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NPTEL-Probability and Distributions

MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION
LECTURE 25

Topics

6.1 MULTIVARIATE DISTRIBUTIONS

6.1 MULTIVARIATE DISTRIBUTIONS

A (univariate) random variable describes a numerical characteristic of a typical outcome
of a random experiment. In many situations we may be interested in simultaneously
studying two or more numerical characteristics of outcomes of a random experiment. To
make the above discussion more clear consider the following example.

Example 1.1

Two distinguishable dice (labeled as D; and D,) are thrown simultaneously. Here the
sample space is 2 = {(i,j):i,j € {1,...,6}}, where the outcome (i, ) € 2 indicates that
i number of dots are observed on the uppermost face of die D; and j number of dots are
observed on uppermost face of die D,. For (i, j) € £, define

Xl((i,j)) = i + j = sum of number of dots on uppermost faces of two dice
and

Xz((i,j)) = |i — j| = absolute difference of number of dots on uppermost faces of two
dice.

It may be of interest to study numerical characteristics X; and X, simultaneously. This
amounts to the study of the function X = (X, X,) : 2 — R defined on the sample space

O m

Throughout RP = {x = (xy,...,x,): —0 <x; <oo,i =1,..,p} will denote the p-
dimensional Euclidean space and, for a set BCSRP and a function
X=Xy ...X,): 2 > R,

X1(B) & {a) €0: X(w) = (Xl(w),Xz(w), X, (w)) € B}.
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NPTEL-Probability and Distributions

Let (2, F, P) be a given probability space.

Definition 1.1

A function X = (Xl,...,Xp):Q — RP is called a p-dimensional random vector (or
simple a random vector) if X7 !((-,a]) € F,Va=(ay,.. a,) €ERP; here
(-».a] = (o, a] X+ X (—o0, 0, |

A 1-dimensional random vector will simply be referred to as a random variable. Clearly,
a function X = (Xy, ..., X, ):2 — RP is a random vector if

weN:X(w)<ay,...X,(w)<a,;€ F, Va=(ay,..,a,) €RP,
= =G a P

Fora = (ay,..,a,) €ERP, b =(by,..,b,) ERP, and a; < b;,i = 1,...,p, define

p

(g’g) = (al'bl) X e X (ap'bp) = 1 “(ai’bi)l
i=1
L

(Q’Q] = (all bl] X X (apybp] = (al', bi]'
.i.=il.
2

[gié) = [alibl) X eee X [ap:bp) = 1 A[aiﬂbi):
i=1
14

[Q’Q] = [all bl] X X [ap; bp] = n[ai,bi],
i=1
L

(—2,b) = (=0,b;) X = x (—00,b,) = | [(=o0,b)),

11
L

(@.2) = (a1, 0) x -+ x (a,) = | [(a,),
11

and

p

|, c0) = [a1,00) x -+ x [a,,0) = | [las 0,
i=1

Further define
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NPTEL-Probability and Distributions

Co ={(~,b] : b € R},

61 = {(g'é) :Q’QE ]RP, a; < bi'i = 1:---,p}:

Q

CZ ={(QJQ] : ;QERP, ai <bl',i = 1,...,p},

63 = {[QJQ) :Q’Q € Rp' a’i < bili = 1""Ip}l

Ci={lab]:a,bERP, a;<b,i=1,..,p},
Cs ={(-=,b) : bR},
Co ={(ax):aeR},
and
C; = {[a ») : a € R7}.
As in the case of p = 1 it can be shown that
(i) B, = the Borel o-field in R? = 0(C;),i = 0,1, ...,7;
(i) {a}eB, vaeR?, ie, B, contains all singleton subsets of R?;
(iii) If B < RP is countable then B € B),;
(iv) There exists aset A < R” such that A & B),;
(v) X:02 — RP isap-dimensional random vector if, and only if one of the following
equivalent conditions hold:
a) X Y(B)EF, VBEeCy,
b) X' (B)EF, VBEC,;
¢) X 'Y(B)EF, VBECs
d X Y(B)EF, VBEC
e) X Y(B)EF, VBECs;
f) X'(B)EF, VBEC;

9 X 'Y(B)eF, VBecCy;

hy X"'(B)EF, VBEB,.
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NPTEL-Probability and Distributions

(vi) If X=(Xy,..,X,) is a p-dimensional random vector and g;:RP - R,i=
1,..,k, are Borel functions (i.e., gi'(B) € F,YB€B,,i=1,..,k) then

(g1 (X), -, gr ()_()) is a k-dimensional random vector.

(vii) If X:02 - RP isa p-dimensional random vector then
X ({a}) ={w e 2:X(w) = ay, v Xy (W) = ap} eF,Va=(ay ...,ap) € RP;
(viii) The function Py: B, — R given by,

Py(B) = P ()_(—1(3)),3 € B,,

is a probability measure on B, (i. e.,(RP,Bp,PX) IS a probability space), called the
probability measure induced by X.

Example 1.2
Let A, B € 0. Define X = (X1, X,):2 > R? by

1, fweAd
0

Y@ =h@={y Le0;

and

1 ifweRB
Xz(w)=13(w)={0 P

Then, for a = (a;,a,) € R?,

X (~o,a]) = {w € 2: X; (w) < a1, X,(w) < ay}

o, if a; <0ora, <0

A n B¢, if OSal <1,0 <a, <1
=< A°, if 0 <ai<l,a,21

B¢, if a=21,0<a,<1

0, ifag>,1,a,=>2 1

Thus
X is arandom vector & X~ 1((—»,a]) € F,Va € R?

S A B eF
< ABEeF

Thus X is a random vector if, and only if, A,B € F. g
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Theorem 1.1

Let X = (X1, ..., X,): 2 > RP be a given function. Then X is a random vector if, and
only if X;,...,X, (X;:2 > R,i=1,...,,p) arerandom variables.

Proof. First suppose that X = (X3, ...,X,) is a random vector. Then, for a € R, and for

fixedi € {1, ...,p}

XM ((=om,al) = [ ) X7 (oo, X = X (—o0,m] X (—e0,a] X (—o0,m] X -+ X (=00, m]),
n=1 € Fyvn=1,2,...

€ F
i.e., X; is a random variable.

Conversely suppose that Xy, ..., X, are random variables. Then, for a = (ay, ...,a,) €
RP,

Xt ((—Q,Q]) ={we:X(w) < aq,i=1,..,p}

14
- ﬂ{w €0: X (0) <a)
i=1

p
= (x e ad
i=1 F

€

EF
i.e., X isarandom vector. g
Remark 1.1

When 2 is countable we have F =2P(2) and, therefore, any function
X = (X1, .., X,): 2 > RP is arandom vector. g

Definition 1.2

(i)  The joint distribution function of a p-dimensional random vector X =
(X, ..., X,): 2 > RP is defined by

F)_((xl, ...,xp) = P({w € : X1 (w) < xq, ..., Xp(w) < xp}), X = (xl, ...,xp) € RP.
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NPTEL-Probability and Distributions
(if) The joint distribution function of any subset of random variables X;, ..., X, is
called a marginal distribution function of Fx ().

Remark 1.2

(i) If Fy(?) is the distribution function of a p-dimensional random vector X =
(X1, ..., X,) then
Fy(x) = PU{X; S x,i = 1,...,p})

=P (2 ((-=21]))

(i) Let Fy, x () be the distribution function of a random vector X = (Xy, ..., X, )
and let B = (B Bp) be a permutation of (1, ...,p). Then

14
FX1,...,Xp (xll "';xp) =P ﬂ{Xl < Xl-}
i=1

14
=P ﬂ{X.Bi S xﬂi}
i=1

= Fxﬁl,...,xﬁp (xﬁ1; ...,xﬂp), X = (xl, ...,xp) € RP.
It follows that the distribution function of (X,;l, ...,Xﬁp) is given by

FXﬁl“"‘Xﬁp (yll ""yp) = FX1,...,Xp (yyl; ---;Yyp); X = (yll --'ryp) € Rp;
where y = (v1,--,¥) is the inverse permutation of B = (Bi,..,5,). To
illustrate this point, consider p = 3 and B = (B4, 52, B3) = (2,3,1). Then the
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inverse permutation of B = (B1,B2,B3) is y = 1uv2v3) =(@3,1,2), and
therefore, for y = (y1,y2,¥3) € R®,

Fxﬁl,xﬁz,xﬁg(M,}’z,}%) = Fx, x5 %, (v, y273)
=P({X, <y, X3 <y, X1 < y3})
=P({X1 <y, X = y1, X3 < y2})

= Fx, x,.x3 (J’3: J’1,3’2)

= Fx, x, x5 (yyl’yVZ'y”)'

(iii) Note that a distribution function FXl,,_._Xp(xl,...,xp) is increasing in each
argument when other arguments are kept fixed.

We recall the following results from the theory of multivariable calculus.

Lemmal.l

Let D € RP and let g: D — R be a function such that:

(i) g is bounded above, i.e., there exists a real constant M such that g(x) < M, vx €

D;
(ii) for every fixed i€{l,..,p} and fixed (xi,..,%_1,%;41,.,%,) € RP7Y,
G(x1, e Xm0, 6, X410, e, X)) is non decreasing in

teD; = {y € Ri(xy,...,X_1,¥ Xi41, -, Xp ) € D}. Then lim,_,,, g(x) exists and,
for any permutation g = (,6’1, ...,[)’p) of (1, ...,p),

lim - lim g(xl, ...,Xp) = lim g(x) -
TI T 7=

In particular all iterated limits

lim - lim g(xl,...,xp), (ﬁl,...,ﬁp)ESp,

xﬁp —00 xﬁl —00

exist and are equal, where S, denotes the set of all permutations of (1, ...,p). We
denote the common value of all iterated limits by

A, g(x) - m
i=1,..p
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Note that if Fy() is a distribution function in RP (p =2) then, for a fixed k €
{1,..,p — 1} and fixed (x)41, ..., x,) € RP7¥, the function g: R* — R, given by

gxq, e, xp) = Fg(xp ey Xjey X1y woes xp),

satisfies properties (i) and (ii) stated in Lemma 1.1. Therefore, for fixed (xj41, ..., x,) €
RP~*

xl*i_rgoFK(xl,...,xk,xk+1,...,xp) = xlii_r)rgo FK(xl,...,xk,xk+1,...,xp),
- l:1,,k

where x* = (xyq, ..., Xg).
Lemma 1.2

Let Fx(-) be the distribution function of a p-dimensional (p = 2) random vector X =
(Xy,...,X,). For a fixed positive integer k € {1,..,p — 1}, letY = (X, ..., X;) and let
Z = (Xy41,--,X,) so that X = (¥,Z). Then the marginal distribution function of
Y = (Y4, ..., Y,) is given by

Fz(xl, ...,xk) = xlii_r)rc}o Fﬁ(xll ey Xy X1y ...,Xp), (Xl, ...,Xk) € ]Rk.
i=k+1,...p

Proof. For fixed x4, e Xp_1 ER

p
lim Fy (xq,..,x,) = lim P ﬂx;l ((—,x;])
xp—)OO - xp—)OO l:1
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= FXl,...,Xp_l (xll "'pr—l)' (11)
Now the assertion follows on recursively using (1.1). gy

Remark 1.3

Let X = (Xy,...,X,) be a random vector and let B = (By,...,B,) € S,, the set of all
permutations of (1,...,p). If y = (yl,...,yp) is the inverse permutation of (B4, ..., 8,)

then, for a fixed k € {1, ...,p — 1}, the marginal distribution function of (X, ..., Xp, ) is
given by

FXﬁl""’Xﬁk (xll ---,Xk) = x}l—r)noo FXﬁl""’Xﬁp (xl, ...,xp)

j=k+1,~~~,p

j=k+1,..p

Let X = (Xy,...,X,) be a random vector and let a = (ay, ...,a,), b = (by, ..., b,) € RP.
Then

P({a; < X1 <b}) =P{{X1 < b}) —P({X1 < a1})

= Fy, (b1) — Fx, (ay). (1.2)
Also

P({a; < X1 < bj,a;, <X; <by}) = P({ag < X;y < by, X; < by})
—P({a; <Xy £b,X; <a3})
= [P({X; < by, X; < bp}) — P({X; < a1, Xz < by})]
—[P({X1 < by, X2 < a2}) — P({X1 < a1, Xz < ap})]
= Fx, x, (b1, by) — [Fxl,xz (a1, by) + Fx, x, (bl’az)]

+ FXIrXZ (al,az). (13)
To write the expression of P({a; < X; < b;,i =1,...,p}) in a closed form define, for
ke€{0,1,..,p},

Dy = Aiyp ((Q,Q]) = {g €ERP:z, €{a;,b;},i=1,..,p,and k of z;, ) Zp ATE aj’s}. (1.4)

p

Note that the set 4y, ,, has ( K

) elements. From (1.2) and (1.3) we have
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1
P({a; <X; <bh}) = Fy, (by) — Fy, (a1) = 2(—1)k z Fy, (2) (1.5)
k=0 ZEAk‘l
and
2
P({a; <X, < b, i=1,2}) = Z(—nk z Fyx, (21, 22) (1.6)
k=0 (Zl,Zz)EAkJ

Lemma 1.3

Let X =(Xy,..,X,):Q—>RP be a random vector and let a = (ay,..,a,), b=
(by,...,b,) € RP. Let 4, = 4y, ((g,g]),k =0,1,...,p be as defined in (1.4). Then
p
P({a; <X, <b,i=1,..,p}) = Z(—nk 2 Fx(z). (1.7)
k=0 z €lyp ((@b])
Proof. From (1.5) and (1.6) it is clear that the result is true for p = 1 and p = 2. Now
suppose that (1.7) holds for general p-dimensional random vectors. For simplicity assume
that P({a,+1 < Xp41 < bp41}) >0. Then, for  (Xy,.., X, Xp41): 2 > RPFL g =
(ay, ...,ap) ERP, b=(by,...b)ERP, a* = (a, ...,ap,ap+1) € RPTL and b* =
(b1, ..., by, byy1) € RPHL

P({ai <Xi < bi,i = 1,;p+ 1})

= P({ai < Xi < bi,i = 1, ...,p}l{ap+1 < Xp+1 < bp+1})P ({ap+1 < Xp+1 < bp+1})

p
_ Z(—l)k z P({X; < z,i=1,..,p}{ap11 <Xp41 < bpi1}) P ({1 < Xpi1 < bpis})
k=0 2€4kp ((a,b])

p

- 2(—1)" z P({X, < zi=1,,p0ys1 < X4y < bpir})

k=0 2€4,((@b])

p
=D EDE Y [P S 2 Xy S 2, X S i)
k=0 ZEAyp ((E}Q])

—P({X1 < z1,.. X, < 2, X, 11 < ap41})].

It is easy to verify that
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p

Y0 Y P S 2 Xy < 2 X < b))

k=0 2€4y, ((2,2])

-P({X1 < z1,.., X)) < 2, Xp 1 S @pi1})]

p+1

= Z(_l)k Z FXI!"':Xp+1 (tl, . tp+1),
k=0

t €dyp41((@,b)
and therefore the assertion follows by principle of mathematical induction. g

Theorem 1.2

Let Fx (+) be the distribution of a p-dimensional random vector X = (X1, ...,Xp). Then

Q) xliiggo FK(xl,...,xp) =1;
i=1,..p
(i) Foreach fixed i € {1, ...,p} and fixed (x1, ..., X;_1, X;41, -, X,) € RP7L,

lim F&(xl, v Xi— 1 Vo Xit1 ...,xp) =0;

y——00

(iii) Fg(xp ...,xp) is right continuous in each argument (keeping other arguments fixed);
(iv) For each rectangle (a, b] € R?

Zp:(—nk Z Fy (2) = 0.
k=0

2€41p((a,b])

Proof. Note that, for (a, b] € R?,

p
Z(—nk z Fx (z) =P (X € (a,b]) = 0. (using Lemma 1.3)
k=0 z€41p((a,b])

This proves (iv).
For notational convenience we will provide the proofs of (i) - (iii) for only p = 2.

(i) Forfixedx; € R

lim FXI,XZ(XLXZ) = lim Fy, x, (x1,m)
n —oo

Xp >0

= lim,, Lo P(X7'((—0,%1]) N X51((—00,n]))
—An 1
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()

n=1
= P(X;! (=00, x1]).
Therefore,

lim lim Fy, x,(x1, %) = xlli_rpooP(Xfl (—,x;])

lim P (X' (=2 n])
—B,1

(i) Fix x, € R. Then

lim FX1,X2 (xl;XZ) = nh—r}c}o P(Xl_l (_Oo' —TL] N X2_1((_°or xZD)

X1—>—
=B, !

Similarly, for fixed x; € R

Zlimoo FXI,XZ (xl,xz) =0.

Xp—>—

(i) Let x = (xq,x;) € R2. Then
lhig)l Fx, x,(x1 + h,x3) = 7}1_{{)10 Fx, x, (x1+ E;X2>

1
= lim PG (o0, +21) 0 X5 ((—o0, 1))
—C,l
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(A

n=1
=P (Xl—l((—oo, x1]) N X3 ((—oo, xz]))
= FXl'XZ (x1) xZ);

i.e., for every fixed x, € R, Fyx, x, (x1,x;) is right continuous in x;. Similarly, for every
fixed x; € R, Fy, x,(x1,x2) isright continuous in x,. g

Remark 1.4

(i) LetA, = UL_yAx,. Then A, is the set of 2P vertices of the rectangle (a, b] €
RP. For example, for p =1,(a b] = (ay,b1],A; = {ay, b1} and, for p =2,
(Q'Q] = (a1, b1] X (ay, by}, Ay = {(b1, by), (by, az), (ay, by), (a1, az)}-

_(a;, by)
//
¥
[ 1
\ _l
a, b,
Figure 1.1
(ay, b.) (b,, b:)
b: _
< (a;, b) X (a.v, b:)
i (a,, a.) (b,, a.)
| i
a, b,
Figure 1.2

(i) Note that, for p = 1, the assertion (iv) of Theorem 1.2 reduces to Fy(b) =
Fy(a),V—o <a <b < wi.e., Fy is non-decreasing.
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