NPTEL- Probability and Distributions

MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION
LECTURE 28

Topics

6.3 CONDITIONAL DISTRIBUTIONS
6.4 INDEPENDENT RANDOM VARIABLES

6.3 CONDITIONAL DISTRIBUTIONS

Let (2,F,P) be a probability space and let X = (Xi,...,X,):2 > RP be a p-
dimensional (p = 2) random vector with distribution function Fy (-).

Definition 3.1

Let D € B, be such that P({X € D}) > 0. Then the conditional distribution function
of X given that X € D is defined by

Fyip(x) = P({X € (—= x]}| {X € D})

_P({xe(-=xlnb))
P(x e D))

_ P({X1 <xq,...,X, < x,,X € D})

P({x € p})

) KERP.-

For a given D € B, it can be verified that Fx,,(-) is a distribution function, i.e., it
satisfies properties (i) — (iv) of Theorem 1.3. For a fixed k € {1,...,p — 1}, let
Y=y, ., X)) (= (Y, 0 Y, say) and Z = Xy, -0 Xp) (= (24, ., Z, ), say)
so that X = (¥, Z). In many situations it may be of interest to study the conditional
probability distribution of numerical characteristic Y given a fixed value of numerical
characteristic Z. For example if X; and X, denote respectively the heights and
weights of newly born babies in a community then it may be of interest to study the
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probability distribution of heights of babies having weight of 3Kg (i.e., conditional
distribution of X; given that {X, = 3}).

To make the above discussion precise, first suppose that X = (Z, Z) is of discrete type
so that Y and Z are also of discrete type (see Theorem 2.1 (i)). Let Sx, Sy and Sy

denote the supports of X,Yand Z respectively. Further let fy(-) =
fy z(-) and fz(-)denote the joint p.m.f.s of X = (¥, Z) and Z, respectively. Let z € S,

be fixed such that f;(z) = P({Z = z}) > 0. DefineSy|,_, = {X € Rk: (Xg) € 5&}-
Then Sy|;—, S Sy = {3_/ € RP: (3_1,5) € Sy, forsomet € RP"‘} and, using Definition
3.1, the conditional distribution function of Y given {Z = z} (= {g € {g}}) is given
by

P({Y; < y1, . Yi < yio Z=12))

Fyjz (X |Z) - P({Z — Z}) , YE Rk a1
_ geSEn((_%ﬂ) fx (x,2)
f2(2)
) WD -

£e5Z|£=£n((—2.z])

Clearly the p.m.f. corresponding to distribution function FZIZ(' |z) is (see Remark 2.1

(xi))

fzy.z)
fr)z (X Iz) =\ 1l ify €Sylz=, (3.3)
0 otherwise
frz (J’ :Z)
f2(2) YE (34)

=P({r=yiz=z}), yer~

The above discussion leads to the following definition.
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Definition 3.2

Let X = (Xl,...,Xp) be a discrete type random vector. Then, under the above
notation,
(1) the conditional p.m.f. of Y given Z = z (where z € Sy is fixed) is defined by

(3.3) (or (3.4));
(ii) the conditional distribution function of Y given Z = z (where z € Syis fixed)

is defined by (3.1) (or (3.2)); m

Now suppose that X = (Y, Z) is of absolutely continuous type so that Y and Z are
also of absolutely continuous type (see Theorem 2.1 (ii)). Let fx(*) = fyz(),

fr() and fz(-)denote the p.d.f.s. of X, Y and Z respectively. Then we have P({Z =
g}) =0,vz € RP7% (Remark 2.1 (viii)) and therefore conditional distribution
function of Y given {Z = z} cannot be defined by (3.1). For z € RP~¥, note that

o0 o0 1
{z=2}= ﬂ ﬂ {zi—;<ZiSzi,i=1,...,p—k},
n1=1 Tlp_k=1 :

and therefore, using continuity of probability measures,

n;—wo

1
p({g = g}) = lim P ({Zi - <Z;2zi=1,.,p— k})
i=1,..p—k {

= }li'rl’% P{zi—h <Z; <z,i=1,..,p—k}).
i=1,p—k

Thus if z € RP~* is such that
P({z; =6 <Zi<z,i=1,..,p—k}) >0,V = (8, ...,6,_) € (0,0)P ¥, (3.5)

then the conditional distribution function of Y given Z = z may be defined by

Fyjz (vlz) = lim P Sypi=1 . Kz —h <ZiSz,i=1.,p~k)(36)

i=1,4p—k
Jim PHY, <y,i=1,..kz;, —h <Z <z,i=1,..,p—k})
) 1hil0 N P({Zl'—hi<ZiSZi,l:zl,"‘,p—k})
i=1,.,p—
Y1 Yk %1 Zp—k
o RO f21_h1 fz,,p_k—h,,_k frz(s,t)dtds
Y S AT
i=1,..p—k z1—h1 Jzp—hp JENZI T2
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. 1 _
fi’;ffo]; llim p— fZZ1 ..fZZp K kuE(E’E)dE ds

hi 10 1=h1 Jzy_g—hy,_
_ i=1,.,p—k
= . 1 Z1 . Zp—k
}lllrl% hl"'hp—kle_hl fzp_k—hp_kfé(g)dg
i=1,.,p—k
S0 L fea(s 2)ds
- f2(2)
y y
T fra(s,z) .
Jo ) fi(2) =

provided f;(z) >0 and z is such that (3.5) is satisfied. In that case the p.d.f
corresponding to distribution function FZIZ(' |g) is given by

_ fuz(22)

foz (viz) = , y €RK, (3.8)

f2(2) =
The above discussion is summarized in the following definition.
Definition 3.3

LetX = (Xl, ...,Xp) be a random vector of absolutely continuous type. Let z € R* be
such that f;(z) > 0 and it satisfies (3.5). Then

(i)  the conditional p.d.f. of Y given Z = z is defined by (3.8);
(i)  the conditional distribution function of Y given Z = z is defined by (3.6) (or
G7)-m

Remark 3.1

Using (3.4) and (3.8), for fixed z € D = {t € RP™*: fy; (- |t) is defined}, the
conditional p.m.f./p.d.f. of Y given Z = z is given by

fz (¥1z) = c@fvz (v 2), y € R,

where c(z) is the normalizing constant. g
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Example 3.1

Let X = (X1, X,, X3) be a discrete type random vector with p.m.f.
X1X2X
2, if (X2, %3) € {1,23 X {1,2} X {1, 3}

fg(xl.xz,xg) =4 72 °
0, otherwise

(i) Find the conditional p.m.f. of X; given that (X,,X3) = (2,1);
(i) Find the conditional p.m.f. of (X3, X3) given that X, = 3.
Solution.

(i) We have

P{X;=x1,X,=2,X3=1})
o (|2 D) = = =G

le
=172P({X; =2, X3 =1})°
0, otherwise

ifx1 € {1, 2}

2
P, =2,X; = 1) = ) P(; =x1,X, = 2,3 = 1)
x1=1

_Z 1+2)
72
_ 1
127
Therefore
X1
—, ifx; €{1,2
fX1|(X2,X3)(x1|(2:1)):{3 1 €4 }_
0, otherwise
(i) We have

P(iXi =x,X; =3,X3 =
frn G519 = S ;1({)(2:3})3 i

Using Example 2.2, P({X, = 3}) = % and therefore
X1X3

fxyxs1x, (1, x3]3) = { 12’ if (x4, x3) € {1,2} x{1,3} -
143142 Y )
0, otherwise
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Example 3.2

Let X = (X1, X, X3) be a random vector of absolutely continuous type with joint
p.d.f.

1
fx(x)z E, ifO<X3<X2<X1<1.
- 0, otherwise
(i) For 0<x3<x,<1, find the conditional p.d.f. of X; given (X,,X3) =

(x2, x3);
(i)  For 0 < x, < 1, find the conditional p.d.f. of (X1, X3) given X, = x,.

Solution.

(l) F0r0<X3 < Xy <1
le,Xz,X3 (xl,xZ,X3)
sz,X3 (x2,x3)

leI(X2,X3)(x1|(x2»x3)) = , X1 ER

Using Example 2.3 (ii), for 0 < x3 < x, < 1, we have

In x,

sz,X3 (x2,%3) = ———.
X2

Therefore,

1

fenlCtax) X11%2,%3) =1 x; Inx,
0, otherwise

) ifo<xl<1

Alternatively fy, cx,,xs)(X1]x2, x3) can be found by using Remark 3.1.
(i) For 0 < x, < 1,

le,Xz,X3 (%1, %2, x3)

fx,(x2)

Using Example 2.3 (iii) we have, for 0 < x, <1,

, (x1,x3) € R2

fx X3lX (x1, x3|%2) =
1,43142

fx,(x2) = —Inx,.

Therefore, for 0 < x, < 1,
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1

le,x3|X2 (x1,x31x2) = X1X7 Inx,
0, otherwise

, ifo<xl<1, 0<X3<xZ

Alternatively fy, x,(x1,x3|x;) can be found using Remark 3.1. gy

6.4 INDEPENDENT RANDOM VARIABLES

Let (,F,P) be a probability space and let {X;: 1 € A} be a collection of random
variables, where A € R is a non-empty index set.

Definition 4.1

The random variables {X;: A € A} are said to be (statistically) independent if for any

finite sub collection {4, ..., 4,} € A we have

p
FXAl""’Xllp (xll ---:xp) = HFX% (xi), VE = (Xl, ...,xp) € RP-
i=1

The observations made in the following remark are immediate from Definition 4.1.
Remark 4.1

(i)  The random variables {X;: A € A} are independent if, and only if, every finite
sub  collection {X;,,..,X; } S {X;: 1€ A} constitutes a collection of

independent random variables;
(i) Supposethat A; € A, € Rand A; # ¢ . Then
{X;: 2 € A,}are independent = {X,: A € A;} are independent;

(iii) It can be shown that (see Theorem 5.3 (ii) in the sequel) Xi,..,X, are
independent if, and only if, forany 4; € B,i = 1, ..., p,

p
i=1
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Theorem 4.1

Let X= (Xy,..,X,) be a p -dimentsional (p = 2) random vector with joint
distribution function Fx, . .x, (*). Let Fx,(-) denote the marginal distribution function

of X;, i =1,...,p. Then the random variables X, ..., X,, are independent if, and only
if,

p
FXI:---:Xp (xl, ...,xp) = l_IFXi(xi); VE = (xl, ...,xp) € RP, (41)
i=1

Proof. First suppose that X, ..., X, are independent. Then, by definition, (4.1)
obviously holds. Conversely suppose that (4.1) holds. Then, for any y ERP and any

permutation (B4, ..., B,) of (1, ..., p),

p
P(X < yii=10) = | [Pcx <)
i=1

p
= P((X5, < g1 = Lp)) = | [PCX5, <D
i=1

P
= FXﬁl""'Xﬁp (3’51' ...,yﬁp) = nFXﬁi (yﬁl_),VX = (yl, ...,yp) € ]R”,E = ([31, ...,ﬁp) €S,
i=1

where S, denotes the set of all permutations of (1, ...,p). It follows that, for any
(B1,...B,) €S, and any x € R?,

p
Fxg,,..xg, (x1,0,%,) = 1_[ Fy, (x:). (4.2)
i=1

Let g € {2,...,p} and let {4, ..., 4,} S {1,..,p} = A, say. Let 4,14, .., 4, be such
that A —{A1, ..., 2,} = {441, -, 4, }. Then (A4, .., Ay, Ag41, -, 4,) €S, and by
Lemma 1.2

FXAl,...,XAq (x1) -.-,xq) = )!]1—>moo FX).l'""Xﬂ.p (xl, ...,xp)
j=q+1,..p

p
= Jim [ A, 0 (using(42))
J

j=q+1,p =1
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q
= l—IFXM (xl); V& = (xl, ...,xq) € RY.
=1

Hence the result follows. g

The following remark is immediate from the above theorem and Remark 1.2(ii).
Remark 4.2

Random variables Xj,...,X, are independent if, and only if, for any B =
(B1, -, By) € S, the random variables Xp,, ..., X, are independent. g

Theorem 4.2

Let X = (X4, ...,X,) be a p-dimensional (p = 2) random vector of either discrete
type or of absolutely continuous type. Let fy, _x, (*) denote the joint p.m.f. (or p.d.f.)

of X and let fy.(-) denote the marginal p.m.f. (or p.d.f.) of X;, i =1,...,p. Then

(1) X4, ..., X, are independent if, and only if,

p
fX1,...,Xp (xll ---:xp) = l_lei (xi)i VE = (xll ---:xp) € RP. (43)
i=1

(i) Xy, .., X, are independent if, and only if,

P
le,__,Xp (xl, ...,xp) = ﬂgi (x;), Vx= (xl, ...,xp) ERP, (44)
i=1

for some non-negative functions g;(-),..,g, (). In that case fx,(x;) =

d;g;(x), x € R,i =1,...,p for some positive constants dy, ..., d,,.

(iii)  X1,X,, .., X, are independent = Sy = [["_; Sx,, where, for a random

variable Y, Sy = {X € RP: fy (X) > 0}.

Proof.
(i)  For notational simplicity we will provide the proof for p = 2.
Case I. X is of discrete type
Let Sy be the support of X = (X3, X,) and let Sy, be the support of X;,i = 1,2 .... First
suppose that (4.3) holds. Then clearly Sy = Sx, X Sy, (see (iii) proved in the sequel).

Therefore, for x = (x4, x;) € R?,

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 9



NPTEL- Probability and Distributions

Fx, x, (x1,%2) = Z le,Xz (1, y2)
YESx N((—x.x])

_ Z Z fo, 0Df,02)  (Sy = Sx, X Sy,)

Y1€Sx1N(—0,x1] ¥y2ESx,N(—0,x2]

= D AR | ED S A

Y1€Sx1N(—0,x1] Y2€Sx,N(—0,x7]

= FXl (xl)FXz (xZ)'
Using Theorem 4.1 it follows that X; and X, are independent.

Conversely suppose that X; and X, are independent.Then, by Theorem 4.1,
Fx, x,(z1,23) = Fx,(2)Fy,(22), Vz = (z1,2,) € R
2 . 1 1
Let x = (x1,xp) € R*. Define Xn = (xl — =X _Z)’ n=1,2,... Then, by
Remark 2.1 (v),
fx x, (1, %2) = P({X1 = x1, X3 = x2})
= lim Z z Fx, x,(z1,23)

n-—-oo
k=0 z€Ay 2 ((xn.x])
= lim X1,Xy) — X1 ——,Xy | — X1, X9 ——
n_m[ X1,X, \X1, X2 XX \ X1 7 0 X2 XpXo \ X1 X2 =

+F ( 1 1)
— — ’x — —
X1,X, | X1 n'X2 Ty ]

1 1
= 7111_1)130[FX1 (x1)Fy, (x2) — Fy, (x1 - H) Fx, (x2) — Fy, (x1) Fx, (xz - E)

83 (1= 2) (s 2)
= Fy, (x1)Fy, (o) — Fy, (1 =)Fx, () — Fy, (1) Fy, (xz =) + Fy, (x1 —)Fy, (2 =)
= Fx, (x2)[Fx, (x1) — Fy, (er =)] = Fx, (xz =) [Fx, (x1) — Fy, (x1 —)]
= [Fx, (x1) = Fy, (e1 =)][Fx, (x2) — Fy, (x2 )]

=P({X; = x1}) P({Xy = x2})

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 10



NPTEL- Probability and Distributions

= le (x1)fxz (x2),
I.e., (4.3) holds.
Case Il. X is of absolutely continuous type

First suppose that (4.3) holds. Then, for x = (x1,x;) € R,
X1 X2

Fxl,Xz(xl’xz): f ffxl,xz()h:)’z)dhd}ﬁ

—00 —00

X1 X2

= j jfxl(y1)fxz(Y2)dyde1

—00 —O00

= ffxl(h)d)ﬁ ffxz()’z)dh

= Fy, (xl)sz (x2).
Using Theorem 4.1 it follows that X; and X, are independent.
Conversely suppose that X; and X, are independent.Then, by Theorem 4.1,
Fy, x, (X1, %) = Fy, (x{)Fx, (x2), Vx = (x1,x;) € R
For simplicity assume that fy, x, (x4, x;) is continuous everywhere. Then, by Remark
2.1 (xiii)

(')ZFXLXZ (x1,%2)
6x16x2

le,Xz (xlt xZ) =

62
= 9%, 0%, (Fxl(xﬂsz(xz))

_ (0Fx, (x1)\ (0Fx, (x2)
N axl axZ

= fx, (x)fx, (x2), Vx = (x1,x;) € R%

(it)  First suppose that X; and X, are independent. Then clearly (4.4) holds with the
choiceg; (x;) = fx,(x;), x; € R,i =1,2.Conversely suppose that (4.4) holds.
Let
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c; = fgi(x)dx, i=1,2,

sothatc; = 0,c, =0 and

C1Cy = (fgl(xl)dx1><fg2(x2)dx2>

= ffg1(x1)gz(x2)dx2dx1

—00 —00

= ffle,Xz(xl'XZ)dXdel

=1.

It follows that ¢; > 0, ¢, > 0 and c;c, = 1. Also

fx1 () = .l-le,Xz(xlfo)de

= f g1(x1)g2(x2)dx,

= 91(x1), x1 €R.
Similarly
fx,(x2) = ¢c192(x3), x, ER.
Thus we have
fxl,x2 (x1,%2) = g1(x1) g2 (x2)
= (1g1(x1))(€292(x2)) (c1c2=1)
= fx, (x0) fx,(x2) , Vx = (x1,%) € R%,
Using (i) it follows that X; and X, are independent.

(iif) Since X; and X, are independent by (i), fx, x, (x1,x2) = fx, (x1)fx, (x2)Vx €
RZ. Therefore
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Sy = { g, x2)1 fx, x, (%1, %2) > 0}
= {Cer, x2): fx, (e fx, (x2) > 0}
= {x: fy,(x) > 0} x {y: fx, (y) > 0}

= SXl X SXZ' |

Remark 4.3

(i) Let X = (X1,X,) be a bivariate vector of either discrete type or of absolutely

(i)

continuous type. Let D = {x, € R: fy,|x,(- |x; ) is defined}.Then by Theorem
4.2 (i)

X1 and X, are independent & fy, x, (x1,%2) = fy, (x1) fx, (x2), Vx = (x1,%;) € R

le,Xz (x1,%7)

sz (x2)

= fX1|X2 (xlle) = fX1 (xl) ’ vxl € Rr X2 €D.

= fx,(x1),Vx; ER,x, €D

It follows that X; and X, are independent if, and only if, for every x, € D the
conditional distribution of X; given X, = x, is the same as unconditional
distribution ofX;. Similarly, by symmetry, X; and X, are independent if, and
only if, for every x; € E = {t € R: fx,|x, (* |[t) is defined} the conditional
distribution of X, given X; = x; is the same as the unconditional distribution
of X,.

Let A S R be an arbitrary non-empty index set, and let {)_(/1: A€ A} be a
collection of random vectors defined on a probability space (2, F, P), where
X, may be of different dimensions. One can define the independence of

random vectors {X;: 1 € A} by extending Definition 4.1 in an obvious
manner. We say that the random vectors {X;: 1 € A} are independent if for
any finite subcollection {4;, ..., 4,} € A, we have

Fap s, 1 %) = P(AXy, € (m2 1] i=1,..,p3)

1

= A:P({)_(,L. € (—0,5]})
i=1

= | “F&i (xi); VEl, ey Xp-
i=1
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With above definition of independence of random vectors {X;: 1 € A} the
results stated in Theorem 4.1 and 4.2 hold with random variables Xy, ..., X,,
replaced by random vectors X;, -+, X,,. Morever, Remarks 4.1, 4.2 and 4.3 (i)
also hold with random variables X, s replaced by random vectors X s.

(iii) LetX = (X,...,X,) be arandom vector and let ki, ..., k, be positive integers
such that ¥7_, k; = p. Define Y; = (X1,...Xi,), Yo = (Xk,510 o r Xiy4k,)
and Y, = (XZ};llkj+1' ""XZ,"-zlk,-)’i =2,3,..,r. Suppose that X;, ..., X, are

independent random variables. Then, on using the analog of Theorem 4.1 for
random vectors, it follows that Y3, ..., ¥, are independent random vectors. g

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 14



