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MODULE 4 

SOME SPECIAL DISCRETE DISTRIBUTIONS AND THEIR 

PROPERTIES 

LECTURE 19 

Topics  

4.3 THE HYPERGEOMETRIC DISTRIBUTION   

4.4 THE POISSON DISTRIBUTION 

 

4.5 DISCRETE UNIFORM DISTRIBUTION 
 

Example 2.1 

Urn 𝑈𝑖  (𝑖 = 1, 2)  contains 𝑁𝑖  balls out of which 𝑟𝑖  are red and 𝑁𝑖 − 𝑟𝑖  are black. A 

sample of 𝑛 (1 ≤ 𝑛 ≤ 𝑁1) balls is chosen at random (without replacement) from urn 𝑈1 

and all the balls in the selected sample are transferred to urn 𝑈2. After the transfer two 

balls are drawn at random from the urn 𝑈2. Find the probability that both the balls drawn 

from urn 𝑈2 are red. 

Solution. Let 𝑋 denote the number of red balls among the 𝑛 balls drawn from urn the  𝑈1. 

Then 𝑋 ∼ Hyp(𝑟1, 𝑛, 𝑁1). Let 𝐸 be the even that both the balls drawn from the urn 𝑈2 are 

red. Then the required probability is 

𝑃 𝐸 =   𝑃 𝐸 {𝑋 = 𝑥} 𝑃( 𝑋 = 𝑥 )

𝑛

𝑥=0

 

                                                         =  𝑃(𝐸| 𝑋 = 𝑥 )𝑃  𝑋 = 𝑥  

min  𝑛,𝑟1 

𝑥=max (0,𝑛−𝑁1+𝑟1)

.  

Note that, for 𝑥 ∈ 𝑆𝑋 =  𝑚 ∈ ℕ: max 0, 𝑛 − 𝑁1 + 𝑟1 ≤ 𝑚 ≤ min(𝑛, 𝑟1) ,  

                              𝑃 𝐸  𝑋 = 𝑥  =  
 𝑟2+𝑥

2
 

 𝑁2+𝑛
2
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               =  
𝑟2 𝑟2 − 1 +  2𝑟2𝑥 + 𝑥(𝑥 − 1)

 𝑁2 + 𝑛 (𝑁2 + 𝑛 − 1)
. 

Therefore, 

   𝑃 𝐸 =  
1

 𝑁2 + 𝑛 (𝑁2 + 𝑛 − 1)
  𝑟2 𝑟2 − 1 +  2𝑟2𝑥 + 𝑥(𝑥 − 1) 𝑃  𝑋 = 𝑥  

min  𝑛,𝑟1 

𝑥=max  0,𝑛−𝑁1+𝑟1 

 

              =  
1

 𝑁2 + 𝑛 (𝑁2 + 𝑛 − 1)
 𝑟2 𝑟2 − 1 +  2𝑟2𝐸 𝑋 +  𝐸(𝑋 𝑋 − 1 )  

       =
1

 𝑁2 + 𝑛 (𝑁2 + 𝑛 − 1)
 𝑟2 𝑟2 − 1 +  2𝑟2

𝑟1

𝑁1
+  𝑛 𝑛 − 1 

𝑟1(𝑟1 − 1)

𝑁1(𝑁1 − 1)
 . ▄ 

 

 

 

4.4 THE POISSON DISTRIBUTION 

Suppose that some event 𝐸 , say a phone call received at a telephone exchange, is 

occurring randomly over a period of time and one is interested in the probability 

distribution of 𝑋, the number of times the event 𝐸 has occurred in an unit interval (say 

(0, 1] ). One way to model the probability distribution of 𝑋 is to partition the unit interval 

(0, 1]  into a large number (say 𝑛 , where 𝑛 → ∞ ) of infinitesimal subintervals 

 0,
1

𝑛
 ,  

1

𝑛
,

2

𝑛
 ,⋯ ,  

𝑛−1

𝑛
 , 1]  of length 

1

𝑛
 each. In many situations it may be relevant to 

assume that:  

(i) for each infinitesimal subinterval  
𝑘−1

𝑛
,
𝑘

𝑛
 , 𝑘 = 1, 2, … , 𝑛, the probability that 

the event 𝐸 will occur in this subinterval is 
𝜆

𝑛
 and the probability that the event 

𝐸 will not occur in this subinterval is 1 −
𝜆

𝑛
, where 𝜆 > 0 is a given constant;  

(ii) chance of two or more occurrences of the event 𝐸  in any infinitesimal 

subinterval  
𝑘−1

𝑛
,
𝑘

𝑛
 , 𝑘 = 1, 2, … , 𝑛, is so small that it can be neglected; 

(iii) if  
𝑗−1

𝑛
,
𝑗

𝑛
 and  

𝑘−1

𝑛
,
𝑘

𝑛
  (1 ≤ 𝑗 < 𝑘 ≤ 𝑛)  are disjoint subintervals then the 

number of times the event 𝐸 occurs in the interval  
𝑗−1

𝑛
,
𝑗

𝑛
  is independent of  

the number of times the event 𝐸 occurs in the interval  
𝑘−1

𝑛
,
𝑘

𝑛
 .  
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Under the above hypotheses, in each infinitesimal subinterval  
𝑘−1

𝑛
,
𝑘

𝑛
 , 𝑘 =

1, 2, … , 𝑛,  event 𝐸 can occur only 1 or 0 times and the probability of occurrence of 

event 𝐸 in each  of these subintervals is the same (=
𝜆

𝑛
). If we label the occurrence of 

event 𝐸 in any of these subintervals as success (𝑆) and its non-occurrence as failure 

(𝐹), then we have a sequence of 𝑛 independent Bernoulli trials with probability of 

success in each trial as 𝑝𝑛 =  
𝜆

𝑛
. Therefore it is reasonable to assume that  

𝑋 ≡ 𝑋𝑛 = number of times event  𝐸 occurs in the unit interval  0, 1  

∼ Bin 𝑛, 𝑝𝑛 ,                                                                               

where 𝑝𝑛 =  
𝜆

𝑛
. The p.m.f. of 𝑋 (≡ 𝑋𝑛) is given by 

𝑓𝑛(𝑘) =   
𝑛

𝑘
 𝑝𝑛

𝑘 1 − 𝑝𝑛 
𝑛−𝑘𝐼 0,1,…,𝑛 (𝑘) 

      =  
1

𝑘!
 1 −

1

𝑛
  1 −

2

𝑛
 ⋯ 1 −

𝑘 − 1

𝑛
  𝑛𝑝𝑛 

𝑘  1 −
𝑛𝑝𝑛
𝑛
 
𝑛

 1 − 𝑝𝑛 
−𝑘𝐼 0,1,…,𝑛  𝑘 . 

Note that 𝑛𝑝𝑛 = 𝜆 and 𝑝𝑛 → 0, as 𝑛 → ∞. Therefore 

                      𝑓𝑛 𝑘 
𝑛→∞
   

𝑒−𝜆𝜆𝑘

𝑘!
𝐼 0,1,…  (𝑘) 

                      =   
𝑒−𝜆𝜆𝑘

𝑘!
,           if 𝑘 ∈ {0, 1, … }

0,                   otherwise        

 .                                                           (3.1)   

Note that  
𝜆𝑘

𝑘!

∞
𝑘=0 = 𝑒𝜆 , and therefore (3.1) defines a probability mass function. The 

above discussion suggests that the probability distribution of 𝑋, the number of times 

the event 𝐸 occurs in the unit interval  0, 1 , can be modeled by the p.m.f.  

𝑓𝑋 𝑘 =  𝑃  𝑋 = 𝑘   =   
𝑒−𝜆𝜆𝑘

𝑘!
,         if  𝑘 ∈ {0, 1, … }

0,                   otherwise 

 ,            

where 𝜆 > 0 may be interpreted as the intensity with which event  𝐸 occurs. ▄ 

Definition 3.1  

A discrete type random variable 𝑋  is said to follow a Poisson distribution with 

parameter (or intensity)  𝜆 > 0 (written as 𝑋 ∼ P(λ)) if its support is 𝑆𝑋 = {0, 1, 2, … } 

and its probability mass function is given by 
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𝑓𝑋 𝑘 =  𝑃  𝑋 = 𝑘   =   
𝑒−𝜆𝜆𝑘

𝑘!
,           if 𝑘 ∈ {0, 1, … }

0,                     otherwise

 ∙ ▄ 

 

Notice that we have a family {𝑃 𝜆 : 𝜆 > 0} of Poisson distributions corresponding to 

various choices of 𝜆 > 0. Also notice that a Poisson distribution can be derived as a 

limiting binomial distribution. In fact on exactly following the arguments used for 

deriving (3.1) we can prove the following theorem.  

Theorem 3.1 

Let 𝑋𝑛 ∼ Bin 𝑛, 𝑝𝑛 , 𝑛 = 1, 2, … , where {𝑝𝑛 : 𝑛 = 1, 2, … }  is a sequence of real 

numbers in (0, 1)  such that lim𝑛→∞(𝑛𝑝𝑛) = 𝜆 , for some real constant 𝜆 > 0 . Let 

𝑓𝑋𝑛 (𝑥) denote the p.m.f. of 𝑋𝑛 . Then  

lim
𝑛→∞

𝑓𝑋𝑛  𝑘 =  𝑓 𝑘 =  
𝑒−𝜆𝜆𝑘

𝑘!
,         if 𝑘 ∈ {0, 1, … }

0,                 otherwise

 . ▄ 

 

 

Figure 3.1. Plot of p.m.f. of Bin(50,0.04) 
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Figure 3.2. Plot of p.m.f. of P(2) 

The above theorem suggests that, in situations where we have a large number (say 𝑛) 

of independent Bernoulli trials and probability of success (say 𝑝) in each trial is so 

small that 𝑛𝑝 is a moderate quantity, the Poisson distribution provides a good fit (see 

Figures 3.1 and 3.2). 

Example 3.1  

Consider a person who plays a series of 2500 games independently. If the probability 

of person winning any game is 0.002, find the probability that the person will win at 

least two games. 

Solution. In each game let us label winning of the game by the person as  a success 

and his/her losing the game as a failure. Then we have a sequence of 𝑛 = 2500 

Bernoulli trials with probability of success in each trial as 𝑝 = 0.002. Let 𝑋 denote 

the number of successes in 𝑛 = 2500 Bernoulli trials. Then 𝑋 ∼ Bin(2500, 0.002) 

and the desired probability is 

𝑃  𝑋 ≥ 2  =  1 −  𝑃  𝑋 = 0  +  𝑃( 𝑋 = 1 )  

      = 1 −   1 − 0.002 2500 +  2500 × 0.002 ×  1 − 0.002 2499 .  

Since 𝑛 = 2500 is large and 𝑛𝑝 = 5 is a moderate quantity, we can approximate the 

distribution of 𝑋 ∼ Bin(𝑛, 𝑝) by that of 𝑌 ∼ P(𝜆), where 𝜆 = 𝑛𝑝 = 5. Therefore 



NPTEL- Probability and Distributions  

 

 
Dept. of Mathematics and statistics Indian Institute of Technology, Kanpur                                   6 
 

𝑃  𝑋 ≥ 2  ≈ 𝑃  𝑌 ≥ 2   

                                       =  1 −  𝑃  𝑌 = 0  +  𝑃( 𝑌 = 1 )  

                                       = 1 −  𝑒−𝜆 +  𝜆𝑒−𝜆  

                                       = 1 −  6 × 𝑒−5 

                                       = 1 − 0.0404 

                                       = 0.9596, 

where the symbol ≈ stands for “approximately equal to”. ▄ 

Example 3.2  

Telephone calls arrive independently at a telephone exchange according to Poisson 

distribution with mean rate of 5 calls per second. Find the probability that:  

(i) three calls will be received during a second; 

(ii) among first 5  one second time intervals  0, 1 ,  1, 2 , … ,  4, 5  of a given 

minute, exactly 3 calls will be received on 2 of these time intervals. 

Solution. 

(i) Let 𝑋 denote the number of calls received during a second. Then 𝑋 ∼ 𝑃(5) 

and the desired probability is  

𝑃  𝑋 = 3  =  
𝑒−553

3!
≈ 0.1404. 

(ii) On any given interval  𝑘 − 1, 𝑘 , 𝑘 = 1, 2, … , 5, let us label arrival of 3 calls 

as success and arrival of any other number of calls as failure. Then we have a 

sequence of 5 independent Bernoulli trials with probability of success in each 

trial as 0.1404 (see (i)). Let 𝑌 denote the number of one-second time intervals 

among  0, 1 ,  1, 2 , … ,  4, 5  on which exactly three calls are received (i.e., 𝑌 

denotes the number of successes in 5  independent Bernoulli trials with 

probability of success in each trial as 0.1404). Then 𝑌 ∼ Bin(5, 0.1404) and 

the desired probability is          

𝑃  𝑌 = 2  =   
5

2
  0.1404 2 1 − 0.1404 3 ≈ 0.1252.  ▄ 

Suppose that 𝑋 ∼ P(𝜆) , for some 𝜆 > 0 . Then, for 𝑟 ∈  1, 2, …  , the 𝑟 -th factorial 

moment of 𝑋 is given by 

                                    𝛦 𝑋(𝑟) =  𝛦 𝑋 𝑋 − 1 ⋯  𝑋 − 𝑟 + 1   
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                                                    = 𝑒−𝜆  𝑘 𝑘 − 1 ⋯ 𝑘 − 𝑟 + 1 
𝜆𝑘

𝑘!

∞

𝑘=0

 

                                                    = 𝑒−𝜆  
𝜆𝑘

 𝑘 − 𝑟 !

∞

𝑘=𝑟

 

                                                    =  𝑒−𝜆  
𝜆𝑘+𝑟

𝑘!

∞

𝑘=0

 

                                                   = 𝜆𝑟𝑒−𝜆  
𝜆𝑘

𝑘!

∞

𝑘=0

 

                                                   = 𝜆𝑟 . 

Therefore 

Mean = 𝛦 𝑋 = 𝐸 𝑋 1  =  𝜆;  

                                                                  𝛦 𝑋(𝑋 − 1) = 𝜆2; 

and                                  Var 𝑋 =  𝛦 𝑋(𝑋 − 1) + 𝛦 𝑋 −  𝛦 𝑋  
2

= 𝜆.  

Thus, for the Poisson distribution, the mean is equal to the variance 

The m.g.f. of 𝑋 ∼ 𝑃(𝜆) is given by 

                                𝑀𝑋 𝑡 = 𝛦 𝑒𝑡𝑋  

                                            = 𝑒−𝜆  
 𝜆𝑒𝑡 𝑘

𝑘!

∞

𝑘=0

 

                                            = 𝑒−𝜆e𝜆𝑒
𝑡
 

                                            = 𝑒𝜆(𝑒 𝑡−1), 𝑡 ∈ ℝ. 

Therefore 

                              𝛹𝑋 𝑡 = ln𝑀𝑋(𝑡) = 𝜆 𝑒𝑡 − 1 ,   𝑡 ∈ ℝ. 

and                                                   𝛹𝑋
 1  𝑡 =  𝛹𝑋

 2  𝑡 = 𝜆𝑒𝑡 ,   𝑡 ∈ ℝ. 

Consequently, 
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𝛦 𝑋 = 𝛹𝑋
 1  0 = 𝜆 

         and                                          Var 𝑋 = 𝛹𝑋
 2  0  = 𝜆. 

The Poisson distribution provides a good model for counts of an event over a period of 

time, over an area or over a volume. 

4.5 DISCRETE UNIFORM DISTRIBUTION 

For a given positive integer 𝑁 (≥ 2) and real numbers 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑁 , a r.v. 𝑋 of 

discrete type is said to follow a discrete uniform distribution on the set {𝑥1, 𝑥2 , … , 𝑥𝑁} 

(written as 𝑋 ∼ 𝑈({𝑥1, 𝑥2, … , 𝑥𝑁} ) if the support of 𝑋  is 𝑆𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁}  and its 

p.m.f. is given by 

𝑓𝑋 𝑥 =  𝑃  𝑋 = 𝑥  =   
1

𝑁
,   if 𝑥 ∈ 𝑆𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}

0,    otherwise                          

 . 

Suppose that 𝑋 ∼ 𝑈({𝑥1, 𝑥2, … , 𝑥𝑁}). Then 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =  

1

𝑁
 𝑥𝑖

𝑟

𝑁

𝑖=1

, 𝑟 ∈ {1, 2, … }, 

                          Mean = 𝜇1
′ = 𝐸(𝑋) =  

1

𝑁
 𝑥𝑖

𝑁

𝑖=1

 

and                Var 𝑋 =  𝜎2 = 𝐸   𝑋 − 𝜇1
′  

2
 =  

1

𝑁
  𝑥𝑖 − 𝜇1

′  
2

.

𝑁

𝑖=1

 

Also the m.g.f. of 𝑋 ∼ 𝑈( 𝑥1, 𝑥2, … , 𝑥𝑁 ) is given by  

𝑀𝑋 𝑡 =  𝐸 𝑒𝑡𝑋 =  
1

𝑁
 𝑒𝑡𝑥𝑖

𝑁

𝑖=1

,     𝑡 ∈ ℝ. 

Now suppose that 𝑌 ∼ 𝑈( 1, 2, … ,𝑁 ). Then  

                                              𝛦 𝑌 =
1

𝑁
 𝑖

𝑁

𝑖=1

=  
𝑁 + 1

2
,  



NPTEL- Probability and Distributions  

 

 
Dept. of Mathematics and statistics Indian Institute of Technology, Kanpur                                   9 
 

𝛦 𝑌2 =
1

𝑁
 𝑖2

𝑁

𝑖=1

=  
 𝑁 + 1 (2𝑁 + 1)

6
 

       and                           Var 𝑌 = 𝐸 𝑌2 −  𝐸 𝑌  
2

=  
𝑁2 − 1

12
.  

Also the m.g.f. of 𝑌 ∼ 𝑈({1, 2, … ,𝑁} is given by  

𝑀𝑌 𝑡 =  𝐸 𝑒𝑡𝑌 =  
1

𝑁
 𝑒𝑖𝑡
𝑁

𝑖=1

=   
𝑒𝑡(𝑒𝑁𝑡 − 1)

𝑒𝑡 − 1
,         if 𝑡 ≠ 0

1,                             if 𝑡 = 0

 . ▄ 

     

Example 4.1 

A person has to open a lock whose key is lost among a set of 𝑁 keys. Assume that out of 

these 𝑁 keys only one can open the lock. To open the lock the person tries keys one by 

one by choosing, at each attempt, one of the keys at random from the unattempted keys. 

The unsuccessful keys are not considered for future attempts. Let 𝑌 denote the number of 

attempts the person will have to make to open the lock. Show that 𝑌 ∼ 𝑈( 1, 2, … ,𝑁 ) 

and hence find the mean and the variance of the r.v. 𝑌. 

Solution. For 𝑟 ∉ {1, 2, … ,𝑁}, we have 𝑃  𝑌 = 𝑟  = 0. For 𝑟 ∈ {1, 2, … , 𝑛} 

𝑃  𝑌 = 𝑟  =  
𝑁 − 1

𝑁
⋅
𝑁 − 2

𝑁 − 1
⋯
𝑁 − (𝑟 − 1)

𝑁 − (𝑟 − 2)
⋅

1

𝑁 − (𝑟 − 1)
=  

1

𝑁
. 

It follows that 𝑌 ∼ 𝑈({1, 2, … ,𝑁}) and, therefore,  

𝛦 𝑌 =  
𝑁 + 1

2
 and Var 𝑌 =

𝑁2 − 1

12
.  ▄  

 

 

 


