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3.4 PROPERTIES OF RANDOM VARIABLES HAVING 

THE SAME DISTRIBUTION  
We begin this section with the following definition. 

Definition 4.1   

Two random variables 𝑋 and 𝑌, defined on the same probability space  Ω, ℱ, 𝑃 , are said 

to have the same distribution (written as 𝑋 =
𝑑
𝑌 ) if they have the same distribution 

function, i.e., if 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 , ∀𝑥 ∈ ℝ. 

Theorem 4.1  

(i) Let 𝑋 and 𝑌  be random variables of discrete type with p.m.f.s 𝑓𝑋  and 𝑓𝑌 

respectively. Then 𝑋 =
𝑑
𝑌 if, and only if, 𝑓𝑋 𝑥 = 𝑓𝑌 𝑥 , ∀𝑥 ∈ ℝ; 

(ii) Let 𝑋 and 𝑌  be random variables having distribution functions that are 

differentiable everywhere except, possibly, on some finite sets. Then both of 

them are of absolutely continuous type. Moreover, 𝑋 =
𝑑
𝑌 if, and only if, there 

exist versions of p.d.f.s 𝑓𝑋  and 𝑓𝑌 of 𝑋 and 𝑌, respectively, such that 𝑓𝑋 𝑥 =

𝑓𝑌 𝑥 , ∀𝑥 ∈ ℝ. 
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Proof. 

(i) Suppose that 𝑓𝑋 𝑥 = 𝑓𝑌 𝑥 , ∀𝑥 ∈ ℝ. Then, clearly, 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 , , ∀𝑥 ∈ ℝ, 

and therefore 𝑋 =
𝑑
𝑌.  Conversely suppose that 𝑋 =

𝑑
𝑌, i.e., 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 =

𝐺 𝑥 , say, ∀𝑥 ∈ ℝ. Then  

 𝑥 ∈ ℝ: 𝐹𝑋 𝑥 − 𝐹𝑋 𝑥 − > 0 =  𝑥 ∈ ℝ: 𝐹𝑌 𝑥 − 𝐹𝑌 𝑥 − > 0  

                                                       =  𝑥 ∈ ℝ: 𝐺 𝑥 − 𝐺 𝑥 − > 0  

⇒ 𝑆𝑋 = 𝑆𝑌 = 𝑆, say. 

Moreover, 

𝑓𝑋 𝑥 = 𝑓𝑌 𝑥 =  
𝐺 𝑥 − 𝐺 𝑥 − ,   if 𝑥 ∈ 𝑆
0,                             otherwise

 . 

(ii) Suppose that 𝑓𝑋 𝑥 = 𝑓𝑌 𝑥 , ∀𝑥 ∈ ℝ, for some versions of p.d.f.s of 𝑓𝑋  and 𝑓𝑌 

of 𝑋  and 𝑌  respectively. Then, clearly, 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 , ∀𝑥 ∈ ℝ and therefore 

𝑋 =
𝑑
𝑌 . Conversely suppose that 𝑋 =

𝑑
𝑌 , i.e., suppose that 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 =

𝐺 𝑥 , say, ∀𝑥 ∈ ℝ. By the hypothesis, 𝐺  is differentiable everywhere except 

possibly on a finite set 𝐶. Using Remark 4.2 (vii), Module 2, it follows that 

both 𝑋 and 𝑌 are of absolutely continuous type with a common (version of) 

p.d.f. 

𝑔(𝑥) =  
𝐺 ′ 𝑥 ,   if 𝑥 ∉ 𝐶
0,           otherwise

 ∙ 

As a consequence of the above theorem we have the following corollary. 

Theorem 4.2 

Let 𝑋 and 𝑌 be two random variables, of either discrete type or of absolutely continuous 

type, with 𝑋 =
𝑑
𝑌. Then, 

(i) for any Borel function 𝑕, 𝐸 𝑕 𝑋  = 𝐸 𝑕 𝑌  ,  provided the expectations are 

finite; 

(ii) for any Borel function 𝜓,𝜓 𝑋 =
𝑑
𝜓 𝑌 . 

Proof. 

(i) Since 𝑋 =
𝑑
𝑌, we have 𝐹𝑋 𝑥 = 𝐹𝑌 𝑥 = 𝐺 𝑥 , say, ∀𝑥 ∈ ℝ 

Case I. 𝑋 is of discrete type. 

Since 𝑋 =
𝑑
𝑌, using Theorem 4.1 (i), it follows that 𝑆𝑋 = 𝑆𝑌 = 𝑆, say, and 𝑓𝑋 𝑥 =

𝑓𝑌(𝑥) = 𝑔 𝑥 , say, ∀𝑥 ∈ ℝ. Therefore,  
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𝐸 𝑕 𝑋  =  𝑕

𝑥∈𝑆

 𝑥 𝑓𝑋 𝑥  

                  =  𝑕

𝑥∈𝑆

 𝑥 𝑓𝑌 𝑥  

         = 𝐸 𝑕 𝑌  . 

Case II. 𝑋 is of absolutely continuous type. 

For simplicity assume that 𝐺 is differentiable everywhere except possibly on a 

finite set  𝐶. Using Remark 4.2 (vii), Module 2, we may take  

𝑓𝑋 𝑥 = 𝑓𝑌 𝑥 =  
𝐺 ′ 𝑥 ,   if 𝑥 ∉ 𝐶
0,           if 𝑥 ∈ 𝐶

 ∙ 

Therefore, 

𝐸 𝑕 𝑋  =  𝑕

∞

−∞

 𝑥 𝑓𝑋 𝑥 𝑑𝑥 

                =  𝑕

∞

−∞

 𝑥 𝑓𝑌 𝑥 𝑑𝑥 

                                                                        = 𝐸 𝑕 𝑌  .  

(ii) Fix 𝑥 ∈ ℝ . On taking 

𝑕 𝑥 = 𝐼(−∞,𝑎] 𝜓 𝑥  =  
1, if 𝜓 𝑥 ≤ 𝑎

0, if 𝜓 𝑥 > 𝑎
  

in (i), we get 

𝐸  𝐼 (−∞,𝑎]  𝜓 𝑋   = 𝐸  𝐼(−∞,𝑎] 𝜓 𝑌    

                ⇒ 𝑃  𝜓 𝑋 ≤ 𝑎  = 𝑃  𝜓 𝑌 ≤ 𝑎  ,   ∀𝑎 ∈ ℝ 

                                                               ⇒ 𝜓 𝑋 =
𝑑
𝜓 𝑌 .  ▄ 

Example 4.1 

(i) Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =    
𝑛

𝑥
  

1

2
 
𝑛

,        if 𝑥 ∈  0, 1, … , 𝑛 

0,                        otherwise

 , 
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where 𝑛 is a given positive integer. Let 𝑌 = 𝑛 − 𝑋. Show that 𝑌 =
𝑑
𝑋  and hence 

show that  𝐸(𝑋) =  
𝑛

2
 . 

(ii) Let 𝑋 be a random variable with p.d.f. 

𝑓𝑋 𝑥 =  
𝑒− 𝑥 

2
 ,    − ∞ < 𝑥 < ∞ ,  

and let  𝑌 = −𝑋 .  Show that 𝑌 =
𝑑
𝑋  and hence show that 𝐸 𝑋2𝑛+1 = 0, 𝑛 ∈

 0, 1,⋯  . 

Solution. 

(i) Clearly   𝐸 𝑋  is finite. Using Example 2.3 it follows that the p.m.f. of 𝑌 = 𝑛 − 𝑋 

is given by  

               𝑓𝑌 𝑦 = 𝑃  𝑌 = 𝑦   

                                                       =   
 
𝑛

𝑦
  

1

2
 
𝑦

,   if 𝑦 ∈  0, 1,⋯ , 𝑛 

0,                   otherwise

  

                                                       = 𝑓𝑋 𝑦  , ∀𝑦 ∈ ℝ , 

 i.e., 𝑌 =
𝑑
𝑋. Hence, using Theorem 4.2 (i), 

𝐸 𝑋 =  𝐸 𝑌 =  𝐸 𝑛 − 𝑋 = 𝑛 − 𝐸(𝑋) 

                                      ⟹ 𝐸 𝑋 =  
𝑛

2
. 

(ii) Using Corollary 2.2, it can be shown that  𝑌 = −𝑋  is a random variable of 

absolutely continuous type with p.d.f. 

𝑓𝑌 𝑦 =  
𝑒− 𝑦 

2
= 𝑓𝑋 𝑦 ,   − ∞ < 𝑦 < ∞ .  

It follows that 𝑌 =
𝑑
𝑋. For or 𝑛 ∈  0,1,2, …  , it can be easily shown that 𝐸( 𝑋 𝑟)is 

finite for every 𝑟 > −1. Therefore 

𝐸 𝑋2𝑛+1 =  𝐸 𝑌2𝑛+1 =  −𝐸 𝑋2𝑛+1  

                                         ⟹ 𝐸 𝑋2𝑛+1 = 0.  ▄ 
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Definition 4.2 

A random variable 𝑋 is said to have a symmetric distribution about a point 𝜇 ∈ ℝ if 𝑋 −

𝜇 =
𝑑
𝜇 − 𝑋.▄ 

Theorem 4.3 

Let 𝑋 be a random variable having p.d.f./p.m.f. 𝑓𝑋  and distribution function 𝐹𝑋 . Let 𝜇 ∈ ℝ. 

Then 

(i) the distribution of 𝑋  is symmetric about 𝜇 if, and only if , 𝑓𝑋 𝜇 − 𝑥 = 𝑓𝑋 𝜇 + 𝑥 ,

∀𝑥 ∈ ℝ; 

(ii) the distribution of 𝑋 is symmetric about 𝜇 if, and only if, 𝐹𝑋 𝜇 + 𝑥 + 𝐹𝑋  𝜇 − 𝑥 − =

1, ∀𝑥 ∈ ℝ  i. e. , if and only if, 𝑃  𝑋 ≤ 𝜇 + 𝑥  =  𝑃  𝑋 ≥ 𝜇 − 𝑥   ; 

(iii) the distribution of 𝑋 is symmetric about 𝜇 if, and only if, the distribution of 𝑌 = 𝑋 −

𝜇 is symmetric about 0; 

(iv)  if the distribution of 𝑋 is symmetric about 𝜇, then 𝐹𝑋 𝜇 − ≤
1

2
≤ 𝐹𝑋 𝜇 ; 

(v) if the distribution of 𝑋 is symmetric about 𝜇 and the expected value of 𝑋 is finite, then 

𝐸 𝑋 = 𝜇; 

(vi)  if the distribution of 𝑋 is symmetric about 0, then 𝐸 𝑋2𝑚+1 = 0,𝑚 ∈  0, 1, 2,⋯  , 

provided the expectations exist. 

Proof. For simplicity we will assume that if 𝑋 is of absolutely continuous type then its 

distribution function is differentiable everywhere expectations possibly on a finite set. 

(i) Let 𝑌1 = 𝑋 − 𝜇 and 𝑌2 = 𝜇 − 𝑋. Then the p.d.f.s/p.m.f.s of  𝑌1 and 𝑌2 are given by 

𝑓𝑌1
 𝑦  = 𝑓𝑋 𝜇 + 𝑦 ,   𝑦 ∈ ℝ 

and                                   𝑓𝑌2
 𝑦  = 𝑓𝑋 𝜇 − 𝑦 ,   𝑦 ∈ ℝ, 

respectively. Now, under the hypothesis, 

           distribution of 𝑋 is symmetric about 𝜇 ⇔ 𝑌1 =
𝑑
𝑌2 

                                                                                   ⇔ 𝑓𝑌1
 𝑦 = 𝑓𝑌2

 𝑦 ,   ∀𝑦 ∈ ℝ 

                                                                            ⇔ 𝑓𝑋 𝜇 + 𝑦 = 𝑓𝑋 𝜇 − 𝑦 , ∀𝑦 ∈ ℝ. 

 

(ii) Let   𝑌1 = 𝑋 − 𝜇 and 𝑌2 = 𝜇 − 𝑋 so that the distribution functions of 𝑌1 and 𝑌2 are 

given by 𝐹𝑌1
 𝑥 = 𝐹𝑋 𝜇 + 𝑥 , 𝑥 ∈ ℝ, and 𝐹𝑌2

 𝑥 = 1 − 𝐹𝑋  𝜇 − 𝑥 − , 𝑥 ∈ ℝ.  

Therefore, under the hypothesis, 

                𝑌1 =
𝑑
𝑌2 ⇔ 𝐹𝑌1

 𝑥 = 𝐹𝑌2
 𝑥 ,   ∀𝑥 ∈ ℝ 

⇔ 𝐹𝑋 𝜇 + 𝑥 + 𝐹𝑋  𝜇 − 𝑥 − = 1, ∀𝑥 ∈ ℝ. 



NPTEL- Probability and Distributions  

 

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                 6 
 

 

(iii) Clearly , 

distribution of 𝑋 is symmetric about 𝜇 ⇔ 𝑋 − 𝜇 =
𝑑
𝜇 − 𝑋 = −(𝑋 − 𝜇) 

            ⇔ 𝑌 =
𝑑
− 𝑌. 

(iv) Using (ii), we have  

 distribution of 𝑋 is symmetric about 𝜇 ⇔ 𝐹𝑋 𝜇 + 𝑥 + 𝐹𝑋  𝜇 − 𝑥 − = 1, ∀𝑥 ∈ ℝ 

⟹ 𝐹𝑋 𝜇 + 𝐹𝑋 𝜇 − = 1 

⟹ 𝐹𝑋 𝜇 − ≤
1

2
≤ 𝐹𝑋 𝜇 , 

 since 𝐹𝑋 𝜇 − ≤ 𝐹𝑋 𝜇 . 

(v) Suppose that 𝑋 − 𝜇 =
𝑑
𝜇 − 𝑋 and 𝐸  𝑋  < ∞.  Then 𝐸 𝑋 − 𝜇 = 𝐸 𝜇 − 𝑋 (using 

Theorem 4.2 (i)) and therefore 𝐸 𝑋 = 𝜇. 

(vi) Suppose that 𝑋 =
𝑑
− 𝑋 . Then, using Theorem 4.2  i ,    

   𝐸 𝑋2𝑚+1 = 𝐸 (−𝑋)2𝑚+1 ,𝑚 ∈  0,1,2,⋯  , 

 provided the expectations exist. Therefore, 

                    𝐸 𝑋2𝑚+1 = 𝐸 −𝑋2𝑚+1 ,   𝑚 ∈  0, 1, 2,⋯   

⟹ 𝐸 𝑋2𝑚+1 = 0,   𝑚 ∈  0, 1, 2,⋯  .▄ 

Theorem 4.4 

Let 𝑋 and 𝑌  be random variables having m.g.f.s 𝑀𝑋  and 𝑀𝑌  respectively. Suppose that 

there exists a positive real number 𝑏  such that 𝑀𝑋 𝑡 = 𝑀𝑌 𝑡 , ∀𝑡 ∈  −𝑏, 𝑏 . Then 

𝑋 =
𝑑
𝑌. 

Proof. We will provide the proof for the special case where 𝑋 and 𝑌 are of discrete type 

and 𝑆𝑋 =  𝑆𝑌 ⊆  0, 1, 2,⋯  , as the proof for general 𝑋 and 𝑌 is involved. We have  

𝑀𝑋 𝑡 = 𝑀𝑌 𝑡 ,   ∀𝑡 ∈  −𝑏, 𝑏  

⟹  𝑒𝑡𝑘
∞

𝑘=0

𝑃  𝑋 = 𝑘  =  𝑒𝑡𝑘
∞

𝑘=0

𝑃  𝑌 = 𝑘  , ∀𝑡 ∈  −𝑏, 𝑏  

⟹ 𝑠𝑘
∞

𝑘=0

𝑃  𝑋 = 𝑘  =  𝑠𝑘
∞

𝑘=0

𝑃  𝑌 = 𝑘  , ∀𝑠 ∈  𝑒−𝑏 , 𝑒𝑏 . 

We know that if two power series or polynomials match over an interval then they have 

the same coefficients. It follows that 𝑃  𝑋 = 𝑘  = 𝑃  𝑌 = 𝑘  , 𝑘 ∈  0,1,2,⋯  , i.e., 

𝑋 and 𝑌 have the same p.m.f.. Now the result follows using Theorem 4.1 (i). ▄ 

Example 4.2 

 Let 𝜇 ∈ ℝ and 𝜎 > 0 be real constants and let 𝑋𝜇 ,𝜎  be a random variable having p.d.f. 
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𝑓𝑋𝜇 ,𝜎
 𝑥 =   

1

σ 2𝜋
e
−

(𝑥−μ)2

2σ2  ,    − ∞ < 𝑥 < ∞ ∙                                       (4.1) 

(i) Show that  𝑓𝑋𝜇 ,𝜎
 is a p.d.f.; 

(ii) Show that the probability distribution function of 𝑋𝜇 ,𝜎  is symmetric about 𝜇. Hence 

find 𝐸(𝑋𝜇,𝜎); 

(iii) Find the m.g.f. of 𝑋𝜇 ,𝜎  and hence find the mean and variance of 𝑋𝜇 ,𝜎 ; 

(iv)  Let 𝑌𝜇 ,𝜎 = 𝑎𝑋𝜇 ,𝜎 + 𝑏,  where 𝑎 ≠ 0 and 𝑏  are real constants. Using the m.g.f. of 

𝑋𝜇,𝜎 , show that the p.d.f. of 𝑌𝜇 ,𝜎  is  

𝑓𝑌𝜇 ,𝜎
 𝑦 =   

1

 a σ 2𝜋
e
−

(y +(a𝜇+b ))2

2a 2σ2  ,    − ∞ < 𝑦 < ∞. 

Solution. 

(i)  Clearly 𝑓𝑋𝜇 ,𝜎
 𝑥 ≥ 0, ∀𝑥 ∈ ℝ. Also, 

              𝑓𝑋𝜇 ,𝜎
 𝑥 𝑑𝑥

∞

−∞

=   
1

σ 2𝜋
e
−

(x−μ)2

2σ2

∞

−∞

𝑑𝑥 

                                        =
1

 2𝜋
 e−

z 2

2

∞

−∞

𝑑𝑧       (on making the transformation
𝑥 − μ

𝜎
= 𝑧) 

                                        = 𝐼, say. 

             Clearly  𝐼 ≥ 0 and 

                           𝐼2 =  
1

 2𝜋
 e−

y 2

2

∞

−∞

𝑑𝑦  
1

 2𝜋
 e−

z 2

2

∞

−∞

𝑑𝑧  

                =
1

2π
  𝑒−

(𝑦2+𝑧2)

2 𝑑𝑦𝑑𝑧.
∞

−∞

∞

−∞

 

On making the transformation 𝑦 = 𝑟 cos 𝜃 , 𝑧 = 𝑟 sin 𝜃 , 𝑟 > 0, 0 ≤ 𝜃 < 2𝜋  (so 

that the Jacobian of the transformation is r) we get 

         𝐼2 =
1

2𝜋
  𝑟𝑒−

𝑟2

2 𝑑𝜃𝑑𝑟
2𝜋

0

∞

0

 

                                                                      =  𝑟𝑒−
𝑟2

2 𝑑𝑟
∞

0

 

                                                                      =  𝑒−𝑧𝑑𝑧
∞

0
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                                                                      = 1. 

Since 𝐼 ≥ 0, it follows that 𝐼 = 1  and thus 𝑓𝑋𝜇 ,𝜎
 𝑥  is a p.d.f.. 

(ii) Clearly, 

𝑓𝑋𝜇 ,𝜎
 μ− 𝑥 = 𝑓𝑋𝜇 ,𝜎

 μ + 𝑥 =  
1

σ 2𝜋
e
−
𝑥2

2σ2  ,   ∀𝑥 ∈ ℝ.   

Using Theorem 4.3 (i) and (v) it follows that the distribution of 𝑋𝜇 ,𝜎  is symmetric 

about 𝜇 and 𝐸 𝑋𝜇 ,𝜎 = 𝜇. 

(iii) For 𝑡 ∈ ℝ 

                                 𝑀𝑋𝜇 ,𝜎
 𝑡 = 𝐸(𝑒𝑡𝑋𝜇 ,𝜎 ) 

                                                  =    𝑒𝑡𝑥
∞

−∞

1

𝜎 2𝜋
𝑒
−

(𝑥−𝜇 )2

2𝜎2 𝑑𝑥 

                                                  =
1

 2𝜋
 𝑒𝑡(𝜇+𝜎𝑧)𝑒−

𝑧2

2

∞

−∞

 𝑑𝑧 

                                                   =
𝑒𝜇𝑡+

𝜎2𝑡2

2

 2𝜋
 𝑒−

(𝑧−𝜎𝑡 )2

2

∞

−∞

𝑑𝑡 

                                                   =  𝑒𝜇𝑡+
𝜎2𝑡2

2 , 

since, by (i),   

 𝑒
−

(𝑥−𝜇 )2

2𝜎2

∞

−∞

 𝑑𝑥 =  𝜎 2𝜋,   ∀𝜇 ∈ ℝ and 𝜎 > 0. 

Thus, for 𝑡 ∈ ℝ,   

𝜓𝑋𝜇 ,𝜎
 𝑡 = ln  𝑀𝑋𝜇 ,𝜎

 𝑡  =𝜇𝑡 +
𝜎2𝑡2

2
 

⟹ 𝐸 𝑋 = 𝜓𝑋𝜇 ,𝜎

(1)  0 = 𝜇  and Var 𝑋 = 𝜓𝑋𝜇 ,𝜎

(2)  0 = 𝜎2. 

(iv) From the discussion following Definition 3.3 we have, for 𝑡 ∈ ℝ, 

                                             𝑀𝑌𝜇 ,𝜎
 𝑡 =  𝑀𝑎𝑋𝜇 ,𝜎+𝑏 𝑡  

=  𝑒𝑡𝑏𝑀𝑋𝜇 ,𝜎
 𝑎𝑡  

   =  𝑒
 𝑎𝜇+𝑏 𝑡+

𝑎2𝜎2𝑡2

2  
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              = 𝑀𝑋𝑎𝜇 +𝑏, 𝑎 𝜎
 𝑡  

⟹ 𝑌𝜇 ,𝜎 =
𝑑
𝑋𝑎𝜇+𝑏, 𝑎 𝜎 . 

Therefore the p.d.f. of 𝑌𝜇 ,𝜎  is given by 

𝑓𝑌𝜇 ,𝜎
 𝑦 =   𝑓𝑋𝑎𝜇 +𝑏, 𝑎 𝜎

 𝑦  

                                                      =   
1

 𝑎 𝜎 2𝜋
𝑒
−

(𝑦−(𝑎𝜇 +𝑏))2

2𝑎2𝜎2 𝑦 ∈ ℝ.  ▄ 

In the statistical literature, the probability distribution of the random variable 𝑋𝜇 ,𝜎  having a 

p.d.f. 𝑓𝑋𝜇 ,𝜎
 ⋅ , defined by (4.1), is called the normal distribution (or Gaussian distribution) 

with mean 𝜇  and variance 𝜎2  (denoted by 𝑋𝜇 ,𝜎 ∼ 𝑁(𝜇, 𝜎2)). Various properties of this 

distribution are further discussed in Module 5. 

Example 4.3 

Let 𝑝 ∈  0,1  and let 𝑋𝑝  be a random variable with p.m.f. 

𝑓𝑋𝑝  𝑥 =   
 
𝑛

𝑥
 𝑝𝑥𝑞𝑛−𝑥 ,   if 𝑥 ∈  0, 1,⋯ , 𝑛 

0,                      otherwise

 ,                                         (4.2) 

where 𝑛 is a given positive integer and 𝑞 = 1 − 𝑝. 

(i) Find the m.g.f. of  𝑋𝑝  and hence find the mean and variance of 𝑋𝑝 , 𝑝 ∈  0,1 ;  

(ii) Let   𝑌𝑝 = 𝑛 − 𝑋𝑝 , p ∈  0,1 . Using the m.g.f. of 𝑋𝑝  show that the p.m.f. of  𝑌𝑝  is  

𝑓𝑌𝑝  𝑥 =  
 
𝑛

𝑦
 𝑞𝑦(1 − 𝑞)𝑛−𝑦 ,   if 𝑦 ∈  0, 1,⋯ , 𝑛 

0,                                  otherwise  

 . 

Solution. 

(i) From the solution of Example 3.6 (iii), it is clear that the m.g.f. of 𝑋𝑝  is given 

by 

𝑀𝑋𝑝
 𝑡 =  (1 − 𝑝 + 𝑝𝑒𝑡)𝑛 ,    𝑡 ∈ ℝ. 

Therefore, for 𝑡 ∈ ℝ, 

        𝜓𝑋𝑝
 𝑡 =  ln(𝑀𝑋𝑝

 𝑡 ) = 𝑛 ln(1 − 𝑝 + 𝑝𝑒𝑡) , 𝑡 ∈ ℝ, 

                                       𝜓𝑋𝑝
 1  𝑡 =  

𝑛𝑝𝑒𝑡

1 − 𝑝 + 𝑝𝑒𝑡
  , 𝑡 ∈ ℝ, 
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𝜓𝑋𝑝
 2 

(𝑡) = 𝑛𝑝
 1 − 𝑝 + 𝑝𝑒𝑡 𝑒𝑡 − 𝑝𝑒2𝑡

(1 − 𝑝 + 𝑝𝑒𝑡)2
   , 𝑡 ∈ ℝ 

⟹ 𝐸 𝑋 =  𝜓𝑋𝑝
 1  0 = 𝑛𝑝 and     Var 𝑋 = 𝜓𝑋𝑝

 2 (0) = 𝑛𝑝 1 − 𝑝 . 

(ii) For   𝑡 ∈ ℝ 

                     𝑀𝑌𝑝
 𝑡 = 𝐸(𝑒𝑡𝑌𝑝 ) 

                                    = 𝑒𝑛𝑡𝑀𝑋𝑝
 −𝑡  

                                    = 𝑒𝑛𝑡 (1 − 𝑝 + 𝑝𝑒−𝑡)𝑛  

                                    = (𝑝 + (1 − 𝑝)𝑒𝑡)𝑛  

                                    = 𝑀𝑋1−𝑝
 𝑡 , 

i.e. , 𝑌𝑝 =
𝑑
𝑋1−𝑝 , p ∈  0,1 . Therefore the p.m.f. of 𝑌𝑝  is given by 

                                      𝑓𝑌𝑝  𝑦 = 𝑓𝑋1−𝑝
 𝑦  

  =   
 
𝑛

𝑦
 𝑞𝑦(1 − 𝑞)𝑛−𝑦 ,   if 𝑦 ∈  0, 1,⋯ , 𝑛 

0,                                   otherwise

 .  ▄ 

 

The probability distribution of the random variable 𝑋𝑝 , having p.m.f. 𝑓𝑋𝑝 (⋅) defined by 

(4.2), is called a binomial distribution with 𝑛 trials and success probability 𝑝 (denoted by 

𝑋𝑝 ∼ Bin(𝑛, 𝑝)). The binomial distribution and other related distributions are discussed in 

more detail in Module 5. 

 

3.5 PROBABILITY AND MOMENT INEQUALITIES 

Let 𝑋 be a random variable defined on a probability space  𝛺, ℱ, 𝑃 , and let 𝐵 ∈ ℬ1 be a 

Borel set. In many situation 𝑃  𝑋 ∈ 𝐵   cannot be explicitly evaluated and therefore some 

estimate of this probability may be desired. For example if a random variable 𝑍 has the 

p.d.f. 

𝑓𝑍 𝑧 =     
1

 2𝜋
𝑒−

𝑧2

2 , −∞ < 𝑧 < ∞, 

  then        

                                   𝑃  𝑍 > 2  =      
1

 2𝜋

∞

2
𝑒−

𝑧2

2 𝑑𝑧                                               (5.1) 

cannot be explicitly evaluated and, therefore, an estimate of this probability may be 

desired. To estimate this probability one has to either resort to numerical integration or use 



NPTEL- Probability and Distributions  

 

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                 11 
 

some other estimation procedure. Inequalities are popular estimation procedures and they 

play an important role in probability theory. 

Theorem 5.1 

Let 𝑋 be a random variable and let 𝑔:  0, ∞) → ℝ be a non-negative and non decreasing 

function such that the expected value of 𝑔(𝑋) is finite. Then, for any 𝑐 > 0 for which 

𝑔(𝑐) > 0, 

𝑃   𝑋 ≥ 𝑐  ≤
𝛦 𝑔  𝑋   

𝑔 𝑐 
. 

Proof. We will provide the proof for the case when 𝑋 is of absolutely continuous type. 

The proof for the discrete case follows in the similar fashion with integral signs replaced 

by summation signs. 

Fix 𝑐 > 0   such that 𝑔 𝑐 > 0. Define 𝐴 = ℝ−  −𝑐, 𝑐  so that, for 𝑥 ∈ 𝛢,  𝑥 ≥ 𝑐. Then 

 𝐸 𝑔  𝑋   =  𝑔  𝑥  
∞

−∞

𝑓𝑋 𝑥 𝑑𝑥 

                      ≥  𝑔  𝑥  
∞

−∞

𝐼𝐴 𝑥 𝑓𝑋 𝑥 𝑑𝑥      since 𝑔  𝑥  ≥ 𝑔  𝑥  𝐼𝐴(𝑥)∀𝑥 ∈ ℝ  

                 ≥ 𝑔 𝑐  𝐼𝐴 𝑥 𝑓𝑋 𝑥 𝑑𝑥
∞

−∞

     (since 𝑔  𝑥  𝐼𝐴 𝑥 ≥ 𝑔 𝑐 𝐼𝐴 𝑥 ∀𝑥 ∈ ℝ, as 𝑔 ↑) 

                     =  𝑔 𝑐 𝑃  𝑋 ∈ 𝐴   

                     =  𝑔 𝑐 𝑃   𝑋 ≥ 𝑐   

⟹ 𝑃   𝑋 ≥ 𝑐  ≤
Ε 𝑔  𝑋   

𝑔 𝑐 
.  ▄ 

Corollary 5.1 

Let 𝑋 be a random variable. 

3.5.1 Markov Inequality 

Suppose that  𝐸  𝑋 𝑟 < ∞, for some  𝑟 > 0. Then, for any 𝑐 > 0, 

𝑃   𝑋 ≥ 𝑐  ≤
𝐸  𝑋 𝑟 

𝑐𝑟
. 

3.5.2 Chebyshev Inequality 

Suppose that 𝑋 has finite first two moments. If 𝜇 = 𝐸 𝑋  and 𝜎2 = Var 𝑋   𝜎 ≥
0 . Then for any 𝑘 > 0, 
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𝑃   𝑋 − 𝜇 ≥ 𝑘  ≤
𝜎2

𝑘2
. 

Proof. 

(i) Fix 𝑐 > 0 and 𝑟 > 0 and let 𝑔 𝑥 = 𝑥𝑟 , 𝑥 ≥ 0. Clearly 𝑔 is a non-negative and 

non decreasing function. Using Theorem 5.1, we get  

 

𝑃   𝑋 ≥ 𝑐  ≤
𝐸  𝑋 𝑟 

𝑐𝑟
. 

 

(ii) Using (i) on  𝑌 =  𝑋 − 𝜇 , for 𝑟 = 2, we get  

𝑃   𝑋 − 𝜇 ≥ 𝑘  ≤
𝐸( 𝑋 − 𝜇 2)

𝑘2
=
𝜎2

𝑘2
.  ▄ 

Example: 5.1  

Let us revisit the problem of estimating 𝑃  𝑍 > 2  , defined by (5.1). Using Example 4.2 

(iii), we have𝜇 = 𝐸 𝑍 = 0  and 𝜎2 = Var 𝑍 = 1.  Moreover, using Example 4.2 (ii), 

𝑍 =
𝑑
− 𝑍. Consequently 𝑃  𝑍 > 2  = 𝑃  −𝑍 > 2    = 𝑃  𝑍 < −2   , i.e., 

𝑃  𝑍 > 2  =  
𝑃   𝑍 > 2  

2
  =  

𝑃   𝑍 ≥ 2  

2
. 

Now, using the Chebyshev inequality we have  

𝑃  𝑍 > 2  =
𝑃   𝑍 ≥ 2  

2
≤
𝐸  𝑍 2 

8
=

1

8
= 0.125. 

The exact value of 𝑃  𝑍 > 2  , obtained using numerical integration, is 0.0228. ▄    

The following example illustrates that bounds provided in Theorem 5.1 and Corollary 5.1 

are tight, i.e., the upper bounds provided there in may be attained. 

 

Example 5.2 

Let 𝑋 be a random variable with p.m.f. 

𝑓𝑋 𝑥 =

 
 
 

 
 

1

8
,       if 𝑥 ∈ {−1,1}  

3

4
,       if 𝑥 = 0            

0,       otherwise        

 . 
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Clearly 𝐸 𝑋2 =
1

4
 and, therefore, using the Markov inequality we have  

𝑃   𝑋 ≥ 1  ≤ 𝐸 𝑋2 =
1

4
. 

The exact probability is  

𝑃   𝑋 ≥ 1  = 𝑃  𝑋 ∈  −1,1   =
1

4
.  ▄ 

Definition 5.1  

A random variable 𝑋 is said to be degenerate at a point 𝑐 ∈ ℝ if 𝑃  𝑋 = 𝑐  = 1. ▄ 

Suppose that a random variable 𝑋 is degenerate at 𝑐 ∈ ℝ. Then clearly 𝑋 is of discrete 

type with support 𝑆𝑋 =  𝑐 , distribution function. 

𝐹𝑋 𝑥 =  
0, 𝑥 < 𝑐
1, 𝑥 ≥ 𝑐

   ,  

and p.m.f. 

      𝑓𝑋 𝑥 =  
1, 𝑥 = 𝑐
0, otherwise

.  

Note that a random variable 𝑋 is degenerate at a point 𝑐 ∈ ℝ if, and only if, 𝐸 𝑋 = 𝑐 and 

Var 𝑋 = 0. 

 


