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MODULE 6 

RANDOM VECTOR AND ITS JOINT DISTRIBUTION 

LECTURE 25 

Topics  

6.1 MULTIVARIATE DISTRIBUTIONS 

 

6.1 MULTIVARIATE DISTRIBUTIONS 

A (univariate) random variable describes a numerical characteristic of a typical outcome 

of a random experiment. In many situations we may be interested in simultaneously 

studying two or more numerical characteristics of outcomes of a random experiment. To 

make the above discussion more clear consider the following example. 

Example 1.1 

Two distinguishable dice (labeled as 𝐷1 and 𝐷2) are thrown simultaneously. Here the 

sample space is 𝛺 =   𝑖, 𝑗 : 𝑖, 𝑗 ∈   1,… ,6  , where the outcome  𝑖, 𝑗 ∈ 𝛺 indicates that 

𝑖 number of dots are observed on the uppermost face of die 𝐷1 and 𝑗 number of dots are 

observed on uppermost face of die 𝐷2. For  𝑖, 𝑗 ∈ 𝛺, define 

𝑋1  𝑖, 𝑗  = 𝑖 + 𝑗 = sum of number of dots on uppermost faces of two dice 

and 

𝑋2  𝑖, 𝑗  =  𝑖 − 𝑗 = absolute difference of number of dots  on uppermost faces of two 

dice. 

It may be of interest to study numerical characteristics  𝑋1 and 𝑋2 simultaneously. This 

amounts to the study of the function 𝑋 =  𝑋1,𝑋2 ∶ 𝛺 ⟶ℝ defined on the sample space  

𝛺. ▄  

Throughout ℝ𝑝 =  𝑥 =  𝑥1,… , 𝑥𝑝 : −∞ < 𝑥𝑖 < ∞, 𝑖 = 1,… ,𝑝  will denote the 𝑝-

dimensional Euclidean space and, for a set 𝛣 ⊆ ℝ𝑝  and a function 

𝑋 =  𝑋1,𝑋2,… ,𝑋𝑝 : 𝛺 ⟶ℝ𝑝 , 

𝑋−1 𝐵 ≝  𝜔 ∈ 𝛺: 𝑋 𝜔 =  𝑋1 𝜔 ,𝑋2 𝜔 ,… ,𝑋𝑝 𝜔  ∈ 𝐵 . 
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Let  𝛺,ℱ,𝑃  be a given probability space. 

Definition 1.1  

A function 𝑋 =  𝑋1,… ,𝑋𝑝 :𝛺 ⟶ℝ𝑝  is called a 𝑝-dimensional random vector (or 

simple a random vector) if  𝑋−1 (−∞,𝑎] ∈  ℱ,∀ 𝑎 =  𝑎1,… ,𝑎𝑝 ∈ ℝ
𝑝 ; here 

 −∞,𝑎 =  −∞,𝑎1 × ⋯×  −∞,𝑎𝑝 . ▄ 

A 1-dimensional random vector will simply be referred to as a random variable. Clearly, 

a function 𝑋 =  𝑋1,… ,𝑋𝑝 :𝛺 ⟶ℝ𝑝  is a random vector if  

 𝜔 ∈ 𝛺 ∶ 𝑋1 𝜔 < 𝑎1,… ,𝑋𝑝 𝜔 < 𝑎𝑝 ∈  ℱ,   ∀ 𝑎 =  𝑎1,… ,𝑎𝑝 ∈ ℝ
𝑝 . 

For 𝑎 =  𝑎1,… ,𝑎𝑝 ∈ ℝ
𝑝 , 𝑏 =  𝑏1,… , 𝑏𝑝 ∈ ℝ

𝑝 ,  and  𝑎𝑖 < 𝑏𝑖 , 𝑖 = 1,… ,𝑝,  define 

 𝑎, 𝑏 =  𝑎1,𝑏1 × ⋯×  𝑎𝑝 ,𝑏𝑝 ≡  𝑎𝑖 , 𝑏𝑖 ,

𝑝

𝑖=1

 

 𝑎 ,  𝑏 =  𝑎1
 ,  𝑏1 × ⋯×  𝑎𝑝  ,  𝑏𝑝 ≡  𝑎𝑖  ,  𝑏𝑖 ,

𝑝

𝑖=1

 

 𝑎 ,  𝑏 =  𝑎1
 ,  𝑏1 × ⋯×  𝑎𝑝  ,  𝑏𝑝 ≡  𝑎𝑖  ,  𝑏𝑖 ,

𝑝

𝑖=1

 

 𝑎, 𝑏 =  𝑎1, 𝑏1 × ⋯× [𝑎𝑝 ,𝑏𝑝] ≡ [𝑎𝑖 , 𝑏𝑖],

𝑝

𝑖=1

 

                             −∞,𝑏 =  −∞,𝑏1 ×⋯×  −∞, 𝑏𝑝 ≡  −∞, 𝑏𝑖 ,

𝑝

𝑖=1

 

 𝑎,∞ =  𝑎1,∞ ×⋯×  𝑎𝑝 ,∞ ≡  𝑎𝑖 ,∞ ,

𝑝

𝑖=1

 

and 

 𝑎 ,  ∞ =  𝑎1,∞ ×⋯× [𝑎𝑝 ,∞) ≡ [𝑎𝑖 ,∞).

𝑝

𝑖=1

 

Further define 
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                                       𝒞0 =   −∞  , 𝑏 ∶ 𝑏 ∈ ℝ𝑝 , 

𝒞1 =   𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ ℝ𝑝 ,  𝑎𝑖 < 𝑏𝑖 , 𝑖 = 1,… ,𝑝 , 

𝒞2 =   𝑎 ,  𝑏 ∶ 𝑎, 𝑏 ∈ ℝ𝑝 ,   𝑎𝑖 < 𝑏𝑖 , 𝑖 = 1,… , 𝑝 , 

𝒞3 =   𝑎 ,  𝑏 ∶ 𝑎, 𝑏 ∈ ℝ𝑝 ,  𝑎𝑖 < 𝑏𝑖 , 𝑖 = 1,… ,𝑝 , 

𝒞4 =   𝑎, 𝑏 ∶ 𝑎, 𝑏 ∈ ℝ𝑝 ,   𝑎𝑖 < 𝑏𝑖 , 𝑖 = 1,… ,𝑝 , 

𝒞5 =   −∞,𝑏 ∶ 𝑏 ∈ ℝ𝑝 ,                                        

𝒞6 =   𝑎,∞ ∶ 𝑎 ∈ ℝ𝑝 ,                                           

and 

𝒞7 =   𝑎 ,  ∞ ∶ 𝑎 ∈ ℝ𝑝 .                                            

As in the case of 𝑝 = 1 it can be shown that 

(i) ℬ𝑝 = the Borel 𝜎-field in ℝ𝑝 = 𝜎 𝒞𝑖 , 𝑖 = 0, 1,… ,7; 

(ii)  𝑎 ∈ ℬ𝑝 , ∀ 𝑎 ∈ ℝ𝑝 , i. e., ℬ𝑝  contains all singleton subsets of ℝ𝑝 ; 

(iii) If 𝐵 ⊆ ℝ𝑝  is countable then 𝐵 ∈ ℬ𝑝 ; 

(iv) There exists a set 𝐴 ⊆ ℝ𝑝  such that 𝐴 ∉ ℬ𝑝 ; 

(v) 𝑋:𝛺 ⟶ℝ𝑝  is a 𝑝-dimensional random vector if, and only if one of the following                 

equivalent conditions hold: 

a) 𝑋−1 𝐵 ∈ ℱ,   ∀ 𝐵 ∈ 𝒞1; 

 

b) 𝑋−1 𝐵 ∈ ℱ,    ∀ 𝐵 ∈ 𝒞2; 

 

c) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ 𝒞3; 

 

d) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ 𝒞4; 

 

e) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ 𝒞5; 

 

f) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ 𝒞6; 

 

g) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ 𝒞7; 

 

h) 𝑋−1 𝐵 ∈ ℱ, ∀ 𝐵 ∈ ℬ𝑝 . 
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(vi) If 𝑋 =  𝑋1,… ,𝑋𝑝  is a 𝑝-dimensional random vector and 𝑔𝑖 :ℝ
𝑝  → ℝ, 𝑖 =

1,… , 𝑘, are Borel functions  i. e. ,  𝑔𝑖
−1 𝐵 ∈ ℱ,∀ 𝐵 ∈ ℬ𝑝 , 𝑖 = 1,… , 𝑘  then 

 𝑔1 𝑋 ,… ,𝑔𝑘 𝑋   is a 𝑘-dimensional random vector. 

 

(vii) If  𝑋:𝛺 → ℝ𝑝  is a 𝑝-dimensional random vector then  

𝑋−1  𝑎  =  𝜔 ∈ 𝛺:𝑋1 𝜔 = 𝑎1,… ,𝑋𝑝 𝜔 = 𝑎𝑝 ∈ ℱ,∀ 𝑎 =  𝑎1,… ,𝑎𝑝 ∈ ℝ
𝑝 ; 

(viii) The function 𝑃𝑋 : ℬ𝑝 → ℝ given by, 

𝑃𝑋 𝐵 = 𝑃  𝑋−1 𝐵  ,𝐵 ∈ ℬ𝑝 , 

is a probability measure on  ℬ𝑝  (i. e. ,  ℝ𝑝 ,ℬ𝑝 ,𝑃𝑋  is a probability space), called the 

probability measure induced by 𝑋. 

Example 1.2 

Let 𝐴,𝐵 ⊆ 𝛺. Define 𝑋 =  𝑋1,𝑋2 :𝛺 → ℝ2 by 

𝑋1 𝜔 = 𝐼𝐴 𝜔 =  
1,       if  𝜔 ∈ 𝐴  
0,       if  𝜔 ∉ 𝐴  

;  

and 

𝑋2 𝜔 = 𝐼𝐵 𝜔 =  
1      if  𝜔 ∈ 𝐵
0,     if  𝜔 ∉ 𝐵 

 . 

Then, for  𝑎 =  𝑎1,𝑎2 ∈ ℝ
2, 

𝑋−1 (−∞ ,𝑎] =  𝜔 ∈ 𝛺: 𝑋1  𝜔 ≤ 𝑎1,𝑋2 𝜔 ≤ 𝑎2  

                                           =

 
 
 

 
 
𝜙,               if  𝑎1 < 0 or 𝑎2 < 0
𝐴𝑐 ∩ 𝐵𝑐 ,   if    0 ≤ 𝑎1 < 1, 0 ≤ 𝑎2 < 1

𝐴𝑐 ,             if    0 ≤ 𝑎1 < 1,𝑎2 ≥  1
𝐵𝑐 ,             if   𝑎1 ≥ 1, 0 ≤ 𝑎2 <  1
𝛺,               if  𝑎1 ≥ ,1,  𝑎2 ≥   1

 . 

Thus 

                           𝑋 is a random vector ⟺ 𝑋−1 (−∞ ,𝑎] ∈ ℱ,∀𝑎 ∈ ℝ2 

   ⟺ 𝐴𝑐 ,𝐵𝑐 ∈ ℱ
⟺ 𝐴,𝐵 ∈ ℱ

 

Thus 𝑋 is a random vector if, and only if, 𝐴,𝐵 ∈ ℱ. ▄ 
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Theorem 1.1 

Let 𝑋 =  𝑋1,… ,𝑋𝑝 :𝛺 → ℝ𝑝  be a given function. Then  𝑋 is a random vector if, and 

only if  𝑋1,… ,𝑋𝑝   𝑋𝑖 : 𝛺 → ℝ, 𝑖 = 1,… ,𝑝   are random variables. 

Proof. First suppose that 𝑋 =  𝑋1,… ,𝑋𝑝  is a random vector. Then, for 𝑎 ∈ ℝ, and for 

fixed 𝑖 ∈  1,… ,𝑝  

𝑋𝑖
−1 (−∞,  𝑎  =  𝑋−1 (−∞,𝑛] ×⋯× (−∞,𝑛] × (−∞,𝑎] × (−∞,𝑛] ×⋯× (−∞,𝑛]                                            

∈ ℱ,∀𝑛=1,2,…

∞

𝑛=1

 , 

                                 ∈  ℱ 

i.e., 𝑋𝑖  is a random variable. 

Conversely suppose that 𝑋1,… ,𝑋𝑝  are random variables. Then, for 𝑎 =  𝑎1,… ,𝑎𝑝  ∈

ℝ𝑝 , 

𝑋−1   −∞ ,  𝑎  =  𝜔 ∈ 𝛺:𝑋𝑖 𝜔 ≤  𝑎𝑖 , 𝑖 = 1,… ,𝑝  

            =   𝜔 ∈ 𝛺:𝑋𝑖 𝜔  ≤ 𝑎𝑖 

𝑝

𝑖=1

 

 =  𝑋𝑖
−1 (−∞,𝑎𝑖]          

∈ ℱ 

𝑝

𝑖=1

 

                                                              ∈ ℱ 

i.e., 𝑋  is a random vector. ▄ 

Remark 1.1 

When 𝛺 is countable we have ℱ = 𝒫(𝛺) and, therefore, any function 

𝑋 =  𝑋1,… ,𝑋𝑝 : 𝛺 → ℝ𝑝  is a random vector. ▄ 

 

Definition 1.2 

(i) The joint distribution function of a 𝑝-dimensional random vector 𝑋 =

 𝑋1,… ,𝑋𝑝 :𝛺 → ℝ𝑝  is defined by   

 

𝐹𝑋 𝑥1 ,… , 𝑥𝑝 = 𝑃  𝜔 ∈ 𝛺:𝑋1 𝜔 ≤ 𝑥1 ,… ,𝑋𝑝 𝜔 ≤ 𝑥𝑝  , 𝑥 =  𝑥1 ,… , 𝑥𝑝 ∈ ℝ
𝑝 . 
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(ii) The joint distribution function of any subset of random variables 𝑋1,… ,𝑋𝑝  is 

called a marginal distribution function of 𝐹𝑋(∙). ▄ 

Remark 1.2 

(i) If 𝐹𝑋(∙) is the distribution function of a 𝑝-dimensional random vector 𝑋 =

(𝑋1,… ,𝑋𝑝) then 

          𝐹𝑋 𝑥 = 𝑃  𝑋𝑖 ≤ 𝑥𝑖 , 𝑖 = 1,… ,𝑝   

            = 𝑃  𝑋−1   −∞ ,  𝑥    

 = 𝑃𝑋   −∞ ,  𝑥   

         = 𝑃    𝑋𝑖 ≤ 𝑥𝑖 

𝑝

𝑖=1

  

                                                                 = 𝑃  𝑋𝑖
−1

𝑝

𝑖=1

 (−∞,  𝑥𝑖   ,   𝑥 =  𝑥1,… , 𝑥𝑝 ∈ ℝ
𝑝 . 

(ii) Let 𝐹𝑋1,⋯,𝑋𝑝 (∙) be the distribution function of a random vector 𝑋 =  𝑋1,… ,𝑋𝑝  

and let 𝛽 = (𝛽1,… ,𝛽𝑝) be a permutation of (1,… ,𝑝). Then 

                                 𝐹𝑋1 ,…,𝑋𝑝  𝑥1,… , 𝑥𝑝 = 𝑃    𝑋𝑖 ≤ 𝑥𝑖 

𝑝

𝑖=1

  

                  = 𝑃    𝑋𝛽𝑖 ≤ 𝑥𝛽𝑖 

𝑝

𝑖=1

  

                                                                   = 𝐹𝑋𝛽1,⋯,𝑋𝛽𝑝
 𝑥𝛽1

,… , 𝑥𝛽𝑝 ,   𝑥 =  𝑥1,… , 𝑥𝑝 ∈ ℝ
𝑝 . 

It follows that the distribution function of  𝑋𝛽1,… ,𝑋𝛽𝑝  is given by 

𝐹𝑋𝛽1
,…,𝑋𝛽𝑝

 𝑦1,… ,𝑦𝑝 = 𝐹𝑋1 ,…,𝑋𝑝  𝑦𝛾1
,… ,𝑦𝛾 𝑝 ,   𝑦 =  𝑦1,… ,𝑦𝑝 ∈ ℝ

𝑝 , 

where 𝛾 =  𝛾1,… , 𝛾𝑝  is the inverse permutation of 𝛽 =  𝛽1,… ,𝛽𝑝 . To 

illustrate this point, consider 𝑝 = 3 and 𝛽 =  𝛽1,𝛽2,𝛽3 =  2, 3, 1 . Then the 
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inverse permutation of 𝛽 = (𝛽1,𝛽2,𝛽3) is 𝛾 =  𝛾1,𝛾2, 𝛾3 = (3, 1, 2), and 

therefore, for  𝑦 =  𝑦1,𝑦2,𝑦3 ∈ ℝ
3, 

𝐹𝑋𝛽1
,𝑋𝛽2

,𝑋𝛽3
 𝑦1,𝑦2,𝑦3 =  𝐹𝑋2,𝑋3,𝑋1

 𝑦1,𝑦2,𝑦3  

                                                                 = 𝑃  𝑋2 ≤ 𝑦1,𝑋3 ≤ 𝑦2,𝑋1 ≤ 𝑦3   

                                                                = 𝑃  𝑋1 ≤ 𝑦3,𝑋2 ≤ 𝑦1,𝑋3 ≤ 𝑦2   

                                         = 𝐹𝑋1 ,𝑋2 ,𝑋3
 𝑦3,𝑦1,𝑦2  

                                                  = 𝐹𝑋1 ,𝑋2,𝑋3
 𝑦𝛾1

,𝑦𝛾2
,𝑦𝛾3

 . 

(iii) Note that a distribution function  𝐹𝑋1 ,…,𝑋𝑝  𝑥1,… , 𝑥𝑝  is increasing in each 

argument when other arguments are kept fixed. 

We recall the following results from the theory of multivariable calculus.  

Lemma 1.1 

Let 𝐷 ⊆ ℝ𝑝  and let 𝑔:𝐷 → ℝ be a function such that: 

(i) 𝑔 is bounded above, i.e., there exists a real constant 𝑀 such that 𝑔 𝑥 ≤ 𝑀,∀𝑥 ∈

𝐷; 

(ii) for every fixed 𝑖 ∈  1,… ,𝑝  and fixed  𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑝 ∈ ℝ
𝑝−1,

𝑔 𝑥1,… , 𝑥𝑖−1, 𝑡, 𝑥𝑖+1,… , 𝑥𝑝  is non decreasing in 

𝑡 ∈ 𝐷𝑖 =   𝑦 ∈ ℝ: (𝑥1,… , 𝑥𝑖−1,𝑦, 𝑥𝑖+1,… , 𝑥𝑝 ∈ 𝐷}. Then lim𝑥→∞ 𝑔(𝑥) exists and, 

for any permutation 𝛽 =  𝛽1,… ,𝛽𝑝   of (1,… ,𝑝),  

lim
𝑥𝛽𝑝  →∞

⋯ lim
𝑥𝛽1 →∞

 𝑔 𝑥1,… , 𝑥𝑝 = lim
𝑥→∞

𝑔(𝑥) ∙ 

In particular all iterated limits  

lim
𝑥𝛽𝑝  →∞

⋯ lim
𝑥𝛽1 →∞

 𝑔 𝑥1 ,… , 𝑥𝑝 ,    𝛽1,… ,𝛽𝑝 ∈ 𝑆𝑝 , 

exist and are equal, where 𝑆𝑝  denotes the set of all permutations of (1,… ,𝑝). We 

denote the common value of all iterated limits by 

lim
𝑥𝑖→∞
𝑖=1,…,𝑝

𝑔(𝑥) . ▄ 
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Note that if 𝐹𝑋(⋅) is a distribution function in ℝ𝑝  (𝑝 ≥ 2) then, for a fixed 𝑘 ∈

 1,… ,𝑝 − 1  and fixed  𝑥𝑘+1,… , 𝑥𝑝 ∈ ℝ
𝑝−𝑘 , the function 𝑔:ℝ𝑘  → ℝ, given by  

𝑔 𝑥1,… , 𝑥𝑘 = 𝐹𝑋 𝑥1,… , 𝑥𝑘 , 𝑥𝑘+1,… , 𝑥𝑝 , 

satisfies properties (i) and (ii) stated in Lemma 1.1. Therefore, for fixed  𝑥𝑘+1,… , 𝑥𝑝 ∈

ℝ𝑝−𝑘  

lim
𝑥∗→∞

𝐹𝑋 𝑥1,… , 𝑥𝑘 , 𝑥𝑘+1,… , 𝑥𝑝 = lim
𝑥𝑖→∞
𝑖=1,⋯,𝑘

𝐹𝑋 𝑥1,… , 𝑥𝑘 , 𝑥𝑘+1,… , 𝑥𝑝 , 

where 𝑥∗ =  𝑥1,… , 𝑥𝑘 . 

Lemma 1.2  

Let 𝐹𝑋(∙) be the distribution function of a 𝑝-dimensional  𝑝 ≥ 2  random vector 𝑋 =

 𝑋1,… ,𝑋𝑝 . For a fixed positive integer 𝑘 ∈  1,… ,𝑝 − 1 , let 𝑌 =  𝑋1,… ,𝑋𝑘  and let 

𝑍 =  𝑋𝑘+1,… ,𝑋𝑝  so that 𝑋 = (𝑌,𝑍 ). Then the marginal distribution function of 

𝑌 =  𝑌1,… ,𝑌𝑘  is given by 

𝐹𝑌 𝑥1,… , 𝑥𝑘 = lim
𝑥𝑖→∞

𝑖=𝑘+1,…,𝑝

𝐹𝑋 𝑥1,… , 𝑥𝑘 , 𝑥𝑘+1,… , 𝑥𝑝 ,    𝑥1,… , 𝑥𝑘 ∈ ℝ
𝑘 . 

Proof. For fixed 𝑥1,… , 𝑥𝑝−1 ∈ ℝ 

lim
𝑥𝑝→∞

𝐹𝑋  𝑥1,… , 𝑥𝑝 =  lim
𝑥𝑝→∞

𝑃   𝑋𝑖
−1

𝑝

𝑖=1

 (−∞,𝑥𝑖]   

                                     = lim
𝑛→∞

𝑃

 

 
 
 
  𝑋𝑖

−1

𝑝−1

𝑖=1

 (−∞, 𝑥𝑖]   𝑋𝑝
−1  (−∞,𝑛] 

                           
=𝐴𝑛 ↑  

 
 
 

 

                                      = 𝑃   𝐴𝑛

∞

𝑛=1

  

                                     = 𝑃  𝑋𝑖
−1

𝑝−1

𝑖=1

 (−∞,𝑥𝑖]     since  𝑋𝑝
−1

∞

𝑛=1

 (−∞,𝑛] = 𝛺  



NPTEL-Probability and Distributions 

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                 10 
 

                                      = 𝐹𝑋1 ,…,𝑋𝑝−1
 𝑥1,… , 𝑥𝑝−1 .                                                               (1.1) 

Now the assertion follows on recursively using (1.1). ▄ 

Remark 1.3   

Let 𝑋 =  𝑋1,… ,𝑋𝑝  be a random vector and let 𝛽 =  𝛽1,… ,𝛽𝑝 ∈ 𝑆𝑝 , the set of all 

permutations of  1,… , 𝑝 . If 𝛾 =  𝛾1,… , 𝛾𝑝  is the inverse permutation of (𝛽1,… ,𝛽𝑝) 

then, for a fixed 𝑘 ∈  1,… ,𝑝 − 1 , the marginal distribution function of  𝑋𝛽1
,… ,𝑋𝛽𝑘  is 

given by 

𝐹𝑋𝛽1 ,…,𝑋𝛽𝑘
 𝑥1,… , 𝑥𝑘 =  lim

𝑥𝑗→ ∞

𝑗=𝑘+1,⋯,𝑝

𝐹𝑋𝛽1 ,…,𝑋𝛽𝑝
 𝑥1,… , 𝑥𝑝  

                                            = lim
𝑥𝑗→ ∞

𝑗=𝑘+1,…,𝑝

𝐹𝑋1 ,…,𝑋𝑝  𝑥𝛾1
,… , 𝑥𝛾𝑝 . ▄ 

 

Let 𝑋 =  𝑋1,… ,𝑋𝑝  be a random vector and let 𝑎 =  𝑎1,… ,𝑎𝑝 , 𝑏 =  𝑏1,… , 𝑏𝑝 ∈ ℝ
𝑝 . 

Then 

                          𝑃  𝑎1 < 𝑋1 ≤ 𝑏1   = 𝑃  𝑋1 ≤ 𝑏1  − 𝑃  𝑋1 ≤ 𝑎1   

                                                                = 𝐹𝑋1
 𝑏1 − 𝐹𝑋1

 𝑎1 .                                                  (1.2) 

Also 

𝑃  𝑎1 < 𝑋1 ≤ 𝑏1,𝑎2 < 𝑋2 ≤ 𝑏2  =  𝑃  𝑎1 < 𝑋1 ≤ 𝑏1,𝑋2 ≤ 𝑏2   

                                                                                                    − 𝑃  𝑎1 < 𝑋1 ≤ 𝑏1,𝑋2 ≤ 𝑎2   

                                                                 =  𝑃  𝑋1 ≤ 𝑏1,𝑋2 ≤ 𝑏2  − 𝑃  𝑋1 ≤ 𝑎1,𝑋2 ≤ 𝑏2    

                                                                 − 𝑃  𝑋1 ≤ 𝑏1,𝑋2 ≤ 𝑎2  − 𝑃  𝑋1 ≤ 𝑎1,𝑋2 ≤ 𝑎2    

                                                                 = 𝐹𝑋1 ,𝑋2
 𝑏1, 𝑏2 −  𝐹𝑋1 ,𝑋2

 𝑎1, 𝑏2 + 𝐹𝑋1 ,𝑋2
 𝑏1,𝑎2   

                                                                                            + 𝐹𝑋1 ,𝑋2
 𝑎1,𝑎2 .                        (1.3) 

To write the expression of 𝑃  𝑎𝑖 < 𝑋𝑖 ≤  𝑏𝑖 , 𝑖 = 1,… ,𝑝   in a closed form define, for 

𝑘 ∈  0, 1,… ,𝑝 ,  

𝛥𝑘 ,𝑝 ≡ 𝛥𝑘 ,𝑝   𝑎, 𝑏  =  𝑧 ∈ ℝ𝑝 : 𝑧𝑖 ∈  𝑎𝑖 , 𝑏𝑖 , 𝑖 = 1,… ,𝑝, and 𝑘 of 𝑧1 ,… , 𝑧𝑝  are 𝑎𝑗 ′s .    (1.4) 

Note that the set 𝛥𝑘 ,𝑝  has  
𝑝
𝑘
  elements. From (1.2) and (1.3) we have 
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          𝑃  𝑎1 < 𝑋1 ≤ 𝑏1  = 𝐹𝑋1
 𝑏1 − 𝐹𝑋1

 𝑎1 =   −1 𝑘
1

𝑘=0

 𝐹𝑋1
(𝑧)

𝑧∈𝛥𝑘 ,1

                (1.5) 

and 

          𝑃  𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖 , 𝑖 = 1, 2  =   −1 𝑘
2

𝑘=0

 𝐹𝑋1 ,𝑋2
(𝑧1, 𝑧2)

 𝑧1 ,𝑧2 ∈𝛥𝑘 ,2

                   (1.6) 

Lemma 1.3 

Let 𝑋 =  𝑋1,… ,𝑋𝑝 : Ω → ℝ𝑝  be a random vector and let 𝑎 =  𝑎1,… ,𝑎𝑝 , 𝑏 =

 𝑏1,… , 𝑏𝑝 ∈ ℝ
𝑝 . Let  𝛥𝑘 ,𝑝 ≡  𝛥𝑘 ,𝑝   𝑎, 𝑏  , 𝑘 = 0, 1,… ,𝑝 be as defined in (1.4). Then 

           𝑃  𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑝  =   −1 k

p

k=0

 𝐹𝑋 𝑧 

𝑧  ∈𝛥𝑘 ,𝑝   (𝑎 ,𝑏] 

.                      (1.7) 

Proof. From (1.5) and (1.6) it is clear that the result is true for 𝑝 = 1 and 𝑝 = 2. Now 

suppose that (1.7) holds for general 𝑝-dimensional random vectors. For simplicity assume 

that 𝑃  𝑎𝑝+1 < 𝑋𝑝+1 ≤ 𝑏𝑝+1  > 0. Then, for   𝑋1,… ,𝑋𝑝 ,𝑋𝑝+1 :𝛺 → ℝ𝑝+1,𝑎 =

 𝑎1,… ,𝑎𝑝 ∈ ℝ
𝑝 , 𝑏 =  𝑏1,… , 𝑏𝑝 ∈ ℝ

𝑝 , 𝑎∗ =  𝑎1,… ,𝑎𝑝 ,𝑎𝑝+1 ∈ ℝ
𝑝+1 and 𝑏∗ =

 𝑏1,… , 𝑏𝑝 ,𝑏𝑝+1 ∈ ℝ
𝑝+1. 

𝑃  𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑝 + 1   

= 𝑃  𝑎𝑖 < 𝑋𝑖 ≤ 𝑏𝑖 , 𝑖 = 1,… ,𝑝}  𝑎𝑝+1 < 𝑋𝑝+1  ≤  𝑏𝑝+1
    𝑃   𝑎𝑝+1 < 𝑋𝑝+1  ≤  𝑏𝑝+1   

=   −1 𝑘

𝑝

𝑘=0

 𝑃  𝑋𝑖 ≤  𝑧𝑖 , 𝑖 = 1,… , 𝑝}|{𝑎𝑝+1 < 𝑋𝑝+1  ≤  𝑏𝑝+1  

𝑧∈𝛥𝑘 ,𝑝  (𝑎 ,𝑏] 

𝑃   𝑎𝑝+1 < 𝑋𝑝+1  ≤  𝑏𝑝+1   

=   −1 𝑘
𝑝

𝑘=0

 𝑃  𝑋𝑖 ≤  𝑧𝑖 , 𝑖 = 1,… ,𝑝,𝑎𝑝+1 < 𝑋𝑝+1  ≤  𝑏𝑝+1  

𝑧∈𝛥𝑘,𝑝 (𝑎 ,𝑏] 

 

=   −1 𝑘
𝑝

𝑘=0

  𝑃  𝑋1 ≤  𝑧1 ,… ,𝑋𝑝 ≤  𝑧𝑝 ,𝑋𝑝+1  ≤ 𝑏𝑝+1   

𝑧∈𝛥𝑘 ,𝑝   𝑎,𝑏  

 

                              − 𝑃  𝑋1 ≤  𝑧1 ,… ,𝑋𝑝 ≤ 𝑧𝑝 ,𝑋𝑝+1  ≤  𝑎𝑝+1   . 

It is easy to verify that 
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  −1 𝑘

𝑝

𝑘=0

  𝑃  𝑋1 ≤  𝑧1 ,… ,𝑋𝑝 ≤  𝑧𝑝 ,𝑋𝑝+1  ≤ 𝑏𝑝+1   

𝑧∈𝛥𝑘 ,𝑝   𝑎,𝑏  

 

 −𝑃  𝑋1 ≤  𝑧1 ,… ,𝑋𝑝 ≤ 𝑧𝑝 ,𝑋𝑝+1 ≤  𝑎𝑝+1    

=   −1 𝑘  𝐹𝑋1 ,⋯,𝑋𝑝+1

𝑡  ∈𝛥𝑘 ,𝑝+1 (𝑎∗, 𝑏∗] 

𝑝+1

𝑘=0

 𝑡1,… , 𝑡𝑝+1 , 

and therefore the assertion follows by principle of mathematical induction. ▄ 

Theorem 1.2  

Let 𝐹𝑋(⋅) be the distribution of a 𝑝-dimensional random vector 𝑋 =  𝑋1,… ,𝑋𝑝 . Then 

(i) lim
𝑥𝑖→∞
𝑖=1,…,𝑝

𝐹𝑋 𝑥1,… , 𝑥𝑝 = 1; 

(ii) For each fixed 𝑖 ∈  1,… , 𝑝  and fixed  𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑝  ∈ ℝ𝑝−1,  

lim
𝑦→−∞

𝐹𝑋 𝑥1,… , 𝑥𝑖−1,𝑦, 𝑥𝑖+1,… , 𝑥𝑝 = 0 ; 

(iii) 𝐹𝑋 𝑥1,… , 𝑥𝑝  is right continuous in each argument (keeping other arguments fixed); 

(iv) For each rectangle (𝑎, 𝑏] ∈ ℝ𝑝  

  −1 𝑘
𝑝

𝑘=0

 𝐹𝑋
𝑧∈𝛥𝑘 ,𝑝  (𝑎  , 𝑏] 

 𝑧 ≥ 0. 

Proof. Note that, for (𝑎, 𝑏] ∈ ℝ𝑝 , 

  −1 𝑘
𝑝

𝑘=0

 𝐹𝑋
𝑧∈𝛥𝑘 ,𝑝  (𝑎  , 𝑏] 

 𝑧 = 𝑃  𝑋 ∈ (𝑎, 𝑏] ≥ 0.              (using Lemma 1.3) 

This proves (iv). 

For notational convenience we will provide the proofs of (i) - (iii) for only 𝑝 = 2. 

(i) For fixed 𝑥1 ∈ ℝ 

lim
𝑥2 →∞

𝐹𝑋1 ,𝑋2
 𝑥1,𝑥2  = lim

𝑛  →∞
𝐹𝑋1 ,𝑋2

 𝑥1,𝑛  

                                     = lim𝑛  →∞ 𝑃(𝑋1
−1 (−∞, 𝑥1]  ∩  𝑋2

−1 (−∞,𝑛]                      
=𝐴𝑛 ↑

) 
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                                     = 𝑃   𝐴𝑛

∞

𝑛=1

  

                                     = 𝑃 𝑋1
−1 (−∞, 𝑥1] . 

Therefore, 

lim
𝑥1→∞

lim
𝑥2→∞

𝐹𝑋1 ,𝑋2
 𝑥1,𝑥2 = lim

𝑥1→∞
𝑃 𝑋1

−1 (−∞, 𝑥1]  

                                              = lim
𝑛  →∞

𝑃  𝑋1
−1 (−∞,𝑛]           

=𝐵𝑛 ↑

 

                                              = 𝑃   𝐵𝑛

∞

𝑛=1

  

                                              = 𝑃(𝛺) 

                                              = 1. 

(ii) Fix 𝑥2 ∈ ℝ. Then 

        lim
𝑥1→−∞

𝐹𝑋1 ,𝑋2
 𝑥1,𝑥2 = lim

𝑛  →∞
𝑃(𝑋1

−1(−∞,−𝑛]  ∩ 𝑋2
−1 (−∞,𝑥2]                      )

=𝐵𝑛 ↓

 

                                              = 𝑃   𝐵𝑛

∞

𝑛=1

  

                                              = 𝑃(𝜙) 

                                              = 0. 

Similarly, for fixed 𝑥1 ∈ ℝ 

        lim
𝑥2→−∞

𝐹𝑋1 ,𝑋2
 𝑥1,𝑥2 = 0. 

 

(iii) Let 𝑥 =  𝑥1, 𝑥2 ∈ ℝ
2. Then 

     lim
ℎ↓0

𝐹𝑋1 ,𝑋2
 𝑥1 + ℎ, 𝑥2 = lim

𝑛→∞
𝐹𝑋1 ,𝑋2

 𝑥1+
1

𝑛
, 𝑥2  

                                              = lim
𝑛  →∞

𝑃(𝑋1
−1  (−∞,𝑥1 +

1

𝑛
]  ∩  𝑋2

−1 (−∞,𝑥2] 
                         

)

=𝐶𝑛 ↓
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                                            = 𝑃   𝐶𝑛

∞

𝑛=1

  

                                            = 𝑃  𝑋1
−1 (−∞, 𝑥1] ∩ 𝑋2

−1 (−∞,𝑥2]   

                                            = 𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2 , 

i.e., for every fixed 𝑥2 ∈ ℝ, 𝐹𝑋1 ,𝑋2
 𝑥1,𝑥2  is right continuous in 𝑥1. Similarly, for every 

fixed 𝑥1 ∈ ℝ, 𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2   is right continuous in 𝑥2. ▄ 

 

Remark 1.4 

(i) Let Δ𝑝 =  Δ𝑘 ,𝑝
𝑝
𝑘=0 . Then Δ𝑝   is the set of 2𝑝  vertices of the rectangle  𝑎, 𝑏 ∈

ℝ𝑝 . For example, for 𝑝 = 1,  𝑎, 𝑏 =  𝑎1, 𝑏1 ,Δ1 =  𝑎1, 𝑏1  and, for 𝑝 = 2,

 𝑎, 𝑏 =  𝑎1,𝑏1 ×  𝑎2, 𝑏2 , Δ2 =    𝑏1,𝑏2 ,  𝑏1,𝑎2 ,  𝑎1, 𝑏2 ,  𝑎1,𝑎2  . 

 

 

Figure 1.1 

 

 

 
Figure 1.2 

 

(ii)  Note that, for 𝑝 = 1, the assertion (iv) of Theorem 1.2 reduces to 𝐹𝑋 𝑏 ≥

 𝐹𝑋 𝑎 ,∀ −∞ < 𝑎 ≤ 𝑏 < ∞ i.e., 𝐹𝑋  is non-decreasing. 


