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3.5.3 Jensen Inequality 

Theorem 5.2  

Let 𝐼 ⊆ ℝ be an interval and let 𝜙: 𝐼 → ℝ be a twice differentiable function such that its 

second order derivative 𝜙′′ ∙  is continuous on 𝐼  and𝜙′′ 𝑥 ≥ 0,∀𝑥 ∈ ℝ . Let 𝑋  be a 

random variable with support 𝑆𝑋 ⊆ 𝐼 and finite expectation. Then  

𝐸 𝜙 𝑋  ≥ 𝜙 𝐸 𝑋  . 

If 𝜙′′ 𝑥 > 0,    ∀𝑥 ∈ 𝐼, then the inequality above is strict unless 𝑋 is a degenerate random 

variable. 
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Proof. Let 𝜇 = 𝐸 𝑋 . On expanding 𝜙 𝑥  into a Taylor series about 𝜇 we get  

𝜙 𝑥  = 𝜙 𝜇 +    𝑥 − 𝜇 𝜙′ 𝜇 +
 𝑥 − 𝜇 2

2!
𝜙′′ 𝜉 ,∀𝑥 ∈ 𝐼, 

for some 𝜉 between 𝜇 and 𝑥. Since 𝜙′′ 𝑥 ≥ 0,∀𝑥 ∈ 𝐼, it follows that 

                𝜙 𝑥 ≥ 𝜙 𝜇 +  𝑥 − 𝜇 𝜙′ 𝜇 ,∀𝑥 ∈ 𝐼                                                       (5.2) 

         ⟹ 𝜙 𝑋 ≥ 𝜙 𝜇 +  𝑋 − 𝜇 𝜙′ 𝜇 ,   ∀𝑋 ∈ 𝑆𝑋  

  ⟹ 𝐸 𝜙 𝑋  ≥ 𝜙 𝜇 + 𝜙′ 𝜇 𝐸 𝑋 − 𝜇  

                            = 𝜙 𝜇  

                            = 𝜙 𝐸 𝑋  . 

Clearly the inequality in (5.2) is strict unless 𝐸  𝑋 − 𝜇 2 = 0, i. e., 𝑃  𝑋 = 𝜇  = 1 

(using Corollary 3.1 (ii)). ▄ 

Example 5.3 

Let 𝑋 be a random variable with support 𝑆𝑋 , an interval in ℝ. Then 

(i) 𝐸 𝑋2 ≥  𝐸 𝑋  
2 
 taking 𝜙 𝑥 = 𝑥2 , 𝑥 ∈ ℝ, in Theorem 5.2 ; 

(ii) 𝐸 ln𝑋 ≤ ln𝐸 𝑋 , provided 𝑆𝑋 ⊆  0, ∞  taking 𝜙 𝑥 = − ln 𝑥, 𝑥 ∈ ℝ,
in Theorem 5.2 ; 

(iii) 𝐸 𝑒−𝑋 ≥ 𝑒−𝐸 𝑋  taking 𝜙 𝑥 = 𝑒−𝑥 , 𝑥 ∈ ℝ, in Theorem 5.2 ; 

(iv) 𝐸  
1

𝑋
 ≥

1

𝐸 𝑋 
, if 𝑆𝑋 ⊆  0, ∞  taking 𝜙 𝑥 =

1

𝑥
 , 𝑥 ∈ ℝ in Theorem 5.2 ; 

provided the involved expectations exist. ▄ 

Definition 5.2  

Let 𝑋 be a random variable with support 𝑆𝑋 ⊆  0, ∞ . Then, provided they are finite, 

𝐸 𝑋  is called the arithmetic mean  𝐴𝑀  of 𝑋, 𝑒𝐸 ln 𝑋  is called the geometric mean 

 𝐺𝑀  of 𝑋,  and 
1

𝐸 
1

𝑋
 
  is called harmonic mean (𝐻𝑀) of 𝑋. ▄ 

3.5.4 𝑨𝑴-𝑮𝑴-𝑯𝑴 inequality 

Example 5.4  

(i) Let 𝑋 be a random variable with support 𝑆𝑋 ⊆  0, ∞ . Then  
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𝐸 𝑋 ≥ 𝑒𝐸 ln 𝑋 ≥
1

𝐸  
1

𝑋
 

 , 

provided the expectations are finite. 

(ii) Let 𝑎1 ,⋯ ,𝑎𝑛  be positive real constants and let 𝑝1 ,⋯ ,𝑝𝑛  be another set of positive 

real constants such that  𝑝𝑖
𝑛
𝑖=1 = 1. Then 

 𝑎𝑖𝑝𝑖 ≥ 𝑎𝑖𝑝𝑖

𝑛

𝑖=1

≥
1

 
𝑝𝑖

𝑎𝑖

𝑛
𝑖=1

∙

𝑛

𝑖=1

 

Solution. 

(i)  From Example 5.3 (ii) we have  

                                                 ln𝐸  𝑋 ≥ 𝐸 ln𝑋  

                                         ⟹ 𝐸 𝑋 ≥ 𝑒𝐸 ln 𝑋                                                         (5.3) 

Using (5.3) on  
1

𝑋
 ,we get 

                             𝐸  
1

𝑋
 ≥ 𝑒𝐸 ln

1

𝑋
 = 𝑒−𝐸 ln 𝑋  

                                         ⟹ 𝑒𝐸 ln 𝑋 ≥
1

𝐸 
1

𝑋
 
 .                                                                 (5.4) 

The assertion now follows on combining (5.3) and (5.4). 

(ii) Let 𝑋  be a discrete type random variable with support 𝑆𝑋  =  𝑎1,𝑎2 ⋯  and 

𝑃  𝑋 = 𝑎𝑖  = 𝑝𝑖 , 𝑖 = 1,⋯ ,𝑛.  Clearly, 

𝑃  𝑋 = 𝑥  > 0 ∀𝑥 ∈ 𝑆𝑋   and 𝑃  𝑋 = 𝑥  𝑥∈𝑆𝑋 =  𝑝𝑖 = 1𝑛
𝑖=1 . 

On using (i), we get  

                                       𝐸 𝑋 ≥ 𝑒𝐸 ln𝑋 ≥
1

𝐸  
1

𝑋
 
 

                                     ⟹ 𝑎𝑖𝑝𝑖 ≥

𝑛

𝑖=1

𝑒  ln 𝑎𝑖 𝑝𝑖
𝑛
𝑖=1 ≥

1

 
𝑝𝑖

𝑎𝑖

𝑛
𝑖=1

 

                                      ⟹ 𝑎𝑖𝑝𝑖 ≥

𝑛

𝑖=1

𝑒ln  𝑎𝑖
𝑝 𝑖𝑛

𝑖=1  ≥
1

 
𝑝𝑖

𝑎𝑖

𝑛
𝑖=1
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                                     ⟹ 𝑎𝑖𝑝𝑖 ≥

𝑛

𝑖=1

  𝑎𝑖
𝑝𝑖

𝑛

𝑖=1

 ≥
1

 
𝑝𝑖

𝑎𝑖

𝑛
𝑖=1

. 

 

3.6 DESCRIPTIVE MEASURES OF PROBABILITY   

      DISTRIBUTIONS 

 Let 𝑋 be a random variable defined on a probability space  𝛺,ℱ,𝑃 , associated with a 

random experiment ℰ. Let 𝐹𝑋  and 𝑓𝑋  denote, respectively, the distribution function and 

the p.d.f./p.m.f. of 𝑋.  The probability distribution (i.e., the distribution 

function/p.d.f./p.m.f.) of 𝑋 describes the manner in which the random variable 𝑋 takes 

values in different  Borel sets. It may be desirable to have a set of numerical measures 

that provide a summary of the prominent features of the probability distribution of 𝑋. We 

call these measures as descriptive measures. Four prominently used descriptive measures 

are: (i) Measures of central tendency (or location), also referred to as averages; (ii) 

measures of dispersion; (iii) measures of skewness, and (iv) measures of kurtosis. 

3.6.1 Measures of Central Tendency  

A measure of central tendency or location (also called an average) gives us the idea about 

the central value of the probability distribution around which values of the random 

variable are clustered.  Three commonly used measures of central tendency are mean, 

median and mode. 

3.6.1.1 Mean.  

Recall (Definition 3.2 (i)) that the mean (of probability distribution) of a random variable 

𝑋 is given by 𝜇1 
′ = 𝐸 𝑋 . We have seen that the mean of a probability distribution gives 

us idea about the average observed value of 𝑋  in the long run (i.e., the average of 

observed values of 𝑋when the random experiment is repeated a large number of times). 

Mean seems to be the best suited average if the distribution is symmetric about a point 

𝜇 (i.e., 𝑋 − 𝜇 =
𝑑
𝜇 − 𝑋 , in which case 𝜇 = 𝐸 𝑋  provided it is finite), values in the 

neighborhood of 𝜇 occur with high probabilities, and as we move away from 𝜇 in either 

direction 𝑓𝑋(⋅) decreases. Because of its simplicity mean is the most commonly used 

average (especially for symmetric or nearly symmetric distributions). Some of the 

demerits of this measure are that in some situations this may not be defined (Examples 

3.2 and 3.4) and that it is very sensitive to presence of a few extreme values of 𝑋 which 

are different from other values of 𝑋 (even though they may occur with small positive 
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probabilities). So this measure should be used with caution if probability distribution 

assigns positive probabilities to a few Borel sets having some extreme values.  

 

3.6.1.2 Median. 

A real number 𝑚  satisfying in 𝐹𝑋 𝑚 − ≤
1

2
≤ 𝐹𝑋 𝑚 , i. e. ,𝑃  𝑋 < 𝑚  ≤

1

2
≤

𝑃  𝑋 ≤ 𝑚  , is called the median (of the probability distribution) of 𝑋. Clearly if 𝑚 is the 

median of a probability distribution then, in the long run (i.e., when the random 

experiment ℰ is repeated a large number of times), the values of 𝑋 on either side of 𝑚 in 

𝑆𝑋   are observed with the same frequency. Thus the median of a probability distribution, 

in some sense, divides 𝑆𝑋  into two equal parts each having the same probability of 

occurrence. It is evident that if 𝑋is of continuous type then the median m is given by 

𝐹𝑋 𝑚 = 1/2.  For some distributions (especially for distributions of discrete type 

random variable) it may happen that 𝐹𝑋 𝑎 − <
1

2
 and  𝑥 ∈ ℝ: 𝐹𝑋 𝑥 = 1/2 =   𝑎, 𝑏 ,   

for some −∞ < 𝑎 < 𝑏 < ∞, so that the median is not unique. In that case 𝑃  𝑋 = 𝑥  =

0,∀x ∈  a, b  and thus we take the median to be 𝑚 = 𝑎 = inf 𝑥 ∈ ℝ:𝐹𝑋 𝑥 ≥ 1/2 . For 

random variables having a symmetric probability distribution it is easy to verify that the 

mean and the median coincide (see Problem 33). Unlike the mean, the median of a 

probability distribution is always defined. Moreover the median is not affected by a few 

extreme values as it takes into account only the probabilities with which different values 

occur and not their numerical values. As a measure of central tendency the median is 

preferred over the mean if the distribution is asymmetric and a few extreme observations 

are assigned positive probabilities. However the fact that the median does not at all take 

into account the numerical values of 𝑋 is one of its demerits. Another disadvantage with 

median is that for many probability distributions it is not easy to evaluate (especially for 

distributions whose distribution functions 𝐹𝑋(⋅) do not have a closed form).   

3.6.1.3 Mode. 

Roughly speaking the mode 𝑚0 of a probability distribution is the value that occurs with 

highest probability and is defined by 𝑓𝑋 𝑚0 = sup 𝑓𝑋 𝑥 :𝑥 ∈ 𝑆𝑋  . Clearly if 𝑚0 is the 

mode of a probability distribution of 𝑋 then, in the long run, either 𝑚0 or a value in the 

neighborhood of 𝑚0 is observed with maximum frequency. Mode is easy to understand 

and easy to calculate. Normally, it can be found by just inspection. Note that a probability 

distribution may have more than one mode which may be far apart.  Moreover mode does 

not take into account the numerical values of 𝑋 and it also does not take into account the 

probabilities associated with all the values of 𝑋. These are crucial deficiencies of mode 

which make it less preferable over mean and median. A probability distribution with one 

(two/three) mode(s) is called an unimodal (bimodal/trimodal) distribution. A distribution 

with multiple modes is called a multimodal distribution. 
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3.6.2 Measures of Dispersion  

Measures of central tendency give us the idea about the location of only central part of 

the distribution. Other measures are often needed to describe a probability distribution. 

The values assumed by a random variable 𝑋  usually differ from each other. The 

usefulness of mean or median as an average is very much dependent on the variability (or 

dispersion) of values of 𝑋 around mean or median. A probability distribution (or the 

corresponding random variable 𝑋) is said to have a high dispersion if its support contains 

many values that are significantly higher or lower than the mean or median value. Some 

of the commonly used measures of dispersion are standard deviation, quartile deviation 

(or semi-inter-quartile range) and coefficient of variation.  

3.6.2.1 Standard Deviation.  

Recall (Definition 3.2 (v)) that the variance (of the probability distribution) of a random 

variable 𝑋  is defined by 𝜎2 = 𝐸  𝑋 − 𝜇 2 , where 𝜇 = 𝐸 𝑋  is the mean (of the 

probability distribution) of 𝑋. The standard deviation (of the probability distribution) of 

𝑋  is defined by 𝜎 =   𝜇2 =  𝐸  𝑋 − 𝜇 2 . Clearly the variance and the standard 

deviation give us the idea about the average spread of values of 𝑋around the mean 𝜇. 

However, unlike the variance, the unit of measurement of standard deviation is the same 

as that of 𝑋. Because of its simplicity and intuitive appeal, standard deviation is the most 

widely used measure of dispersion. Some of the demerits of standard deviation are that in 

many situations it may not be defined (distribution for which second moment is not 

finite) and that it is sensitive to presence of a few extreme values of 𝑋 which are different 

from other values. A justification for having the mean 𝜇 in place of median or any other 

average in the definition of 𝜎 =   𝐸  𝑋 − 𝜇 2  is that 

 𝐸  𝑋 − 𝜇 2 ≤  𝐸  𝑋 − 𝑐 2 ,∀𝑐 ∈ ℝ (Problem 32). 

3.6.2.2 Mean Deviation. 

Let 𝐴 be a suitable average. The mean deviation (of probability distribution) of 𝑋 around 

average 𝐴  is defined by MD 𝐴 = 𝐸  𝑋 − 𝐴  . Among various mean deviations, the 

mean deviation about the median 𝑚 is more preferable than the others. A reason for this 

preference is the fact that for any random variable 𝑋, MD 𝑚   =  𝐸  𝑋 − 𝑚  ≤

𝐸  𝑋 − 𝑐  = MD 𝑐 ,∀𝑐 ∈ ℝ (Problem 24). Since a natural distance between 𝑋 and 𝑚 is 

 𝑋 − 𝑚 , as a measure of dispersion, the mean deviation about median seems to be more 

appealing than the standard deviation. Although the mean deviation about median (or 

mean) has more intuitive appeal than the standard deviation, in most situations, it is not 

easy to evaluate. Some of the other demerits of mean deviation are that in many situations 

they may not be defined and that they are sensitive to presence of a few extreme values of 

𝑋 which are different from other values.  
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3.6.2.3 Quartile Deviation. 

 A common drawback with the standard deviation and mean deviations, as measures of 

dispersion, is that they are sensitive to presence of a few extreme values of 𝑋. Quartile 

deviation measures the spread in the middle half of the distribution and is therefore not 

influenced by extreme values. Let 𝑞1 and 𝑞3 be real numbers such that  

𝐹𝑋 𝑞1 − ≤
1

4
≤ 𝐹𝑋 𝑞1  and  𝐹𝑋 𝑞3 − ≤

3

4
≤ 𝐹𝑋 𝑞3 , 

i. e. ,𝑃  𝑋 < 𝑞1  ≤
1

4
≤ 𝑃  𝑋 ≤ 𝑞1   and 𝑃  𝑋 < 𝑞3  ≤

3

4
≤ 𝑃  𝑋 ≤ 𝑞3  . 

The quantities 𝑞1 and 𝑞3  are called, respectively, the lower and upper quartiles of the 

probability distribution of random variable 𝑋. Clearly if 𝑞1,𝑚 and 𝑞3 are respectively the 

lower quartile, the median and the upper quartile of a probability distribution then they 

divide the probability distribution in four parts so that, in the long run (i.e., when the 

random experiment ℰ  is repeated a large number of times) twenty five percent of the 

observed values of 𝑋 are expected to be less than 𝑞1, fifty percent of the observed values 

of 𝑋 are expected to be less than 𝑚 and seventy five percent of the observed values of 𝑋 

are expected to be less than 𝑞3. The quantity IQR = 𝑞3 − 𝑞1 is called the inter quartile 

range of the probability distribution of 𝑋  and the quantity QD =
𝑞3−𝑞1

2
 is called the 

quartile deviation or the semi-inter-quartile range of the probability distribution of 𝑋. It 

can be seen that if 𝑋  is of absolutely continuous type then 𝑞1 and 𝑞3  are given by 

𝐹𝑋 𝑞1 =
1

4
 and 𝐹𝑋 𝑞3 =

3

4
. For some distributions (especially for distributions of 

discrete type random variables) it may happen that 𝐹𝑋 𝑞1 − <
1

4
 and/or  𝑥 ∈

ℝ:𝐹𝑋 𝑥 = 1/4 =   𝑎, 𝑏   (𝐹𝑋 𝑞3 − <
3

4
 and/or  𝑥 ∈ ℝ:𝐹𝑋 𝑥 = 3/4 =  𝑐 ,𝑑  )  for 

some −∞ < 𝑎 < 𝑏 < ∞  (for some −∞ < 𝑐 < 𝑑 < ∞), so that 𝑞1 (𝑞3 ) is not uniquely 

defined. In that case 𝑃  𝑋 = 𝑥  = 0,∀𝑥 ∈  𝑎, 𝑏  (𝑥 ∈  𝑐,𝑑 )  and thus we take 𝑞1 =

𝑎 = inf 𝑥 ∈ ℝ:𝐹𝑋 𝑥 ≥ 1/4  ( 𝑞3 = 𝑐 = inf 𝑥 ∈ ℝ:𝐹𝑋 𝑥 ≥ 3/4 ) . For random 

variables having a symmetric probability distribution it is easy to verify that 𝑚 =

 𝑞1 + 𝑞3  /2   (Problem 33). Although, unlike the standard deviation and the mean 

deviation, quartile deviation is not sensitive to presence of some extreme values of 𝑋 a 

major drawback with the quartile deviation is that it ignores the tails of the probability 

distribution (which constitute 50% of the probability distribution). Note that the quartile 

deviation depends on the units of measurement of random variable 𝑋 and thus it may not 

be an appropriate measure for comparing dispersions of two different probability 

distributions. For comparing dispersions of two different probability distributions a 

normalized measure such as  
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CQD =

𝑞3−𝑞1

2
𝑞3+𝑞1

2

 =  
𝑞3 − 𝑞1

𝑞3 + 𝑞1
 

seems to be more appropriate. The quantity CQD  is called the coefficient of quartile 

deviation of the probability distribution of 𝑋. Clearly the coefficient of quartile deviation 

is independent of unit and  thus it can be used to be compare dispersion of two different 

probability distributions.  

3.6.2.4 Coefficient of Variation. 

Like quartile deviation, standard deviation 𝜎 also depends on the units of measurement of 

random variable 𝑋 and thus it is not an appropriate measure for comparing dispersions of 

two different probability distributions. Let 𝜇 and 𝜎, respectively, be the mean and the 

standard deviation of the distribution of 𝑋 . Suppose that 𝜇 ≠ 0.  The coefficient of 

variation of the probability distribution of 𝑋 is defined by   

𝐶𝑉 =
𝜎

𝜇
. 

Clearly the coefficient of variation measures the variation per unit of mean and is 

independent of units. Therefore it seems to be an appropriate measure to compare 

dispersions of two different probability distributions. A disadvantage with the coefficient 

of variation is that when the mean 𝜇 is close to zero it is very sensitive to small changes 

in the mean. 

3.6.3 Measures of Skewness 

Skewness of a probability distribution is a measure of asymmetry (or lack of symmetry). 

Recall that the probability distribution of random variable 𝑋 is said to be symmetric about 

point 𝜇  if 𝑋 − 𝜇 =
𝑑
𝜇 − 𝑋. In that case 𝜇 = 𝐸 𝑋  (provided it exists) and 𝑓𝑋 𝜇 + 𝑥 =

 𝑓𝑋 𝜇 − 𝑥 ,∀𝑥 ∈ ℝ.  Evidently, for symmetric distributions, the shape of the p.d.f./p.m.f. 

on the left of 𝜇 is the mirror image of that on the right side of 𝜇. It can be shown that, for 

symmetric distribution the mean and the median coincide (Problem 33). We say that a 

probability distribution is positively skewed if the tail on the right side of the p.d.f./p.m.f. 

is longer than that on the left side of the p.d.f./p.m.f. and bulk of the values lie on the left 

side of the mean. Clearly a positively skewed distribution indicates presence of a few 

high values of 𝑋 which pull up the value of the mean resulting in mean larger than the 

median and the mode. For unimodal positively skewed distribution we normally have 

Mode < Median < Mean. Similarly we say that a probability distribution is negatively 

skewed if the tail on the left side of the p.d.f./p.m.f. is longer than that on the right side of 

the p.d.f./p.m.f. and bulk of the values lie on the right side of the mean. Clearly a 

negatively skewed distribution indicates presence of a few low values of 𝑋 which pull 
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down the value of the mean resulting in mean smaller than the median and the mode. For 

unimodal negatively skewed distribution we normally have Mean< Median <Mode. Let 

𝜇 and 𝜎, respectively, be the mean and the standard deviation of 𝑋 and let 𝑍 = (𝑋 −

𝜇)/ 𝜎 be the standardized variable (independent of units). A measure of skewness of the 

probability distribution of 𝑋 is defined by  

𝛽1 = 𝐸 𝑍3 =
𝐸  𝑋 − 𝜇 3 

𝜎3
 =

𝜇3

𝜇2

3

2

. 

The quantity 𝛽1 is simply called the coefficient of skewness. Clearly for symmetric 

distributions 𝛽1 = 0  (Theorem 4.3 (vi)). However the converse may not be true, i.e., 

there are examples of skewed probability distributions for which 𝛽1 = 0. A large positive 

value of 𝛽1 indicates that the data is positively skewed and a small negative value of 𝛽1 

indicates that the data is negatively skewed. A measure of skewness can also be based on 

quartiles. Let 𝑞1 ,𝑚, 𝑞3 and 𝜇  denote respectively the lower quartile, the median, the 

upper quartile and the mean of the probability distribution of 𝑋 . We know that for 

random variables having a symmetric probability distribution 𝜇 = 𝑚 =
 𝑞1 +𝑞3 

2
, i. e.,

𝑞3 −𝑚 = 𝑚− 𝑞1.  

For positively (negatively) skewed distribution we will have  𝑞3 −𝑚 >  <  𝑚 − 𝑞1 . 

Thus one may also define a measure of skewness based on  𝑞3 −𝑚 −  𝑚 − 𝑞1 =

𝑞3 − 2𝑚 + 𝑞1 .To make this quantity independent of units one may consider 

𝛽2 =
𝑞3 − 2𝑚 + 𝑞1

𝑞3 − 𝑞1
 

as a measure of skewness. The quantity 𝛽2  is called the Yule coefficient of skewness. 

3.6.4 Measures of Kurtosis   

 For real constants 𝜇 ∈ ℝ  and 𝜎 > 0,  let 𝑌𝜇 ,𝜎  be a random variable having the p.d.f. 

𝑓𝑌𝜇 ,𝜎
 𝑥 =

1

𝜎 2𝜋
𝑒
−
 𝑥−𝜇  2

2𝜎2 ,−∞ < 𝑥 < ∞,−∞ < 𝜇 < ∞,𝜎 > 0, 

i.e., 𝑌𝜇 ,𝜎 ∼ 𝑁 𝜇,𝜎2  (see Example 4.2 and discussion following it). We have seen 

(Example 4.2 (iii)) that 𝜇  and 𝜎2 are respectively the mean and the variance of the 

distribution of 𝑌𝜇 ,𝜎 . We call the probability distribution corresponding to p.d.f. 𝑓𝑌𝜇 ,𝜎
 as 

the normal distribution with mean 𝜇 and variance 𝜎2 (denoted by 𝑁 𝜇,𝜎2 ). We know 

that 𝑁 𝜇,𝜎2  distribution is symmetric about 𝜇 (cf. Example 4.2 (ii)). Also it is easy to 

verify that 𝑁 𝜇,𝜎2  distribution is unimodal with 𝜇  as the common value of mean, 

median and mode. Kurtosis of the probability distribution of 𝑋  is a measure of 
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peakedness and thickness of tail of p.d.f. of 𝑋 relative to the peakedness and thickness of 

tails of the p.d.f. of normal distribution. A distribution is said to have higher (lower) 

kurtosis than the normal distribution if its p.d.f., in comparison with the p.d.f. of a normal 

distribution, has a sharper (rounded) peak and longer, fatter (shorter, thinner) tails. Let 𝜇 

and 𝜎 respectively, be the mean and the standard deviation of distribution of 𝑋 and let 

𝑍 =  𝑋 − 𝜇 / 𝜎 be the standardized variable. A measure of Kurtosis of the probability 

distribution of 𝑋 is defined by 

𝛾1 = 𝐸 𝑍4  =
𝐸  𝑋 − 𝜇 4 

𝜎4
 =

𝜇4

𝜇2
2. 

The quantity 𝛾1 is simply called the kurtosis of the probability distribution of 𝑋. it is easy 

to show that for any values of 𝜇 ∈ ℝ and 𝜎 > 0, the kurtosis of 𝑁 𝜇,𝜎2  distribution is 

𝛾1 = 3 (use Example 4.2 (iii)). The quantity  

𝛾2 = 𝛾1 − 3 

is called the excess kurtosis of the distribution of 𝑋.  It is clear that for normal 

distributions the excess kurtosis is zero. Distributions with zero excess Kurtosis are called 

mesokurtic. A distribution with positive (negative) excess Kurtosis is called 

l𝑒𝑝𝑡𝑜𝑘𝑢𝑟𝑡𝑖𝑐 (𝑝𝑙𝑎𝑡𝑦𝑘𝑢𝑟𝑡𝑖𝑐). Clearly a leptokurtic (platykurtic) distribution has sharper 

(rounded) peak and longer, fatter (shorter, thinner) tails.  
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Figure 6.1. Distribution symmetric about mean 𝜇 

 

Figure 6.2 (a). Unimodal distribution 

 

 

Figure 6.2 (b). Bimodal distribution 
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Figure 6.2 (c). Trimodal distribution 

 

 

Figure 6.3. Lower quantile, median and upper quantile 
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Figure 6.4 (a). Negatively skewed distribution 

 

Figure 6.4 (b). Normal (no skew) distribution 

 

Figure 6.4 (c). Positively skewed distribution 
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Figure 6.5. Kurtosis (Mesokurtic, Leptokurtic and Platykurtic distributions) 

 

Example 6.1  

For 𝛼 ∈  0,1 , let 𝑋𝛼  be a random variable having the p.d.f.  

𝑓𝛼 𝑥 =  
𝛼𝑒𝑥 ,               if  𝑥 < 0
 1 − 𝛼 𝑒−𝑥 , if  𝑥 ≥ 0

.   

(i)  Show that, for a positive integer 𝑟, 

 𝑒−𝑥𝑥𝑟−1 𝑑𝑥 =  𝑟 − 1 !.

∞

0

 

             Hence find 𝜇𝑟
′  𝛼 = 𝐸 𝑋𝛼

𝑟 , 𝑟 ∈  1,2,⋯ ; 

(ii) For 𝑝 ∈  0,1 , find 𝜉𝑝 ≡ 𝜉𝑝 𝛼  such that 𝐹𝛼 𝜉𝑝 = 𝑝, where 𝐹𝛼  is the distribution 

function of 𝑋𝛼 .  The quantity 𝜉𝑝  is called the 𝑝-th quantile of the distribution of 

𝑋𝛼 ; 

(iii) Find the lower quartile 𝑞1 𝛼 , the median 𝑚 𝛼  and the upper quartile 𝑞3 𝛼  of 

the distribution function of 𝑋𝛼 ; 

(iv) Find the mode 𝑚0 𝛼  of the distribution of 𝑋𝛼 ; 

(v) Find the standard deviation 𝜎 𝛼 , the mean deviation about median MD 𝑚 𝛼  , 
the inter-quartile range) IQR 𝛼 , the quartile deviation (or semi-inter-quartile 

range) QD 𝛼 , the coefficient of quartile deviation CQD 𝛼  and the coefficient of 

variation CV 𝛼  of the distribution of 𝑋𝛼 ; 

(vi) Find the coefficient of skewness 𝛽1 𝛼  and the Yule coefficient of skewness 

𝛽2 𝛼  of the distribution of 𝑋𝛼 . According to values of 𝛼, classify the distribution 

of 𝑋𝛼  as symmetric, positively skewed and negatively skewed;  
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(vii) Find the excess kurtosis 𝛾2 𝛼  of the distribution of 𝑋𝛼  and hence comment on 

the kurtosis of the distribution of 𝑋𝛼 . 

 

Solution. 

(i)  For  𝑟 ∈  1,2,⋯ , let 

Ι𝑟 =  𝑒−𝑥𝑥𝑟−1 
∞

0

𝑑𝑥, 

so that 𝛪1 = 1. Performing integration by parts it is straightforward to see that 

𝛪𝑟 =  𝑟 − 1 𝛪𝑟−1, 𝑟 ∈  2,3,⋯ . On successively using this relationship we get  

𝛪𝑟 =   𝑒−𝑥𝑥𝑟−1 𝑑𝑥 =  𝑟 − 1 !,

∞

0

    𝑟 ∈  1,2,⋯ . 

 Therefore, for a positive integer 𝑟, 

                                     𝜇𝑟
′  𝛼 = 𝐸 𝑋𝛼

𝑟  

                                                  =   𝛼𝑥𝑟𝑒𝑥𝑑𝑥 +   1 − 𝛼 𝑥𝑟𝑒−𝑥𝑑𝑥
∞

0

0

−∞

 

                                                  =   −1 𝑟𝛼 + 1 − 𝛼  𝑥𝑟𝑒−𝑥𝑑𝑥
∞

0

 

                                                  =   −1 𝑟𝛼 + 1 − 𝛼 𝑟! 

                                                  =    
 1 − 2𝛼 𝑟! if 𝑟 ∈  1, 3, 5,⋯ 

𝑟!, if 𝑟 ∈  2, 4, 6,⋯ 
 . 

(ii)  Let 𝑝 ∈  0,1  and let 𝜉𝑝  be such that 𝐹𝛼 𝜉𝑝 = 𝑝. Note that  

𝐹𝛼 0 = 𝛼 𝑒𝑥𝑑𝑥 = 𝛼.
0

−∞

 

Thus, for evaluation of 𝜉𝑝 , the following two cases arise.  

 Case I. 0 ≤ 𝛼 < 𝑝 

 We have 𝑝 = 𝐹𝛼 𝜉𝑝 , i. e., 

                                                           𝑝 =  𝛼𝑒𝑥𝑑𝑥 +   1 − 𝛼 𝑒−𝑥𝑑𝑥
𝜉𝑝

0

0

−∞

 

                                                               = 1 −  1 − 𝛼 𝑒−𝜉𝑝 , 
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               i.e., 𝜉𝑝 = ln  1 − 𝛼 / 1 − 𝑝  . 

Case II. 𝛼 ≥ 𝑝 

In this case we have  

                                           𝑝 =   𝛼𝑒𝑥𝑑𝑥 =  𝛼𝑒𝜉𝑝 ,
𝜉𝑝

−∞

 

  i.e., 𝜉𝑝 =  −In  
𝛼

𝑝
 . Combining the two cases we get 

𝜉𝑝 =   

 
 

 ln  
1 − 𝛼

1 − 𝑝
 , if 0 ≤ 𝛼 < 𝑝

−ln  
𝛼

𝑝
 ,  if 𝑝 ≤ 𝛼 ≤ 1

 . 

(iii)  We have   

𝑞1 𝛼 =  𝜉1

4

 =

 
 

 ln 
4 1 − 𝛼 

3
 , if 0 ≤ 𝛼 <

1

4

−ln  4𝛼 ,  if 
1

4
≤ 𝛼 ≤ 1

 , 

𝑚 𝛼 =  𝜉1

2

 =  
ln 2 1 − 𝛼  , if 0 ≤ 𝛼 <

1

2

−ln  2𝛼 ,  if 
1

2
≤ 𝛼 ≤ 1

 , 

and 𝑞3  𝛼 =  𝜉3

4

 =  
ln 4 1 − 𝛼  , if 0 ≤ 𝛼 <

3

4

−ln  
4𝛼

3
 ,  if 

3

4
≤ 𝛼 ≤ 1

.   

(iv)  The mode 𝑚0 ≡ 𝑚0 𝛼 of the distribution of 𝑋𝛼  is such that 𝑓𝛼 𝑚0 =
sup{𝑓𝛼 𝑥 :−∞ < 𝑥 < ∞}.  Clearly 𝑚0 =  max 𝛼, 1 − 𝛼 . 
 

(v) Using (i) we have 𝜇1
′  𝛼 = 𝐸 𝑋𝛼 = 1 − 2𝛼 and 𝜇2

′  𝛼 = 𝐸 𝑋𝛼
2 = 2. It follows 

that the standard deviation of the distribution of 𝑋𝛼  is  

𝜎 𝛼 =  Var 𝑋𝛼  =  𝜇2
′  𝛼 −  𝜇1

′  𝛼  
2

 =  1 + 4𝛼 − 4𝛼2 . 

Note that, for 0 ≤ 𝛼 <
1

2
,𝑚 𝛼 = ln 2 1 − 𝛼  ≥  0 and, for 𝛼 >

1

2
,𝑚 𝛼 =

− ln 2𝛼 < 0. Thus, for the evaluation of the mean deviation about the median, 

the following cases arise: 

Case I. 0 ≤ 𝛼 <
1

2 
 (so that 𝑚 𝛼 ≥ 0) 
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                   MD 𝑚 𝛼   =   𝐸  𝑋 − 𝑚 𝛼    

                                          = 𝛼  𝑚 𝛼 − 𝑥 𝑒𝑥𝑑𝑥 +  1 − 𝛼 
0

−∞

  𝑚 𝛼 − 𝑥 
𝑚 𝛼 

0

𝑒−𝑥𝑑𝑥 

                                                                          +  1 − 𝛼   𝑥 − 𝑚 𝛼  𝑒−𝑥𝑑𝑥
∞

𝑚 𝛼 

 

                                         = 𝑚 𝛼 + 2𝛼 

                                         = ln 2 1 − 𝛼  + 2𝛼. 

Case II. 
1 

2
≤ 𝛼 ≤ 1 (so that 𝑚 𝛼 ≤ 0) 

                    MD 𝑚 𝛼   =   𝐸  𝑋 −𝑚 𝛼    

                             = 𝛼  𝑚 𝛼 − 𝑥 𝑒𝑥𝑑𝑥 + 𝛼 (𝑥 −𝑚 𝛼 )𝑒𝑥𝑑𝑥
0

𝑚 𝛼 

𝑚 𝛼 

−∞

 

                                           +  1 − 𝛼   𝑥 − 𝑚 𝛼  𝑒−𝑥𝑑𝑥
∞

0

 

                                          =  2 1 − 𝛼 −𝑚 𝛼  

                                          = ln 2𝛼 + 2 1 − 𝛼 . 

Combining the two cases we get  

                                MD 𝑚 𝛼  =  
ln 2 1 − 𝛼  + 2𝛼, if 0 ≤ 𝛼 <

1

2

ln 2𝛼 + 2 1 − 𝛼 , if
1

2 
≤ 𝛼 ≤ 1

 . 

Using (iii) the inter- quartile range of the distribution of 𝑋𝛼  is 

                             IQR  𝛼 = 𝑞3 𝛼 − 𝑞1  𝛼  

                                                    =   

 
 
 

 
 ln 3,                          if 0 ≤ 𝛼 <

1

4

ln 16𝛼 1 − 𝛼  ,   if 
1

4
≤ 𝛼 <

3

4

ln 3,                          if 
3

4 
≤ 𝛼 ≤ 1

.   

The quartile deviation of the distribution of 𝑋𝛼  is  
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QD 𝛼 =
𝑞3 𝛼 − 𝑞1(𝛼)

2
 =  

 
 
 

 
 ln 3 , if 0 ≤ 𝛼 <

1

4

ln  4 𝛼 1 − 𝛼  , if
1

4
≤ 𝛼 <

3

4
 .

ln 3, if
3

4 
≤ 𝛼 ≤ 1

  

The coefficient quartile deviation of the distribution of 𝑋𝛼  is 

CQD 𝛼 =
𝑞3 𝛼 − 𝑞1 𝛼 

𝑞3 𝛼 + 𝑞1 𝛼 
=

 
 
 
 
 

 
 
 
 

ln 3

ln  
16  1−𝛼 2

3
 

, if 0 ≤ 𝛼 <
1

4

ln 16𝛼 1 − 𝛼  

ln  
1−𝛼

𝛼
 

, if
1

4
≤ 𝛼 <

3

4

−
ln 3

ln  
16𝛼2

3
 

, if
3

4 
≤ 𝛼 ≤ 1

 . 

For 𝛼 ≠ 1/2, the coefficient of variation of the distribution of 𝑋𝛼  is  

CV 𝛼 =  
𝜎 𝛼 

𝜇1
′  𝛼 

=
 1 + 4𝛼 − 4𝛼2

1 − 2𝛼
 . 

(vi)   We have 

               𝜇3 𝛼 = 𝐸   𝑋𝛼 − 𝜇1
′  

3
 = 𝜇3

′  𝛼 − 3𝜇1
′  𝛼 𝜇2

′  𝛼 + 2  𝜇1
′  𝛼  

3

= 2 1 − 2𝛼 3. 

 Therefore, 

𝛽1 𝛼  =
𝜇3 𝛼 

𝜎 𝛼 
 =

2 1 − 2𝛼 3

 1 + 4𝛼 − 4𝛼2
. 

Using (iii), the Yule coefficient of skewness is  

𝛽2 𝛼 =
𝑞3 𝛼 − 2𝑚 𝛼 + 𝑞1 𝛼 

𝑞3 𝛼 − 𝑞1 𝛼 
=

 
 
 
 
 
 

 
 
 
 
 ln  

3

4
 

ln 3
,                          if   0 ≤ 𝛼 <

1

4

−
ln 4𝛼 1 − 𝛼  

ln 16𝛼 1 − 𝛼  
,    if 

1

4
≤ 𝛼 <

1

2

ln 4𝛼 1 − 𝛼  

ln 16𝛼 1 − 𝛼  
,        if   

1

2
≤ 𝛼 <

3

4

ln  
3

4
 

ln 3
,                          if 

3

4 
≤ 𝛼 ≤ 1

 . 
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Clearly, for 0 ≤ 𝛼 < 1/2,𝛽𝑖 𝛼 > 0, 𝑖 = 1,2, and, for 
1

2
< 𝛼 ≤ 1,𝛽𝑖 𝛼 < 0, 𝑖 =

 1,2.  It follows that the probability distribution of 𝑋𝛼  is positively skewed if 

0 ≤ 𝛼 < 1/2  and negatively skewed if 
1

2
< 𝛼 ≤ 1. For 𝛼 =

1

2
, 𝑓𝛼 𝑥 =

𝑓𝛼 −𝑥 ,∀𝑥 ∈ ℝ. Thus, for 𝛼 = 1 2 , the probability of 𝑋𝛼  is symmetric about 

zero.  

(vii)  We have  

                     𝜇4  𝛼 = 𝐸   𝑋𝛼 − 𝜇1
′  

4
  

                                  =  𝜇4
′  𝛼 − 4𝜇1

′  𝛼 𝜇3
′  𝛼 + 6  𝜇1

′  𝛼  
2

𝜇2
′  𝛼 − 3  𝜇1

′  𝛼  
4

 

                                   = 24 − 12 1 − 2𝛼 2 − 3 1 − 2𝛼 4. 

Therefore, 

                        𝛾1 𝛼 =
𝜇4 𝛼 

 𝜇2 𝛼  
2  =

24 − 12 1 − 2𝛼 2 − 3 1 − 2𝛼 4

 2 −  1 − 2𝛼 2 2
 

and 

                         𝛾2 𝛼 =  𝛾1 𝛼 − 3 =
12 − 6 1 − 2𝛼 4

 2 −  1 − 2𝛼 2 2
. 

Clearly, for any 𝛼 ∈  0, 1 , 𝛾2 𝛼 > 0. It follows that, for any value of 𝛼 ∈

 0,1 , the distribution of 𝑋𝛼  is leptokurtic.  


