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MODULE 3 

FUNCTION OF A RANDOM VARIABLE AND ITS 

DISTRIBUTION 

LECTURE 14 

Topics  

3.3 EXPECTATION AND MOMENTS OF A RANDOM  

VARIABLE 

 

Some special kinds of expectations which are frequently used are defined below. 

Definition 3.2 

Let 𝑋 be a random variable defined on some probability space. 

(i) 𝜇1
′ = 𝐸 𝑋 , provided it is finite, is called the mean of the (distribution of) 

random variable 𝑋; 

(ii) For 𝑟 ∈  1, 2⋯ , 𝜇𝑟
′ = 𝐸 𝑋𝑟 , provided it is finite, is called the r-th moment 

of the (distribution of) random variable 𝑋; 

(iii) For 𝑟 ∈  1, 2⋯ , 𝐸  𝑋 𝑟 , provided it is finite, is called the r-th  absolute 

moment of the (distribution of) random variable 𝑋; 

(iv) For 𝑟 ∈  1, 2⋯ , 𝜇𝑟 = 𝐸  𝑋 − 𝜇1
′  

𝑟
 , provided it is finite, is called the r-th 

central moment of the (distribution of) random variable 𝑋; 

(v) 𝜇2 = 𝐸   𝑋 − 𝜇1
′  

2
 , provided it is finite, is called the variance of the 

(distribution of) random variable 𝑋. The variance of a random variable 𝑋 is 

denoted by Var 𝑋 . The quantity 𝜎 =  𝜇2 =  𝐸( 𝑋 − 𝜇 2)   is called the 

standard deviation of the (distribution of) random variable 𝑋. 

(vi) Suppose that the distribution function 𝐹𝑋  of a random variable X can be 

decomposed as 

𝐹𝑋 𝑥 = 𝛼𝐹𝑑 𝑥 +  1 − 𝛼 𝐹𝐴𝐶 𝑥 , 𝑥 ∈ ℝ,   𝛼 ∈  0,1 , 

where 𝐹𝑑  is a distribution function of a discrete type random variable (say 𝑋𝑑) and 𝐹𝐴𝐶  is 

a distribution function of an absolutely continuous type random variable (say 𝑋𝐴𝐶). Then, 

for a Borel function :ℝ → ℝ, the expectation of  𝑋  is defined by 
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𝐸  𝑋  = 𝛼𝐸  𝑋𝑑  +  1 − 𝛼 𝐸  𝑋𝐴𝐶   

provided  𝐸((𝑋𝑑)) and 𝐸((𝑋𝐴𝐶)) are finite. ▄ 

Theorem 3.3 

Let 𝑋 be a random variable. 

(i) If 1 and 2  are Borel functions such that 𝑃  1(𝑋) ≤ 2(𝑋)  = 1 , then 

𝐸 1(𝑋) ≤ 𝐸 2(𝑋) , provided the involved expectations are finite; 

(ii) If, for real constants 𝑎  and 𝑏  with 𝑎 ≤ 𝑏,𝑃  𝑎 ≤ 𝑋 ≤ 𝑏  = 1 , then 𝑎 ≤

𝐸(𝑋) ≤ 𝑏; 

(iii) If 𝑃  𝑋 ≥ 0  = 1 and 𝐸 𝑋 = 0, then 𝑃  𝑋 = 0  = 1; 

(iv) If 𝐸  𝑋   is finite, then  𝐸(𝑋) ≤ 𝐸  𝑋  ; 

(v) For real constants 𝑎 and 𝑏, 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏, provided the involved 

expectations are finite; 

(vi) If 1,… ,𝑚  are Borel function then  

𝐸   𝑖 𝑋 

𝑚

𝑖=1

 =  𝐸 𝑖 𝑋  

𝑚

𝑖=1

, 

provided the involved expectations are finite. 

Proof. We will provide the proof for the situation when 𝑋 is of absolutely continuous 

type. The proof for the discrete case is analogous and is left as an exercise. Also 

assertions (iv)-(vi) follow directly from the definition of the expectation of a random 

variable and using elementary properties of integrals. Therefore we will provide the 

proofs of only first three assertions. 

(i) Define 𝐴 =  𝑥 ∈ ℝ:1 𝑥 ≤ 2 𝑥  , 𝑆𝑋
∗ = 𝑆𝑋 ∩ 𝐴 and  

𝑔 𝑥 =  
𝑓𝑋 𝑥 , if  𝑥 ∈ 𝑆𝑋

∗

0,                 otherwise
.   

 

Then 𝑔 𝑥 ≥ 0,∀𝑥 ∈ ℝ,𝑃  𝑋 ∈ 𝐴𝑐  = 0,𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴𝑐  = 0. 

                         𝑃  𝑋 ∈ 𝑆𝑋
∗  = 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴   

                                                 = 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴  + 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴𝑐   

                                                 = 𝑃  𝑋 ∈ 𝑆𝑋   

                                                 = 1, 

                            𝑔 𝑥 𝑑𝑥
∞

−∞

=  𝑓𝑋 𝑥 𝐼𝑆𝑋∗  𝑥 𝑑𝑥
∞

−∞

 

                                                 = 𝑃  𝑋 ∈ 𝑆𝑋
∗   

                                                 = 1 

and, for any 𝐵 ∈ ℬ1, 

𝑃  𝑋 ∈ 𝐵  = 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐵               (since 𝑃  𝑋 ∈ 𝑆𝑋  = 1) 
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                           = 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴 ∩ 𝐵       (since 𝑃  𝑋 ∈ 𝑆𝑋 ∩ 𝐴𝑐 ∩ 𝐵  = 0) 

                           = 𝑃({𝑋 ∈ 𝑆𝑋
∗ ∩ 𝐵}) 

                           =  𝑔 𝑥 𝐼𝐵 𝑥 𝑑𝑥.
∞

−∞

 

It follows that 𝑔  is also a p.d.f. of 𝑋  with support 𝑆𝑋
∗ = 𝑆𝑋 ∩ 𝐴 ⊆ 𝐴.  The 

above discussion suggests that, without loss of generality, we may take 

𝑆𝑋 ⊆ 𝐴 = {𝑥 ∈ ℝ:1 𝑥 ≤ 2(𝑥)} (otherwise replace 𝑓𝑋(⋅) by 𝑔(⋅) and 𝑆𝑋  by 

𝑆𝑋
∗). Then  

 
1 𝑥 𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 ≤ 2 𝑥 𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 ,∀𝑥 ∈ ℝ 
 

⟹ 𝐸 1 𝑋   

=  1 𝑥 𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 𝑑𝑥 ≤
∞

−∞

 2 𝑥 𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 𝑑𝑥 = 𝐸 2 𝑋  
∞

−∞

. 

 

(ii) Since 𝑃  𝑎 ≤ 𝑋 ≤ 𝑏  = 1 , as in (i), without loss of generality we may 

assume that 𝑆𝑋 ⊆  𝑎, 𝑏 . Then  

𝑎𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 ≤ 𝑥𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 ≤ 𝑏𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 ,∀𝑥 ∈ ℝ 

⇒ 𝑎 =  𝑎𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 𝑑𝑥

∞

−∞

≤  𝑥

∞

−∞

𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 𝑑𝑥 ≤  𝑏

∞

−∞

𝐼𝑆𝑋  𝑥 𝑓𝑋 𝑥 𝑑𝑥 = 𝑏, 

i.e., 𝑎 ≤ 𝐸 𝑋 ≤ 𝑏. 

 

(iii) Since 𝑃  𝑋 ≥ 0  = 1, without loss of generality we may take 𝑆𝑋 ⊆  0, ∞ . 

Then  −∞, 0 ⊆ 𝑆𝑋
𝐶 =  𝑥 ∈ ℝ: 𝑓𝑋 𝑥 = 0  and therefore, for 𝑛 ∈  1, 2,⋯ , 

                                                       0 = 𝐸 𝑋  

                                                           =  𝑥

0

−∞

𝑓𝑋 𝑥 𝑑𝑥 +  𝑥

∞

0

𝑓𝑋 𝑥 𝑑𝑥 

                                                           =  𝑥

∞

0

𝑓𝑋 𝑥 𝑑𝑥 

                                                          ≥  𝑥

∞

1

𝑛

𝑓𝑋 𝑥 𝑑𝑥 

                                                         ≥
1

𝑛
 𝑓𝑋

∞

1

𝑛

 𝑥 𝑑𝑥 
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                                                           =
1

𝑛
𝑃   𝑋 ≥

1

𝑛
   

                     ⟹ 𝑃  𝑋 ≥
1

𝑛
  = 0,   ∀ 𝑛 ∈  1, 2,⋯  

              ⟹ lim
𝑛→∞

𝑃   𝑋 ≥
1

𝑛
  = 0 

             ⟹ 𝑃   𝑋 ≥
1

𝑛
 

∞

𝑛=1

 = 0                                                since  𝑥 ≥
1

𝑛
 ↑  

                       ⟹ 𝑃  𝑋 > 0  = 0 

                       ⟹ 𝑃  𝑋 = 0  = 𝑃  𝑋 ≥ 0  − 𝑃  𝑋 > 0  = 1. ▄ 

Corollary 3.1 

Let 𝑋 be random variable with finite first two moments and let 𝐸 𝑋 = 𝜇. Then, 

(i) Var 𝑋 = 𝐸 𝑋2 −  𝐸 𝑋  
2
; 

(ii) Var 𝑋 ≥ 0. Moreover, Var 𝑋 = 0 if, and only if, 𝑃  𝑋 = 𝜇  = 1; 

(iii) 𝐸 𝑋2 ≥  𝐸 𝑋  
2
 (Cauchy – Schwarz inequality); 

(iv) For real constants 𝑎 and 𝑏, Var 𝑎𝑋 + 𝑏 = 𝑎2  Var 𝑋 . 

Proof. 

(i) Note that 𝜇 = 𝐸 𝑋  is a fixed real number. Therefore, using Theorem 3.3 (v)-(vi), 

we have 

                                Var 𝑋 = 𝐸  𝑋 − 𝜇 2  

                                              = 𝐸 𝑋2 − 2 𝜇𝐸 𝑋 + 𝜇2 

                                              = 𝐸 𝑋2 − 𝜇2 

                                              = 𝐸 𝑋2 −  𝐸 𝑋  
2

. 

 

(ii) Since 𝑃   𝑋 − 𝜇 2 ≥ 0  = 𝑃 𝛺 = 1, using Theorem 3.3 (i), we have Var 𝑋 =

𝐸  𝑋 − 𝜇 2 ≥ 0 . Also, using theorem 3.3 (iii), if Var 𝑋 = 𝐸  𝑋 − 𝜇 2 =

0 then 𝑃   𝑋 − 𝜇 2 = 0  = 1, i. e;  𝑃  𝑋 = 𝜇  = 1.  

Conversely if 𝑃  𝑋 = 𝜇  = 1, then 𝐸 𝑋 = 𝜇 and 𝐸 𝑋2 = 𝜇2 . Now using (i), 

we get 

Var 𝑋 = 𝐸 𝑋2 −  𝐸 𝑋  
2

= 0. 

(iii) Follows from (i) and (ii). 
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(iv) Let 𝑌 = 𝑎𝑋 + 𝑏. Then  

              𝐸 𝑌 = 𝑎𝐸 𝑋 + 𝑏                                                  (using Theorem 3.3 (v)) 

 

    𝑌 − 𝐸 𝑌 = 𝑎 𝑋 − 𝐸 𝑋   

and                                             Var 𝑌 = 𝐸   𝑌 − 𝐸 𝑌  
2
  

                                                                  = 𝐸  𝑎2 𝑋 − 𝐸 𝑋  
2
  

                                                                  = 𝑎2𝐸   𝑋 − 𝐸 𝑋  
2
  

                                                                  = 𝑎2Var 𝑋 ⋅ ▄ 

Example 3.5 

Let 𝑋 be a random variable with p.d.f. 

𝑓𝑋 𝑥 =

 
 
 

 
 

1

2
,     if − 2 < 𝑥 < −1

𝑥

9
,     if 0 < 𝑥 < 3

0,      otherwise

 ⋅ 

(i) If 𝑌1 = max 𝑋, 0 , find the mean and variance of 𝑌1; 

(ii) If 𝑌2 = 2𝑋 + 3𝑒−max  𝑋,0 + 4, find 𝐸 𝑌2 . 

Proof. Using Theorem 3.2 (ii) we get, for 𝑟 > 0, 

                                          𝐸 𝑌1
𝑟 = 𝐸  max 𝑋, 0  𝑟  

                                                       =   max 𝑥, 0  𝑟
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                                       =  
𝑥𝑟+1

9

3

0

𝑑𝑥 

                                                       =
3𝑟

𝑟 + 2
∙ 

                    It follows that 𝐸 𝑌1 = 1, 𝐸 𝑌1
2 = 9

4  and Var 𝑌1 = 𝐸 𝑌1
2 −

 𝐸 𝑌1  
2

= 5
4 ∙ 
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(iii) We have  

                       𝐸 𝑋 =  𝑥

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                  =  
𝑥

2

−1

−2

𝑑𝑥 +  
𝑥2

9

3

0

𝑑𝑥 

                                  =
1

4
 

and 

𝐸 𝑒−max  𝑋 ,0  =  𝑒−max  𝑥 ,0 

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                                =  
1

2

−1

−2

𝑑𝑥 +  
𝑥

9

3

0

𝑒−𝑥𝑑𝑥 

                                                =
11 − 8 𝑒−3

18
∙ 

 Therefore,  

                                   𝐸 𝑌2 = 𝐸 2𝑋 + 3𝑒−max  𝑋 ,0 + 4  

                                               = 2 𝐸 𝑋 + 3𝐸 𝑒−max  𝑋 ,0  + 4 

                                        =
19 − 4𝑒−3

3
.▄ 

Example 3.6 

Let 𝑋 be random variable with p.m.f. 

𝑓𝑋 𝑥 =  
 
𝑛
𝑥
 𝑝𝑥𝑞𝑛−𝑥 ,   if 𝑥 ∈  0, 1,⋯ ,𝑛 

0,                        otherwise

 , 

where 𝑛 ∈  1, 2,⋯ ,  ,𝑝 ∈  0, 1  and 𝑞 = 1 − 𝑝. 

(i) For 𝑟 ∈  1, 2,⋯ , find 𝐸 𝑋 𝑟  ,  where 𝑋 𝑟 = 𝑋 𝑋 − 1 ⋯  𝑋 − 𝑟 + 1  (𝐸 𝑋 𝑟   

is called the 𝑟-th factorial moment of  𝑋, 𝑟 = 1,2,… ); 

(ii) Find mean and variance of 𝑋; 

(iii) Let 𝑇 = 𝑒𝑋 + 2𝑒−𝑋 + 6𝑋2 + 3𝑋 + 4. Find 𝐸 𝑇 . 
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Solution. 

(i) Fix 𝑟 ∈  1, 2,⋯ ,𝑛 . Then  

𝐸 𝑋 𝑟  = 𝐸 𝑋 𝑋 − 1 ⋯  𝑋 − 𝑟 + 1   

                         =  𝑥

𝑛

𝑥=0

 𝑥 − 1 ⋯  𝑥 − 𝑟 + 1  
𝑛
𝑥
 𝑝𝑥𝑞𝑛−𝑥  

                                             =  𝑥

𝑛

𝑥=𝑟

 𝑥 − 1 ⋯  𝑥 − 𝑟 + 1 
𝑛! 

𝑥! (𝑛 − 𝑥)!
𝑝𝑥𝑞𝑛−𝑥  

                                             = 𝑛 𝑛 − 1 ⋯  𝑛 − 𝑟 + 1 𝑝𝑟   
𝑛 − 𝑟
𝑥 − 𝑟

 

𝑛

𝑥=𝑟

𝑝𝑥−𝑟𝑞 𝑛−𝑟 − 𝑥−𝑟  

                                             = 𝑛 𝑛 − 1 ⋯  𝑛 − 𝑟 + 1 𝑝𝑟   
𝑛 − 𝑟
𝑥

 

𝑛−𝑟

𝑥=0

𝑝𝑥𝑞 𝑛−𝑟 −𝑥  

                                             = 𝑛 𝑛 − 1 ⋯  𝑛 − 𝑟 + 1 𝑝𝑟 𝑞 + 𝑝 𝑛−𝑟  

                                             = 𝑛 𝑛 − 1 ⋯  𝑛 − 𝑟 + 1 𝑝𝑟 ∙ 

(ii) Using (i), we get 

𝐸 𝑋 = 𝐸 𝑋 1  = 𝑛𝑝 

𝐸 𝑋 𝑋 − 1  = 𝐸 𝑋 2  = 𝑛 𝑛 − 1 𝑝2 ∙ 

Therefore, 

𝐸 𝑋2 = 𝐸 𝑋 𝑋 − 1  + 𝐸 𝑋  

              = 𝑛 𝑛 − 1 𝑝2 + 𝑛𝑝 

and Var 𝑋 = 𝐸 𝑋2 −  𝐸 𝑋  
2

= 𝑛𝑝𝑞. 

(iii) For 𝑡 ∈ ℝ, we have  

                                      𝐸 𝑒𝑡𝑋 =  𝑒𝑡𝑥
𝑛

𝑥=0

 
𝑛
𝑥
 𝑝𝑥𝑞𝑛−𝑥  

                                                    =   
𝑛
𝑥
 

𝑛

𝑥=0

 𝑝𝑒𝑡 𝑥𝑞𝑛−𝑥  

                                                    =  𝑞 + 𝑝𝑒𝑡 𝑛 . 

Therefore , 
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                𝐸 𝑇 = 𝐸 𝑒𝑋 + 2𝑒−𝑋 + 6𝑋2 + 3𝑋 + 4  

                           = 𝐸 𝑒𝑋 + 2 𝐸 𝑒−𝑋 + 6 𝐸 𝑋2 + 3 𝐸 𝑋 + 4 

                                                    

=  𝑞 + 𝑝𝑒 𝑛 + 2𝑒−𝑛 𝑞𝑒 + 𝑝 𝑛 + 6𝑛 𝑛 − 1 𝑝2 + 3𝑛𝑝 + 4.▄ 

We are familiar with the Laplace transform of a given real-valued function defined on ℝ. 

We also know that, under certain conditions, the Laplace transform of a function 

determines the function almost uniquely. In probability theory the Laplace transform of a 

p.d.f./p.m.f. of a random variable 𝑋 plays an important role and is referred to as moment 

generating function (of probability distribution) of random variable 𝑋.   

Definition 3.3 

Let 𝑋 be a random variable and let  𝐴 =  𝑡 ∈ ℝ:  𝐸  𝑒𝑡𝑋   = 𝐸 𝑒𝑡𝑋  is finite}  . Define 

𝑀𝑋 :𝐴 → ℝ by 

𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋 ,   𝑡 ∈ 𝐴. 

(i) We call the function 𝑀𝑋(⋅)  the moment generating function (m.g.f.) (of 

probability distribution) of random variable 𝑋; 

(ii) We say that the m.g.f. of a random variable 𝑋 exists if there exists a positive 

real number 𝑎 such that  – 𝑎, 𝑎 ⊆ 𝐴 (i.e., if 𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋  is finite in an 

interval containing 0). ▄ 

Note that 𝑀𝑋 0 = 1 and, therefore, 𝐴 =  𝑡 ∈ ℝ: 𝐸 𝑒𝑡𝑋  is finite ≠ 𝜙. Moreover, using 

Theorem 3.3 (ii)-(iii), we have 𝑀𝑋 𝑡 > 0,∀𝑡 ∈ 𝐴. Also if 𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋  exists and is 

finite on an interval  – 𝑎,𝑎 ,𝑎 > 0, then for any real constants 𝑐  and 𝑑  the m.g.f. of 

𝑌 = 𝑐𝑋 + 𝑑  also exists and 𝑀𝑌 𝑡 = 𝑀𝑐𝑋+𝑑 𝑡 = 𝐸 𝑒𝑡 𝑐𝑋+𝑑  = 𝑒𝑡𝑑𝐸 𝑒𝑡𝑐𝑋  =

𝑒𝑡𝑑𝑀𝑋 𝑐𝑡 , 𝑡 ∈  
−𝑎

 𝑐 
,
𝑎

 𝑐 
 , with the convention that 𝑎 0 = ∞ ∙ 

The name moment generating function to the transform 𝑀𝑋  is derived from the fact that  

𝑀𝑋(⋅)  can be used to generate moments of random variable𝑋 , as illustrated in the 

following theorem. 

Theorem 3.4 

Let 𝑋 be a random variable with m.g.f. 𝑀𝑋  that is finite on an interval  −𝑎,𝑎 , for some 

𝑎 > 0 (i.e., m.g.f. of 𝑋 exists). Then, 

(i) for each 𝑟 ∈  1, 2,… , 𝜇𝑟
′ = 𝐸 𝑋𝑟  is finite; 
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(ii) for each 𝑟 ∈  1, 2,… , 𝜇𝑟
′ = 𝐸 𝑋𝑟 = 𝑀𝑋

 𝑟  0 ,  where 𝑀𝑋
 𝑟  0 =

 
𝑑𝑟𝑡

𝑑𝑡 𝑟
𝑀𝑋 𝑡  

𝑡=0
, the r-th derivative of 𝑀𝑋(𝑡) at the point 0; 

(iii) 𝑀𝑋 𝑡 =  
𝑡𝑟

𝑟 !
∞
𝑟=0 𝜇𝑟

′ , 𝑡 ∈  −𝑎, 𝑎 . 

Proof. We will provide the proof for the case where 𝑋 is of absolutely continuous type. 

The proof for the case of discrete type 𝑋 follows in the similar fashion with integral signs 

replaced by summation sings. 

(i) We have 𝐸 𝑒𝑡𝑋 < ∞,∀𝑡 ∈  −𝑎, 𝑎 . Therefore, 

 𝑒𝑡𝑥
0

−∞

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  and 𝑒𝑡𝑥
∞

0

𝑓𝑋 𝑥 𝑑𝑥 < ∞,   ∀𝑡 ∈  −𝑎, 𝑎  

 

         ⇒  𝑒−𝑡|𝑥|

0

−∞

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  and 𝑒𝑡|𝑥|

∞

0

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  

         ⇒  𝑒−|𝑡||𝑥|

0

−∞

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  and 𝑒 𝑡 |𝑥|

∞

0

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  

⇒  𝑒−|𝑡𝑥 |

0

−∞

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  and 𝑒|𝑡𝑥 |

∞

0

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎  

 

       ⇒  𝑒|𝑡𝑥 |

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 < ∞,∀𝑡 ∈  −𝑎,𝑎 , 

i.e., 𝐸 𝑒 𝑡𝑋  < ∞,∀𝑡 ∈  −𝑎,𝑎 . Fix 𝑟 ∈  1, 2,…  and 𝑡 ∈  −𝑎, 𝑎 −  0 . Then 

lim𝑥→∞

 𝑥 𝑟

𝑒  𝑡𝑥  
= 0 and therefore there exists a positive real number 𝐴𝑟 ,𝑡  such that  𝑥 𝑟 <

𝑒 𝑡𝑥  , whenever  𝑥 > 𝐴𝑟 ,𝑡 . Thus we have  

                         𝐸  𝑋 𝑟 =   𝑥 𝑟
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                         =   𝑥 𝑟

 𝑥 ≤𝐴𝑟 ,𝑡

𝑓𝑋 𝑥 𝑑𝑥 +   𝑥 𝑟

 𝑥 >𝐴𝑟 ,𝑡

𝑓𝑋 𝑥 𝑑𝑥 
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                                     ≤ 𝐴𝑟 ,𝑡
𝑟  𝑓𝑋 𝑥 

 𝑥 ≤𝐴𝑟 ,𝑡

𝑑𝑥 +  𝑒|𝑡𝑥 |𝑓𝑋 𝑥 

 𝑥 >𝐴𝑟 ,𝑡

𝑑𝑥 

                                    ≤  𝐴𝑟 ,𝑡
𝑟 +  𝑒|𝑡𝑥 |

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                    < ∞. 

(ii) Fix 𝑟 ∈  1, 2,… . Then, for 𝑡 ∈  −𝑎,𝑎 , 

                     𝑀𝑋 𝑡 =  𝑒𝑡𝑥
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

and           𝑀𝑋
(𝑟) 𝑡 =

𝑑𝑟

𝑑𝑡𝑟
 𝑒𝑡𝑥
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥. 

Under the assumption that 𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋 < ∞,∀𝑡 ∈  −𝑎,𝑎 , using arguments from 

advanced calculus, it can be shown that the derivative can be passed through the integral 

sign. Therefore, for 𝑡 ∈  −𝑎,𝑎 ,  

                                    𝑀𝑋
(𝑟) 𝑡 =  

𝑑𝑟

𝑑𝑡𝑟

∞

−∞

𝑒𝑡𝑥𝑓𝑋 𝑥 𝑑𝑥 

                                                    =  𝑥𝑟
∞

−∞

𝑒𝑡𝑥𝑓𝑋 𝑥 𝑑𝑥 

                               ⇒ 𝑀𝑋
(𝑟) 0 =  𝑥𝑟

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 = 𝐸 𝑋𝑟 .                                       

(iii) Fix 𝑟 ∈  1, 2,⋯ . Then, for 𝑡 ∈  −𝑎,𝑎 , 

                    𝑀𝑋 𝑡 =  𝑒𝑡𝑥
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                 =    
𝑡𝑟𝑥𝑟

𝑟!

∞

𝑟=0

 

∞

−∞

𝑓𝑋 𝑥 𝑑𝑥. 

Under the assumption that 𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋 < ∞,∀𝑡 ∈  −𝑎,𝑎 , using arguments of 

advanced calculus, it can be shown that the integral sign can be passed through the 

summation  sign, i.e., 
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                                        𝑀𝑋 𝑡 =  
𝑡𝑟

𝑟!

∞

𝑟=0

 𝑥𝑟
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                                                      =  
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇𝑟
′ .  ▄ 

Corollary 3.2 

Under the notation and assumptions of Theorem 3.4, define 𝜓𝑋 :  −𝑎,𝑎 → ℝ  by 

𝜓𝑋 𝑡 = ln𝑀𝑋 𝑡 , 𝑡 ∈  −𝑎,𝑎 . Then  

𝜇1
′ = 𝜓𝑋

 1  0  and 𝜇2 = Var 𝑋 = 𝜓𝑋
 2  0 , 

where 𝜓𝑋
 𝑟  ⋅  denotes the r-th  𝑟 ∈  1, 2   derivative of 𝜓𝑋 . 

Proof. We have, for 𝑡 ∈  −𝑎 ,𝑎 , 

𝜓𝑋
 1  𝑡 =

𝑀𝑋
 1 (𝑡)

𝑀𝑋 𝑡 
 and 𝜓𝑋

 2  𝑡 =
𝑀𝑋 𝑡 𝑀𝑋

 2  𝑡 −  𝑀𝑋
 1  𝑡  

2

 𝑀𝑋 𝑡  
2  . 

Using the facts that 𝑀𝑋 0 = 1 and 𝑀𝑋
 𝑟  0 = 𝐸 𝑋𝑟 , 𝑟 ∈  1, 2 , we get 

                                   𝜓𝑋
 1  0 =

𝑀𝑋
 1  0 

𝑀𝑋 0 
= 𝐸 𝑋 , 

and                              𝜓𝑋
 2  0 =

𝑀𝑋 0 𝑀𝑋
 2  0 −  𝑀𝑋

 1  0  
2

 𝑀𝑋 0  
2  

                                                     = 𝐸 𝑋2 −  𝐸 𝑋  
2
 

                                                     = Var 𝑋 .  ▄ 

Example 3.7 

Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =  
𝑒−𝜆𝜆𝑥

𝑥!
,    if 𝑥 ∈  0, 1, 2,⋯ 

0,              otherwise

 , 

where 𝜆 > 0. 
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(i) Find the m.g.f. 𝑀𝑋 𝑡 , 𝑡 ∈ 𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ , of 𝑋 . Show that 𝑋 

possesses moments of all orders. Find the mean and variance of 𝑋; 

(ii) Find 𝜓𝑋 𝑡 = ln 𝑀𝑋 𝑡  , 𝑡 ∈ 𝐴. Hence find the mean and variance of 𝑋; 

(iii) What are the first four terms in the power series expansion of 𝑀𝑋 ⋅  around 

the point 0? 

Solution. 

(i) We have  

𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋  =  𝑒𝑡𝑥
∞

𝑥=0

𝑒−𝜆𝜆𝑥

𝑥!
= 𝑒−𝜆  

(𝜆𝑒𝑡)𝑥

𝑥!

∞

𝑥=0

= 𝑒−𝜆𝑒𝜆𝑒
𝑡

= 𝑒𝜆 𝑒
𝑡−1 ,∀𝑡 ∈ ℝ. 

 Since𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ = ℝ , by Theorem 3.4 (i), for every  𝑟 ∈

 1, 2,⋯ ,𝜇𝑟
′ = 𝐸 𝑋𝑟  is finite. Clearly 

𝑀𝑋
 1  𝑡 = 𝜆𝑒𝑡𝑒𝜆 𝑒

𝑡−1  and 𝑀𝑋
 2  𝑡 = 𝜆𝑒𝑡𝑒𝜆 𝑒

𝑡−1  1 + 𝜆𝑒𝑡 , 𝑡 ∈ ℝ. 

Therefore,  

𝐸 𝑋 = 𝑀𝑋
 1  0 = 𝜆,  

           𝐸 𝑋2 = 𝑀𝑋
 2  0 = 𝜆 1 + 𝜆 ,  

and         Var 𝑋 = 𝐸 𝑋2 − 𝐸  𝑋  
2

= 𝜆. 

(ii) We have, for 𝑡 ∈ ℝ, 

𝜓𝑋 𝑡 = ln 𝑀𝑋 𝑡  = 𝜆 𝑒𝑡 − 1 , 

⇒ 𝜓𝑋
 1  𝑡 = 𝜓𝑋

 2  𝑡 = 𝜆𝑒𝑡 . 

Therefore, 

𝐸 𝑋 = 𝜓𝑋
 1  0 = 𝜆 and Var 𝑋 = 𝜓𝑋

 2  0 = 𝜆. 

 

(iii) We have 

𝑀𝑋
 3  𝑡 = 𝜆𝑒𝑡𝑒𝜆 𝑒

𝑡−1  𝜆2𝑒2𝑡 + 3𝜆𝑒𝑡 + 1 , 𝑡 ∈ ℝ 

⇒ 𝜇3
′ = 𝐸 𝑋3 = 𝑀𝑋

 3  0 = 𝜆 𝜆2 + 3𝜆 + 1 . 

Since 𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ = ℝ, by Theorem 3.4 (iii) ,we have  

𝑀𝑋 𝑡 = 1 + 𝜇1
′ 𝑡 + 𝜇2

′
𝑡2

2!
+ 𝜇3

′
𝑡3

3!
+ ⋯ 

             = 1 + 𝜆𝑡 + 𝜆 𝜆 + 1 
𝑡2

2!
+ 𝜆 𝜆2 + 3𝜆 + 1 

𝑡3

3!
+ ⋯ ,   𝑡 ∈ ℝ.  ▄ 

Example 3.8 

Let 𝑋 be a random variable with p.d.f.  

𝑓𝑋 𝑥 =  
𝑒−𝑥 ,     if  𝑥 > 0

0,            otherwise
 . 
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(i) Find the m.g.f. 𝑀𝑋 𝑡 , 𝑡 ∈ 𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ of 𝑋 . Show that 𝑋 

posseses moments of all orders. Find the mean and variance of 𝑋; 

(ii) Find 𝜓𝑋 𝑡 = ln 𝑀𝑋 𝑡  , 𝑡 ∈ 𝐴. Hence find the mean and variance of 𝑋; 

(iii) Expand 𝑀𝑋 𝑡  as a power series around the point 0 and hence find 𝐸 𝑋𝑟 , 𝑟 ∈

 1, 2,⋯ . 

Solution. 

(i) We have 

𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋 =  𝑒𝑡𝑥
∞

0

𝑒−𝑥𝑑𝑥 =  𝑒− 1−𝑡 𝑥
∞

0

𝑑𝑥 < ∞,   if 𝑡 < 1. 

Clearly 𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ =  −∞, 1 ⊃  −1, 1 and 𝑀𝑋 𝑡 =

 1 − 𝑡 −1, 𝑡 < 1. By Theorem 3.4 (i), for every 𝑟 ∈  1, 2,⋯ ,𝜇𝑟
′  is finite. 

Clearly   

𝑀𝑋
 1  𝑡 =  1 − 𝑡 −2  and 𝑀𝑋

 2  𝑡 = 2 1 − 𝑡 −3, 𝑡 < 1, 

                          𝐸 𝑋 = 𝑀𝑋
 1  0 = 1, 

                        𝐸 𝑋2 = 𝑀𝑋
 2  0 = 2,  

and                Var 𝑋 = 𝐸 𝑋2 −  𝐸 𝑋  
2

= 1. 

 

(ii) We have  

𝜓𝑋 𝑡 = ln 𝑀𝑋 𝑡  = − ln 1 − 𝑡 ,   𝑡 < 1 

⇒ 𝜓𝑋
 1  𝑡 =

1

1 − 𝑡
  and 𝜓𝑋

 2  𝑡 =
1

 1 − 𝑡 2
 ,   𝑡 < 1 

⇒ 𝐸 𝑋 = 𝜓𝑋
 1  0 = 1   and Var 𝑋 = 𝜓𝑋

 2  0 = 1. 

 

(iii) We have 

𝑀𝑋 𝑡 =  1 − 𝑡 −1 =  𝑡𝑟
∞

𝑟=0

,   𝑡 ∈  −1, 1 . 

Since 𝐴 =  𝑠 ∈ ℝ:𝐸 𝑒𝑠𝑋 < ∞ =  −∞, 1 ⊃  −1, 1 , using Theorem 3.4 

(iii), we conclude that 

𝜇𝑟
′ = coefficient of 

𝑡𝑟

𝑟 !
  in the power series expansion of 𝑀𝑋 𝑡  around 0 

     = 𝑟! .  ▄ 

Example 3.9 

Let 𝑋 be a random variable with p.d.f. 
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𝑓𝑋 𝑥 =
1

π
.

1

1 + 𝑥2
 ,−∞ < 𝑥 < ∞. 

Show that the m.g.f. of 𝑋 does not exist. 

Solution. From Example 3.4 we know that the expected value of 𝑋  is not finite. 

Therefore, using Theorem 3.4 (i), we conclude that the m.g.f. of 𝑋 does not exist. ▄ 

 


