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MODULE 6 

RANDOM VECTOR AND ITS JOINT DISTRIBUTION 

LECTURE 29 

Topics 

6.5 EXPECTATIONS AND MOMENTS 

6.5.1 Cauchy- Schwarz Inequality for Random Variables 

 

Theorem 4.3 

Let 𝑋1, … , 𝑋𝑝  be independent random vectors such that 𝑋𝑖  is 𝑞𝑖 -dimensional, 𝑖 = 1,… , 𝑝. 

Let 𝜓𝑖 : ℝ
𝑞𝑖 → ℝ𝑟𝑖 , 𝑖 = 1,… , 𝑝, be Borel functions. Then 𝜓1 𝑋1 , … , 𝜓𝑝 𝑋𝑝 are 

independent. 

Proof. Let 𝑋 = (𝑋1, … , 𝑋𝑝)  and let 𝑌𝑖 = 𝜓𝑖 𝑋𝑖 , 𝑖 = 1,… , 𝑝 . For fixed 𝑦𝑖 ∈ ℝ𝑟𝑖  define 

𝐴𝑖 =  𝑥 ∈ ℝ𝑞𝑖 : 𝜓𝑖 𝑥 ≤ 𝑦𝑖 , 𝑖 = 1,… , 𝑝  (where, for 𝑥, 𝑦 ∈ ℝ𝑟 , 𝑥 ≤ 𝑦  means 𝑥𝑖 ≤ 𝑦𝑖 , 𝑖 =

1, … , 𝑟) . Then, for 𝑦𝑖 ∈ ℝ𝑟𝑖 , 𝑖 = 1,… , 𝑝,  the joint distribution function of 𝑌1 =

𝜓1 𝑋1 ,… , 𝑌𝑝 =  𝜓𝑝 𝑋𝑝  is given by 

                      𝐹𝑌1 ,…,𝑌𝑝  𝑦1, … , 𝑦𝑝 = 𝑃( 𝑌1 ∈  −∞, 𝑦1 , … , 𝑌𝑝 ∈ (−∞, 𝑦𝑝]}  

    = 𝑃( 𝑋1 ∈ 𝐴1, … , 𝑋𝑝 ∈ 𝐴𝑝 ) 

                                                         =   𝑃({𝑋𝑗 ∈ 𝐴𝑗

𝑝

𝑗=1

})                      (using Remark 4.1  iii ) 

                                                         =   𝑃({𝑌𝑗 ≤ 𝑦𝑗

𝑝

𝑗=1

})    

                                                        =   𝐹𝑌𝑗 ( 𝑦𝑗

𝑝

𝑗=1

),              

where 𝐹𝑌𝑗 (∙) denotes the marginal distribution function of 𝑌𝑗 , 𝑗 = 1, 2, … , 𝑝. Now, using the 

analog of Theorem 4.1 for random vectors, it follows that  𝑌1, … , 𝑌𝑝  are independent. ▄ 
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Example 4.1 

Let 𝑋 = (𝑋1, 𝑋2, 𝑋3) be a discrete type random vector with joint p.m.f. 

𝑓𝑋 𝑥1, 𝑥2 , 𝑥3 =   

𝑥1𝑥2𝑥3

72
,   if  𝑥1, 𝑥2, 𝑥3 ∈  1, 2 ×  1, 2, 3 × {1, 3}

0,               otherwise

 . 

(i) Are 𝑋1, 𝑋2 and 𝑋3 independent random variables? 

(ii) Are 𝑋1 and 𝑋3  independent random variables? 

Solution. (i) From Example 2.2 (ii) we have  

𝑓𝑋1
 𝑥1 =  

𝑥1

3
,     if 𝑥1 ∈  1, 2 

0,         otherwise    

 ;     𝑓𝑋2
 𝑥2 =  

𝑥2

6
,    if 𝑥2 ∈  1, 2, 3 

 0,      otherwise

  

and 

𝑓𝑋3
 𝑥3 =  

𝑥3

4
,   if 𝑥3 ∈  1, 3 

0,      otherwise
 . 

 Clearly 

𝑓𝑋1 ,𝑋2 ,𝑋3
 𝑥1, 𝑥2 , 𝑥3 = 𝑓𝑋1

 𝑥1 𝑓𝑋2
 𝑥2 𝑓𝑋3

 𝑥3 ,   ∀𝑥 =  𝑥1, 𝑥2, 𝑥3 ∈ ℝ3 . 

Now using Theorem 4.2 (i) it follows that 𝑋1, 𝑋2  and 𝑋3 are independent. 

One can also directly infer the independence of 𝑋1, 𝑋2 and 𝑋3 from Theorem 4.2 (ii) by 

nothing that 

𝑓𝑋1 ,𝑋2 ,𝑋3
 𝑥1, 𝑥2 , 𝑥3 = 𝑔1 𝑥1 𝑔2 𝑥2 𝑔3 𝑥3 ,   ∀𝑥 =  𝑥1, 𝑥2, 𝑥3 ∈ ℝ3 , 

where 

𝑔1 𝑥1 =   

𝑥1

72
,   if 𝑥1 ∈  1, 2 

0,      otherwise

    ,    𝑔2 𝑥2 =   
𝑥2 ,    if 𝑥2 ∈  1, 2, 3 

0 ,     otherwise
  

and 

𝑔3 𝑥3 =  
𝑥3 ,   if 𝑥1 ∈  1, 3 

0,     otherwise
  . 

(ii) From Example 2.2 (iii) we have 

𝑓𝑋1 ,𝑋3
 𝑥1, 𝑥3 =   

𝑥1𝑥3

12
,   if  𝑥1, 𝑥3 ∈  1, 2 ×  1, 3 

0,         otherwise

 . 
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Clearly  

𝑓𝑋1 ,𝑋3
 𝑥1, 𝑥3 = 𝑓𝑋1

 𝑥1 𝑓𝑋3
 𝑥3 ,   ∀ 𝑥1, 𝑥3 ∈ ℝ2. 

Therefore 𝑋1 and 𝑋3 are independent. ▄ 

Example 4.2 

Let 𝑋 =  𝑋1, 𝑋2, 𝑋3  be a random vector of absolutely continuous type with p.d.f. 

𝑓𝑋 𝑥1, 𝑥2, 𝑥3 =  

1

𝑥1𝑥2 
,   if 0 < 𝑥3 < 𝑥2 < 𝑥1 < 1 

0  ,         otherwise

 . 

(i) Are 𝑋1, 𝑋2 and 𝑋3 independent random variables? 

(ii) Let 𝑥2 ∈ (0, 1) be fixed. Are 𝑋1 and 𝑋3 independent given 𝑋2 = 𝑥2 ? 

Solution. (i) We have  

𝑓𝑋1
 𝑥1 =   

  
1

𝑥1𝑥2

𝑥2

0

𝑥1

0

𝑑𝑥3𝑑𝑥2 ,      if 0 < 𝑥1 < 1

0,                                      otherwise

  

   =   
1,      if 0 < 𝑥1 < 1
0,      otherwise

,                        

                                𝑓𝑋2
 𝑥2 =   

− ln 𝑥2,        if 0 < 𝑥2 < 1
0,                 otherwise

          ( See Example 2.3  iii )  

and 

𝑓𝑋3
 𝑥3 =  

 
 

 
  

1

𝑥1𝑥2

1

𝑥2

1

𝑥3

𝑑𝑥1𝑑𝑥2,      if 0 < 𝑥3 < 1

0,                                       otherwise

  

=   
(ln 𝑥3)2

2
, if 0 < 𝑥3 < 1

0,                       otherwise

 . 

Clearly 

𝑓𝑋1 ,𝑋2 ,𝑋3
 𝑥1, 𝑥2, 𝑥3 ≠ 𝑓𝑋1

 𝑥1 𝑓𝑋2
 𝑥2 𝑓𝑋3

 𝑥3 ,   ∀ 𝑥1, 𝑥2 , 𝑥3 ∈ ℝ3, 

and therefore 𝑋1, 𝑋2 and 𝑋3 are not independent. 
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Note that   𝑆𝑋 =   𝑥1, 𝑥2 , 𝑥3 : 𝑓𝑋 𝑥1, 𝑥2, 𝑥3 > 0 =    𝑥1, 𝑥2 , 𝑥3 :  0 < 𝑥3 < 𝑥2 < 𝑥1 <

1 , 𝑆𝑋1
=  𝑥1: 𝑓𝑋1

 𝑥1 > 0 = (0, 1) = 𝑆𝑋2
=  𝑆𝑋3

. Since 𝑆𝑋 ≠ 𝑆𝑋1
× 𝑆𝑋2

× 𝑆𝑋3
 one can 

also infer the non-independence of 𝑋1, 𝑋2 and 𝑋3 from Theorem 4.2 (iii). 

(ii) Fix 𝑥2 ∈  0, 1 . From Example 3.2 (ii) we have 

𝑓𝑋1 ,𝑋3 𝑋2
  𝑥1, 𝑥3 𝑥2

  =
𝑓𝑋1 ,𝑋2 ,𝑋3

 𝑥1, 𝑥2, 𝑥3 

𝑓𝑋2
 𝑥2 

 

                             =   
−

1

𝑥1𝑥2 ln 𝑥2
 ,     if 𝑥2 < 𝑥1 < 1, 0 < 𝑥3 < 𝑥2

0,                           otherwise

 . 

 Also it is easy to see that  

          𝑓𝑋1 𝑋2
  𝑥1 𝑥2

  =
𝑓𝑋1 ,𝑋2

 𝑥1, 𝑥2 

𝑓𝑋2
 𝑥2 

=  
−

1

𝑥1 ln 𝑥2
 ,    if 𝑥2 < 𝑥1 < 1

0,                     otherwise

  

and 

𝑓𝑋3 𝑋2
  𝑥3 𝑥2

  =  
𝑓𝑋2 ,𝑋3

 𝑥2, 𝑥3 

𝑓𝑋2
 𝑥2 

=  

1

𝑥2
 ,    if 0 < 𝑥3 < 𝑥2

0,        otherwise

.  

Clearly, for fixed 𝑥2 ∈  0, 1 , 

𝑓𝑋1 ,𝑋3 𝑋2
  𝑥1, 𝑥3 𝑥2

  = 𝑓𝑋1 𝑋2
  𝑥1 𝑥2

  𝑓𝑋3 𝑋2
  𝑥3 𝑥2

  ,   ∀ 𝑥1, 𝑥3 ∈ ℝ2 . 

Now using Theorem 4.2 (i) on conditional p.d.f. of  𝑋1, 𝑋3  given 𝑋2 = 𝑥2 it follows that, 

given 𝑋2 = 𝑥2, the random variables 𝑋1 and 𝑋3  are conditionally independent. 

One can also infer the conditional independence of 𝑋1 and 𝑋3 given 𝑋2 = 𝑥2 directly from 

Theorem 4.2 (ii) by nothing that, for a fixed 𝑥2 ∈  0,1 , 

                                   𝑓𝑋1 ,𝑋3 𝑋2
  𝑥1, 𝑥3 𝑥2

  =
𝑓𝑋1 ,𝑋2 ,𝑋3

 𝑥1, 𝑥2 , 𝑥3 

𝑓𝑋2
 𝑥2 

 

                         = 𝑐(𝑥2)𝑓𝑋1 ,𝑋2 ,𝑋3
 𝑥1, 𝑥2, 𝑥3  

                                           =  𝑔𝑥2

 1  𝑥1 𝑔𝑥2

 2  𝑥3 ,     𝑥1, 𝑥3 ∈ ℝ2, 

where, for a fixed 𝑥2 ∈  0, 1  
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𝑔𝑥2

 1  𝑥1 =     
𝑐(𝑥2)

𝑥2𝑥1
,    if 𝑥2 < 𝑥1 < 1

0,            otherwise
  and  𝑔𝑥2

 2  𝑥3 =  
1  ,   if 0 < 𝑥3 < 𝑥2

0,     otherwise
  . ▄  

6.5 EXPECTATIONS AND MOMENTS 

Let 𝑋 =  𝑋1, … , 𝑋𝑝  be a 𝑝 -dimensional random vector of either discrete type or of 

absolutely continuous type. Let 𝑓𝑋 ∙  and  𝑆𝑋 =  𝑥 ∈ ℝ𝑝 : 𝑓𝑋 𝑥 > 0  denote respectively the 

p.m.f. (or p.d.f.) of 𝑋  (or 𝑓𝑋).  Further let  𝑓𝑋𝑖 ∙  and 𝑆𝑋𝑖 =  𝑥 ∈ ℝ: 𝑓𝑋𝑖 𝑥 > 0  denote 

respectively the p.m.f. (or p.d.f.) and support of  𝑋𝑖  (or 𝑓𝑋𝑖(⋅)), 𝑖 = 1,… , 𝑝. 

The proof of the following theorem, being similar to that of Theorem 3.2, Module 3, is 

omitted. 

Theorem 5.1 

Let 𝜓: ℝ𝑝 → ℝ be a Borel function such that 𝐸(𝜓 𝑋 ) is finite. 

(i) If 𝑋 is of discrete type then 

𝐸  𝜓 𝑋  =  𝜓 𝑥 𝑓𝑋 𝑥 .

𝑥∈𝑆𝑋

 

 

(ii) If 𝑋 is of absolutely continuous type then 

          𝐸  𝜓 𝑋  =   𝜓 𝑥 𝑓𝑋 𝑥 𝑑𝑥

ℝ𝑝

.▄ 

Definition 5.1 

Some special kind of expectations are defined below: 

(i) For non-negative integers 𝑘1 , … , 𝑘𝑝 , let 𝜓 𝑥 =  𝑥1
𝑘1 ⋯𝑥𝑝

𝑘𝑝 . Then 

𝜇𝑘1 ,…,𝑘𝑝
′ = 𝐸  𝑋1

𝑘1 ⋯𝑋𝑝
𝑘𝑝  , 

 

provided it is finite, is called a joint moment of order 𝑘1 + ⋯+  𝑘𝑝  of  𝑋; 

(ii) For non-negative integers 𝑘1 , … , 𝑘𝑝 , let 𝜓 𝑥 =  (𝑥1 − 𝐸 𝑋1 )
𝑘1 ⋯(𝑥𝑝 − 𝐸 𝑋𝑝 )𝑘𝑝 . 

Then 

𝜇𝑘1 ,…,𝑘𝑝 = 𝐸 (𝑋1 − 𝐸 𝑋1 )
𝑘1 ⋯(𝑋𝑝 − 𝐸 𝑋𝑝 )𝑘𝑝  , 

provided it is finite, is called a joint central moment of order 𝑘1 + ⋯+  𝑘𝑝  of 𝑋; 

(iii) Let 𝜓 𝑥 = (𝑥𝑖 − 𝐸 𝑋𝑖 )(𝑥𝑗 − 𝐸 𝑋𝑗  ), 𝑖, 𝑗 = 1,… , 𝑝. Then  
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Cov 𝑋𝑖 , 𝑋𝑗  = 𝐸 (𝑋𝑖 − 𝐸 𝑋𝑖 )(𝑋𝑗 − 𝐸 𝑋𝑗  ) , 

provided it is finite, is called the covariance between 𝑋𝑖  and 𝑋𝑗 . ▄ 

Note that 

                      Cov 𝑋𝑖 , 𝑋𝑖 = 𝐸( 𝑋𝑖 − 𝐸 𝑋𝑖 )
2 = Var 𝑋𝑖 ,   𝑖 = 1,… , 𝑝, 

and, for 𝑖, 𝑗 ∈  1, … , 𝑝 , 𝑖 ≠ 𝑗 , 

Cov 𝑋𝑖 , 𝑋𝑗  = 𝐸   𝑋𝑖 − 𝐸 𝑋𝑖   𝑋𝑗 − 𝐸 𝑋𝑗     

                      = 𝐸   𝑋𝑗 − 𝐸 𝑋𝑗    𝑋𝑖 − 𝐸 𝑋𝑖    

= Cov 𝑋𝑗 , 𝑋𝑖 .               

     Also, for 𝑖, 𝑗 ∈  1, … , 𝑝 , 

Cov 𝑋𝑖 , 𝑋𝑗  = 𝐸   𝑋𝑖 − 𝐸 𝑋𝑖   𝑋𝑗 − 𝐸 𝑋𝑗     

        = 𝐸 𝑋𝑖𝑋𝑗  − 𝐸 𝑋𝑖 𝐸(𝑋𝑗 ). 

Theorem 5.2 

Let 𝑋 =  𝑋1, … , 𝑋𝑝1
  and 𝑌 =  𝑌1, … , 𝑌𝑝2

  be random vectors and let 𝑎1, … , 𝑎𝑝1
,

𝑏1, … , 𝑏𝑝2
 be real constants. Then, provided the involved expectations are finite,  

 i  𝐸   𝑎𝑖𝑋𝑖

𝑝1

𝑖=1

 =  𝑎𝑖

𝑝1

𝑖=1

𝐸(𝑋𝑖); 

 ii  Cov  𝑎𝑖𝑋𝑖 ,

𝑝1

𝑖=1

 𝑏𝑗𝑌𝑗

𝑝2

𝑗=1

 =   𝑎𝑖𝑏𝑗

𝑝2

𝑗=1

𝑝1

𝑖=1

Cov 𝑋𝑖 , 𝑌𝑗  . 

In particular 

Var  𝑎𝑖𝑋𝑖

𝑝1

𝑖=1

 =  𝑎𝑖
2

𝑝1

𝑖=1

Var 𝑋𝑖 +   𝑎𝑖𝑎𝑗

𝑝2

𝑗=1
𝑗≠𝑖

𝑝1

𝑖=1

Cov 𝑋𝑖 , 𝑋𝑗   

                                       =  𝑎𝑖
2

𝑝1

𝑖=1

Var 𝑋𝑖 + 2   𝑎𝑖𝑎𝑗
≤𝑝11≤𝑖<𝑗

Cov 𝑋𝑖 , 𝑋𝑗  . 



NPTEL- Probability and Distributions  

 

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                 7 
 

Proof. We will provide the proof for the absolutely continuous case. The proof for the 

discrete case follows similarly. 

(i)  Let  𝑓𝑋 ∙  denote the joint p.d.f. of 𝑋 =  𝑋1, … , 𝑋𝑝1
 .Then 

𝐸   𝑎𝑖𝑋𝑖

𝑝1

𝑖=1

 =     𝑎𝑖𝑥𝑖

𝑝1

𝑖=1

 

ℝ𝑝1

𝑓𝑋 𝑥 𝑑𝑥 

                    =   𝑎𝑖  𝑥𝑖
ℝ𝑝1

𝑝1

𝑖=1

𝑓𝑋 𝑥 𝑑𝑥 

                                                               =  𝑎𝑖𝐸 𝑋𝑖 .

𝑝1

𝑖=1

                    (using Theorem 5.1) 

(ii) We have 

Cov  𝑎𝑖𝑋𝑖 , 𝑏𝑗𝑌𝑗

𝑝2

𝑗=1

𝑝1

𝑖=1

 =  𝐸    𝑎𝑖𝑋𝑖 − 𝐸  𝑎𝑖𝑋𝑖

𝑝1

𝑖=1

 

𝑝1

𝑖=1

   𝑏𝑗𝑌𝑗 − 𝐸  𝑏𝑗𝑌𝑗

𝑝2

𝑗=1

 

𝑝2

𝑗=1

   

                                           = 𝐸

 

 
 
  𝑎𝑖𝑋𝑖 − 𝑎𝑖𝐸

𝑝1

𝑖=1

 𝑋𝑖 

𝑝1

𝑖=1

   𝑏𝑗𝑌𝑗 − 𝑏𝑗𝐸

𝑝2

𝑗=1

𝑝2

𝑗=1

 𝑌𝑗   

 

 
 

 (using  i ) 

                                       = 𝐸

 

 
 
  𝑎𝑖

𝑝1

𝑖=1

 𝑋𝑖 − 𝐸 𝑋i     𝑏𝑗

𝑝2

𝑗=1

 𝑌𝑗 − 𝐸 𝑌𝑗    

 

 
 

 

                                      = 𝐸    𝑎𝑖𝑏𝑗  𝑋𝑖 − 𝐸 𝑋𝑖  

𝑝2

𝑗=1

𝑝1

𝑖=1

 𝑌𝑗 − 𝐸 𝑌𝑗     

                               =   𝑎𝑖𝑏𝑗𝐸

𝑝2

𝑗=1

𝑝1

𝑖=1

  𝑋𝑖 − 𝐸 𝑋𝑖   𝑌𝑗 − 𝐸 𝑌𝑗                (again using  i ) 

     =   𝑎𝑖𝑏𝑗

𝑝2

𝑗=1

𝑝1

𝑖=1

Cov 𝑋𝑖 , 𝑋𝑗  .                                                         

Also, 
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 Var  𝑎𝑖𝑋𝑖

𝑝

𝑖=1

  = Cov  𝑎𝑖𝑋𝑖  , 𝑎𝑗𝑋𝑗

𝑝1

𝑗=1

𝑝1

𝑖=1

  

                              =   𝑎𝑖𝑎𝑗

𝑝1

𝑗=1

𝑝1

𝑖=1

Cov 𝑋𝑖 , 𝑋𝑗   

                               =   𝑎𝑖
2

𝑝1

𝑖=1

Cov 𝑋𝑖 , 𝑋𝑖 +    𝑎𝑖𝑎𝑗

𝑝1

𝑗=1
𝑖≠𝑗

𝑝1

𝑖=1

Cov(𝑋𝑖 , 𝑋𝑗 ) 

                               =   𝑎𝑖
2

𝑝1

𝑖=1

Var 𝑋𝑖 +    𝑎𝑖𝑎𝑗

𝑝1

𝑗=1
𝑖≠𝑗

𝑝1

𝑖=1

Cov(𝑋𝑖 , 𝑋𝑗 ) 

                        =  𝑎𝑖
2

𝑝1

𝑖=1

Var 𝑋𝑖 + 2   𝑎𝑖𝑎𝑗
≤𝑝11≤𝑖<𝑗

Cov 𝑋𝑖 , 𝑋𝑗  .      

                                                                since Cov 𝑋𝑖 , 𝑋𝑗  = Cov 𝑋𝑗 , 𝑋𝑖  .▄  

 

Theorem 5.3 

Let  𝑋1, … , 𝑋𝑝  be independent random vectors, where 𝑋𝑖  is 𝑟𝑖- dimensional, 𝑖 = 1,… , 𝑝. 

(i) Let  𝜓𝑖 : ℝ
𝑟𝑖 → ℝ, 𝑖 = 1, 2, … , 𝑝,  be Borel functions. Then 

𝐸   𝜓𝑖

𝑝

𝑖=1

 𝑋𝑖  =  𝐸 𝜓𝑖(𝑋𝑖) 

𝑝

𝑖=1

, 

provided the involved expectations are finite. 

(ii) For 𝐴𝑖 ∈ ℬ𝑟𝑖 , 𝑖 = 1,… , 𝑝, 

𝑃  𝑋𝑖 ∈ 𝐴𝑖 , 𝑖 = 1,… , 𝑝  =  𝑃 {𝑋𝑖 ∈ 𝐴𝑖} 

𝑝

𝑖=1

. 

Proof. We will provide the proof for the absolutely continuous case. The proof for the 

discrete case follows similarly and is left as an exercise. 

(i) Let 𝑋 = (𝑋1, … , 𝑋𝑝). Since 𝑋1, … , 𝑋𝑝  are independent. We have 
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𝑓𝑋 𝑥1, … , 𝑥𝑝 =  𝑓𝑋𝑖 𝑥𝑖  ,   ∀ (𝑥1, … , 𝑥𝑝)

𝑝

𝑖=1

∈ ℝ𝑟 ,   

where 𝑟 =  𝑟𝑖
𝑝
𝑖=1 . Therefore, 

𝐸   𝜓𝑖

𝑝

𝑖=1

 𝑋𝑖  =   ⋯    𝜓𝑖

𝑝

𝑖=1

 𝑥𝑖  

∞

−∞

∞

−∞

  𝑓𝑋𝑖 𝑥𝑖 

𝑝

𝑖=1

 𝑑𝑥1 ⋯𝑑𝑥𝑝  

                 =   ⋯    𝜓𝑖 𝑥𝑖 𝑓𝑋𝑖 𝑥𝑖  

𝑝

𝑖=1

∞

−∞

∞

−∞

𝑑𝑥1 ⋯𝑑𝑥𝑝 , 

                                          =   𝜓1

∞

ℝ𝑟1

 𝑥1 𝑓𝑋1
 𝑥1 𝑑𝑥1 ⋯  𝜓𝑝

ℝ𝑟𝑝

 𝑥𝑝 𝑓𝑋𝑝  𝑥𝑝 𝑑𝑥𝑝  

     = 𝐸  𝜓1 𝑋1  ⋯𝐸  𝜓𝑝 𝑋𝑝  .               

(ii) Let  

𝜓𝑖 𝑋𝑖 =  
1 ,    if  𝑋𝑖 ∈ 𝐴𝑖
0 ,    otherwise

 ,   𝑖 = 1,… , 𝑝, 

so that 

 𝜓𝑖

𝑝

𝑖=1

 𝑋𝑖 =   
1 ,    if 𝑋𝑖 ∈ 𝐴𝑖 , 𝑖 = 1,… , 𝑝

0 ,    otherwise
.  

 Now using (i) we get 

               𝐸   𝜓𝑖

𝑝

𝑖=1

 𝑋𝑖  =  𝐸(𝜓𝑖

𝑝

𝑖=1

 𝑋𝑖 ) 

⟹ 𝑃  𝑋𝑖 ∈ 𝐴𝑖 , 𝑖 = 1,… , 𝑝  =  𝑃({

𝑝

𝑖=1

𝑋𝑖 ∈ 𝐴𝑖}).▄  

Corollary 5.1 

Let 𝑋1, … , 𝑋𝑝  be independent random variables. Then 

Cov 𝑋𝑖 , 𝑋𝑗  = 0,   ∀𝑖 ≠ 𝑗, 

and, for real constants 𝑎1, … , 𝑎𝑝 ,  

Var  𝑎𝑖𝑋𝑖

𝑝

𝑖=1

 =  𝑎𝑖
2

𝑝

𝑖=1

Var 𝑋𝑖 , 
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provided the involved expectations are finite. 

Proof. Fix 𝑖, 𝑗 ∈  1, … , 𝑝 , 𝑖 ≠ 𝑗. Using Theorem 5.3 (i), we have 

𝐸 𝑋𝑖𝑋𝑗  = 𝐸 𝑋𝑖 𝐸(𝑋𝑗 ) 

⟹ Cov 𝑋𝑖 , 𝑋𝑗  = 𝐸 𝑋𝑖𝑋𝑗  − 𝐸 𝑋𝑖 𝐸 𝑋𝑗  = 0. 

By Theorem 5.2 we have 

Var  𝑎𝑖𝑋𝑖

𝑝

𝑖=1

 =  𝑎𝑖
2

𝑝

𝑖=1

Var 𝑋𝑖 +     𝑎𝑖𝑎𝑗

𝑝

𝑗=1

𝑝

𝑖=1
𝑖≠𝑗

Cov 𝑋𝑖 , 𝑋𝑗   

                                                  =  𝑎𝑖
2

𝑝

𝑖=1

Var 𝑋𝑖 .             since Cov 𝑋𝑖 , 𝑋𝑗  = 0, 𝑖 ≠ 𝑗 .▄ 

Definition 5.2  

(i) The correlation coefficient between random variables 𝑋 and 𝑌 is defined by 

𝜌 𝑋, 𝑌 =  
Cov (𝑋, 𝑌)

 Var 𝑋 Var(𝑌)
 , 

provided 0 < Var 𝑋 , Var 𝑌 < ∞. 

(ii) Random variables 𝑋 and 𝑌 are said to be uncorrelated if Cov 𝑋, 𝑌 = 0. ▄ 

Note that 𝜌 𝑋, 𝑌 = 𝜌 𝑌, 𝑋 .  Also from Corollary 5.1 it is clear that if 𝑋 and 𝑌  are 

independent random variables then they are uncorrelated. However, as the following 

examples illustrates, the converse may not be true (i.e., uncorrected random variables may 

not be independent). 

Example 5.1 

Let (𝑋, 𝑌)be a bivariate random vector of discrete type with p.m.f. given by  

(𝑥, 𝑦) (−1, 1) (0, 0) (1, 1) 

𝑓𝑋,𝑌(𝑥, 𝑦) 𝑝1 𝑝2 𝑝1 

 

where 𝑝1 ∈  0, 1 , 𝑝2 ∈ (0, 1) and 2𝑝1 + 𝑝2 = 1. 

Clearly  

𝐸 𝑋𝑌 =  −1 𝑝1 +  0 𝑝2 +   1 𝑝1 = 0 
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𝐸 𝑋 =  −1 𝑝1 +  0 𝑝2 +  1 𝑝1 = 0 

𝐸 𝑌 =  1 𝑝1 +  0 𝑝2 +   1 𝑝1 = 2𝑝1 

⟹ Cov 𝑋, 𝑌 = 𝐸 𝑋𝑌 − 𝐸 𝑋 𝐸 𝑌 = 0 

                                            ⟹ 𝜌 𝑋, 𝑌 = 0. 

 However 

𝑃   𝑋, 𝑌 =  −1,1   = 𝑝1 ≠ 2𝑝1
2 = 𝑃  𝑋 = −1  𝑃  𝑌 = 1  , 

implying that 𝑋 and 𝑌 are not independent. ▄ 

Example 5.2 

Let  𝑋 = (𝑋1, 𝑋2) be a bivariate random vector of absolutely continuous type with p.d.f. 

given by 

𝑓𝑋 𝑥1, 𝑥2 =  
1,    if  0 <  𝑥2 ≤ 𝑥1 < 1
0,    otherwise

.  

 Then  

𝐸 𝑋1𝑋2 =    𝑥1𝑥2𝑑𝑥2𝑑𝑥1

𝑥1

−𝑥1

1

0

= 0 

𝐸 𝑋1 =   𝑥1𝑑𝑥2𝑑𝑥1

𝑥1

−𝑥1

1

0

=
2

3
 

𝐸 𝑋2 =   𝑥2𝑑𝑥2𝑑𝑥1

𝑥1

−𝑥1

1

0

= 0 

and 

Cov 𝑋1, 𝑋2 = 𝐸 𝑋1𝑋2 − 𝐸 𝑋1 𝐸 𝑋2 = 0. 

Therefore, 

𝜌 𝑋1, 𝑋2 = 0, 

  i.e., 𝑋1 and 𝑋2 are uncorrelated. Also 
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𝑓𝑋1
 𝑥1 =

 
 

 
 𝑑𝑥1 ,   if  0 < 𝑥1 < 1

𝑥1

−𝑥1

0,                otherwise

   =  
2𝑥1,   if 0 < 𝑥1 < 1
0,        otherwise

  

and 

               𝑓𝑋2
 𝑥2 =

 
 

 
 𝑑𝑥1 ,   if − 1 < 𝑥2 < 1

1

 𝑥2 

0,               otherwise

   =  
1 −  𝑥2 ,   if − 1 < 𝑥2 < 1
0,                otherwise

 . 

Clearly  

𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 ≠ 𝑓𝑋1

 𝑥1 𝑓𝑋2
 𝑥2 ,   ∀𝑥 =  𝑥1, 𝑥2 ∈ ℝ2, 

and therefore 𝑋1 and 𝑋2 are not independent. 

One can also infer that 𝑋1 and 𝑋2 are not independent by directly observing from the joint 

p.d.f. 𝑓𝑋 ∙ that 𝑆𝑋 =  𝑥 ∈ ℝ2: 𝑓𝑋 𝑥 > 0 =   𝑥1, 𝑥2 : 0 <  𝑥2 ≤ 𝑥1 < 1 , 𝑆𝑋1
=

 𝑥1 ∈ ℝ1: 𝑓𝑋1
 𝑥1 > 0 =  0, 1 , 𝑆𝑋2

=  𝑥2 ∈ ℝ1: 𝑓𝑋2
 𝑥2 > 0 =  −1, 1  and that 

𝑆𝑋 ≠ 𝑆𝑋1
× 𝑆𝑋2

. ▄ 

Theorem 5.4  

6.5.1 Cauchy- Schwarz Inequality for Random Variables 

Let (𝑋, 𝑌) be a bivariate random vector. Then, provided the involved expectations are 

finite, 

                                             (𝐸 𝑋𝑌 )2 ≤ 𝐸 𝑋2 𝐸(𝑌2).                                     (5.1) 

The equality in (5.1) is attained if, and only if, 𝑃  𝑌 = 𝑐𝑋  = 1 or 𝑃  𝑋 = 𝑐𝑌  = 1, for 

some real constant 𝑐. 

Proof. Consider the following two cases. 

Case I. 𝐸(𝑋2) = 0. 

In this case 𝑃  𝑋 = 0  = 1  (see Theorem 3.3 (iii), Module 3) and hence 𝑃  𝑋𝑌 = 0  =

1. It follows that 𝐸 𝑋𝑌 = 0, 𝐸 𝑋 = 0, 𝑃  𝑋 = 𝑐𝑌  = 1, (for 𝑐 = 0) and the equality in 

(5.1) is attained. 

Case II. 𝐸(𝑋)2 > 0. 

Then, 
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0 ≤ 𝐸  𝑌 − 𝜆𝑋 2 =  𝐸(𝑋2)𝜆2 − 2𝐸 𝑋𝑌 𝜆 + 𝐸(𝑌2) 

i.e.,                                    𝐸 𝑋2 𝜆2 − 2𝐸 𝑋𝑌 𝜆 + 𝐸 𝑌2 ≥ 0, ∀𝜆 ∈ ℝ. 

This implies that the discriminant of the quadratic equation 𝐸 𝑋2 𝜆2 − 2𝐸 𝑋𝑌 𝜆 +

𝐸 𝑌2 = 0 is non- negative, i.e., 

4(𝐸 𝑋𝑌 )2 ≤ 4𝐸 𝑋2 𝐸 𝑌2  

⇒ (𝐸 𝑋𝑌 )2 ≤ 𝐸 𝑋2 𝐸 𝑌2 , 

and the equality is attained if, and only if, 

𝐸  𝑌 − 𝑐𝑋 2 = 0,   for some 𝑐 ∈ ℝ 

⟺ 𝑃  𝑌 = 𝑐𝑋  = 1,   for some 𝑐 ∈ ℝ. ▄ 

 

Corollary 5.2 

Let (𝑋1, 𝑋2) be a bivariate random vector with 𝐸  𝑋𝑖 = 𝜇𝑖 ∈ (−∞,∞) and Var 𝑋𝑖 = 𝜎𝑖
2 ∈

 0, ∞ , 𝑖 = 1, 2. Then 

(i)  𝜌(𝑋1, 𝑋2) ≤ 1; 

(ii) 𝜌 𝑋1, 𝑋2 = ±1 if, and only if, 
𝑋1−𝜇1

𝜎1
= 𝑑

𝑋2−𝜇2

𝜎2
, for some real constant 𝑑; here 

      𝜇𝑖 = 𝐸 𝑋𝑖 , 𝑖 = 1,2. 

 

Proof. Taking 𝑋 = 𝑋1 − 𝜇1 and 𝑌 =  𝑋2 − 𝜇2 in Theorem 5.4, we get 

(𝐸  𝑋1 − 𝜇1 (𝑋2 − 𝜇2) )2 ≤ 𝐸((𝑋1 − 𝜇1)2)𝐸((𝑋2 − 𝜇2)2) 

                                                     ⟺ 𝜌2 𝑋1, 𝑋2 ≤ 1 

                                                     ⟺  𝜌 𝑋1, 𝑋2  ≤ 1, 

and the equality is attained if and only if, 

𝑃((𝑋1 − 𝜇1) = 𝑐(𝑋2 − 𝜇2)) = 1 , for some 𝑐 ∈ ℝ 

⟺ 𝑃 
𝑋1−𝜇1

𝜎1
= 𝑑

𝑋2−𝜇2

𝜎2
 = 1 ,   for some 𝑑 ∈ ℝ. ▄ 

Let 𝑋 = (𝑌, 𝑍) be a 𝑝-dimensional random vector of either discrete type or of absolutely 

continuous type and let 𝑌 and 𝑍, respectively, be 𝑝1 and 𝑝2 dimensional, so that 𝑝 = 𝑝1  +
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 𝑝2.  For a given 𝑧 ∈ 𝑆𝑍  (or 𝑧 satisfying  3.5  and 𝑓𝑍 𝑧 > 0)  the conditional p.m.f. (or 

p.d.f.) of 𝑌  given 𝑍 = 𝑧 is given by  

𝑓𝑌 𝑍  𝑦 𝑧
  =  

𝑓𝑌,𝑍  𝑦, 𝑧 

𝑓𝑍 𝑧 
,   𝑦 ∈ ℝ𝑝1 . 

Let 𝜓: ℝ𝑝1 →  ℝ be a Borel function and let 𝑧 ∈ 𝑆𝑍  (or 𝑧 satisfies (3.5) with 𝑓𝑍 𝑧 > 0) . 

Then the conditional expectation of 𝜓(𝑌) given that  𝑍 = 𝑧 may be defined by  

𝐸 𝜓 𝑌  𝑍 = 𝑧  =   𝜓  𝑦 𝑓𝑌 𝑍  𝑦 𝑧
  d𝑦 ,

ℝ𝑝1

 

provided the expectation is finite. 

Similarly the conditional variance of 𝜓 𝑌 , given that  𝑍 = 𝑧 , may be defined by 

Var 𝜓 𝑌  𝑍 = 𝑧  = 𝐸  𝜓 𝑌 − 𝐸(𝜓 𝑌  𝑍 = 𝑧  )2 𝑍 = 𝑧  . 

Throughout we will use the following notation 

                                                        𝐸 𝜓 𝑌  𝑍  = 𝜓∗ 𝑍 ,                                       (5.2) 

where 𝜓∗ is defined by  

                                          𝜓∗ 𝑧 = 𝐸 𝜓 𝑌  𝑍 = 𝑧  ,                       (5.3) 

for all 𝑧 ∈ 𝑆𝑧  (or all 𝑧 satisfying (3.5) with 𝑓𝑍 𝑧 > 0) . 

 


