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Computational procedure 
 
The maximum- likelihood estimate of       corresponds to the value of      for which residual sum of squares from the fitted 

model                  is a minimum. To determine such    , we proceed computationally as follows: 

 Fit           for various values of     . For example, start with values in (-1, 1) then take the values in  (-2, 2) and so 

on.  Take about 15 to 20 values of      which are expected to be sufficient for the estimation of optimum value. 

 Plot                   versus      . 

 Find the value of       which minimizes                   from the graph. 

 A second iteration can be performed using a finer mesh of values, if desired. 

Note that the value of       can not be selected by directly comparing the residual sum of squares from the regression of     

on x  because for each    , the residual sum of squares is measured on a different scale. 

  

It is better to use simple values of    . For example, the practical difference between               and                is likely to be 

small but               is much easier to interpret. 

Once        is selected, then use 

         as a study variable if   

           as a study variable if   

It is entirely acceptable to use            as response for final model. This model  will have a scale difference and an origin shift 

in comparison to model using        (or         )  as the response. 
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An approximate confidence interval for  
 

We can find an approximate confidence interval for the transformation parameter      . This interval helps in selecting the 

final value of       . For example , if                   is the value of       which is minimizing the sum of squares due to residual.  

But if                 is in the confidence interval, then  one may use the square root transformation because it is easier to 

explain. Furthermore  if             is in the confidence interval, then  it may be concluded that no transformation is necessary. 

In applying the method of maximum likelihood to the regression model, we are essentially maximizing 

 

   

or equivalently, we are minimizing                . 

An approximate                          confidence interval for       consists of those values of        that satisfy 

   

 

where             is the upper                  point of  the Chi-square distribution with one degree of freedom. 
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The approximate confidence interval is constructed using the following steps: 

 Draw a plot of            versus     . 

 Draw a horizontal line at height 

 

    

    on the vertical scale. 

 This line would cut the           at two points. 

 The location of these two points on the     -axis defines the two end points of the approximate confidence interval. 

 If sum of squares due to residuals is minimized and                  versus     is plotted, then the line  must be plotted at the 

height 

 

 

    where      is the value of       which minimizes the sum of squares due to residuals. See how: 
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Using the expansion of exponential function as 

   

 

 

we  can approximate and replace                         by                     So in place of                      in applying the confidence 

interval procedure, we can use the following: 

 

 

 

 

 

 

 

where      is the degrees of freedom associated with sum of squares due to residuals. 

These expressions are based on the fact that 

              if       is small. 

It is debatable to use either       or  n  but practically the difference is very little between the confidence interval  results. 

 

Box-Cox transformation was originally introduced to reduce the nonnormality in the data.  It also helps is reducing  the 

nonlinearity.  The approach is  to find out the transformations which  attempts  to reduce the residuals  associated with 

outliers and also  reduce  the problem of  non constant  error variance if there  was no acute nonlinearity to begin with. 
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Transformation on explanatory variables: Box and Tidwell procedure 
Suppose the relationship between y and one or more of the explanatory variables is nonlinear. Other usual assumptions 

normally and independently distributed  study variable with constant variance are at least approximately satisfied. 

  

We want to select an appropriate transformation on the explanatory variable  so that the relationship between y and  

transformed explanatory variable is as simple as possible. 

  

Box and Tidwell procedure describes a general analytical procedure for  determining the form of transformation on x 

Suppose that the study variable y is related to the power of explanatory  variables. Box and Tidwell procedures for 

explanatory variables chooses the variables as 

 

 

 

 

We need to estimate           .  Since the dependent variable is not being transformed, we need not worry about the changes 

of scale and  minimize 

  

  

by using nonlinear least squares techniques.  

 

We consider this for simple linear regression model instead of nonlinear  regression model. 
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Assume y is related to               as 

 

 

 

 

where                          are the unknown parameters. 

 

Suppose         is the initial guess of constant     . 

Usually, first guess is              so that             or  no transformation is applied in the first iteration.  

  

Expand about the initial guess in a Taylor series and ignoring terms of order higher them one gives 

  

 

 

 

 

Suppose the  term                                is known, then it can be treated just like as an additional explanatory variable. Then 

the parameters                          can be estimated by least squares method. 
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The estimate  of        can be considered  as an improved estimate of the transformation parameter. 

This term can be written as 

  

 

 

Since the form of transformation is known, i.e.,             , 

so      

 

 

Furthermore 

 

 

 

So        can be estimated by fitting the model                         by least squares method. 

  

Then an “adjustment” to initial guess              is  computed by defining a second regression variable as 

  

estimating the parameter in 

 

  

by least squares. 
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This gives 

 

 

 

 

 

as the revised estimate of 

 

 

Note that       is obtained from                       and      is obtained from                                 . 

 

Generally,                      will differ. 

  

This procedure may be repeated using a new regression                in the calculation. 

  

This procedure generally  converges  rapidly.  Usually, the  first stage result        is a satisfactory estimate of     .  The round-

off error is a potential problem. If enough decimal places are not taken care, then  the successive values of        may 

oscillate badly.  If the standard deviation of error         is large or  the range of explanatory variable is very small relative to 

its mean then the estimator may face convergence problems. This situation implies that the data do not support the need 

for any transformation.     
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