NPTEL- Probability and Distributions
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6.9 BIVARIATE NORMAL DISTRIBUTION

6.7 PROPERTIES OF RANDOM VECTORS HAVING THE
SAME DISTRIBUTION

Definition 7.1

Let X and Y be two p-dimensional random vectors, defined on the same probability space

(Q,F,P). Then X and Yare said to have the same distribution (written asX £ Y) if
Fx(x) = Fy(x),vx € RP(i.e., if they have the same distribution function). g

The following results are multivariate analogs of theorems stated in Section 4 of Module
3. The proofs of these theorems, being similar to their univariate counterparts, are
omitted.

Theorem 7.1

(i) Let XandY be p-dimensional random vectors of discrete type with joint p.m.f.
fx () and fy (), respectively. Then X 2 Y if, and only if, fx(x) = fy(x), vx € RP.

(i) Let XandY be p -dimensional random vectors having distribution functions
Fx(+) and Fy (*), respectively. Suppose that
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0 Fy (x) 07 Fy (x)
0xq +++ 0x, an 0xq +++ 0x,

exist everywhere except, possibly, on a set C comprising of countable number of curves.
Further suppose that

0P Fy (x)

RP axl b axp

(x

0P Fy(x)
fe-()dx = | ooy ez =1

Then both of them are of absolutely continuous type. Moreover, X < Y if and only if,
there exist versions of p.d.f.s fx(-) and fy(*) of X and Y, respectively, such that fﬁ(g) =

fr(x) VxER’. g
Theorem 7.2

Let X and Y be p-dimensional random vectors of either discrete type or of absolutely
. . d
continuous type with X =Y. Then

(i) For any Borel function h: R”? - R, E (h(g)) =E (h(x)) provided the expectations
are finite;
(ii) For any Borel function 1): R? - R, 1(X) < ™
6.7.1 Uniqueness Theorem

Theorem 7.3

Let X and Y be two random vectors of either discrete type or of absolutely continuous
type having m.g.f.s My (-) and My (-), respectively, that are finite on a rectangle (—g, g)
for some a = (ay,ay, ..., a,) € RP; here —a = (—ay, —ay, ..., —a,)and (—g,a) = {t €
RP:—a; <t; <a;, i=1,..,p.} Suppose that

My(t) = My(t), vte(-aa)
d
Then X =Y. m
Remark 7.1

. o - d
If X;,X,,..,X, are independent and identically distributed (i. e; X;=X,i=
1,..,p),Y =Y X, and X = i YP_, X,, then
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p
My (t) = l_IMX1 (t), tERP
i=1

My(t) = [My, ®], teR

and
Mz (t) = [MX1 (%)]p, tEeR,

provided the expectations are finite. gy
Example 7.1

Let Xy, X3, ..., X, be independent random variable such that X; ~ N(u;,07), —o < y; <
w, 0;>0,i =1,..,p.Ifay, ..., a, are real constants, such that not all of them are zero,
then show that

Solution. Let Y = ¥F_, a;X;. Then

My(t) = E (etz?ﬂ aiXi)

-o([Te)

i=1

p
= E(e'**)  (X1,X,-,X, are independent)

i=1

P

i=1

P a; O'izt
= l_Ieta”“Jr 2, teR

i=1

(ZP: a-za-z)tz

= oGl am) == e R,
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which is the m.g.f. of N (ZF_, aip;, XP_, afo;?) distribution. Using Theorem 7.3 it
follows that

p P
Y~N<Zaiui, al-zal-Z).-
=1

i=1 i
Example 7.2

Let X1, X5, ..., X, be independent random variable such that X; ~ Bin(n;,0), 0 <6 <
1,n,€{1,2,..}, i =1,..,p. Show that

p p
ZXi ~ Bln (Z nl' ,6)
i=1

i=1

Solution. LetY = ¥?_, X;. Then

I
(S5
~
Q
i
>
(7

=| |a-6+0eH", ter
Aiszih

= (1—6+0e)Zm, tER,
which is the m.g.f. of Bin(Z’lf’zlni ,9) distribution. Using Theorem 7.3 it follows that
Y=%" X;~Bin(X_ n,0)m
Example 7.3
Let X1, X5, ..., X, be independent random variables such that X; ~NB(;,0) ,0 <6 <1,

r, €{1,2,..}, i =1,2,...,p. Then show that
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p p
Y=ZX1~NB<2TL,9>
i=1 1

i=
Solution. Similar to solution of Example 7.2 on noting that if X ~NB(r, 8) then

0

r
m) , t<—ln(1—0).-

My (t) = (
Example 7.4

Let Xq,X,,...,X, be independent random variables such that X; ~ P(4;), 4; > 0,i =
1, ..., p. Then show that

p P
i=1 i=1
Solution. Similar to solution of Example 7.2 on noting that if X ~ P(1), A > 0, then
My() =e?C D, teR. g

Example 7.5

Let X1, X5, ..., X, be independent random variable such that X; ~ G(a;,0), 6 >0, a; >
0, i =1,...,p. Show that

iXi~G<zp:ai,9>.

i=1 i=1

Solution. Similar to solution of Example 7.2 on noting that if X~ G(«,0), «a >0, 6 >
0, then

1
My(t)=(1—-t0)™% t< R

Example 7.6

() Let X1,X,,..,X, be independent random variables such that Xi~xfli, n; €
{1,2,...},i = 1,...,p. Then show that

p

2
Z Xi~ Xzf—l ni’
i=1 -
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(i) Let Yy,Y5..,Y, be independent random variables such that ¥; ~ N(u,0?), i =
1,..,p, —o< u<ow,ag>0.Then

p 2
> () -
o Xp:

i=1

Solution.

(i) Note that X;~ )(,%i =G (%2) ,i =1,...,p. Now the assertion follows from Example

1.5.
(ii) Follows on using Theorem 4.19 (i)-(ii) of Module 5 and (i) above. g

We state the following theorem without providing its proof.
Theorem 7.4

Let X be ap-dimensional random vector and let X = (Xi, ..., X)), where X; is p; -
dimensional,i = 1,...,k, Y ,p;, = p. Suppose that there exist a; € RPi, a; # 0, i =
1,..., k, such that My (") is finite on (—a, a)and My, () is finite on (—a;, a;), i = 1,...,k,
where a = (a;, ..., a;), and —a = (—ay , ..., —a; ). Then Xy, ..., X, are independent iff

k
M&(El’ ,Ek) = HMKL (Ei)’ VEL € (_Qi'gi)'i = 1, ,k-
i=1

6.8 MULTINOMIAL DISTRIBUTION

First let us introduce the notion of multinomial coefficients, which is a generalization of
notion of binomial coefficients.

Let k,ny,..,nx_; and n be non-negative integers such that k >2, Y ln, <n.
Consider a collection of n items comprising of

n,; identical items of type 1
n, identical items of type 2

n,_, identical items of type k — 1
k-1

n,=n-— Z n; identical items of type k.
i=1

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 6



NPTEL- Probability and Distributions

The number of visually distinguishable ways in which these n items can be arranged in a
row is

k-2
nyMm—ny\ m—ng —ny n_zni n!
() C o, DOy ) -

; k-1 '
i=1 Tlllnzl"'nk_l!(n_ i=1 nl)'

The coefficients

k-1
o) n! >0i=1,. k-1 Z <n(8.1)
= n; i=1.,k- n; < n (8.
ces k—1 ) 1 = ) ’ ’ I 1 —
M -1/ nylnglem g (n = X5 ny)! —

are called multinomial coefficients.

Note that, for k = 2 (so that 0 < n; < n), multinomial coefficients (8.1) reduce to
binomial coefficients

(n) n! € (0,1 )
=—, 1 ,1, ..., n}
n n!(n—ny)! 1

Also note that, for real numbers x4, ..., x,

(e +xp e+ x)" = Qg+ 2+ -+ x. ) (0 +x2 + o+ x5) - (g + x5 + 0+ x).

Product of n quantities

A typical term in expansion of above product is an arrangement of n; x;s, n, x5, ...,
Ng_1 X—1s  and n =M =Y 1) xys, m; €{0,1,...3, ny+ny +-+n_y <n
(such as xq, x3, x4, X2, X1, X5 ... X _2xg). Each such term equals x;"1x,"2 --- x;, ™k and total
number of visually distinguishable ways of arranging nq x;5,M5 X3S, ..., g1 X4_1S

n
vk Y o
(n Zizl nl) ka 1S (nlnz e nk—l).

Thus, we have

n n
n
n — nq_ny ng
(X + x4+ x)" = Z z (n1nz"'nk—1)x1 Xp" ot Xy
n1=0 nk_1=0
ni{+nz4.. +ng_1<n
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6.8.1 Multinomial Distribution
Example 8.1

Consider a random experiment that can result in one of p + 1 (p = 1) possible outcomes
A1, Az, Aypy, Where A, N A = ¢,i # jand UPS] A, = 0. Let P(4) = 6, € (0,1),i =
1,..,p, and ¥?_ 6, <1so that P(4,41) =1—3F_, 6, € (0,1). Suppose that the
random experiment is repeated n times independently.

Define
X; = number of times event 4; occursinn trials,i =1, ...,p + 1.

Then one may be interested in the joint probability distribution of X = (X;, X3, ..., X,41)-
Note that

p

X

p+1 =N — Z X; = number of times 4, 44 occurs

i=1

is completely determined by X = (X,X;,...,X,) and therefore only distribution of
X =(Xy,..,X,) may be of interest. LetSy = {x = (x;,..,x,):x; €{0,1,...,n},i =
1,..,p, X1 x; <n}. Then

FuGets ) = P((Xs = 1y Xy = 3,))

P 01_2?:1951')
n! x
— ;10 71— ) 6 ifxes
=\l (=X ) P ( . L) =% (82)m

0, otherwise

i

Definition 8.1

The probability distribution given by (8.2) is called a multinomial distribution with n

trials and cell probabilities 65, ..., 8, (denoted by Mult(n, 65, ..., 9,,)). -

Note that, for p = 1, Mult(n, 8,) distribution is nothing but the Bin(n, 8;) distribution.
Theorem 8.1

Let X = (X1,Xz .., X,) ~Mult(n,60y,...,6,) , where ne{12..},6,€(0,1),i=
1,..,pand XP_ 6; < 1.Then
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(i) X;~Bin(n,0,),i =1, ...,p;

(i) X; + X;,~Bin(n, 0, + 6,),i,j = 1,...,p, 1 # J;

(iii) E(X;) = n6; and Var(X;) =n6,(1 —-6,), i =1, ...,p;
(iv) Cov(Xl, ]) —n6;0;, i,j=1,..,p,i #].

Proof.

(i) Fixie{1,..,p}. In a given trial of the random experiment treat the occurrence of
outcome 4; as success and that of any other 4; ,j # i (i.e., non-occurrence of A;) as
failure. Then we have a sequence of n independent Bernoulli trials with probability of
success in each trial as P(4;) = 6,. Therefore

X; = # of success in n independent Bernoulli trials ~ Bin(n, 6;).

(if) Fix i,j €{1,...,p},i #j. In a given trial of the random experiment treat the
occurrence of A; or 4 (i. e.,occurrence of 4; U Aj) as success and its non-
occurrence as failure. Then we have a sequence of n independent Bernoulli trials with
probability of success in each trial as P(4; U 4;) = P(4;) + P(4;) = 6; + 6; and,
therefore,

X; + X; = # of successes in n independent Bernoulli trials ~ Bin(n, 0; + 9])

(iif) Follows from (i) on using properties of binomial distribution.
(iv) Fixi,j €{1,..,p}, i #j. Then
X, +X ~Bin(n,6; + 6;)
= Var(X; +X;) =n(6, + 6,)(1 -6, — 6)
= Var(X;) + Var(X;) + 2 Cov(X;, X;) =n(6, + 6,)(1 — 6, — 6;)
= n6;(1—6,) +n6; (1 —6;) + 2 Cov(X;, X;) =n(6; + 6;)(1 - 6, - 6;)
= Cov(X;, X;) = AF). m
The joint m.g.f. of X = (X1, X2, ..., X,) ~ Mult(n, 6y, ..., 8, ) is given by

n n I p
n! x
M, (t) = Z vee Z et1x1+"'+tpxp le QP 1- Z 0.
x(t) X1 xp! e x (=X ) P '

x1=0 Xp=0 i=1
Xyt txp<n

n—2f=1 X
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n n p n—Z?:lxl
Z Z n' t )x (9 t )x 1 9
= (61e'1) 1. (B,e' )P —Z .
= & xl!xz!---.xp!(n—2f=1xi)! p L ¢

X1t x,n

14 n
= <91ef1 + -+ 0ef2 + 1 —Zel) , t € RP,

i=1

Therefore,

E(X,) = [(%Mg(z)]

£=0

p
= neieti <61€t1 +"'+62€tp +1—291>
i=1

=n9i, i = 1,...,p.

(%) = 575 M)

n—1

t=0

P
n(n —1)6,;6,e"* (Bletl +-+0pe? +1- Z 0i>

£=0
=n(n—106, i,j€{1,..,p}, i #]j
Cov(X.,X;) = E(X,X;) —E(XX)E(X;) = —nb6,6;, i # .
62
E(X}) = [atiz MK(E)LO
n—2

p
= |n(n — 1)8% et (91et1 +-40e +1— Z >

n
+ no;eti (618“ +- 4 6per +1— ]

=n(n— 1)191-2 +n6;, i=1,..,p.m
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6.9 BIVARIATE NORMAL DISTRIBUTION
Definition 9.1

A bivariate random vector X = (X;,X5) is said to have a bivariate normal distribution
Ny (uy, 4z, 0,02, p) if, for some —oo < y; < 0,i =1,2, 0; > 0,i=1,2,and -1 < p <
1, the joint p.d.f. of X = (X1, X,) is given by

1 1 [(x1—m1N\2 o (x1-m1\(X2-K2), (*2—H2\?
leXz(x1'x2) — e 2(1—p2)[( g1 ) Zp( g1 )( a2 )+( a2 )]' X = (xlsz) ERZ. -
21wy 094) 1 — p?
Note that fy,x,(x) =0, vx € R? and on making the transformation z;, = xlg;’“ and
1
Z; = xza;”z in the integral below, we have
2

= f f Fox, G x2)dx

—00 —00

j je 2= pZ)(Zl 2p2122+22) dz
271,/1 - p2 -

0 [e¢]

1 2 2
je‘m(“‘”z“)“e 2(1- ﬂz)(zl Pz’ dzydz,

1
- 2n\1—p? )

—00

=,/1—p2\/ﬁ

2 dZZ

=i
=1
Therefore fx, x, (x1,x;) isap.d.f.
Theorem 9.1

Suppose that X = (X1,X5) ~ No(uy, g, 02,0%,p),—0 < p; < o0,i =1,2,0; > 0,i =
1,2and —1 < p < 1. Then,
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(i) X1 ~ N(uy, 0f) and X, ~ N (i, 05);

(ii) for a fixed x, € R, the conditional distribution of X; given that X, = x, is N <H1 +

Pz—;(xz — 1), 0f (1 — ,02)> (written as X;|X; = x; ~N <M1 + Pj—i (x2 —

tz), 07 (1 — 2))

(iii) for a given x; € R, the conditional distribution of X, given X; = x; iSN (.Uz +

Pz—j(ﬁq ), 05 (1 — 2))(wr|tten as X,|X; =x; ~N (Hz n pz_i(xl _

w03 (1= ph);
(iv) the m.g.f. of X = (X1, X;) is

ERPEY:
My Xz(tl tz) — e#1t1+ﬂzt2+ 5 +—2 tpo1oztity t = (tl tz) € R2:
1, 4 y L ) )
v) for real constants c; and ¢, such that ¢? + ¢Z > 0
)
2.2 .2 2 :
c1X1 + c2Xo ~ N(cypy + captz, ¢ 01 + €305 + 2 peic,0107);

(Vi) p(X1,X2) = p;
(vii) X; and X, are independent if, and only if, p = 0.

Proof.

Q) Forx; € R

fx1 (%) = jfxl,x2 (%1, x2)dx;

—00

_(x1 ul)z
2012 1 [x2—p2 X1—u1]
1 j- 2(1—p2)|. k) de

217,' 010+/1 —

_(x )2
X1—H1)” ( pog,. 2
2012 f —z—xz o S0 =)

205(1-p dxz

27‘[ 010241 —
— (- 111)2

20’12
= X V2may, 41 — p?
21 0,024/ 1 — p? ?
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1 _(1-np)?
2012

= e ,
oV2m

which is the p.d.f. of N(uy, o) distribution. Thus X; ~ N(uy, o). By symmetry
X2~N(uz, 03).

(i) Fix x, € R. Then
fX1 X, (x11x2) = ¢4 (Xz)fxl,xz (x1,x72)

2
1 <x10—1u1 p(xza—zuz)> ]

~2(1-p?)

2
- m (X1—<#1+p021(x2—#2)>>

=c(xz) e

=c,(xy)e , X1 ER,

where ¢, (x,) is the normalizing constant, i.e., ¢, (x,) satisfies

[ Gl an =1

Clearly, for a fixed x; € R, fx,1x,(-|xz) is the p.d.f. of N(M + 220 (x, —
2

g
Ha), o2 (1 — p2)> distribution.
(iti)  Follows from (ii) on using symmetry.
(iv)  Fort = (t1,t,) € R?, using Theorem 5.5, we have
My, x,(t;, t;) = E(ef1¥1712%2)
— E(E(ethl-l-thz IXZ))

= E(E""2E(e"1%1]X5)).

For a fixed x, € R, since X;|X, = x, ~N <M1 +’;ﬂ(x2 — 1), 02 (1 — p2)>, on
2
using Theorem 4.2 (i), Module 5, we get

2(1_,2),2
[ c1(1-p“)t
{,u1+pg—21(x2—u2)}t1+ %

E(ethl IXZ = xz) =e€ , t1 € R.

Therefore, for t = (t,t,) € R?,

20122
po1 of(1-p%)t1
My, x,(t1, t) = E <et2"2e{“1+ﬁ(XZ_M)}“+ 2 >
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201,212
of(1=p)tf _pog po1
Qhitit Thett o (e(t2+ - tl)Xz).

Since X,~N (uy, 0%), on using Theorem 4.2 (i), Module 5, we get

2
po
U%(tz 0-21 tl)

2(1_,2),2
o1(1-p“)t1 _poa ( po1 )
#2f1e tat =t )ua + )

My, x,(t,t;) = e 72

5212 5242

1t1 , 03t3

Hititpati+——=+—=+poroatytz
)

=e t = (t1,t;) € R,

(v) Let c; and c, be real constants such that cZ +c2 >0 and let Y = c;X; + ¢, X,.
Then, for t € R,

My (t) = E(e™)
— E(etC1X1+tC2X2)

= My, x,(tcy, tez)

(c%o%+c%o%+2pclczoloz)t2
= elC1u1teanz)ts 5

)

which is the m.g.f. of N (c;puy + couy, cio? + c30% + 2pcycy0q0,) distribution.
Thus, by Theorem 7.3,

Y ~ N(cipy + Cottp, cfof + c505 + 2pcic,010,).

(vi) By (i), Var(X;) = o and Var (X;) = o%. Also, for t = (t;,t;) € R?,
242 242
oity 07t

Yy, x,(t1, t2) = InMy, x, (t1,t2) = paty + poty + > + > + pooytit;
62
Cov(Xy,X3) = mlpxl,xz (t1,t2) - = po,0;
Cov(X1, X3)
= p(XltXZ) =

\/ Var(X;)Var(X,) —P

(vii) Since independent random variables are uncorrelated it follows from (vi) that if X;
and X, are independent thenp = 0. Conversely suppose that p = 0. Then, for
x = (x1,%;) € R,

X1, Xy) =
fxl,xz( 1,X2) 2716,
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= le (x1)fxz (x2).

Now the assertion follows on using Theorem 4.2 (i). g

Theorem 9.2

Let X = (X;,X;,) be a bivariate random vector with E(X;) = y; € (—o0, ), Var(X;) =
o?,i=1,2 and Cov(X;,X;) = p € (—1,1). Then X ~ N, (uq, iz, 62, 0%, p) if, and only
if, for any real constants t; and t, such that t? +t5 >0, Y = t,;X; + t, X, ~ N(t;uq +
ty Uy, t2al + ti0f + 2ptity010,).

Proof. Clearly the necessary part of the assertion follows from Theorem 9.1(v).
Conversely suppose that for all real constants ¢, and t, with t# + t% > 0,

Y = t1X1 + thZ"’N(tLLll + touy, tlzﬁ% + t%G% + 2pt1t20102). (91)
Then, for t = (t1,t,) € R?,

My, x,(t;, t;) = E(ef1¥1712%2)

= E(e")
= My(1)
20_2 202 2 o110
— et1u1+tzﬂzit1 e 2, (using (9.11))

which is the m.g.f. of N,(uy,u,, 02,02, p) distribution. Now using Theorem 7.3 it
follows that& = (Xl,Xz) ~ NZ(/,tl,/,lz,O'lz,O'zz,p).-
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