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2.1 RANDOM VARIABLE  

Let  𝛺, ℱ, 𝑃  be a probability space. On many occasions we may not be directly interested 

in the whole sample space 𝛺 . Rather we may be interested in some numerical 

characteristic of the sample space 𝛺, as the following example illustrates. 

Example 1.1 

Let three distinguishable dice be labeled as 𝐴, 𝐵 and 𝐶. Consider the random experiment 

of rolling these three dice. Then the sample space is 𝛺 =   𝑖, 𝑗, 𝑘 : 𝑖, 𝑗, 𝑘 ∈  1, 2, … ,6  ; 

here an outcome  𝑖, 𝑗, 𝑘 ∈ 𝛺  indicates that the dice 𝐴, 𝐵,  and 𝐶  show, respectively, 

𝑖, 𝑗 and 𝑘 number of dots on their upper faces. Suppose that our primary interest is on the 

study of random phenomenon of sum of number of dots on the upper faces of three dice. 

Here we are primarily interested in the study of the function 𝑋:𝛺 → ℝ, defined by 

𝑋  𝑖, 𝑗, 𝑘  = 𝑖 + 𝑗 + 𝑘,  𝑖, 𝑗, 𝑘 ∈ 𝛺. ▄ 

Moreover, generally, the sample space 𝛺 is quite abstract and thus may be tedious to deal 

with. In such situations it may be convenient to study the probability space  𝛺, ℱ, 𝑃  

through the study of a real-valued function defined on 𝛺. 

Example 1.2 

Consider the random experiment of tossing a fair coin twice. Here the sample space 

𝛺 =  HH, HT, TH, TT , where H  and T  stand for head and tail respectively and in an 

outcome (e.g., HT) the first letter (e.g., H in HT) indicates the result of the first toss and 

the second letter (e.g., T in HT) indicates the result of the second toss. Since we are more 

comfortable in dealing with real numbers it may be helpful to identify various outcomes in 

𝛺  with different real numbers (e.g., identify HH, HT, TH  and TT with 1, 2, 3 and 4 

respectively). This amounts to defining a function 𝑋:𝛺 → ℝ on the sample space (e.g., 

𝑋:𝛺 → ℝ, defined as 𝑋 HH = 1, 𝑋 HT = 2, 𝑋 TH = 3, and 𝑋 TT = 4). ▄ 

The above discussion suggests the desirability of study of real valued functions 𝑋:𝛺 → ℝ 

defined on the sample space 𝛺.  

Consider a function 𝑋:𝛺 → ℝ defined on the sample space 𝛺. Since the outcomes (in 𝛺) 

of the random experiment cannot be predicted in advance the values assumed by the 

function 𝑋 are also unpredictable. It may be of interest to compute the probabilities of 

various events concerning the values assumed by function 𝑋. Specifically, it may be of 

interest to compute the probability that the random experiment results in a value of 𝑋 in a 

given set 𝐵 ⊆ ℝ. This amounts to assigning probabilities, 

𝑃𝑋 𝐵 ≝ 𝑃  𝜔 ∈ 𝛺: 𝑋 𝜔 ∈ 𝐵  ,   𝐵 ⊆ ℝ, 



NPTEL- Probability and Distributions 

 

 
Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                   3 
 

to various subsets of ℝ . Note that, for B ⊆ ℝ, 𝑃𝑋 𝐵 = 𝑃  𝜔 ∈ 𝛺:  𝑋 𝜔 ∈ 𝐵   is 

properly defined only if  𝜔 ∈ 𝛺:  𝑋 𝜔 ∈ 𝐵 ∈ ℱ .This puts restrictions on kind of 

functions 𝑋 and/or kind of sets 𝐵 ⊆ ℝ we should be considering. An approach to deal with 

this issue is to appropriately choose an event space (a sigma-field) ℬ of subsets of ℝ and 

then put restriction(s) on the function 𝑋  so that 𝑃𝑋 𝐵 = 𝑃  𝜔 ∈ 𝛺 ∶ 𝑋 𝜔 ∈ 𝐵   is 

properly defined for each 𝐵 ∈ ℬ, i. e. ,  𝜔 ∈ 𝛺:  𝑋 𝜔 ∈ 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ. 

Let 𝒫 ℝ  and 𝒫 𝛺  denote the power sets of ℝ and 𝛺, respectively. Define 𝑋−1: 𝒫 ℝ →

𝒫 𝛺  by 

𝑋−1 𝐵 =  𝜔 ∈ 𝛺:  𝑋 𝜔 ∈ 𝐵 , 𝐵 ∈ 𝒫 ℝ . 

 The following proposition, which follows directly from the definition of 𝑋−1 , will be 

useful for further discussion (see Problem 2). 

Lemma 1.1 

Let  𝐴, 𝐵 ∈ 𝒫 ℝ  and let 𝐴α ∈ 𝒫 ℝ , α ∈ 𝛬, where 𝛬 ⊆ ℝ is an arbitrary index set. Then  

(i) 𝑋−1 𝐴 − 𝐵 = 𝑋−1 𝐴 − 𝑋−1 𝐵 . In particular 𝑋−1 𝐵𝐶 =  𝑋−1 𝐵  
𝑐
; 

(ii) 𝑋−1  𝐴𝛼𝛼∈𝛬  =  𝑋−1
𝛼∈𝛬  𝐴𝛼  and 𝑋−1  𝐴𝛼𝛼∈𝛬  =  𝑋−1

𝛼∈𝛬  𝐴𝛼 ; 

(iii) 𝐴 ∩ 𝐵 = 𝜙 ⇒ 𝑋−1 𝐴 ∩ 𝑋−1 𝐵 = 𝜙. ▄ 

Let 𝒥 denote the class of all open intervals in ℝ, i.e., 𝒥=   𝑎, 𝑏 :−∞ ≤ 𝑎 < 𝑏 ≤ ∞ . In 

the real line ℝ an appropriate event space is the Borel sigma-field ℬ1 = 𝜎(𝒥), the smallest 

sigma-field containing 𝒥 . Now, for 𝑃𝑋 𝐵 = 𝑃  𝜔 ∈ ℝ: 𝑋 𝜔 ∈ 𝐵   to be properly 

defined for every Borel set 𝐵 ∈ ℬ1, we must have 

𝑋−1 𝐵 =  𝜔 ∈ 𝛺: 𝑋 𝜔 ∈ 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1. 

This leads to the introduction of the following definition. 

Definition 1.1 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋:𝛺 → ℝ be a given function. We say that 𝑋 

is a random variable (r.v.) if 𝑋−1 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1. ▄ 

Note that if ℱ = 𝒫 𝛺  then any function 𝑋:𝛺 → ℝ is a random variable. The following 

theorem provides an easy to verify condition for checking whether or not a given function 

𝑋:𝛺 → ℝ is a random variable. 

Theorem 1.1 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋:𝛺 → ℝ be a given function. Then 𝑋 is a 

random variable if, and only if, 𝑋−1 (−∞, 𝑎] =  𝜔 ∈ 𝛺: 𝑋 𝜔 ≤ 𝑎 ∈ ℱ, ∀𝑎 ∈ ℝ. 
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Proof. First suppose that 𝑋  is a random variable. Then 𝑋−1 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1  and, in 

particular 

𝑋−1( 𝑐, 𝑑 ) ∈ ℱ, whenever −∞ ≤ 𝑐 < 𝑑 ≤ ∞ (since 𝒥 ⊆ ℬ1). 

Fix 𝑎 ∈ ℝ.Then  

                              −∞, 𝑎 =   −𝑛, 𝑎 −
1

𝑛
 ∞

𝑛=1    and    𝑎 =   𝑎 −
1

𝑛
, 𝑎 +

1

𝑛
 ∞

𝑛=1 . 

 Therefore  

(−∞, 𝑎] =  −∞, 𝑎 ∪  𝑎 

                =    −𝑛,   𝑎 −
1

𝑛
 

∞

𝑛=1

 ∪    𝑎 −
1

𝑛
, 𝑎 +

1

𝑛
 

∞

𝑛=1

 .
 

Now using Lemma 1.1 (ii), it follows that  

𝑋−1 (−∞, 𝑎] =   𝑋−1  −𝑛, 𝑎 −
1

𝑛
 

           
∈ℱ,∀𝑛≥1

∞

𝑛=1

 

               
∈ℱ

∪   𝑋−1  𝑎 −
1

𝑛
, 𝑎 +

1

𝑛
 

             
∈ℱ,∀𝑛≥1

∞

𝑛=1

 

                 
∈ℱ                                   

∈ℱ

 

i.e., 𝑋−1 [−∞, 𝑎] ∈ ℱ. 

Conversely suppose that𝑋−1  −∞, 𝑎  ∈ ℱ, ∀𝑎 ∈ ℝ. Then, for −∞ ≤ 𝑐 < 𝑑 ≤ ∞, 

                                      −∞, 𝑑 =   −∞, 𝑑 −
1

𝑛
 ∞

𝑛=1 , 

and  

                                   𝑋−1  𝑐, 𝑑  = 𝑋−1 (−∞, 𝑑) −  (−∞, 𝑐]  

                                                     = 𝑋−1 (−∞, 𝑑) − 𝑋−1 (−∞, 𝑐]     (using Lemma 1.1 (i)) 

                     = 𝑋−1   (−∞, 𝑑 −
1

𝑛
]

∞

𝑛=1

 − 𝑋−1( −∞, 𝑐]  

                                                      =     𝑋−1((−∞, 𝑑 −
1

𝑛
])

           
∈ℱ,∀𝑛≥1

∞

𝑛=1               
∈ℱ

− 𝑋−1((−∞, 𝑐])                
∈ℱ

                           
∈ℱ
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⇒ 𝑋−1 𝐼 ∈ ℱ,   ∀𝐼 ∈ 𝒥.                                                          (1.1)  

Define, 

𝒟 =  𝐴 ⊆ ℝ:  𝑋−1 𝐴 ∈ ℱ . 

Using Lemma 1.1 it is easy to verify that 𝒟 is a sigma-field of subsets of ℝ. Thus 𝒟 =

σ 𝒟 . Using (1.1) we have 𝒥 ⊆ 𝒟 = σ 𝒟 , i.e., 𝒥 ⊆ σ 𝒟 .  This implies that σ 𝒥 ⊆

σ 𝒟 = 𝒟 ,  i.e., ℬ1 ⊆ 𝒟 . Consequently 𝑋−1 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1,  i.e.,  𝑋  is a random 

variable. ▄ 

The following theorem follows on using the arguments similar to the ones used in proving    

Theorem 1.1. 

Theorem 1.2 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋:𝛺 → ℝ be a given function. Then 𝑋 is a 

random variable if, an only if, one of the following equivalent conditions is satisfied. 

(i) 𝑋−1 (−∞, 𝑎) ∈ ℱ,    ∀𝑎 ∈ ℝ; 

(ii) 𝑋−1 (𝑎,∞) ∈ ℱ,     ∀𝑎 ∈ ℝ; 

(iii) 𝑋−1 [𝑎,∞) ∈ ℱ,      ∀𝑎 ∈ ℝ; 

(iv) 𝑋−1 (𝑎, 𝑏] ∈ ℱ, whenever −∞ ≤ 𝑎 < 𝑏 < ∞; 

(v) 𝑋−1 [𝑎, 𝑏) ∈ ℱ, whenever −∞ < 𝑎 < 𝑏 ≤ ∞; 

(vi) 𝑋−1 (𝑎, 𝑏) ∈ ℱ, whenever −∞ ≤ 𝑎 < 𝑏 ≤ ∞. ▄ 

 

2.2 INDUCED PROBABILITY MEASURE  

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋:𝛺 → ℝ be a random variable. Define the set 

function 𝑃𝑋 : ℬ1 → ℝ, by 

𝑃𝑋(𝐵) = 𝑃 𝑋−1 𝐵  = 𝑃  𝜔 ∈ ℝ:   𝑋 𝜔 ∈ 𝐵  ,   𝐵 ∈ ℬ1, 

where ℬ1 denotes the Borel sigma-field. 

Since 𝑋 is a r.v., 𝑋−1 𝐵 ∈ ℱ, ∀𝐵 ∈ ℬ1 and, therefore, 𝑃𝑋  is well defined. 

Theorem 2.1 

 ℝ, ℬ1, 𝑃𝑋  is a probability space. 

Proof. Clearly, 

𝑃𝑋(𝐵) = 𝑃 𝑋−1 𝐵  ≥ 0, ∀𝐵 ∈ ℬ1. 
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Let 𝐵1, 𝐵2,⋯  be a countable collection of mutually exclusive events 

in ℬ1. Then 𝑋−1 𝐵1 , 𝑋
−1 𝐵2 ,…. is a countable collection of mutually exclusive events 

in ℱ (Lemma 1.1 (iii)). Therefore 

                 𝑃𝑋   𝐵𝑖

∞

𝑖=1

 = 𝑃 𝑋−1   𝐵𝑖

∞

𝑖=1

   

           = 𝑃   𝑋−1

∞

𝑖=1

 𝐵𝑖              (using Lemma 1.1  ii ) 

                                           =  𝑃

∞

𝑖=1

 𝑋−1 𝐵𝑖   

                                            =  𝑃𝑋

∞

𝑖=1

 𝐵𝑖 ,  

i.e., 𝑃𝑋  is countable additive. 

We also have  

𝑃𝑋 ℝ = 𝑃 𝑋−1 ℝ  = 𝑃 𝛺 = 1.   

It follows that 𝑃𝑋  is a probability measure on ℬ1, i.e., ℝ, ℬ1, 𝑃𝑋  is a probability space. ▄ 

Definition 2.1 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋:𝛺 → ℝ be a r.v.. Let 𝑃𝑋 : ℬ1 → ℝ be defined 

by 𝑃𝑋 𝐵 = 𝑃 𝑋−1 𝐵  , 𝐵 ∈ ℬ1 . The probability space  ℝ, ℬ1, 𝑃𝑋  is called the 

probability space induced by 𝑋 and 𝑃𝑋  is called the probability measure induced by 𝑋. ▄ 

Our primary interest now is in the induced probability space  ℝ, ℬ1, 𝑃𝑋  rather than the 

original probability space  𝛺, ℱ, 𝑃 . 

Example 2.1 

(i) Suppose that a fair coin is independently flipped thrice. With usual interpretations 

of the outcomes HHH, HHT,…, the sample space is  

𝛺 =  HHH, HHT, HTH, HTT, THH, THT, TTH, TTT . 

Since 𝛺  is finite we shall take ℱ = 𝒫 𝛺 . The relevant probability measure 

𝑃:ℱ → ℝ is given by 
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𝑃 𝐴 =
 𝐴 

8
,   𝐴 ∈ ℱ, 

where  𝐴  denotes the number of elements in 𝐴 . Suppose that we are primarily 

interested in the number of times a head is observed in three flips, i.e., suppose that 

our primary interest is on the function 𝑋:𝛺 → ℝ defined by 

𝑋 𝜔 =  

0,       if  𝜔 = TTT
1,       if   𝜔 ∈  HTT, THT, TTH 

2,       if   𝜔 ∈  HHT, HTH, THH 
3,       if    𝜔 = HHH

 . 

Since ℱ = 𝒫 𝛺 , any function 𝑌:𝛺 → ℝ is a random variable. In particular the 

function 𝑋:𝛺 → ℝ  defined above is a random variable. The probability space 

induced by r.v.  𝑋  is  ℝ, ℬ1, 𝑃𝑋 , where 𝑃𝑋  0  = 𝑃𝑋  3  =
1

8
, 𝑃𝑋  1  =

𝑃𝑋  2  =
3

8
, and 

     𝑃𝑋 B =  𝑃𝑋  𝑖  

𝑖∈ 0,1,2,3 ∩𝐵

,   𝐵 ∈ ℬ1. 

(ii) Consider the probability space  ℝ, ℬ1, 𝑃 , where  

                 𝑃 𝐴 =  𝑒−𝑡IA (𝑡) 𝑑𝑡

∞

0

 

                            =  𝑒−𝑡𝐼𝐴∩ 0,∞ 
(𝑡) 𝑑𝑡

∞

−∞

, 

            and, for  𝐵 ⊆ ℝ, 𝐼𝐵(∙) denotes the indicator function of 𝐵 (i. e. , 𝐼𝐵 𝑡 = 1, if 𝑡 ∈

             𝐵, = 0, if 𝑡 ∉ 𝐵). It is easy to verify that 𝑃 is a probability measure on ℬ1. 

Define 𝑋:ℝ → ℝ by 

𝑋 𝜔 =   𝜔,   if 𝜔 > 0
0,       if 𝜔 ≤ 0

 . 

          We have  

𝑋−1 (−∞, a] =  
𝜙,                       if    𝑎 < 0

(−∞, a2],          if    𝑎 ≥ 0
  

                                                                      ∈ ℬ1, ∀a ∈ ℝ. 

Thus 𝑋 is a random variable. The probability space induced by 𝑋 is  ℝ, ℬ1, 𝑃𝑋 , 

where, for 𝐵 ∈ ℬ1 
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                                𝑃𝑋 𝐵 = 𝑃  𝜔 ∈ ℝ:   𝑋 𝜔 ∈ 𝐵   

                                             = 𝑃  𝜔 ∈ ℝ:  𝜔 > 0,  𝜔 ∈ 𝐵  + 𝑃  𝜔 ∈ ℝ: 𝜔 ≤ 0,   0 ∈ 𝐵   

                                             =  𝑒−𝑡𝐼𝐵  𝑡 𝑑𝑡 + 0

∞

0

 

                                             = 2 𝑧𝑒−z2
𝐼𝐵 𝑧 𝑑𝑧.

∞

0

 ▄ 

 

 

 

 

 

 

 

 

 

 

 

 


