NPTEL- Probability and Distributions

MODULE 3

FUNCTION OF A RANDOM VARIABLE AND ITS
DISTRIBUTION

LECTURE 14

Topics
3.3

EXPECTATION AND MOMENTS OF A RANDOM
VARIABLE

Some special kinds of expectations which are frequently used are defined below.

Definition 3.2

Let X be a random variable defined on some probability space.

(i)

(ii)
(iii)
(iv)

(v)

(vi)

where F,

p; = E(X), provided it is finite, is called the mean of the (distribution of)
random variable X;

Forr € {1,2---}, u, = E(X"), provided it is finite, is called the r-th moment
of the (distribution of) random variable X;

Forr e {1,2---}, E(|X|"), provided it is finite, is called the r-th absolute
moment of the (distribution of) random variable X;

Forre{1,2--}, u, = E((X —uy)"), provided it is finite, is called the r-th
central moment of the (distribution of) random variable X;

Uy =E((X—y1)2), provided it is finite, is called the variance of the
(distribution of) random variable X. The variance of a random variable X is

denoted by Var(X). The quantity o = ju; = VE((X —u)?) is called the
standard deviation of the (distribution of) random variable X.
Suppose that the distribution function Fy of a random variable X can be
decomposed as

Fy(x) =aF;(x) + (1 — a)Fyc(x),x ER, a €[0,1],

is a distribution function of a discrete type random variable (say X;) and F,¢ is

a distribution function of an absolutely continuous type random variable (say X,). Then,
for a Borel function h: R — R, the expectation of h(X) is defined by
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E(h(X)) = aE(h(Xy)) + (1 — &)E(h(X4¢))
provided E(h(Xy)) and E(h(X4c)) are finite. g
Theorem 3.3
Let X be a random variable.

(i) If hy and h, are Borel functions such that P({h;(X) < h,(X)}) = 1, then
E(h{(X)) < E(hy(X)), provided the involved expectations are finite;

(i) If, for real constants a and b with a < b,P{a<X <b}) =1, thena <
E(X) < b;

@) MHPH{Xx=0}h) =1andE(X)=0,then P({X =0}) =1;

(iv) If E(|X]) is finite, then |[E(X)| < E(1X]);

(V) For real constants a and b, E(aX + b) = aE(X) + b, provided the involved
expectations are finite;

(vi)  If hy, ..., hy,, are Borel function then

E (i h; (X)) = i E(h,C)),
i=1 i=1

provided the involved expectations are finite.

Proof. We will provide the proof for the situation when X is of absolutely continuous
type. The proof for the discrete case is analogous and is left as an exercise. Also
assertions (iv)-(vi) follow directly from the definition of the expectation of a random
variable and using elementary properties of integrals. Therefore we will provide the
proofs of only first three assertions.

Q) Define A = {x € R: hy(x) < h,(x)}, Sy = Sy N A and

— fX(x), if x € S)?
9(x) = {0, otherwise’

Theng(x) =2 0,vx e R,P{X € A°}) = 0,P({X € Sy n A°}) = 0.
P({X e Sx}) =P{X € Sxy nA})
=P{XeSynA}) +P({X € Sy N A°})
= P({X € 5x})
=1,

| g = [ fis e
=P({X € 5}
=1
and, for any B € By,
P{X eB}) =P({X eSynB}) (since P{X €Sy} =1)
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=P{XeSynANB}) (sinceP{X €Sy NA°NnB}) =0)
=P({X € Sy N B})
_ f 905 (x)dx.

It follows that g is also a p.d.f. of X with support Sy =Sy N A € A. The
above discussion suggests that, without loss of generality, we may take
Sy € A ={x € R:hy(x) < hy(x)} (otherwise replace fyx(-) by g(-) and Sy by
S¢). Then

hi()Is, () fx (x) < hy ()5, () fx (x),Vx € R
= E(h (X))
- f hy (Ol (O fy () dx < f ho (05, () fx (W dx = E(hy (X)),

(i)  Since Pfa<X <b}) =1, as in (i), without loss of generality we may
assume that Sy € [a, b]. Then
alg, (x) fx (x) < x5, (X) fx (x) < bls, (x)fx(x),Vx € R

o0

>a= faISX ) fy(x)dx < ijSX ) fy(x)dx < beSX () fx(x)dx = b,

ie,a<EX)<bh.

(iii)  Since P({X = 0}) = 1, without loss of generality we may take Sy < [0, «].
Then (—x,0) € S¢ = {x € R: fy(x) = 0} and therefore, for n € {1,2,---},
0=EX)

0 ©

fox(x)dx + f x fy(x)dx

—0 0

o]

f x fy (x)dx

0

o]

fofx(x)dx

1
n

1 o]
ngfx (x)dx

n
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(Y
:p({x %}):o vne{l2-)

f)=c
ﬁp@{hg o (snce fe = 2}1)

n=1

3|P—‘

= lim P ({X

n—-oo

= P{X>0}) =
=SP{X=0D=P{X=0)-P{X>0) =14
Corollary 3.1

Let X be random variable with finite first two moments and let E(X) = u. Then,

(i) Var(n) = E(x?) - (E00)*

(i)  Var(X) = 0. Moreover, Var(X) = 0 if, and only if, P({X = u}) = 1;
(i) EX?) > (E(X))2 (Cauchy — Schwarz inequality);

(iv)  For real constants a and b, Var(aX + b) = a? Var(X).

Proof.

Q) Note that u = E(X) is a fixed real number. Therefore, using Theorem 3.3 (v)-(vi),
we have
Var(X) = E((X — p)?)
= E(X%) — 2 uE(X) + p?
=E(X?) —u?
=EX?) - (EX))".

(i)  Since P({(X — u)? = 0}) = P(R) = 1, using Theorem 3.3 (i), we have Var(X) =
E((X —p)?) =0. Also, using theorem 3.3 (iii), if Var(X) = E((X — pn)?) =
OthenP{(X—w)? =0} =1, i.e; P{X = pu}) = 1.

Conversely if P({X = u}) = 1, then E(X) = p and E(X?) = u?. Now using (i),
we get

var(X) = E(X?) — (EC0))” = 0.

(i)  Follows from (i) and (ii).
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(iv) LetY=aX+b.Then
E(Y)=aEX)+b (using Theorem 3.3 (Vv))
Y-EY)=a(X-EX))
and var(y) = £ ((¥ - E(Y))z)
=E(2(x - EW)’)

= a2E (X - EX))")

=a*Var(X) - m
Example 3.5
Let X be a random variable with p.d.f.
(1
JE, if—2<x<-1
fx(x) =4%

|5’ ifo<x<3
kO, otherwise

Q) If Y7 = max(X, 0), find the mean and variance of Y;;
(i)  IfY, =2X +3e ™xX0 4 4 find E(Y,).

Proof. Using Theorem 3.2 (ii) we get, for r > 0,
E(Y]) = E((max(X, 0))")

00

= f(max(x, 0))" fx(x)dx

—0o0

It follows that E(¥y) =1, E(Y?) =7/, andVar(¥;) = E(Y2) —
(E(Yl))z = 5/4'

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 5



NPTEL- Probability and Distributions

(i) We have
E(X) = fxfx(x)dx
_jol 3
- f Zd +fx2d
- 2T )9
-2 0
_1
4
and

E(e—maX(X,O)) — fe—max(x,o) fX(X)dX

-1 3
—fld +fx ~xq
= 2x 96 X

-2 0

_11-8 e 3
18
Therefore,
E(Yz) = E(ZX + 3e—max(X,0) + 4)
=2EX)+ 3E(e—max(X,0)) 44
19 — 4e73
=T 3 =
Example 3.6

Let X be random variable with p.m.f.

fx () = {(Z) p*q"™, ifx €{0,1,-,n}

0, otherwise

)

wheren € {1,2,--,},p € (0,1)and g = 1 — p.

(i) Forr € {1,2,-}, find E(X(y), where Xy =X(X — 1) (X —7r+1) (E(Xg))
is called the r-th factorial moment of X,r =1,2,...);

(i) Find mean and variance of X;

(iii) Let T = e* + 2™ + 6X2 + 3X + 4. Find E(T).
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Solution.

Q) Fixr € {1,2,:--,n}. Then
E(Xeh)) =E(X(X-1 (X —-1+1))

= Zx(x— De(x—r+1) (Z)pan—x

x=0

n
|

= Zx(x— 1) (x—r+ Dﬁpanﬁ

X=r

n
n—r _ ) —(x—
:n(n_1)...(n_r+1)pr2(x_r)px rg(n=r)—Ge=)
x=r

n—r
=nn—-1)-n—-r+1)p" z (n - T‘) pxq(n—r)—x
X
x=0

=nn—-1)-m—-r+Dp" (@q+p)" "
=nn—-1)-m-r+1p" -

(i) Using (i), we get
E(X) =E(Xq)) =np
E(X(X-1) =E(Xp) =nn—-1p?-
Therefore,
EXH)=EXX-1)+EX)
=n(n—Dp? +np

and Var(X) = E(x2) — (E(X))” = npq.

(i)  Fort € R, we have

n

E(etX) — z etx (:) pan—x

x=0

n

(Z’) (pet)an—x
0

(q + pe)™.

R
Il

Therefore ,
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E(T) =E(eX +2e* +6X2+3X+4)

=E(*)+2E(™*)+6EX*)+3EX)+4

=(q+pe)" +2e " (qge+p)" +6n(n—p*+3np + 4.4

We are familiar with the Laplace transform of a given real-valued function defined on R.
We also know that, under certain conditions, the Laplace transform of a function
determines the function almost uniquely. In probability theory the Laplace transform of a
p.d.f./p.m.f. of a random variable X plays an important role and is referred to as moment
generating function (of probability distribution) of random variable X.

Definition 3.3

Let X be a random variable and let A = {t € R: E(|e®|) = E(e*¥) is finite}. Define
My:A > Rby

My (t) = E(etX), t € A.

Q) We call the function My(-) the moment generating function (m.g.f.) (of
probability distribution) of random variable X;
(i)  We say that the m.g.f. of a random variable X exists if there exists a positive

real number a such that (-a,a) € A (i.e., if My(t) = E(e*®) is finite in an
interval containing 0). gy

Note that My (0) = 1 and, therefore, A = {t € R: E(e*X) is finite} # ¢. Moreover, using
Theorem 3.3 (ii)-(iii), we have My (t) > 0,Vt € A. Also if My (t) = E(e®X) exists and is
finite on an interval (— a, a),a > 0, then for any real constants ¢ and d the m.g.f. of
Y=cX+d also exists and My(t) = My q(t) = E(etX+D)) = gtd f(eteX) =

et My (ct), t € (_—a i), with the convention that ¢/, = oo -

el Iel

The name moment generating function to the transform My is derived from the fact that
My () can be used to generate moments of random variable X, as illustrated in the
following theorem.

Theorem 3.4

Let X be a random variable with m.g.f. My that is finite on an interval (—a, a), for some
a > 0 (i.e.,, m.g.f. of X exists). Then,

(i) foreachr € {1,2,...}, u, = E(X") is finite;
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(i) for each ref{1,2,..} w=EX)=M0), where M(0)=
[ZTrf My (t)] . the r-th derivative of My (t) at the point 0;

t=

(i) My(®) = Tioo k. € (—a,a).

Proof. We will provide the proof for the case where X is of absolutely continuous type.
The proof for the case of discrete type X follows in the similar fashion with integral signs
replaced by summation sings.

(i) We have E(e**) < o, Vt € (—a, a). Therefore,
0

fetx fx(x)dx < oo, Vt € (—a,a) andf e™ fy(x)dx < oo, Vt € (—a,a)
0

—o0

0 o0
= fe_tlxle(X)dx < oo,Vt € (—a,a) andJ el fy(x)dx < 0, Vt € (—a,a)
e 0

0 o
= fe"”""fx(x)dx < o,Vt € (—a,a) andJ et £ (x)dx < o0, Vt € (—a,a)
“oo 0
0 o
S je—lfxl £ (X)dx < o0Vt € (—a,a) andJ elex1 £ (x)dx < o0, Vt € (—a,a)
e 0

= J el*l f,(x)dx < o, Vt € (—a,a),

ie, E(el*)<w,vt€(—aa) . Fix r€{1,2,..} and t € (—aa)—{0} . Then

|x|"

e|tx|

el whenever |x| > A,... Thus we have

lim,_,, = 0 and therefore there exists a positive real number A, , such that |x|" <

E(IX|") = j Xl i () dx

x| fie (X)dx + f " fi (x)dx
[x|<Ar; lx|>A; ¢
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<4, [ K@ [ ep@a

[x|<Ar; [x|>Ar ¢

[ee]

< AL+ fe'“"fx(x)dx

—00

< o0,

(i) Fixre{1,2,..}. Then,fort € (—a,a),

My (t) = f e fi(X)dx

—00
0

j e™ fy(x)dx.

—00

r

d
and My (t) = e

Under the assumption that My (t) = E(e**) < o, Vt € (—a,a), using arguments from
advanced calculus, it can be shown that the derivative can be passed through the integral
sign. Therefore, for t € (—a, a),

) A"
My (t) = G e fy(x)dx
= f x" e fy(x)dx

—0o0

00

= M (0) = fxf £ (o)dx = E(X7).

—0o0

(iii) Fixre{1,2,---}. Then, fort € (—a, a),

My (t) = f e fi(X)dx

—0o0

T AT

_ f(itr’f )fX(x)dx.

—00 r=0

Under the assumption that My(t) = E(e*X) < oo,Vt € (—a,a), using arguments of
advanced calculus, it can be shown that the integral sign can be passed through the
summation sign, i.e.,
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o]
r

m@=i%ff&mm

r=0 —00
o0
tT
=) ke m
r=0

Corollary 3.2

Under the notation and assumptions of Theorem 3.4, define Yy:(—a,a) - R by
Yx(t) =In M (¢),t € (—a,a). Then

= 3 (0) and 1, = Var(X) =1 (0),
where 1/)(”( -) denotes the r-th (r € {1, 2}) derivative of .

Proof. We have, fort € (—a,a),

S0 MO e MeOMP @ - (M ()

MX( ) (MX (t))z .

Using the facts that My (0) = 1 and M{”(0) = E(X"), 7 € {1,2}, we get
(1)
P My (0)
(0) = M(0) = E(X),
@ @)

and lp(z)( ) — MX (O)MXZ (0) - (1MX1 (0))

(Mx(0))°
= E(x?) - (EX))’
= Var(X). g
Example 3.7

Let X be a random variable with p.m.f.

e A
fe@) ={ 51 ifx €{0,1,2,}

0, otherwise

where 2 > 0.
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(i) Find the m.g.f. My(t), t € A= {s € R: E(e®*) < w0}, of X. Show that X
possesses moments of all orders. Find the mean and variance of X;

(i) Find ¥y () = In(My(t)),t € A. Hence find the mean and variance of X;

(ili)  What are the first four terms in the power series expansion of My (-) around

the point 0?
Solution.
Q) We have
My (t) = E(e®) = i et™ # =e* i (/t# = e el = e’ -1) vt e R.
x=0 X=0

Sinced = {s € R:E(e**) < w} = R, by Theorem 3.4 (i), for every r €
{1,2,--}, u, = E(X7) is finite. Clearly
MM () = 2ete D) and MP () = etet (¢ =D(1 + Aet),t € R.
Therefore,

EX) = MyP(0) = 2,

E(X%) = MP(0) = 2(1 + 2),
and  Var(X) = E(X?) — E((X))" = A.
(i) We have, for t € R,

Py (t) = In(My (1)) = A(e’ — 1),
=P ) = P ) = 2et.
Therefore,
E(X) = P (0) = 2 and Var(x) = {2 (0) = 4.

(ili)  We have
M () = Aeter (222 +3%et + 1), € R
=y = E(X3) = MP(0) = A(12 4+ 31 + 1).
Since A = {s € R: E(e**) < o} = R, by Theorem 3.4 (iii) ,we have
: ct2 88
My(t) =1 Tt oyt oyt

3!
2 3

t t
— 2 —_ ...
=1+t + A+ D)5+ M@ +31+ )5+, tER m

Example 3.8
Let X be a random variable with p.d.f.

if x>0
otherwise’

e ={,°
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(i) Find the m.g.f. My(t),t € A={s € R:E(e**) <} of X. Show that X
posseses moments of all orders. Find the mean and variance of X;
(i) Find ¥y () = In(My(t)),t € A. Hence find the mean and variance of X;
(iii)  Expand My (t) as a power series around the point 0 and hence find E(X"),r €
{1,2,-}
Solution.
Q) We have
My (t) = E(e¥X) = f e e *dx = f e~ 0% gy < o0, ift < 1.
0 0
Clearly A={s€eR:E(e’*)<w}=(-0,1)D(-1,1) and My(t)=
(1—-t)71,t < 1. By Theorem 3.4 (i), for every r € {1,2,---}, 1, is finite.
Clearly
MP@=1-D2and MP @) =2(1-1)3,t< 1,
EX)=MP0) =1,
E(X%) =MP(0) =2,
and Var(X) = E(X?) — (E(X))” = 1.
(i)  We have
Yx(@®) =In(Mx(£)) =—-In(1-10), t<1
1
W — @y —
=Yy () = T and ¥, (t) a—02’ t<1
> E(X) =9iP(0) =1 and Var(X) = 2 (0) = 1.
(i)  We have
My(t) = (1 — )1 = Z e te(=1,1).
r=0
Since A= {s € R:E(e*¥) < 0} = (—»,1) > (—=1,1), using Theorem 3.4
(iii), we conclude that
U, = coefficient of i—: in the power series expansion of My (t) around 0
=r!. ]
Example 3.9

Let X be a random variable with p.d.f.
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1 1
fX(X) :Em ,—0 < x < o0,

Show that the m.g.f. of X does not exist.

Solution. From Example 3.4 we know that the expected value of X is not finite.
Therefore, using Theorem 3.4 (i), we conclude that the m.g.f. of X does not exist. gg
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