NPTEL- Probability and Distributions

MODULE 5

SOME SPECIAL ABSOLUTELY CONTINUOUS
DISTRIBUTIONS

LECTURE 21
Topics
5.1 UNIFORM OR RECTANGULAR DISTRIBUTION

5.1.1 Quantile function and uniform distribution

5.2 GAMMA AND RELATED DISTRIBUTIONS

Lemmal.l

Let X be a random variable having distribution function Fy(-) and quantile function
Qx(").Letx e R, p€(0,1)and 0 < p; <p, < 1. Then

(i) Qx(Fx(x)) < x, provided 0 < Fy(x) < 1;

(i)  Fr(ex®) = p;

(i)  Fx(Qx(p)) = p, provided there exists an x, € R such that Fy(x,) = p. In
particular if Fy () is continuous then Fy (Qx (p)) = p;

(iv)  Qx(p) Sx & Fy(x) =2 p;

(v)  Qx(p) = Fy'(p), provided Fy ' (p) exists;

(vi)  Qx(p1) < Qx(p2)-

Proof. For p € (0,1), define
S, = {s € R: Fx(s) = p},
so that Qx (p) = infS,, p € (0,1).

Q) Let x € R be such that 0 < Fy(x) < 1. Then x € Sg, (o) = {s € R: Fx(s) =
Fx(x)} and, therefore, x > infSp, ) = Q(Fx (%)), i.e., Qx(Fx(x)) < x.

(i) Let p € (0,1). Then Qx(p) = infS,. Thus there exists a sequence {t,:n =
1,2,..} in S, such that lim,_,, t, = Qx(p). Consequently t, = Qx(p),n =
1,2,.. and Fy(t,) =p,n=1,2,... This implies that lim,_,. Fyx(t,) = p.
Since Fy(-) is right continuous, t, = Qx(p),n=1,2,... and lim,_t, =
Qx (p), we get
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FX(QX(p)) = limn—)oo FX(tn) = p.

(iii)  Letx, € R be such that Fy(x,) = p. Then
X €S, = {s € R:Fx(s) = p}
= xo = infS, = Qx(p).
Now using (ii) and the fact that Fy (-) is non-decreasing, we get
p = Fx(xo) = Fx(Qx(p)) = p
= Fx(Qx(p)) = p.
Note that lim,__, Fy(x) =0 and lim,_, Fy(x) =1. Thus if Fy(:) is
continuous then the intermediate value property of continuous functions
implies that there exists an x, € R such that Fy(x,) =p € (0,1) and
therefore Fy (Qx(p)) = p.
(iv)  First suppose that Qx(p) = infS, < x. Then, since Fy(-) is non-decreasing,
we have
Fy(Qx (D)) < Fx(x)
= p < Fx(x). (using (ii))
Now suppose that Fy(x) =p. Then x €S, ={s € R:Fy(s) =p} and,
therefore,
x = infS, = Qx(p).
(V) Since p; < p,, we have
Sy, ={s ER:Fx(s) 2 p} S {s ER: Fx(s) = p1} = S,
=S,, €5,
= Qx(py) =infS,, <infS,, = Qx(p2)- m
Theorem 1.3

Let X be a random variable with distribution function Fy () and quantile function Qy (+).

(i)

(i)
Proof.

(i)

(Probability Integral Transformation) If the random variable X is of
continuous type then Y & Fy (X) ~ U(0,1);

Let U ~ U(0,1). Then Z & 0, (U)  x.

Let G(-) bethed.f.of Y & Fy(X), i.e.,

G(y) =P{FxX) <y}, yeER
Clearly, for y <0, G(y) =0 and, for y > 1,G(y) = 1. Now suppose that
y € (0,1). By Lemma 1.1 (iv) we have

{seR:Fx(s) =yt ={s€Ris = Qx()}
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= P{{Fx(X) =2y} = P{X =2 Qx(»)})
= P({Fx(X) <y} = P{X <Qx(M}
=>P{Fy(X) <y} = P{X <Qx(¥)}). (since Fx(-) is continuous) (1.4)

Since Fx (+) is continuous {x € R: Fy(x) = y} = [xq, x,], for some real numbers x; and

X such that —oo < x; < x, < oo (see Figures 1.5 (a) & (b)).

F(x) F\ (x)

P

X=X, ) X X,

Figure 1.5 (a) Figure 1.5 (b)

Thus, for y € (0, 1),
P{Fx(X) =y} = P({x; =X <x,})

= Fy(xp) — Fy(xq)

=y—y=0. (1.5)
Using (1.4), (1.5) and Lemma 1.1 (iii) we get, for y € (0, 1),

G(y) = P{FX) <yh) =P{F(X) <yh) =PH{X < Qx(M} = .
Also right continuity of d.f. G(-) implies that
G(0) = lxi%lG(x) = lxig)lx = 0.

Therefore we have

0, ify<o
Gy)= Jy, if0<y<1,
1, ify>1

ie,Y & F.(X)~U(01).
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(i) LetU~U(0,1),s0that P{U <u}) =u,Vu€e[0,1]and P{0 < U < 1}) =
1. Thenthe d.f.of Z & Qx(U) is
H(z) = P{Z < z})
=P{Qx() = z})
=P{Qx(U)<z0<U<1}) (sinceP{0<U<1}) =1)
= P({Fx(z) 2 U,0 < U < 1}) (using Lemma 1.1 (iv))
=P{U < Fx(2)})
=Fy(z), z€R

d

Remark 1.3

The above theorem provides a method to generate observations from any arbitrary
distribution using observations from U(0,1) distribution. Suppose that we require an
observation X from a distribution having known d.f. F(-) and quantile function Q(-). To
do so, the above theorem suggests that, generate an observation U from the U(0,1)
distribution and take X = Q(U). m

Example 1.2

Using a random observation U ~ U(0,1), describe a method to generate a random
observation X from the distribution having

Q) probability density function
flx) =

(i) probability mass function
o= (-0 e

0, otherwise
wheren € N and 6 € (0, 1) are real constants.

—lx|

2

,—00 < x < o0;

)

Solution.

(1 For x < 0, we have
F(x) = P({X <x})

- [ noa
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X
et
= —dt
E
ot
7;
and, for x > 0, we have

F(x) = P({X < x})
- | hd

_ f_ifx(t)dt + foxfx(t)dt

0 et xe—t
—dt —dt
f_w g fo 2

j— 1 e_x
= R
Thus the d.f. of X is given by
(e*
—, ifx <0
F(x) = 3 e ’
kl - , ifx=>0
and the g.f. of X is given by
( 1
In(2p), if0<p< 3
Q(p) =F~(p) = 1 " .
-In(2(1 -p)), if ssp<l

Using Theorem 1.3 (ii) the desired random observation is given by

1
In(2U), ifo<U< >

X=0W) = 1 .
-In(2(1-10)), if SSU<1

(i) The distribution function of X is given by

( 0, ifx <O
k
n , ,
G(x) = Z(,)efu—e)n—f, ifk<x<k+1 k=01,..,n—1,
=
1 ifx=>n

and the quantile function of X is given by

Q(p) = inf{s € R: G(s) = p}

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur



NPTEL- Probability and Distributions

1, ifo<p<(1-6)
k

k—
. ny . . ny . .
k, ifZ(,)Hf(l—H)”_f<psz<.>91(1—9)n_];
—i \] —i \]
j=0 j=0
k=0,1,..,n—1 '

n—1
n\ . )
n, ifz (j)ﬁf(l—ﬁ)"_f <p<l1
=0

\
Now, using Theorem 1.3 (ii), the desired random observation is given by

(1, fo<Uu<(@-o6)
k

k, ifz (7) 6/ (1—0)" < U < z (7) 6/ (1 — ) ,-.

j=0
k=01,..,n-1

n—1
n , ,
n ifz (j)91(1 o <U <1
=0

5.2 GAMMA AND RELATED DISTRIBUTIONS

We begin this section with the definition of gamma function.
Definition 2.1

The function T": (0,00) — (0, ), defined by,

I'(a) = J e tt*ldt, a>0
0

is called the gamma function. gy

To examine convergence of the integral
o0
fe—ft“—ldt , a€R,
0

consider the following cases.

Casela <0
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In this case the integral
f e tt*ldt
0
will converge if, and only if, both the integrals
1 00
fe‘tt“‘ldt and f et 1ldt
0 1

converge. Note that, for « < 0,

a—1
e—tta—l 2

vt € (0,1)

and the integral

1

f te1dt

0

diverges. This implies that, for @ < 0, the integral

1
je"tt“_ldt
0

diverges. Consequently the integral

e ttr1qt

diverges for a < 0.
CasellO<ax1

In this case again the integral

fe_tt“_ldt
0

will converge if, and only if, both the integrals
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1 ©
fe‘tt“‘ldt and fe‘tt“‘ldt
0 1

converge. Note that, for « > 0,
0<ett* ! <t*l, wvte(01)

and the integral

1

f te1dt

0

is convergent. Therefore the integral

e ttr1qt

o .

is convergent for any a > 0.

Now let us examine the convergence of the integral

f e tta 14t
1

Fix a € R and choose k, € N such that k, > a. Then we know that

b
e =—, vt >0
ko!
—tra—1 ko!
:>0Se t Stko_a_l_lﬂ Vt>0'

Also kg — a + 1 > 1 and, therefore, the integral

1
tko—d-{-l dt
1

converges. Consequently

o0
je—tt“—ldt
1
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converges for any a € R. From the above discussion it follows that the integral

fe"tt“‘ldt
0

convergesfor0 < a < 1.
Casellla>1

In this case the integral

o0
fe_tt“_ldt
0

will converge if, and only if, the integral

o0
fe_tt“_l dt
1

converges. We have seen in the Case Il above that the integral

]e‘ft“‘ldt
1

converges for any a € R.

On combining cases | — 11 we conclude that the integral

o0
fe_tt“_ldt
0

converges if, and only if, a > 0.

Using integration by parts, for « > 0, we have
Ia+1)= f e tt*dt
0

o0
= [—e 'ty + aJ et 14t
0
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= af e tte1qt
0

i.e., |F(a +1)=al(a), a>0. | (2.1)

Note that

[ee]

r(1) = f e~tdt=1. (2.2)
0

Forn € N, using (2.1) and (2.2), we have
'm+1)=nT(n)=nn-DI'n—-1)=-=nn-1)-3-2-1T'(1) =nl. (2.3)

On combining (2.1), (2.2) and (2.3) we get

T(m)=(n-1)!, neN, | (2.4)

with the convention that 0! = 1.

We have

1 o0
e = fe_tt‘l/zdt
0

0

2 je‘xzdx
0

4 [f e_xzdx] [f e‘yzdy
0 0

= 4] J e~ %) dxdy.
00

- ()

On making the transformation x = r cos @ and y = r sin 8 in the above integral (so that
the Jacobian of the transformation is r), we have

2 0071'/2

(r(%)) =4JJ re~"’do dr

00
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we get

Probability and Distributions

o0

= an re‘rzdr

0

Also, using (2.1),

and
"G =237
In general
<2n2+ 1) _1 3-5--2-n(2n—1)ﬁ' nEN,
i.e., forn €N,
Cr)- T ven
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