  that we can write any other estimator of      that is a linear combination of the data as 

   

 

where B   is an p x n  matrix and              p x 1  vector of constants that appropriately adjusts the GLS estimator to form 

the alternative estimate.  Then 
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because                 which  implies that                                Then 

   

  

 

 

 

 

We note that       is a positive definite matrix. Consequently, there exists some nonsingular matrix K  such that                   As 

a result,                             is at least positive semidefinite matrix; hence,                             Next note that we can define    

                   

 

As a result, 

 

 
 
which must be strictly greater than 0 for some            unless  B = 0. 
 
For                                       where 1 occurs at the ith place,                is the best linear unbiased estimator of                 for 
 
all  i = 1, 2, …, k. Thus, the GLS estimate of       is the best linear unbiased estimator. 
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Weighted least squares estimation 

When           are uncorrelated and have  unequal variances, then 

   

 

 

 

 

 

 

The estimation procedure is usually called as weighted least squares. 

 

Let                  then the weighted least squares estimator of       is obtained by solving normal equation                          

which gives                                      where                       are called the weights. 

 

The observations with large variances usual have smaller weights than observations with small variance. 
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