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MODULE 6 

RANDOM VECTOR AND ITS JOINT DISTRIBUTION 

LECTURE 31 

Topics 

6.7 PROPERTIES OF RANDOM VECTORS HAVING THE  

         SAME DISTRIBUTION 

6.7.1 Uniqueness Theorem 

 

6.8 MULTINOMIAL DISTRIBUTION 
6.8.1 Multinomial Distribution 

 

6.9 BIVARIATE NORMAL DISTRIBUTION   

 

6.7 PROPERTIES OF RANDOM VECTORS HAVING THE 

         SAME DISTRIBUTION 

Definition 7.1 

Let 𝑋 and 𝑌 be two 𝑝-dimensional random vectors, defined on the same probability space 

 Ω, ℱ, 𝑃 . Then 𝑋 and 𝑌are said to have the same distribution (written as𝑋 =
𝑑

𝑌 ) if 

𝐹𝑋 𝑥 = 𝐹𝑌 𝑥  , ∀𝑥 ∈ ℝ𝑝 (i.e., if they have the same distribution function). ▄ 

The following results are multivariate analogs of theorems stated in Section 4 of Module 

3. The proofs of these theorems, being similar to their univariate counterparts, are 

omitted.  

Theorem 7.1  

(i)  Let 𝑋 and 𝑌 be 𝑝-dimensional random vectors of discrete type with joint p.m.f. 

𝑓𝑋 ⋅  and 𝑓𝑌 ⋅ , respectively. Then 𝑋 =
𝑑

𝑌 if, and only if, 𝑓𝑋 𝑥 = 𝑓𝑌 𝑥  , ∀𝑥 ∈ ℝ𝑝 . 

(ii) Let 𝑋 and 𝑌  be 𝑝 -dimensional random vectors having distribution functions 

𝐹𝑋 ∙  and 𝐹𝑌 ∙ , respectively. Suppose that 
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𝜕𝑝𝐹𝑋 𝑥 

𝜕𝑥1 ⋯𝜕𝑥𝑝
    and 

𝜕𝑝𝐹𝑌 𝑥 

𝜕𝑥1 ⋯𝜕𝑥𝑝
 

exist everywhere except, possibly, on a set 𝐶 comprising of countable number of curves. 

Further suppose that 

 
𝜕𝑝𝐹𝑋 𝑥 

𝜕𝑥1 ⋯𝜕𝑥𝑝ℝ𝑝

𝐼𝐶𝑐 𝑥 𝑑𝑥 =  
𝜕𝑝𝐹𝑌 𝑥 

𝜕𝑥1 ⋯𝜕𝑥𝑝ℝ𝑝

𝐼𝐶𝑐 𝑥 𝑑𝑥 = 1. 

Then both of them are of absolutely continuous type. Moreover, 𝑋 =
𝑑

𝑌 if and only if, 

there exist versions of p.d.f.s 𝑓𝑋 ∙  and 𝑓𝑌 ∙  of 𝑋 and 𝑌 , respectively, such that 𝑓𝑋 𝑥 =

𝑓𝑌 𝑥  , ∀𝑥 ∈ ℝ𝑝 . ▄ 

Theorem 7.2 

Let 𝑋 and 𝑌 be 𝑝-dimensional random vectors of either discrete type or of absolutely 

continuous type with 𝑋 =
𝑑

𝑌. Then 

(i) For any Borel function ℎ: ℝ𝑝 → ℝ, 𝐸  ℎ 𝑋  = 𝐸  ℎ 𝑌  , provided the expectations 

are finite; 

(ii) For any Borel function 𝜓: ℝ𝑝 → ℝ, 𝜓 𝑋 =
𝑑

𝜓 𝑌 . ▄ 

 

6.7.1 Uniqueness Theorem 

Theorem 7.3 

Let 𝑋 and 𝑌 be two random vectors of either discrete type or of absolutely continuous 

type having m.g.f.s 𝑀𝑋 ⋅  and 𝑀𝑌 ⋅ , respectively, that are finite on a rectangle  −𝑎, 𝑎  

for some 𝑎 = (𝑎1,𝑎2, … , 𝑎𝑝) ∈ ℝ𝑝 ;  here −𝑎 = (−𝑎1, −𝑎2,… , −𝑎𝑝)and  −𝑎, 𝑎 = {𝑡 ∈

ℝ𝑝 : −𝑎𝑖 < 𝑡𝑖 < 𝑎𝑖 , 𝑖 = 1, … , 𝑝. }. Suppose that  

𝑀𝑋 𝑡 =  𝑀𝑌 𝑡 ,   ∀𝑡 ∈  −𝑎, 𝑎 . 

Then  𝑋 =
𝑑

𝑌. ▄ 

Remark 7.1 

If 𝑋1, 𝑋2,… , 𝑋𝑝  are independent and identically distributed  i. e. ;   𝑋𝑖 =
𝑑

𝑋1, 𝑖 =

1, … , 𝑝 , 𝑌 =  𝑋𝑖
𝑝
𝑖=1  and 𝑋 =  

1

𝑝
  𝑋𝑖 ,

𝑝
𝑖=1  then 
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𝑀𝑋 𝑡 =  𝑀𝑋1
 𝑡𝑖 

𝑝

𝑖=1

,   𝑡 ∈ ℝ𝑝  

𝑀𝑌 𝑡 =  𝑀𝑋1
 𝑡  

𝑝
,   𝑡 ∈ ℝ 

and 

𝑀𝑋  𝑡 =  𝑀𝑋1
 
𝑡

𝑝
  

𝑝

,   𝑡 ∈ ℝ, 

provided the expectations are finite. ▄ 

Example 7.1 

Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variable such that 𝑋𝑖  ~ 𝑁 𝜇𝑖 , 𝜍𝑖
2 , −∞ < 𝜇𝑖 <

∞, 𝜍𝑖 > 0, 𝑖 = 1, … , 𝑝. If 𝑎1,… , 𝑎𝑝  are real constants, such that not all of them are zero, 

then show that  

 𝑎𝑖𝑋𝑖

𝑝

𝑖=1

 ~ 𝑁  𝑎𝑖𝜇𝑖

𝑝

𝑖=1

,  𝑎𝑖
2𝜍𝑖

2

𝑝

𝑖=1

 . 

Solution. Let 𝑌 =  𝑎𝑖𝑋𝑖
𝑝
𝑖=1 . Then  

                                                    𝑀𝑌 𝑡 = 𝐸  𝑒𝑡  𝑎𝑖𝑋𝑖
𝑝
𝑖=1   

= 𝐸   𝑒𝑡𝑎𝑖𝑋𝑖

𝑝

𝑖=1

  

                                                               =  𝐸 𝑒𝑡𝑎𝑖𝑋𝑖 

𝑝

𝑖=1

      (𝑋1, 𝑋2,⋯ , 𝑋𝑝  are  independent) 

                                                                =  𝑀𝑋𝑖

𝑝

𝑖=1

 𝑡𝑎𝑖  

                   =  𝑒𝑡𝑎𝑖𝜇 𝑖+
𝑎𝑖

2𝜍𝑖
2𝑡2

2

𝑝

𝑖=1

,   𝑡 ∈ ℝ 

                                = 𝑒𝑡  𝑎𝑖𝜇 𝑖
𝑝
𝑖=1  +

  𝑎𝑖
2𝜍𝑖

2𝑝
𝑖=1

 𝑡2

2 ,   𝑡 ∈ ℝ , 
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which is the m.g.f. of 𝑁   𝑎𝑖𝜇𝑖
𝑝
𝑖=1 ,  𝑎𝑖

2𝜍𝑖
2𝑝

𝑖=1   distribution. Using Theorem 7.3 it 

follows that 

𝑌 ~ 𝑁  𝑎𝑖𝜇𝑖

𝑝

𝑖=1

,  𝑎𝑖
2𝜍𝑖

2

𝑝

𝑖=1

 .▄ 

Example 7.2 

Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variable such that 𝑋𝑖  ~ Bin 𝑛𝑖 , 𝜃 , 0 < 𝜃 <

1, 𝑛𝑖 ∈  1, 2, … , 𝑖 = 1, … , 𝑝. Show that 

 𝑋𝑖

𝑝

𝑖=1

~ Bin   𝑛𝑖

𝑝

𝑖=1

, 𝜃 . 

Solution. Let 𝑌 =  𝑋𝑖
𝑝
𝑖=1 . Then 

𝑀𝑌 𝑡 = 𝐸  𝑒𝑡  𝑋𝑖
𝑝
𝑖=1   

            = 𝐸   𝑒𝑡𝑋𝑖

𝑝

𝑖=1

  

          =  𝐸 𝑒𝑡𝑋𝑖 

𝑝

𝑖=1

 

        =  𝑀𝑋𝑖
(𝑡

𝑝

𝑖=1

) 

                                        =  (1 − 𝜃 + 𝜃𝑒𝑡)𝑛𝑖

𝑝

𝑖=1

,   𝑡 ∈ ℝ 

                                             = (1 − 𝜃 + 𝜃𝑒𝑡) 𝑛𝑖
𝑝
𝑖=1 ,   𝑡 ∈ ℝ,        

which is the m.g.f. of Bin  𝑛𝑖
𝑝
𝑖=1 , 𝜃  distribution. Using Theorem 7.3 it follows that 

                          𝑌 =  𝑋𝑖
𝑝
𝑖=1 ~ Bin  𝑛𝑖

𝑝
𝑖=1 , 𝜃 . ▄ 

Example 7.3 

Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variables such that 𝑋𝑖  ~ NB 𝑟𝑖 , 𝜃  , 0 < 𝜃 < 1,

𝑟𝑖 ∈  1, 2, … , 𝑖 = 1,2, … , 𝑝. Then show that 
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𝑌 =  𝑋𝑖

𝑝

𝑖=1

~ NB   𝑟𝑖

𝑝

𝑖=1

, 𝜃 . 

Solution.  Similar to solution of Example 7.2 on noting that if  𝑋 ~NB(𝑟, 𝜃) then 

𝑀𝑋 𝑡 =  
𝜃

1−(1−𝜃)𝑒 𝑡
 
𝑟

,      𝑡 < − ln(1 − 𝜃). ▄ 

Example 7.4 

Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variables such that 𝑋𝑖  ~ 𝑃 𝜆𝑖 , 𝜆𝑖 > 0, 𝑖 =

1, … , 𝑝. Then show that 

 𝑋𝑖

𝑝

𝑖=1

 ~ 𝑃   𝜆𝑖

𝑝

𝑖=1

 . 

Solution. Similar to solution of Example 7.2 on noting that if  𝑋 ~ 𝑃 𝜆  , 𝜆 > 0, then 

𝑀𝑋 𝑡 = 𝑒𝜆(𝑒 𝑡−1),   𝑡 ∈ ℝ .  ▄ 

Example 7.5 

Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variable such that 𝑋𝑖  ~  𝐺 𝛼𝑖 , 𝜃  , 𝜃 > 0, 𝛼𝑖 >

0, 𝑖 = 1, … , 𝑝. Show that  

 𝑋𝑖

𝑝

𝑖=1

~ 𝐺   𝛼𝑖

𝑝

𝑖=1

, 𝜃 . 

Solution. Similar to solution of Example 7.2 on noting that if 𝑋~ 𝐺 𝛼, 𝜃 , 𝛼 > 0 , 𝜃 >

0, then 

𝑀𝑋 𝑡 = (1 − 𝑡𝜃)−𝛼 ,       𝑡 <
1

𝜃
.▄ 

Example 7.6 

(i) Let 𝑋1,𝑋2, … , 𝑋𝑝  be independent random variables such that 𝑋𝑖  ~ χ
𝑛𝑖

2 , 𝑛𝑖 ∈

 1, 2, … , 𝑖 = 1, … , 𝑝. Then show that 

 𝑋𝑖

𝑝

𝑖=1

~ 𝜒
 𝑛𝑖

𝑝
𝑖=1

2 . 
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(ii)  Let  𝑌1, 𝑌2, … , 𝑌𝑝   be independent random variables such that 𝑌𝑖  ~ 𝑁 𝜇, 𝜍2 , 𝑖 =

1, … , 𝑝, −∞ < 𝜇 < ∞,𝜍 > 0. Then 

  
𝑌𝑖 − 𝜇

𝜍
 

2

~ 𝜒𝑝
2

𝑝

𝑖=1

. 

Solution. 

(i) Note that 𝑋𝑖~ 𝜒𝑛𝑖

2 = 𝐺  
𝑛𝑖

2
, 2 , 𝑖 = 1, … , 𝑝. Now the assertion follows from Example 

7.5. 

(ii) Follows on using Theorem 4.19 (i)-(ii) of Module 5 and (i) above. ▄ 

 

We state the following theorem without providing its proof. 

Theorem 7.4 

Let 𝑋  be a 𝑝 -dimensional random vector and let 𝑋 =  𝑋1,… , 𝑋𝑘 ,  where 𝑋𝑖  is 𝑝𝑖 -

dimensional, 𝑖 = 1, … , 𝑘 ,  𝑝𝑖
𝑘
𝑖=1 = 𝑝 . Suppose that there exist 𝑎𝑖 ∈ ℝ𝑝𝑖 , 𝑎𝑖 ≠ 0, 𝑖 =

1, … , 𝑘, such that  𝑀𝑋 ∙  is finite on  −𝑎, 𝑎 and 𝑀𝑋𝑖
 ∙  is finite on  −𝑎𝑖 , 𝑎𝑖 , 𝑖 = 1, … , 𝑘,

where 𝑎 =  𝑎1,… , 𝑎𝑘 , and −𝑎 =  −𝑎1 , … , −𝑎𝑘 . Then 𝑋1,… , 𝑋𝑘  are independent iff  

𝑀𝑋 𝑡1,… , 𝑡𝑘 =   𝑀𝑋𝑖

𝑘

𝑖=1

 𝑡𝑖 ,   ∀𝑡𝑖 ∈  −𝑎𝑖 , 𝑎𝑖 , 𝑖 = 1, … , 𝑘.▄ 

 

6.8 MULTINOMIAL DISTRIBUTION 

First let us introduce the notion of multinomial coefficients, which is a generalization of 

notion of binomial coefficients. 

Let 𝑘, 𝑛1, … , 𝑛𝑘−1  and 𝑛  be non-negative integers such that 𝑘 ≥ 2,  𝑛𝑖 ≤ 𝑛𝑘−1
𝑖=1 . 

Consider a collection of 𝑛 items comprising of  

𝑛1 identical items of type 1
𝑛2  identical items of type 2
                            ⋮
𝑛𝑘−1 identical items of type 𝑘 − 1

𝑛𝑘 = 𝑛 −  𝑛𝑖  identical items of type 𝑘.

𝑘−1

𝑖=1
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The number of visually distinguishable ways in which these 𝑛 items can be arranged in a 

row is 

 
𝑛
𝑛1

  
𝑛 − 𝑛1

𝑛2
  

𝑛 − 𝑛1 − 𝑛2

𝑛3
 ⋯ 𝑛 −  𝑛𝑖

𝑘−2

𝑖=1
𝑛𝑘−1

 =  
𝑛!

𝑛1! 𝑛2! ⋯𝑛𝑘−1! (𝑛 −  𝑛𝑖)!𝑘−1
𝑖=1

. 

The coefficients 

 
𝑛

𝑛1𝑛2 ⋯𝑛𝑘−1
 =

𝑛!

𝑛1! 𝑛2! ⋯𝑛𝑘−1! (𝑛 −  𝑛𝑖)!𝑘−1
𝑖=1

 , 𝑛𝑖 ≥ 0, 𝑖 = 1, … , 𝑘 − 1,  𝑛𝑖 ≤ 𝑛

𝑘−1

𝑖=1

(8.1) 

are called multinomial coefficients. 

Note that, for 𝑘 = 2  (so that 0 ≤ 𝑛1 ≤ 𝑛 ), multinomial coefficients (8.1) reduce to 

binomial coefficients 

 
𝑛
𝑛1

 =
𝑛!

𝑛1! (𝑛 − 𝑛1)!
 ,   𝑛1 ∈ {0, 1, … , 𝑛}. 

 Also note that, for real numbers 𝑥1, … , 𝑥𝑘 , 

(𝑥1 + 𝑥2 ⋯ + 𝑥𝑘)𝑛 =  𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘  𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘 ⋯ (𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘                                       
 Product  of  𝑛  quantities

). 

A typical term in expansion of above product is an arrangement of 𝑛1 𝑥1
′ 𝑠, 𝑛2  𝑥2

′ 𝑠, … ,

𝑛𝑘−1 𝑥𝑘−1
′ 𝑠  and 𝑛𝑘 = (𝑛 −  𝑛𝑖)

𝑘−1
𝑖=1  𝑥𝑘

′ 𝑠, 𝑛𝑖 ∈  0, 1, …  , 𝑛1 + 𝑛2 + ⋯ + 𝑛𝑘−1 ≤ 𝑛 

(such as 𝑥1, 𝑥3 , 𝑥4, 𝑥2 , 𝑥1, 𝑥2 …𝑥𝑘−2𝑥8). Each such term equals 𝑥1
𝑛1𝑥2

𝑛2 ⋯𝑥𝑘
𝑛𝑘  and total 

number of visually distinguishable ways of arranging  𝑛1 𝑥1
′ 𝑠, 𝑛2 𝑥2

′ 𝑠, … , 𝑛𝑘−1 𝑥𝑘−1
′ 𝑠 

 𝑛 −  𝑛𝑖
𝑘−1
𝑖=1   𝑥𝑘

′ 𝑠  is  
𝑛

𝑛1𝑛2 ⋯𝑛𝑘−1
 . 

Thus, we have 

(𝑥1 + 𝑥2 + ⋯ + 𝑥𝑘)𝑛 =  ⋯   
𝑛

𝑛1𝑛2 ⋯𝑛𝑘−1
 𝑥1

𝑛1𝑥2
𝑛2 ⋯𝑥𝑘

𝑛𝑘 .

𝑛

𝑛𝑘−1=0
+𝑛𝑘−1≤𝑛

𝑛

𝑛1=0
𝑛1+𝑛2+…
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6.8.1 Multinomial Distribution 

Example 8.1 

Consider a random experiment that can result in one of 𝑝 + 1 (𝑝 ≥ 1) possible outcomes 

𝐴1, 𝐴2 , … , 𝐴𝑝+1, where 𝐴𝑖 ∩ 𝐴𝑗 = 𝜙, 𝑖 ≠ 𝑗 and  𝐴𝑖
𝑝+1
𝑖=1 = 𝛺. Let 𝑃 𝐴𝑖 = 𝜃𝑖 ∈ (0, 1), 𝑖 =

1, … , 𝑝,  and  𝜃𝑖 < 1𝑝
𝑖=1 so that 𝑃 𝐴𝑝+1 = 1 −  𝜃𝑖

𝑝
𝑖=1 ∈ (0, 1).  Suppose that the 

random experiment is repeated 𝑛 times independently. 

Define 

𝑋𝑖 = number of times event 𝐴𝑖  occurs in 𝑛 trials , 𝑖 = 1, … , 𝑝 + 1. 

Then one may be interested in the joint probability distribution of  𝑋 = (𝑋1, 𝑋2,… , 𝑋𝑝+1). 

Note that 

𝑋𝑝+1 = 𝑛 −  𝑋𝑖

𝑝

𝑖=1

= number of times 𝐴𝑝+1 occurs 

is completely determined by 𝑋  = (𝑋1, 𝑋2,… , 𝑋𝑝)  and therefore only distribution of 

𝑋  = (𝑋1,… , 𝑋𝑝) may be of interest. Let 𝑆𝑋 =   𝑥  = (𝑥1, … , 𝑥𝑝 : 𝑥𝑖 ∈  0, 1, … , 𝑛 , 𝑖 =

1, … , 𝑝,  𝑥𝑖
𝑝
𝑖=1 ≤ 𝑛}. Then 

𝑓𝑋(𝑥1,… , 𝑥𝑝) = 𝑃  𝑋1 = 𝑥1, … , 𝑋𝑝 = 𝑥𝑝   

                      =

 
 
 

 
 

𝑛!

𝑥1!⋯𝑥𝑝 ! (𝑛 −  𝑥𝑖)!
𝑝
𝑖=1

𝜃1
𝑥1 ⋯𝜃𝑝

𝑥𝑝  1 −  𝜃𝑖

𝑝

𝑖=1

 

(𝑛− 𝑥𝑖)
𝑝
𝑖=1

if 𝑥 ∈ 𝑆𝑋

0,                                                                                                       otherwise

         8.2  ▄ 

 

Definition 8.1 

The probability distribution given by (8.2) is called a multinomial distribution with 𝑛 

trials and cell probabilities 𝜃1, … , 𝜃𝑝  denoted by Mult n, 𝜃1, … , 𝜃𝑝  . ▄ 

Note that, for 𝑝 = 1, Mult(𝑛, 𝜃1) distribution is nothing but the Bin(𝑛, 𝜃1) distribution. 

Theorem 8.1 

Let 𝑋 = (𝑋1,𝑋2, … , 𝑋𝑝) ~ Mult 𝑛, 𝜃1 , … , 𝜃𝑝 , where 𝑛 ∈  1,2, … , 𝜃𝑖 ∈  0, 1 , 𝑖 =

1, … , 𝑝 and  𝜃𝑖
𝑝
𝑖=1 < 1. Then 
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(i) 𝑋𝑖~Bin 𝑛, 𝜃𝑖 , 𝑖 = 1, … , 𝑝; 

(ii) 𝑋𝑖 + 𝑋𝑗 ~Bin 𝑛, 𝜃𝑖 + 𝜃𝑗  , 𝑖, 𝑗 = 1, … , 𝑝, 𝑖 ≠ 𝑗; 

(iii) 𝐸(𝑋𝑖) = 𝑛𝜃𝑖  and Var 𝑋𝑖 = 𝑛𝜃𝑖 1 − 𝜃𝑖 , 𝑖 = 1, … , 𝑝; 

(iv)  Cov 𝑋𝑖 , 𝑋𝑗  = −𝑛𝜃𝑖𝜃𝑗 , 𝑖, 𝑗 = 1, … , 𝑝, 𝑖 ≠ 𝑗. 

Proof. 

(i)  Fix 𝑖 ∈  1, … , 𝑝 . In a given trial of the random experiment treat the occurrence of 

outcome 𝐴𝑖  as success and that of any other 𝐴𝑗  , 𝑗 ≠ 𝑖 (i.e., non-occurrence of 𝐴𝑖) as 

failure. Then we have a sequence of 𝑛 independent Bernoulli trials with probability of 

success in each trial as 𝑃 𝐴𝑖 = 𝜃𝑖 . Therefore 

𝑋𝑖 = # of success in 𝑛 independent Bernoulli trials ~ Bin 𝑛, 𝜃𝑖 . 

(ii) Fix 𝑖, 𝑗 ∈  1, … , 𝑝 , 𝑖 ≠ 𝑗.  In a given trial of the random experiment treat the 

occurrence of 𝐴𝑖  or 𝐴𝑗   i. e. , occurrence of 𝐴𝑖 ∪ 𝐴𝑗   as success and its non-

occurrence as failure. Then we have a sequence of 𝑛 independent Bernoulli trials with 

probability of success in each trial as 𝑃(𝐴𝑖 ∪ 𝐴𝑗 ) = 𝑃 𝐴𝑖 + 𝑃 𝐴𝑗  = 𝜃𝑖 + 𝜃𝑗  and, 

therefore,  

𝑋𝑖 + 𝑋𝑗 = # of successes in 𝑛 independent Bernoulli trials ~ Bin 𝑛, 𝜃𝑖 + 𝜃𝑗  . 

 

(iii)  Follows from (i) on using properties of binomial distribution. 

 

(iv)   Fix 𝑖, 𝑗 ∈  1, … , 𝑝 , 𝑖 ≠ 𝑗. Then 

𝑋𝑖 + 𝑋𝑗  ~ Bin 𝑛, 𝜃𝑖 + 𝜃𝑗   

⟹ Var 𝑋𝑖 + 𝑋𝑗  = 𝑛 𝜃𝑖 + 𝜃𝑗   1 − 𝜃𝑖 − 𝜃𝑗   

⟹ Var 𝑋𝑖 + Var 𝑋𝑗  + 2 Cov 𝑋𝑖 , 𝑋𝑗  = 𝑛 𝜃𝑖 + 𝜃𝑗   1 − 𝜃𝑖 − 𝜃𝑗   

⟹ 𝑛𝜃𝑖 1 − 𝜃𝑖 + 𝑛𝜃𝑗  1 − 𝜃𝑗  + 2 Cov 𝑋𝑖 ,𝑋𝑗  = 𝑛 𝜃𝑖 + 𝜃𝑗   1 − 𝜃𝑖 − 𝜃𝑗   

⟹ Cov 𝑋𝑖 , 𝑋𝑗  = −𝑛𝜃𝑖𝜃𝑗  , 𝑖 ≠ 𝑗.  ▄ 

The joint m.g.f. of  𝑋  = (𝑋1,𝑋2, … , 𝑋𝑝) ~ Mult 𝑛, 𝜃1 , … , 𝜃𝑝  is given by 

𝑀𝑋 𝑡 =  ⋯  𝑒𝑡1𝑥1+⋯+𝑡𝑝𝑥𝑝

𝑛

𝑥𝑝=0

+𝑥𝑝≤𝑛

𝑛

𝑥1=0
𝑥1+⋯

𝑛!

𝑥1! 𝑥2! ⋯𝑥𝑝 ! (𝑛 −  𝑥𝑖)!
𝑝
𝑖=1

𝜃1
𝑥1 ⋯𝜃𝑝

𝑥𝑝  1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛− 𝑥𝑖
𝑝
𝑖=1
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=  ⋯  
𝑛!

𝑥1! 𝑥2!⋯ . 𝑥𝑝 ! (𝑛 −  𝑥𝑖)!
𝑝
𝑖=1

𝑛

𝑥𝑝 =0

+𝑥𝑝≤𝑛

𝑛

𝑥1=0
𝑥1+⋯

(𝜃1𝑒
𝑡1 )𝑥1 ⋯ (𝜃𝑝𝑒

𝑡𝑝 )𝑥𝑝  1 −  𝜃𝑖

p

i=1

 

𝑛− 𝑥1
𝑝
𝑖=1

 

 =  𝜃1𝑒
𝑡1 + ⋯ + 𝜃2𝑒

𝑡2 + 1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛

, 𝑡 ∈ ℝ𝑝 .        

Therefore, 

          𝐸 𝑋𝑖 =  
𝜕

𝜕𝑡𝑖
𝑀𝑋 𝑡  

𝑡=0

 

                      =   𝑛𝜃𝑖𝑒
𝑡𝑖  𝜃1𝑒

𝑡1 + ⋯ + 𝜃2𝑒
𝑡𝑝 + 1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛−1

 

𝑡=0

 

                     = 𝑛𝜃𝑖  ,   𝑖 = 1, … , 𝑝.                                          

     𝐸 𝑋𝑖𝑋𝑗  =  
𝜕2

𝜕𝑡𝑖𝜕𝑡𝑗
𝑀𝑋 𝑡  

𝑡=0

 

                     =  𝑛 𝑛 − 1 𝜃𝑖𝜃𝑗𝑒
𝑡𝑖+𝑡𝑗  𝜃1𝑒

𝑡1 + ⋯ + 𝜃𝑝𝑒
𝑡𝑝 + 1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛−2

 

𝑡=0

 

                     = 𝑛 𝑛 − 1 𝜃𝑖𝜃𝑗 ,   𝑖, 𝑗 ∈  1, … , 𝑝 ,   𝑖 ≠ 𝑗. 

Cov 𝑋𝑖 , 𝑋𝑗  = 𝐸 𝑋𝑖𝑋𝑗  − 𝐸 𝑋𝑖 𝐸 𝑋𝑗  = −𝑛𝜃𝑖𝜃𝑗 , 𝑖 ≠ 𝑗. 

                    𝐸 𝑋𝑖
2 =  

𝜕2

𝜕𝑡𝑖
2 𝑀𝑋(𝑡) 

𝑡=0

 

         =  𝑛 𝑛 − 1 𝜃𝑖
2𝑒2𝑡𝑖  𝜃1𝑒

𝑡1 + ⋯ + 𝜃𝑝𝑒
𝑡𝑝 + 1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛−2

  

 + 𝑛𝜃𝑖𝑒
𝑡𝑖  𝜃1𝑒

𝑡1 + ⋯ + 𝜃𝑝𝑒
𝑡𝑝 + 1 −  𝜃𝑖

𝑝

𝑖=1

 

𝑛−1

 

𝑡=0

 

                             = 𝑛 𝑛 − 1 𝜃𝑖
2 + 𝑛𝜃𝑖 ,   𝑖 = 1, … , 𝑝. ▄ 
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6.9 BIVARIATE NORMAL DISTRIBUTION   

Definition 9.1 

A bivariate random vector 𝑋 = (𝑋1,𝑋2) is said to have a bivariate normal distribution 

𝑁2 𝜇1,𝜇2, 𝜍1
2, 𝜍2

2 , 𝜌  if, for some −∞ < 𝜇𝑖 < ∞, 𝑖 = 1, 2, 𝜍𝑖 > 0, 𝑖 = 1, 2, and −1 < 𝜌 <

1, the joint p.d.f. of 𝑋 =  𝑋1,𝑋2  is given by 

𝑓𝑋1,𝑋2
 𝑥1 , 𝑥2 =

1

2𝜋𝜍1𝜍2 1 − 𝜌2
𝑒
−

1

2 1−𝜌2 
  

𝑥1−𝜇 1
𝜍1

 
2
−2𝜌 

𝑥1−𝜇 1
𝜍1

  
𝑥2−𝜇 2

𝜍2
 + 

𝑥2−𝜇 2
𝜍2

 
2
 
,   𝑥 =  𝑥1 , 𝑥2 ∈ ℝ2.  ▄ 

 

Note that 𝑓𝑋1 ,𝑋2
 𝑥 ≥ 0, ∀𝑥 ∈ ℝ2  and on making the transformation 𝑧1 =

𝑥1−𝜇1

𝜍1
 and 

𝑧2 =
𝑥2−𝜇2

𝜍2
  in the integral below, we have  

                                   𝐼 =   𝑓𝑋1 ,𝑋2

∞

−∞

∞

−∞

 𝑥1, 𝑥2 𝑑𝑥 

 =
1

2𝜋 1 − 𝜌2
  𝑒

− 
1

2 1−𝜌2 
  𝑧1

2−2𝜌𝑧1𝑧2+𝑧2
2 

∞

−∞

∞

−∞

𝑑𝑧 

                                      =
1

2𝜋 1 − 𝜌2
 𝑒

− 
1

2 1−𝜌2 
  𝑧2

2−𝜌2𝑧2
2 

∞

−∞

  𝑒
− 

1

2 1−𝜌2 
  𝑧1−𝜌𝑧2 

2

𝑑𝑧1

∞

−∞

 

                 

= 1−𝜌2 2𝜋

𝑑𝑧2 

                                       =
1

 2𝜋
 𝑒−

𝑧2
2

2

∞

−∞

𝑑𝑧2 

                                      = 1 

Therefore 𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2  is a p.d.f.. 

Theorem 9.1 

Suppose that 𝑋 =  𝑋1, 𝑋2  ~ 𝑁2 𝜇1,𝜇2, 𝜍1
2 , 𝜍2

2 , 𝜌 , −∞ < 𝜇𝑖 < ∞, 𝑖 = 1, 2, 𝜍𝑖 > 0, 𝑖 =

1, 2 and −1 < 𝜌 < 1. Then,  
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(i) 𝑋1 ~ 𝑁 𝜇1, 𝜍1
2  and 𝑋2 ~ 𝑁 𝜇2, 𝜍2

2 ; 

(ii) for a fixed 𝑥2 ∈ ℝ, the conditional distribution of 𝑋1 given that 𝑋2 = 𝑥2 is 𝑁  𝜇1 +

𝜌
𝜍1

𝜍2
 𝑥2 − 𝜇2 , 𝜍1

2 1 − 𝜌2   (written as 𝑋1|𝑋2 = 𝑥2  ~ 𝑁 𝜇1 + 𝜌
𝜍1

𝜍2
 𝑥2 −

𝜇2 , 𝜍1
2 1 − 𝜌2  ; 

(iii) for a given 𝑥1 ∈ ℝ, the conditional distribution of 𝑋2 given 𝑋1 = 𝑥1 is 𝑁 𝜇2 +

𝜌
𝜍2

𝜍1
 𝑥1 − 𝜇1 ,𝜍2

2 1 − 𝜌2  (written as 𝑋2|𝑋1 = 𝑥1 ~ 𝑁 𝜇2 + 𝜌
𝜍2

𝜍1
 𝑥1 −

𝜇1 ,𝜍2
2 1 − 𝜌2  ; 

(iv) the m.g.f. of 𝑋 =  𝑋1,𝑋2  is 

𝑀𝑋1 ,𝑋2
 𝑡1, 𝑡2 = 𝑒𝜇1𝑡1+𝜇2𝑡2+

𝜍1
2𝑡1

2

2
+

𝜍2
2𝑡2

2

2
+𝜌𝜍1𝜍2𝑡1𝑡2 ,   𝑡 =  𝑡1, 𝑡2 ∈ ℝ2; 

(v) for real constants 𝑐1 and 𝑐2 such that 𝑐1
2 + 𝑐2

2 > 0 

𝑐1𝑋1 + 𝑐2𝑋2 ~ 𝑁 𝑐1𝜇1 + 𝑐2𝜇2, 𝑐1
2𝜍1

2 + 𝑐2
2𝜍2

2 + 2 𝜌𝑐1𝑐2𝜍1𝜍2 ; 

(vi)   𝜌 𝑋1,𝑋2 = 𝜌; 

(vii) 𝑋1 and 𝑋2 are independent if, and only if, 𝜌 = 0. 

Proof. 

(i) For 𝑥1 ∈ ℝ 

                            𝑓𝑋1
 𝑥1 =  𝑓𝑋1 ,𝑋2

∞

−∞

 𝑥1, 𝑥2 𝑑𝑥2 

              =
𝑒−  𝑥1−𝜇1 

2

2𝜍1
2

2𝜋 𝜍1𝜍2 1 − 𝜌2
 𝑒

−
1

2 1−𝜌2 
 
𝑥2−𝜇 2

𝜍2
−𝜌

𝑥1−𝜇 1
𝜍1

 
2∞

−∞

𝑑𝑥2 

                           =
𝑒−  𝑥1−𝜇1 

2

2𝜍1
2

2𝜋 𝜍1𝜍2 1 − 𝜌2
 𝑒

−
1

2𝜍2
2 1−𝜌2 

 𝑥2− 𝜇2+
𝜌𝜍2
𝜍1

(𝑥1−𝜇1)  
2∞

−∞

𝑑𝑥2 

                                         =
𝑒−  𝑥1−𝜇1 

2

2𝜍1
2

2𝜋 𝜍1𝜍2 1 − 𝜌2
×  2𝜋𝜍2  1 − 𝜌2 
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   =
1

𝜍1 2𝜋
𝑒
−

 𝑥1−𝜇 1 2

2𝜍1
2 ,                                              

which is the p.d.f. of 𝑁 𝜇1,𝜍1
2  distribution. Thus 𝑋1 ∼ 𝑁 𝜇1,𝜍1

2 .  By symmetry 

𝑋2~𝑁 𝜇2,𝜍2
2 . 

(ii) Fix  𝑥2 ∈ ℝ . Then  

                                 𝑓𝑋1|𝑋2
 𝑥1 𝑥2 = 𝑐1 𝑥2 𝑓𝑋1 ,𝑋2

 𝑥1,𝑥2  

                    = 𝑐2(𝑥2) 𝑒
− 

1

2 1−𝜌2 
   

𝑥1−𝜇 1
𝜍1

−𝜌 
𝑥2−𝜇 2

𝜍2
  

2

 

 

                                             = 𝑐2 𝑥2 𝑒
− 

1

2𝜍1
2 1−𝜌2 

  𝑥1− 𝜇1+
𝜌𝜍 1
𝜍2

 𝑥2−𝜇2   

2

,   𝑥1 ∈ ℝ, 

where 𝑐2(𝑥2) is the normalizing constant, i.e., 𝑐2(𝑥2) satisfies  

 𝑓𝑋1|𝑋2
 𝑥1 𝑥2

  

∞

−∞

𝑑𝑥1 = 1. 

Clearly, for a fixed 𝑥2 ∈ ℝ, 𝑓𝑋1|𝑋2
 ⋅  𝑥2

   is the p.d.f. of 𝑁 𝜇1 +
𝜌𝜍1

𝜍2
 𝑥2 −

𝜇2 ,𝜍1
2 1 − 𝜌2   distribution. 

(iii) Follows from (ii) on using symmetry. 

(iv) For 𝑡 =  𝑡1, 𝑡2 ∈ ℝ2, using Theorem 5.5, we have  

                                       𝑀𝑋1 ,𝑋2
 𝑡1, 𝑡2 = 𝐸 𝑒𝑡1𝑋1+𝑡2𝑋2  

         = 𝐸 𝐸 𝑒𝑡1𝑋1+𝑡2𝑋2 |𝑋2   

           = 𝐸 𝐸𝑡2𝑋2𝐸 𝑒𝑡1𝑋1 |𝑋2  . 

For a fixed 𝑥2 ∈ ℝ , since 𝑋1|𝑋2 = 𝑥2 ~ 𝑁  𝜇1 +
𝜌𝜍1

𝜍2
 𝑥2 − 𝜇2 , 𝜍1

2 1 − 𝜌2  , on 

using Theorem 4.2 (i), Module 5, we get 

𝐸 𝑒𝑡1𝑋1 |𝑋2 = 𝑥2 = 𝑒
 𝜇1+

𝜌𝜍 1
𝜍2

 𝑥2−𝜇2  𝑡1+ 
𝜍1

2 1−𝜌2 𝑡1
2

2 ,   𝑡1 ∈ ℝ. 

Therefore, for 𝑡 =  𝑡1, 𝑡2 ∈ ℝ2 , 

𝑀𝑋1 ,𝑋2
 𝑡1, 𝑡2 = 𝐸  𝑒𝑡2𝑋2𝑒

 𝜇1+ 
𝜌𝜍 1
𝜍2

  𝑋2−𝜇2  𝑡1+ 
𝜍1

2 1−𝜌2 𝑡1
2

2   
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                                   = 𝑒
𝜇1𝑡1+ 

𝜍1
2 1−𝜌2 𝑡1

2

2
 − 

𝜌𝜍 1
𝜍2

𝜇2𝑡1  𝐸  𝑒
 𝑡2+ 

𝜌𝜍1
𝜍2

𝑡1 𝑋2 . 

Since 𝑋2~𝑁 𝜇2, 𝜍2
2 , on using Theorem 4.2 (i), Module 5, we get 

𝑀𝑋1 ,𝑋2
 𝑡1, 𝑡2 = 𝑒

𝜇1𝑡1+ 
𝜍1

2 1−𝜌2 𝑡1
2

2
 − 

𝜌𝜍1
𝜍2

𝜇2𝑡1𝑒
 𝑡2+ 

𝜌𝜍1
𝜍2

 𝑡1 𝜇2  + 
𝜍2

2 𝑡2+ 
𝜌𝜍1
𝜍2

 𝑡1 
2

2  

                        = 𝑒𝜇1𝑡1+𝜇2𝑡1+ 
𝜍1

2𝑡1
2

2
 + 

𝜍2
2𝑡2

2

2
 + 𝜌𝜍1𝜍2𝑡1𝑡2 ,   𝑡 =  𝑡1, 𝑡2 ∈ ℝ2 . 

(v) Let 𝑐1  and 𝑐2  be real constants such that 𝑐1
2 + 𝑐2

2 > 0  and let 𝑌 = 𝑐1𝑋1 + 𝑐2𝑋2 . 

Then, for 𝑡 ∈ ℝ, 

                                                     𝑀𝑌 𝑡 = 𝐸 𝑒𝑡𝑌  

  = 𝐸 𝑒𝑡𝑐1𝑋1+𝑡𝑐2𝑋2  

   = 𝑀𝑋1 ,𝑋2
 𝑡𝑐1, 𝑡𝑐2  

                                         = 𝑒
 𝑐1𝜇1+𝑐2𝜇2 𝑡+

 𝑐1
2𝜍1

2+𝑐2
2𝜍2

2+2𝜌𝑐1𝑐2𝜍1𝜍2 𝑡2

2 , 

which is the m.g.f. of 𝑁  𝑐1𝜇1 + 𝑐2𝜇2, 𝑐1
2𝜍1

2 + 𝑐2
2𝜍2

2 + 2𝜌𝑐1𝑐2𝜍1𝜍2  distribution. 

Thus, by Theorem 7.3, 

𝑌 ~ 𝑁 𝑐1𝜇1 + 𝑐2𝜇2, 𝑐1
2𝜍1

2 + 𝑐2
2𝜍2

2 + 2𝜌𝑐1𝑐2𝜍1𝜍2 . 

(vi) By (i), Var 𝑋1 = 𝜍1
2 and Var  𝑋2 = 𝜍2

2. Also, for 𝑡 =  𝑡1, 𝑡2 ∈ ℝ2 ,  

𝜓𝑋1 ,𝑋2
 𝑡1, 𝑡2 = ln 𝑀𝑋1 ,𝑋2

 𝑡1, 𝑡2 = 𝜇1𝑡1 + 𝜇2𝑡2 +
𝜍1

2𝑡1
2

2
+

𝜍2
2𝑡2

2

2
+ 𝜌𝜍1𝜍2𝑡1𝑡2 

Cov 𝑋1, 𝑋2 =  
𝜕2

𝜕𝑡1𝜕𝑡2
𝜓𝑋1 ,𝑋2

 𝑡1, 𝑡2  
𝑡=0

= 𝜌𝜍1𝜍2 

⇒  𝜌 𝑋1,𝑋2 =
Cov 𝑋1, 𝑋2 

 Var 𝑋1 Var 𝑋2 
= 𝜌. 

(vii) Since independent random variables are uncorrelated it follows from (vi) that if 𝑋1 

and 𝑋2 are independent then 𝜌 = 0 . Conversely suppose that 𝜌 = 0 . Then, for 

𝑥 =  𝑥1, 𝑥2 ∈ ℝ2, 

𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 =

1

2πσ1σ2
𝑒
− 

1

2
   

𝑥1−𝜇 1
σ1

 
2

+  
𝑥2−𝜇 2

σ2
 

2
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 = 𝑓𝑋1
 𝑥1 𝑓𝑋2

 𝑥2 .    

Now the assertion follows on using Theorem 4.2 (i). ▄ 

 

Theorem 9.2 

Let 𝑋 =  𝑋1,𝑋2  be a bivariate random vector with 𝐸 𝑋𝑖 = 𝜇𝑖 ∈  −∞,∞ , Var 𝑋𝑖 =

𝜍𝑖
2, 𝑖 = 1, 2 and Cov 𝑋1,𝑋2 = 𝜌 ∈  −1, 1 . Then 𝑋 ~ 𝑁2 𝜇1,𝜇2, 𝜍1

2 , 𝜍2
2 , 𝜌  if, and only 

if, for any real constants 𝑡1  and 𝑡2  such that 𝑡1
2 + t2

2 > 0, 𝑌 = 𝑡1𝑋1 + 𝑡2𝑋2 ~ 𝑁 𝑡1𝜇1 +

𝑡2 𝜇2, 𝑡1
2𝜍1

2 + 𝑡2
2𝜍2

2 +  2𝜌𝑡1𝑡2𝜍1𝜍2 . 

Proof. Clearly the necessary part of the assertion follows from Theorem 9.1(v). 

Conversely suppose that for all real constants 𝑡1 and t2 with 𝑡1
2 + t2

2 > 0, 

                     𝑌 = 𝑡1𝑋1 + 𝑡2𝑋2~𝑁 𝑡1𝜇1 + 𝑡2𝜇2, 𝑡1
2σ1

2 + t2
2σ2

2 + 2𝜌𝑡1𝑡2𝜍1𝜍2 .      (9.1) 

Then, for 𝑡 =  𝑡1, 𝑡2 ∈ ℝ2, 

                           𝑀𝑋1 ,𝑋2
 𝑡1, 𝑡2 = 𝐸 𝑒𝑡1𝑋1+𝑡2𝑋2  

                                                     = 𝐸 𝑒𝑌  

                                                     = 𝑀𝑌 1  

                                        = 𝑒𝑡1𝜇1+𝑡2𝜇2+
𝑡1

2𝜍1
2+𝑡2

2𝜍2
2+2𝜌  𝑡1𝑡2𝜍1𝜍2

2 ,        (using (9.11)) 

which is the m.g.f. of 𝑁2 𝜇1,𝜇2, 𝜍1
2 , 𝜍2

2, 𝜌  distribution. Now using Theorem 7.3 it 

follows that 𝑋 =  𝑋1, 𝑋2  ~ 𝑁2 𝜇1,𝜇2, 𝜍1
2 , 𝜍2

2 , 𝜌 .▄ 

 


