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MODULE 7 

LIMITING DISTRIBUTIONS 

LECTURE 42 

Topics 

7.3 SOME PRESERVATION RESULTS 
7.3.1 Normal Approximation to The Student-t Distribution 

7.4 THE DELTA-METHOD  
7.4.1 The Delta-Method 

 

Theorem 3.3 

Let 𝑋1, 𝑋2, …  be a sequence of i.i.d. random variables with finite mean 𝜇 . Let 𝑋 𝑛 =
1

𝑛
 𝑋𝑖
𝑛
𝑖=1  and 𝑆𝑛

2 =
1

𝑛−1
  𝑋𝑖 − 𝑋 𝑛 

2𝑛
𝑖=1 , 𝑛 = 2, 3, …, be sequences of sample means and 

sample variances, respectively. Define 𝑇𝑛 =
 𝑛 𝑋 𝑛−𝜇 

𝑆𝑛
, 𝑛 = 2, 3, …. 

(i) If 𝜎2 = Var 𝑋1 ∈  0,∞ , then 𝑆𝑛
2

𝑝
 𝜎2 , 𝑆𝑛

𝑝
 𝜎 and 𝑇𝑛

𝑑
 𝑍 ~ 𝑁 0, 1 , as 𝑛  ∞; 

(ii) Suppose that the kurtosis 𝛾1 =
𝐸  𝑋1−𝜇 

4 

𝜎4 < ∞. Then  𝑛 𝑆𝑛
2 − 𝜎2 

𝑑
 𝑊 ~ 𝑁 0,  𝛾1 −

1 𝜎4 , as 𝑛  ∞. 

Proof. 

(i)  We have  

                                𝑆𝑛
2  =

1

𝑛 − 1
  𝑋𝑖 − 𝑋 𝑛 

2

𝑛

𝑖=1

 

                                       =
1

𝑛 − 1
 𝑋𝑖

2

𝑛

𝑖=1

−
𝑛

𝑛 − 1
𝑋 𝑛

2 

                                       =
𝑛

𝑛 − 1
∙

1

𝑛
 𝑋𝑖

2

𝑛

𝑖=1

−
𝑛

𝑛 − 1
𝑋 𝑛

2, 𝑛 = 2, 3, …. 

Let 𝑌𝑖 = 𝑋𝑖
2, 𝑖 = 1, 2, … and let 𝑌 𝑛 =

1

𝑛
 𝑌𝑖
𝑛
𝑖=1 , 𝑛 = 2, 3, ….Then  

𝑆𝑛
2 =

𝑛

𝑛 − 1
 𝑌 𝑛 − 𝑋 𝑛

2 , 
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where 𝑌1, 𝑌2, …  is a sequence of i.i.d. random variables with mean 𝐸 𝑌1 = 𝐸 𝑋1
2 =

𝜎2 + 𝜇2. By the WLLN 

𝑌 𝑛
𝑝
 𝜎2 + 𝜇2, as 𝑛  ∞ 

 and                                               𝑋 𝑛
𝑝
 𝜇,                     as 𝑛  ∞. 

Using the continuity of function 𝑕 𝑥 = 𝑥2 , 𝑥 ∈ ℝ , and Theorem 3.1 (i) we have 

𝑋𝑛
2 𝑝
 𝜇2, as 𝑛  ∞. Since 

𝑛

𝑛−1
 1, on using Theorem 3.2 (i) and (iii) we get 

𝑆𝑛
2 =

𝑛

𝑛 − 1
 𝑌𝑛 − 𝑋𝑛

2
 

𝑝
 𝜎2 , as 𝑛  ∞. 

Since 𝑓 𝑥 =  𝑥, 𝑥 ∈  0,∞ , is a continuous function, it follows that 𝑆𝑛
𝑝
 𝜎, as 𝑛  ∞, 

and therefore 
𝜎

𝑆𝑛

𝑝
 1, as 𝑛  ∞. Using the CLT we have 

𝑍𝑛 ≝
 𝑛 𝑋 𝑛 − 𝜇 

𝜎

𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞ 

                    ⇒ 𝑇𝑛 =
𝜎

𝑆𝑛
𝑍𝑛

𝑑
 𝑍 ~ 𝑁 0,1 ,   as 𝑛  ∞,                 (using Theorem 3.2 (iv)). 

(ii) Let 𝑇𝑖 =
𝑋𝑖−𝜇

𝜎
, 𝑖 = 1,… , 𝑛, so that 𝑇1, 𝑇2, … are i.i.d. random variables with mean 

0  and variance 1 . Moreover 𝑋𝑖 = 𝜇 + 𝜎𝑇𝑖 , 𝑖 = 1, 2, … , 𝑋 𝑛 = 𝜇 + 𝜎𝑇 𝑛 , 𝑇 𝑛 =
1

𝑛
 𝑇𝑖
𝑛
𝑖=1  and  

                                                𝑆𝑛
2 =

1

𝑛 − 1
  𝑋𝑖 − 𝑋 𝑛 

2

𝑛

𝑖=1

 

                                                      =
𝜎2

𝑛 − 1
  𝑇𝑖 − 𝑇 𝑛 

2

𝑛

𝑖=1

 

                                                      =
𝑛

𝑛 − 1
𝜎2  

1

𝑛
 𝑇𝑖

2

𝑛

𝑖=1

− 𝑇 𝑛
2  

                                                      =
𝑛

𝑛 − 1
𝜎2  

1

𝑛
 𝑌𝑖

𝑛

𝑖=1

− 𝑇 𝑛
2  

                                                      =
𝑛

𝑛 − 1
𝜎2 𝑌 𝑛 − 𝑇 𝑛

2 , 
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where 𝑌𝑖 = 𝑇𝑖
2, 𝑖 = 1, 2, …  and 𝑌 𝑛 =

1

𝑛
 𝑌𝑖
𝑛
𝑖=1 , 𝑛 = 2, 3, …  . Then 𝑌1, 𝑌2, …  are i.i.d. 

random variables with mean 𝐸 𝑌1 = 𝐸 𝑇1
2 = 1  and Var 𝑌1 = 𝐸 𝑇1

4 −  𝐸 𝑇1
2  

2
=

𝛾1 − 1. By the CLT 

𝑈𝑛 ≝
 𝑛 𝑌 𝑛 − 1 

 𝛾1 − 1

𝑑
 𝑈 ~ 𝑁 0,1 , as 𝑛  ∞ 

 and                              𝑉𝑛  =    𝑛𝑇 𝑛
𝑑
 𝑉 ~ 𝑁 0,1 ,                    as 𝑛  ∞. 

Also,  

 𝑛 𝑆𝑛
2 − 𝜎2 =

𝑛

𝑛 − 1
𝜎2 𝛾1 − 1 𝑈𝑛 +

 𝑛

𝑛 − 1
𝜎2 −

 𝑛

𝑛 − 1
 𝜎2𝑉𝑛

2 ,   𝑛 = 2, 3, …. 

Using continuity of function 𝑕 𝑥 = 𝑥2 , 𝑥 ∈  0,∞ , and Theorem 3.1 (iii) we have 

𝑉𝑛
2

𝑑
 𝑉2 , as 𝑛  ∞ . Since, as 𝑛  ∞,

𝑛

𝑛−1
𝜎2 𝛾1 − 1  𝜎2 𝛾1 − 1 and

 𝑛

𝑛−1
𝜎2  0 , 

using Theorem 3.2, we conclude that 

 𝑛 𝑆𝑛
2 − 𝜎2 

𝑑
 𝑊 ~ 𝑁 0,  𝛾1 − 1 𝜎4 , as 𝑛  ∞, 

where 𝑊 = 𝜎2 𝛾1 − 1𝑈 ~ 𝑁 0,  𝛾1 − 1 𝜎4 .  ▄ 

7.3.1 Normal Approximation to the Student-t Distribution 

Corollary 3.1 

Let  𝑇𝑛 𝑛≥1  be a sequence of random variables such that 𝑇𝑛  ~ 𝑡𝑛 , the Student-t 

distribution with  𝑛 degrees of freedom. Then 𝑇𝑛
𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞. 

Proof. Let 𝑍1, 𝑍2 , … be a sequence of i.i.d. 𝑁 0,1  random variables. Let 𝑍 𝑛 =
1

𝑛
 𝑍𝑖
𝑛
𝑖=1  

and 𝑆𝑛
2 =

1

𝑛−1
  𝑍𝑖 − 𝑍 𝑛 
𝑛
𝑖=1

2
, 𝑛 = 2, 3, …. Define  

𝑉𝑛 =
 𝑛𝑍 𝑛
𝑆𝑛

, 𝑛 = 2, 3, …. 

By Corollary 11.1, Module 6,  𝑉𝑛 =
𝑑
𝑇𝑛−1, 𝑛 = 2, 3, …. By Theorem 3.3 (i) we have 

𝑉𝑛
𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞ 

⇒ 𝑇𝑛−1

𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞ 
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⇒ 𝑇𝑛
𝑑
 𝑍~𝑁 0,1 , as 𝑛  ∞.  ▄ 

 

7.4 THE DELTA-METHOD  

Generally we have a sequence  𝑋𝑛 𝑛≥1 of random variables such that, for real constants 𝑐 

and 𝑏 > 0, 𝑋𝑛
𝑝
 𝑐, and 𝑛𝑏 𝑋𝑛 − 𝑐 

𝑑
 𝑋, as 𝑛  ∞ , where 𝑋  is some random variable. 

Then, for any continuous function 𝑔 ∙ , we know that 𝑔 𝑋𝑛 
𝑝
 𝑔 𝑐 , as 𝑛  ∞ . The 

Delta-method is a tool for providing a non-degenerate limiting distribution to a 

normalized version of 𝑔 𝑋𝑛 , 𝑛 = 1, 2, …. 

Theorem 4.1  

Let  𝑋𝑛 𝑛≥1 be a sequence of random variables such that, for some real constants 𝑏 > 0 

and 𝑐  and some random variable 𝑋, 𝑛𝑏 𝑋𝑛 − 𝑐 
𝑑
 𝑋, as 𝑛  ∞ . Let 𝑔:ℝ  ℝ  be a 

function that is differentiable at 𝑐. Then  

𝑛𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  
𝑑
 𝑔 1  𝑐 𝑋, as 𝑛  ∞, 

where 𝑔 1 (𝑐) is the derivative of 𝑔 ∙  at the point 𝑐. 

Proof. Let Ψ1: ℝ  ℝ be such that Ψ1 𝑐 = 0 and 

𝑔 𝑥 = 𝑔 𝑐 +  𝑥 − 𝑐  𝑔 1 (𝑐) + Ψ1 𝑥  , 𝑥 ∈ ℝ, 

i.e., 

Ψ1 𝑥 =  
𝑔 𝑥 − 𝑔 𝑐 

𝑥 − 𝑐
− 𝑔 1  𝑐 , if 𝑥 ∈ ℝ −  𝑐 

0,                                                 if 𝑥 = 𝑐

 . 

Then lim𝑥 𝑐 Ψ1 𝑥 = 𝑔 1 (𝑐) − 𝑔 1 (𝑐) = 0 = Ψ1 𝑐  (i.e., Ψ1 ∙  is continuous at 𝑐) and 

𝑛𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  = 𝑔 1 (𝑐)𝑛𝑏 𝑋𝑛 − 𝑐 + Ψ1 𝑋𝑛 𝑛
𝑏 𝑋𝑛 − 𝑐 , 𝑛 = 1, 2, …. 

By Theorem 3.2 (iv), 

𝑋𝑛 = 𝑛−𝑏 𝑛𝑏 𝑋𝑛 − 𝑐  + 𝑐
𝑑
 0 × 𝑋 + 𝑐, as 𝑛  ∞ 

                                ⇒ 𝑋𝑛
𝑝
 𝑐, as 𝑛  ∞ 

⇒ Ψ1 𝑋𝑛 
𝑝
 Ψ1 𝑐 = 0, as 𝑛  ∞           (since Ψ1 is continuous  at 𝑐) 
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⇒ Ψ1 𝑋𝑛 𝑛
𝑏 𝑋𝑛 − 𝑐 

𝑝
  0, as 𝑛  ∞    (Theorem 3.2 (ii)) 

⇒ 𝑛𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  = 𝑔 1 (𝑐)𝑛𝑏 𝑋𝑛 − 𝑐 + Ψ1 𝑋𝑛 𝑛
𝑏 𝑋𝑛 − 𝑐  

                                       
𝑑
 𝑔 1  𝑐 𝑋, as 𝑛  ∞                       (Theorem 3.2). ▄ 

Remark 4.1 

Note that, in the above theorem, if we have 𝑔 1 (𝑐) = 0 then we conclude that 

𝑛𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  
𝑑
 0, as 𝑛  ∞ 

i. e. ,                                        𝑛𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  
𝑝
 0, as 𝑛  ∞, 

and we get a degenerate limiting distribution. Now suppose that 𝑔 1  𝑐 = 0 and 𝑔 ∙  is 

twice differentiable at 𝑐 with second derivatives at the point 𝑐 given by 𝑔 2 (𝑐). Define 

Ψ2: ℝ  ℝ by 

Ψ2 𝑥 =

 
 
 

 
 𝑔 𝑥 − 𝑔 𝑐 

 𝑥 − 𝑐 2

2 
− 𝑔 2  𝑐 , if 𝑥 ≠ 𝑐

0,                                                 if 𝑥 = 𝑐

 ∙ 

The, using L’ Hospital rule (0/0 form), we have 

lim
𝑥 𝑐

Ψ2 𝑥 = lim
𝑥 𝑐

𝑔 1 (𝑥)

𝑥 − 𝑐
− 𝑔 2 (𝑐) 

                     = lim
𝑥 𝑐

𝑔 1 (𝑥) − 𝑔 1 (𝑐)

𝑥 − 𝑐
− 𝑔 2 (𝑐)  (since 𝑔 1 (𝑐) = 0) 

                     =  𝑔 2  𝑐 − 𝑔 2 (𝑐) 

                     = 0 

                     = Ψ2 𝑐 , 

i.e., Ψ2 ⋅  is continuous at point 𝑐. Consequently, using Theorem 3.2,  

𝑛2𝑏 𝑔 𝑋𝑛 − 𝑔 𝑐  =
𝑔 2 (𝑐)

2
 𝑛𝑏 𝑋𝑛 − 𝑐  

2

+
 𝑛𝑏 𝑋𝑛 − 𝑐  

2

2
Ψ2 𝑋𝑛  

𝑑
 
𝑔 2 (𝑐)

2
𝑋2,                                 
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since Ψ2 𝑋𝑛 
𝑝
 Ψ2 𝑐 = 0  (as Ψ2  is continuous at 𝑐  and 𝑋𝑛

𝑝
 𝑐, as 𝑛  ∞ ) and 

 𝑛𝑏 𝑋𝑛 − 𝑐  
2 𝑑
 𝑋2  (as 𝑕 𝑥 = 𝑥2  is a continuous function on ℝ  and 𝑛𝑏 𝑋𝑛 −

𝑐 
𝑑
 𝑋, as 𝑛  ∞). ▄ 

The following example demonstrates that the conclusion of Theorem 4.1 (The Delta-

Method) may not hold if 𝑏 = 0. 

Example 4.1 

Let  𝑍𝑛 𝑛≥1 be a sequence of random variables such that 𝑍𝑛~ 𝑁 0,1 , 𝑛 = 1, 2, …. Then 

𝑛0 𝑍𝑛 − 0 = 𝑍𝑛
𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞. Let 𝑔 𝑥 = 𝑥2 , 𝑥 ∈ ℝ.  Then  

𝑛0 𝑔 𝑍𝑛 − 𝑔 0  = 𝑍𝑛
2

𝑑
 𝑍1

2  ~ 𝜒1
2 , as 𝑛  ∞. 

However 𝑔 1  0 𝑍 = 0 × 𝑍 = 0. ▄ 

Corollary 4.1 

Let 𝑋1, 𝑋2, … be a sequence of i.i.d. random variables, each having the mean 𝜇 ∈ ℝ and 

variance 𝜎2 ∈ (0,∞). Let 𝑋 𝑛 =
1

𝑛
 𝑋𝑖
𝑛
𝑖=1 , 𝑛 = 1, 2, … and let 𝑔:ℝ  ℝ be a function that 

is differentiable at 𝜇. Then 

 𝑛 𝑔 𝑋 𝑛 − 𝑔 𝜇  
𝑑
 𝑊 ~ 𝑁  0,  𝑔 1 (𝜇) 

2
𝜎2 , as 𝑛  ∞, 

provided 𝑔 1 (𝜇) ≠ 0. If 𝑔 1 (𝜇) = 0 then 

 𝑛 𝑔 𝑋 𝑛 − 𝑔 𝜇  
𝑝
 0, as 𝑛  ∞ ∙ 

Proof. Let 𝑍 ~ 𝑁 0,1  and let 𝑉 = 𝜎𝑍. Then by the CLT 

 𝑛 𝑋 𝑛 − 𝜇 

𝜎

𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞ 

      ⇒  𝑛 𝑋 𝑛 − 𝜇 
𝑑
 𝜎𝑍 = 𝑉 ~ 𝑁 0, 𝜎2 , as 𝑛  ∞ 

⇒  𝑛 𝑔 𝑋 𝑛 − 𝑔 𝜇  
𝑑
 𝑔 1  𝜇 𝑉, as 𝑛  ∞ ∙ 

If 𝑔 1  𝜇 ≠ 0, then 𝑊 = 𝑔 1  𝜇 𝑉 ~ 𝑁 0, (𝑔 1  𝜇 )2𝜎2 . However if 𝑔 1  𝜇 = 0, then 

the random variable 𝑔 1  𝜇 𝑉 is degenerate at 0. Hence the result follows. ▄ 
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Example 4.2  

Let  𝑋𝑛 𝑛≥1 be a sequence of random variables such that 𝑋𝑛  ~ 𝜒𝑛
2, 𝑛 = 1, 2, …. Show that  

 2  𝑋𝑛 −  𝑛 
𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞. 

Solution. Let 𝑌1, 𝑌2, …  be a sequence of i.i.d. 𝜒1
2 random variables.Then 𝐸 𝑌1 =

1, Var 𝑌1 = 2 and 𝑋𝑛 =
𝑑
 𝑌𝑖 = 𝑛𝑌𝑛
𝑛
𝑖=1 , 𝑛 = 1, 2, … (see Example 7.6 (i), Module 6). By 

the CLT 

 𝑛 𝑌 𝑛 − 1 

 2

𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞ 

 ⇒  𝑛 𝑌 𝑛 − 1 
𝑑
  2𝑍~𝑁 0, 2 , as 𝑛  ∞ ∙ 

Since 𝑔 𝑥 =  𝑥, 𝑥 ∈  0,∞  is differentiable at 𝑥 = 1, using the delta-method, we have 

 𝑛  𝑌 𝑛 − 1 
𝑑
 

1

2
×  2𝑍 =

𝑍

 2
 ~ 𝑁  0,

1

2
 , as 𝑛  ∞. 

                       ⇒  2  𝑋𝑛 −  𝑛 
𝑑
 𝑍 ~ 𝑁 0,1 , as 𝑛  ∞. ▄ 

 


