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MODULE 3 

FUNCTION OF A RANDOM VARIABLE AND ITS 

DISTRIBUTION 

LECTURE 12 

Topics  

3.1 FUNCTION OF A RANDOM VARIABLE  

 

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF 

       A RANDOM VARIABLE  

 

 

3.1 FUNCTION OF A RANDOM VARIABLE  
 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋 be random variable defined on  𝛺, ℱ, 𝑃 . 

Further let ℎ:ℝ → ℝ  be a given function and let 𝑍:𝛺 → ℝbe a function of random 

variable 𝑋, defined by 𝑍 𝜔 = ℎ 𝑋 𝜔  ,𝜔 ∈ 𝛺. In many situations it may be of interest 

to study the probabilistic properties of 𝑍, which is a function of random variable 𝑋. Since 

the variable 𝑍 takes values in ℝ, to study the probabilistic properties of 𝑍, it is necessary 

that 𝑍−1 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1, i.e., 𝑍 is a random variable. Throughout, for a positive integer 

𝑘,ℝ𝑘  will denote the 𝑘-dimensional Euclidean space and ℬ𝑘  will denote the Borel sigma-

field in ℝ𝑘 . 

 

Definition 1.1  
 
Let 𝑘 and 𝑚 be positive integers. A function ℎ:ℝ𝑘 → ℝ𝑚  is said to be a Borel function if 

ℎ−1 𝐵 ∈ ℬ𝑘 , ∀𝐵 ∈ ℬ𝑚 . ▄ 
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The following lemma will be useful in deriving conditions on the function ℎ:ℝ → ℝ so 

that 𝑍:𝛺 → ℝ, defined by 𝑍 𝜔 = ℎ 𝑋 𝜔  ,𝜔 ∈ 𝛺, is a random variable. Recall that, for 

a function Ψ: 𝐷1 → 𝐷2 and 𝐴 ⊆ 𝐷2, Ψ−1 𝐴 =  𝜔 ∈ 𝐷1: Ψ 𝜔 ∈ 𝐴 .  

Lemma 1.1  

Let 𝑋:𝛺 → ℝ  and ℎ:ℝ → ℝ  be given functions. Define 𝑍:𝛺 → ℝ by 𝑍 𝜔 =

ℎ 𝑋 𝜔  ,𝜔 ∈ 𝛺. Then, for any 𝐵 ⊆ ℝ, 

𝑍−1 𝐵 = 𝑋−1 ℎ−1 𝐵  . 

Proof. Fix 𝐵 ⊆ ℝ. Note that ℎ−1 𝐵 =  𝑥 ∈ ℝ:  ℎ 𝑥 ∈ 𝐵 . Clearly 

ℎ 𝑋 𝜔  ∈ 𝐵 ⇔ 𝑋 𝜔 ∈ ℎ−1 𝐵 . 

Therefore, 

𝑍−1 𝐵 =  𝜔 ∈ 𝛺: 𝑍 𝜔 ∈ 𝐵  

                       =  𝜔 ∈ 𝛺: ℎ 𝑋 𝜔  ∈ 𝐵  

                          =  𝜔 ∈ 𝛺: 𝑋 𝜔 ∈ ℎ−1 𝐵   

          = 𝑋−1 ℎ−1 𝐵  .  ▄ 

Theorem 1.1 

Let 𝑋 be a random variable defined on a probability space  𝛺, ℱ, 𝑃  and let ℎ:ℝ → ℝ be 

a Borel function. Then the function 𝑍:𝛺 → ℝ, defined by 𝑍 𝜔 = ℎ 𝑋 𝜔  ,𝜔 ∈ 𝛺, is a 

random variable. 

Proof. Fix 𝐵 ∈ ℬ1. Since ℎ is a Borel function, we have ℎ−1 𝐵 ∈ ℬ1. Now using the 

fact that 𝑋 is a random variable it follows that 

𝑍−1 𝐵 = 𝑋−1 ℎ−1 𝐵  ∈ ℱ. 

This proves the result. ▄ 

Remark 1.1  

(i) Let ℎ:ℝ → ℝ  be a continuous function. According to a standard result in 

calculus inverse image of any open interval  𝑎, 𝑏 , −∞ ≤ 𝑎 < 𝑏 ≤ ∞, under 

continuous function ℎ is a countable union of disjoint open intervals. Since ℬ1 

contains all open intervals and is closed under countable unions it follows that 

ℎ−1  𝑎, 𝑏  ∈ ℬ1 , whenever −∞ ≤ 𝑎 < 𝑏 ≤ ∞ . Now on employing the 
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arguments similar to the one used in proving Theorem 1.1, Module 2 (also see 

Theorem 1.2, Module 2) we conclude that ℎ−1 𝐵 ∈ ℬ1, ∀𝐵 ∈ ℬ1. It follows 

that any continuous function ℎ:ℝ → ℝ is a Borel function and thus, in view of 

Theorem 1.1, any continuous function of a random variable is a random 

variable. In particular if 𝑋 is a random variable then 𝑋2 ,  𝑋 , max 𝑋, 0 , sin 𝑋 

and cos 𝑋 are random variables.  

 

(ii) Let ℎ:ℝ → ℝ be a strictly monotone function. Then, for −∞ ≤ 𝑎 < 𝑏 ≤ ∞,

ℎ−1 𝑎, 𝑏  is a countable union of intervals and therefore ℎ−1 𝑎, 𝑏 ∈ ℬ1, i.e., 

ℎ is a Borel function. It follows that if 𝑋 is a random variable and if ℎ:ℝ → ℝ 

is strictly monotone then ℎ(𝑋) is a random variable. ▄ 

 

A random variable 𝑋 takes values in various Borel sets according to some probability law 

called the probability distribution of random variable 𝑋 . Clearly the probability 

distribution of a random variable of absolutely continuous/discrete type is described by 

its distribution function (d.f.) and/or by its probability density function/probability mass 

function (p.d.f/p.m.f.). For a given Borel function ℎ:ℝ → ℝ, in the following section, we 

will derive probability distribution of ℎ(𝑋) using the probability distribution of random 

variable 𝑋. ▄ 

 

 

 

3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A 

 RANDOM VARIABLE  
 

In our future discussions when we refer to a random variable, unless otherwise stated, it 

will be either of discrete type or of absolutely continuous type. The probability 

distribution of a discrete type random variable will be referred to as a discrete 

(probability) distribution and the probability distribution of a random variable of 

absolutely continuous type will be referred to as an absolutely continuous (probability) 

distribution. 

 

The following theorem deals with discrete probability distributions. 

 

Theorem 2.1  
 
Let 𝑋  be a random variable of discrete type with support 𝑆𝑋  and p.m.f. 𝑓𝑋(⋅) . Let 

ℎ:ℝ → ℝ be a Borel function and let 𝑍:𝛺 → ℝ be defined by 𝑍 𝜔 = ℎ 𝑋 𝜔  ,𝜔 ∈ Ω. 

Then 𝑍 is a random variable of discrete type with support 𝑆𝑍 =  ℎ 𝑥 : 𝑥 ∈ 𝑆𝑋  and p.m.f. 
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𝑓𝑍 𝑧 =  
 𝑓𝑋 𝑥 ,    if 𝑧 ∈ 𝑆𝑍
𝑥∈𝐴𝑧

0,                     otherwise

  

 

              =  
𝑃  𝑋 ∈ 𝐴𝑧  ,   if 𝑧 ∈ 𝑆𝑍
0,                        otherwise

,  

where 𝐴𝑧 =  𝑥 ∈ 𝑆𝑋 : ℎ 𝑥 = 𝑧 . 
 
Proof. Since ℎ is a Borel function, using Theorem 1.1, it follows that 𝑍  is a random 

variable. Also 𝑋 is of discrete implies that  𝑆𝑋  is countable which further implies that 𝑆𝑍 

is countable. Fix 𝑧0 ∈ 𝑆𝑍, so that 𝑧0 = ℎ 𝑥0  for some 𝑥0 ∈ 𝑆𝑋 . 

Then  

 𝑋 = 𝑥0 =  𝜔 ∈ 𝛺: 𝑋 𝜔 = 𝑥0 ⊆  𝜔 ∈ 𝛺: ℎ 𝑋 𝜔  = ℎ 𝑥0   

                                                              =  ℎ 𝑋 = ℎ 𝑥0   

                                                              =  𝑍 = 𝑧0 , 

and 

 𝑋 ∈ 𝑆𝑋 =  𝜔 ∈ 𝛺: 𝑋 𝜔 ∈ 𝑆𝑋 ⊆  𝜔 ∈ 𝛺: ℎ 𝑋 𝜔  ∈ 𝑆𝑍  

                                                              =  ℎ 𝑋 ∈ 𝑆𝑍  

                                                              =  𝑍 ∈ 𝑆𝑍 . 

Therefore, 

𝑃  𝑍 =  𝑧0  ≥ 𝑃  𝑋 ∈ 𝑥0  > 0,     (since 𝑥0 ∈ 𝑆𝑋), 

and 𝑃  𝑍 ∈ 𝑆𝑍  ≥ 𝑃  𝑋 ∈ 𝑆𝑋  = 1.  

It follows that 𝑆𝑍  is countable, 𝑃  𝑍 = 𝑧  > 0, ∀𝑧 ∈ 𝑆𝑍  and 𝑃  𝑍 ∈ 𝑆𝑍  = 1, i. e., 𝑍 is 

a discrete type random variable with support 𝑆𝑍. 

Moreover, for 𝑧 ∈ 𝑆𝑍, 

𝑃  𝑍 = 𝑧  = 𝑃  𝜔 ∈ 𝛺: ℎ 𝑋 𝜔  = 𝑧   

     =  𝑃  𝑋 = 𝑥  

𝑥∈𝐴𝑧

 

                                                                   =  𝑓𝑋 𝑥 

𝑥∈𝐴𝑧

 

                                                                   = 𝑃  𝑋 ∈ 𝐴𝑧  . 

Hence the result follows. ▄ 

The following corollary is an immediate consequence of the above theorem. 
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Corollary 2.1 

Under the notation and assumptions of Theorem 2.1, suppose that ℎ:ℝ → ℝ is one-one 

with inverse function ℎ−1: 𝐷 → ℝ, where 𝐷 =  ℎ 𝑥 : 𝑥 ∈ ℝ . Then 𝑍 is a discrete type 

random variable with support 𝑆𝑧 =  ℎ 𝑥 : 𝑥 ∈ 𝑆𝑋  and p.m.f. 

 

𝑓𝑍 𝑧 =  
𝑓𝑋 ℎ

−1 𝑧  ,   if 𝑧 ∈ 𝑆𝑍
0,                      otherwise

  

 

                                                              =  
𝑃  𝑋 = ℎ−1 𝑧   ,   if 𝑧 ∈ 𝑆𝑍
0,                                 otherwise

 . ▄    

Example 2.1   

Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =

 
 
 

 
 

1

7
,         if  𝑥 ∈  −2,−1, 0, 1 

3

14
,       if  𝑥 ∈  2, 3 

0,          otherwise

 . 

Show that 𝑍 = 𝑋2 is a random variable. Find its p.m.f. and distribution function. 

Solution. Since ℎ 𝑥 = 𝑥2, 𝑥 ∈ ℝ, is a continuous function and 𝑋 is a random variable, 

using Remark 1.1 (i) it follows that 𝑍 = ℎ 𝑋 = 𝑋2  is a random variable. Clearly 

𝑆𝑋 =  −2,−1, 0, 1, 2, 3  and 𝑆𝑍 =  0, 1, 4, 9 . Moreover,  

                          𝑃  𝑍 = 0  = 𝑃  𝑋2 = 0  = 𝑃  𝑋 = 0  =
1

7
, 

            𝑃  𝑍 = 1  = 𝑃  𝑋2 = 1  = 𝑃 𝑋 ∈  −1, 1  =
1

7
+

1

7
=

2

7
, 

            𝑃  𝑍 = 4  = 𝑃  𝑋2 = 4  = 𝑃 𝑋 ∈  −2, 2  =
1

7
+

3

14
=

5

14
, 

and     𝑃  𝑍 = 9  = 𝑃  𝑋2 = 9  = 𝑃  𝑋 ∈  −3, 3   = 0 +
3

14
=

3

14
∙ 

 

Therefore the p.m.f. of 𝑍 is  
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𝑓𝑍 𝑧 =

 
 
 
 
 

 
 
 
 

1

7
,         if 𝑧 = 0

2

7
,         if 𝑧 = 1

5

14
,      if 𝑧 = 4

3

14
,       if 𝑧 = 9

0, otherwise

,  

and the distribution function of 𝑍 is  

𝐹𝑍 𝑧 =

 
 
 
 

 
 
 

0,          if 𝑧 < 0
1

7
,         if 0 ≤ 𝑧 < 1

3

7
,         if 1 ≤ 𝑧 < 4

11

14
,       if  4 ≤ 𝑧 < 9

1,         if   z ≥ 9

 ∙ ▄ 

Example 2.2 

Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =  
 𝑥 

2550
,   if 𝑥 ∈  ± 1, ±2,⋯ , ±50 

0,           otherwise

 . 

Show that 𝑍 =  𝑋  is a random variable. Find its p.m.f., and distribution function. 

Solution. As ℎ 𝑥 =  𝑥 , 𝑥 ∈ ℝ, is a continuous function and 𝑋 is a random variable, 

using Remark 1.1 (i), 𝑍 =  𝑋  is a random variable. We have 𝑆𝑋 =  ± 1, ±2,⋯ , ±50  

and 𝑆𝑍 =  1, 2,⋯ , 50 . Moreover, for 𝑧 ∈ 𝑆𝑍, 

𝑃  𝑍 = 𝑧  = 𝑃   𝑋 = 𝑧  = 𝑃  𝑋 ∈  −𝑧, 𝑧   =
 −𝑧 

2550
+

 𝑧 

2550
=

𝑧

1275
∙ 

Therefore the p.m.f. of 𝑍 is  

𝑓𝑍 𝑧 =  

𝑧

1275
,   if 𝑧 ∈  1, 2,⋯ , 50 

0,           otherwise
,  

and the distribution function of 𝑍 is   
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𝐹𝑍 𝑧 =

 
 
 

 
 

0,                  if 𝑧 < 1
1

1275
,          if  1 ≤ 𝑧 < 2

𝑖 𝑖 + 1 

2550
,      if 𝑖 ≤ 𝑧 < 𝑖 + 1, 𝑖 = 2, 3,⋯ ,49

1,                   if 𝑧 ≥ 50

 . ▄ 

Example 2.3 

Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =  
 
𝑛
𝑥
 𝑝𝑥 1 − 𝑝 𝑛−𝑥 ,   if 𝑥 ∈  0, 1,⋯ , 𝑛 

0,                                 otherwise

 , 

 

where 𝑛 is a positive integer and 𝑝 ∈  0,1 . Show that 𝑌 = 𝑛 − 𝑋 is a random variable. 

Find its p.m.f. and distribution function. 

Solution. Note that 𝑆𝑋 = 𝑆𝑌 =  0, 1,⋯ , 𝑛  and ℎ 𝑥 = 𝑛 − 𝑥, 𝑥 ∈ ℝ , is a continuous 

function. Therefore 𝑌 = 𝑛 − 𝑋 is a random variable. For 𝑦 ∈ 𝑆𝑌 

𝑃  𝑌 = 𝑦  = 𝑃  𝑋 = 𝑛 − 𝑦  =  
𝑛

𝑛 − 𝑦 𝑝
𝑛−𝑦 1 − 𝑝 𝑦 =  

𝑛
𝑦  1 − 𝑝 𝑦𝑝𝑛−𝑦 . 

Thus the p.m.f. of 𝑌 is 

𝑓𝑌 𝑦 =  
 
𝑛
𝑦  1 − 𝑝 𝑦𝑝𝑛−𝑦 ,   if 𝑦 ∈  0, 1,⋯ , 𝑛 

0,                                 otherwise
,  

and the distribution function of 𝑌 is  

𝐹𝑌 𝑦 =

 
 
 

 
 

0,                                          if 𝑦 < 0
𝑝𝑛 ,                                        if  0 ≤ 𝑦 < 1

  
𝑛
𝑗  1 − 𝑝 𝑗𝑝𝑛−𝑗

𝑖

𝑗=0

, if 𝑖 ≤ 𝑦 < 𝑖 + 1, 𝑖 = 1,2,⋯ , 𝑛 − 1

1,                                           if 𝑦 ≥ 𝑛

 . ▄ 

 

The following theorem deals with probability distribution of absolutely continuous type 

random variables. 
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Theorem 2.2 

Let 𝑋 be a random variable of absolutely continuous type with p.d.f. 𝑓𝑋(⋅) and support 

𝑆𝑋 . Let 𝑆1, 𝑆2, ⋯ , 𝑆𝑘 , be open intervals in ℝ such that 𝑆𝑖 ∩ 𝑆𝑗 = 𝜙, if 𝑖 ≠ 𝑗 and  𝑆𝑖 =𝑘
𝑖=1

𝑆𝑋 . Let ℎ:ℝ → ℝ be a Borel function such that, on each 𝑆𝑖 𝑖 = 1,… , 𝑘 , ℎ: 𝑆𝑖 → ℝ is 

strictly monotone and continuously differentiable with inverse function ℎ𝑖
−1(⋅) . Let 

ℎ 𝑆𝑗  =  ℎ 𝑥 : 𝑥 ∈ 𝑆𝑗   so that ℎ 𝑆𝑗   𝑗 = 1,… , 𝑘  is an open interval in ℝ . Then the 

random variable 𝑇 = ℎ 𝑋  is of absolutely continuous type with p.d.f. 

                                                                𝑓𝑇 𝑡 =  𝑓𝑋

𝑘

𝑗=1

 ℎ𝑗
−1 𝑡   

𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗  (𝑡). 

Proof. We will provide an outline of the proof which may not be rigorous. Let  𝐹𝑇(⋅) be 

the distribution function of 𝑇. For 𝑡 ∈ ℝ and Δ > 0, 

𝐹𝑇 𝑡 + Δ − 𝐹𝑇 𝑡 

Δ
=
𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ  

Δ
 

                                                          =  
𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   

Δ

𝑘

𝑗=1

∙ 

Fix 𝑗 ∈  1,… , 𝑘 . First suppose that ℎ𝑗 (⋅)  is strictly decreasing on 𝑆𝑗 . Note that  𝑋 ∈

𝑆𝑗  =  ℎ 𝑋 ∈ ℎ 𝑆𝑗    and ℎ 𝑆𝑗   is an open interval. Thus, for 𝑡 belonging to the exterior 

of ℎ 𝑆𝑗   and sufficiently small Δ > 0 , we have 𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   = 0. 

Also, for 𝑡 ∈ ℎ 𝑆𝑗   and sufficiently small Δ > 0,  

        𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   = 𝑃  ℎ𝑗
−1 𝑡 + Δ ≤ 𝑋 < ℎ𝑗

−1 𝑡   . 

Thus, for all 𝑡 ∈ ℝ, we have 

         
𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   

Δ
=
𝑃  ℎ𝑗

−1 𝑡 + Δ ≤ 𝑋 < ℎ𝑗
−1 𝑡   𝐼ℎ 𝑆𝑗  (𝑡)

Δ
 

                             =
1

Δ
  𝑓𝑋 𝑧 𝑑𝑧

ℎ𝑗
−1(𝑡)

ℎ𝑗
−1(𝑡+Δ)

 𝐼ℎ 𝑆𝑗  (𝑡) 

                                                                   
Δ↓0
  −𝑓𝑋  ℎ𝑗

−1 𝑡   
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗   𝑡 .              (2.1) 

Similarly if ℎ𝑗  is strictly increasing on 𝑆𝑗  then, for all 𝑡 ∈ ℝ, we have  
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𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   

Δ
=
𝑃  ℎ𝑗

−1 𝑡 < 𝑋 ≤ ℎ𝑗
−1 𝑡 + Δ   𝐼ℎ 𝑆𝑗  (𝑡)

Δ
 

                                                   =
1

Δ
  𝑓𝑋 𝑧 𝑑𝑧

ℎ𝑗
−1(𝑡+Δ)

ℎ𝑗
−1(𝑡)

 𝐼ℎ 𝑆𝑗  (𝑡) 

                                                  
Δ↓0
  𝑓𝑋  ℎ𝑗

−1 𝑡   
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗   𝑡 .                           (2.2) 

Note that if ℎ is strictly decreasing (increasing) on 𝑆𝑗  then 
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡 <  > 0 on 𝑆𝑗 . Now 

on combining (2.1) and (2.2) we get, for all 𝑡 ∈ ℝ,  

𝑃  𝑡 < ℎ 𝑋 ≤ 𝑡 + Δ, 𝑋 ∈ 𝑆𝑗   

Δ

Δ↓0
  𝑓𝑋  ℎ𝑗

−1 𝑡   
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗   𝑡 , 

⇒
𝐹𝑇 𝑡 + Δ − 𝐹𝑇 𝑡 

Δ

Δ↓0
   𝑓𝑋  ℎ𝑗

−1 𝑡  

𝑘

𝑗=1

 
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗   𝑡 . 

Similarly one can show that, for all 𝑡 ∈ ℝ,  

lim
Δ↑0

𝐹𝑇 𝑡 + Δ − 𝐹𝑇 𝑡 

Δ
=  𝑓𝑋  ℎ𝑗

−1 𝑡  

𝑘

𝑗=1

 
𝑑

𝑑𝑡
ℎ𝑗
−1 𝑡  𝐼ℎ 𝑆𝑗   𝑡 .                                  (2.3) 

It follows that the distribution function of 𝑇 is differentiable everywhere on ℝ except 

possibly at a finite number of points (on boundaries of intervals ℎ 𝑆1 ,⋯ , ℎ 𝑆𝑘  of 𝑆𝑇). 

Now the result follows from Remark 4.2 (vii) of Module 2 and using (2.3). ▄ 

The following corollary to the above theorem is immediate. 

Corollary 2.2  

Let 𝑋 be a random variable of absolutely continuous type with p.d.f. 𝑓𝑋(⋅)  and support 

𝑆𝑋 . Suppose that 𝑆𝑋  is a finite union of disjoint open intervals in ℝ and let ℎ:ℝ → ℝ be a 

Borel function such that ℎ  is differentiable and strictly monotone on 𝑆𝑋  (i.e., either 

ℎ′ 𝑥 < 0, ∀𝑥 ∈ 𝑆𝑋  or ℎ′ 𝑥 > 0, ∀𝑥 ∈ 𝑆𝑋). Let 𝑆𝑇 =  ℎ 𝑥 : 𝑥 ∈ 𝑆𝑋 . Then 𝑇 = ℎ 𝑋  is a 

random variable of absolutely continuous type with p.d.f. 

𝑓𝑇 𝑡 =  𝑓𝑋 ℎ
−1 𝑡   

𝑑

𝑑𝑡
ℎ−1 𝑡  ,     if 𝑡 ∈ 𝑆𝑇

0,                                              otherwise
∙  ▄ 
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It may be worth mentioning here that, in view of Remark 4.2 (vii) of Module 2, Theorem 

2.2 and Corollary 2.2 can be applied even in situations where the function ℎ is 

differentiable everywhere on  𝑆𝑋  except possibly at a finite number of points. 

Example 2.4 

Let 𝑋 be random variable with p.d.f. 

𝑓𝑋 𝑥 =  
𝑒−𝑥 ,    if 𝑥 > 0
0,         otherwise

 ,  

and let 𝑇 = 𝑋2 

(i) Show that 𝑇 is a random variable of absolutely continuous type; 

(ii) Find the distribution function of 𝑇 and hence find its p.d.f.; 

(iii) Find the p.d.f. of 𝑇 directly (i.e., without finding the distribution function of 

𝑇). 

Solution. (i) and (iii). Clearly 𝑇 = 𝑋2 is a random variable (being a continuous function 

of random variable 𝑋). We have 𝑆𝑋 = 𝑆𝑇 =  0, ∞ . Also ℎ 𝑥 = 𝑥2, 𝑥 ∈ 𝑆𝑋 , is strictly 

increasing on 𝑆𝑋  with inverse function ℎ−1 𝑥 =  𝑥, 𝑥 ∈ 𝑆𝑇 . Using Corollary 2.1 it 

follows that 𝑇 = 𝑋2 is a random variable of absolutely continuous type with p.d.f. 

𝑓𝑇 𝑡 =  𝑓𝑋  𝑡  
𝑑

𝑑𝑡
  𝑡  , if 𝑡 > 0

0,                               otherwise

  

=  
𝑒− 𝑡

2 𝑡
,           if 𝑡 > 0

0,                otherwise

 . 

(ii) We have 𝐹𝑇 𝑡 = 𝑃  𝑋2 ≤ 𝑡  , 𝑡 ∈ ℝ. Clearly, for 𝑡 < 0, 𝐹𝑇 𝑡 = 0. For 𝑡 ≥ 0, 

                                                        𝐹𝑇 𝑡 = 𝑃  − 𝑡 ≤ 𝑋 ≤  𝑡   

                                                                   =  𝑓𝑋 𝑥 𝑑𝑥

 𝑡

− 𝑡

 

                                                                   =  𝑒−𝑥𝑑𝑥

 𝑡

0

 

                                                                   = 1 − 𝑒− 𝑡 . 
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Therefore the distribution function of 𝑇 is  

𝐹𝑇 𝑡 =  
0,                 if 𝑡 < 0

1 − 𝑒− 𝑡 ,   if 𝑡 ≥ 0
 . 

Clearly 𝐹𝑇  is differentiable everywhere except at 𝑡 = 0. Therefore, using Remark 4.2 

(vii) of Module 2, we conclude that the random variable 𝑇 is of absolutely continuous 

type with p.d.f. 𝑓𝑇 𝑡 = 𝐹𝑇
′  𝑡 , if 𝑡 ≠ 0 . At 𝑡 = 0  we may assign any arbitrary non- 

negative value to 𝑓𝑇 0 . Thus a p.d.f. of 𝑇 is  

𝑓𝑇 𝑡 =  
𝑒− 𝑡

2 𝑡
,   if 𝑡 > 0

0,         otherwise

 . ▄ 

Example 2.5 

Let 𝑋 be a random variable with p.d.f. 

                                                       𝑓𝑋 𝑥 =  

 𝑥 

2
,   if − 1 < 𝑥 < 1

𝑥

3
,     if 1 ≤ 𝑥 < 2

0,     otherwise

 , 

and let 𝑇 = 𝑋2 

(i) Show that 𝑇 is a random variable of absolutely continuous type; 

(ii) Find the distribution function of 𝑇 and hence find its p.d.f; 

(iii) Find the p.d.f. of 𝑇 directly (i.e., without finding the distribution function of 

𝑇). 

Solution. (i) and (iii). Clearly 𝑇 = 𝑋2 is a random variable (being a continuous function 

of random variable 𝑋 ). We have 𝑆𝑋 =  −1, 0 ∪  0, 2 = 𝑆1 ∪ 𝑆2 , say. Also ℎ 𝑥 =

𝑥2 , 𝑥 ∈ 𝑆𝑋 , is strictly decreasing in 𝑆1 =  −1, 0  with inverse function ℎ1
−1 𝑡 =

− 𝑡; ℎ 𝑥 = 𝑥2 , 𝑥 ∈ 𝑆𝑋 , is strictly increasing in 𝑆2 =  0, 2 , with inverse function 

ℎ2
−1 𝑡 =  𝑡;  ℎ 𝑆1 =  0, 1  and ℎ 𝑆2 =  0, 4 . Using Theorem 2.2 it follows that 

𝑇 = 𝑋2 is a random variable of absolutely continuous type with p.d.f. 

                                                  𝑓𝑇 𝑡 = 𝑓𝑋 − 𝑡  
𝑑

𝑑𝑡
 − 𝑡  𝐼 0,1 

 𝑡 + 𝑓𝑋  𝑡  
𝑑

𝑑𝑡
  𝑡  𝐼 0,4 

 𝑡 
 

=

 
 
 

 
 

1

2
,     if 0 < 𝑡 < 1

1

6
,     if 1 < 𝑡 < 4

0,      otherwise

∙  
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(ii) We have 𝐹𝑇 𝑡 = 𝑃  𝑋2 ≤ 𝑡  , 𝑡 ∈ ℝ . Since 𝑃  𝑋 ∈  −1, 2   = 1 , we have 

𝑃  𝑇 ∈  0, 4   = 1. 

Therefore, for 𝑡 < 0, 𝐹𝑇 𝑡 = 𝑃  𝑇 ≤ 𝑡  = 0 and, for 𝑡 ≥ 4, 𝐹𝑇 𝑡 = 𝑃  𝑇 ≤ 𝑡  = 1. 

For 𝑡 ∈ [0,4), we have  

                                         𝐹𝑇 𝑡 = 𝑃  − 𝑡 ≤ 𝑋 ≤  𝑡   

                                                     =  𝑓𝑋 𝑥 

 𝑡

− 𝑡

𝑑𝑥 

                                                     =

 
  
 

  
 
 

|𝑥|

2
𝑑𝑥,                        if 0 ≤ 𝑡 < 1

 𝑡

− 𝑡

 
|𝑥|

2
𝑑𝑥

1

−1

+  
𝑥

3
𝑑𝑥,

 𝑡

1

     if 1 ≤ 𝑡 < 4

 . 

Therefore, the distribution function of 𝑇 is 

𝐹𝑇 𝑡 =

 
 
 

 
 

0,            if 𝑡 < 0
𝑡

2
,           if  0 ≤ 𝑡 < 1

𝑡 + 2

6
,    if  1 ≤ 𝑡 < 4

1,            if 𝑡 ≥ 4

 ∙ 

Clearly 𝐹𝑇  is differentiable everywhere except at points 0, 1 and 4. Using Remark 4.2 

(vii) of Module 2 it follows that the random variable 𝑇 is of absolutely continuous type 

with a p.d.f. 

               𝑓𝑇 𝑡 =

 
 
 

 
 

1

2
,     if 0 < 𝑡 < 1

1

6
,     if 1 < 𝑡 < 4

0,      otherwise

∙  ▄ 

 

Note that a Borel function of a discrete type random variable is a random variable of 

discrete type (see Theorem 1.1). Theorem 2.2 provides sufficient conditions under which 

a Borel function of an absolutely continuous type random variable is of absolutely 

continuous type. The following example illustrates that, in general, a Borel function of an 

absolutely continuous type random variable may not be of absolutely continuous type. 
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Example 2.6  

Let 𝑋 be a random variable of absolutely continuous type with p.d.f.  

𝑓𝑋 𝑥 =  
𝑒−𝑥 ,   if 𝑥 > 0
0,       𝑠otherwise

 , 

and let 𝑇 =  𝑥 , where, for 𝑥 ∈ ℝ,  𝑥  denotes the largest integer not exceeding 𝑥. Show 

that 𝑇 is a random variable of discrete type and find its p.m.f. 

Solution. For 𝑎 ∈ ℝ, we have  

𝑇−1  −∞, 𝑎  =  −∞,  𝑎 + 1 ∈ ℬ1. 

It follows that 𝑇  is a random variable. Also 𝑆𝑋 =  0, ∞ . Since 𝑃  𝑋 ∈ 𝑆𝑋  = 1 , we 

have 𝑃 𝑇 ∈  0, 1, 2,⋯   = 1. Also, for 𝑖 ∈  0, 1, 2, …  . 

              𝑃  𝑇 = 𝑖  = 𝑃( 𝑖 ≤ 𝑋 < 𝑖 + 1 ) 

                                                                                =  𝑓𝑋 𝑥 𝑑𝑥

𝑖+1

𝑖

 

                                                                                =  𝑒−𝑥𝑑𝑥

𝑖+1

𝑖

 

                                                                                =  1 − 𝑒−1 𝑒−𝑖 

                                                                                > 0. 

 

Consequently the random variable 𝑇 is of discrete type with support 𝑆𝑇 =  0, 1, 2, …   and 

p.m.f. 

𝑓𝑇 𝑡 = 𝑃  𝑇 = 𝑡  =  
 1 − 𝑒−1 𝑒−𝑡 ,    if 𝑡 ∈  0 ,1, 2, …  
0 ,                          otherwise

 . ▄ 

 


