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MODULE 4 

SOME SPECIAL DISCRETE DISTRIBUTIONS AND THEIR 

PROPERTIES 

LECTURE 18 

Topics  

4.2 NEGATIVE BINOMIAL DISTRIBUTION     

 

4.3 THE HYPERGEOMETRIC DISTRIBUTION   

 

Definition 1.2 

Let 𝑇 be a random variable of discrete type with support 𝑆𝑇 = {0, 1, 2,… }. Then 𝑇 (or the 

probability distribution of 𝑇) is said to have the lack of memory property if  

𝑃  𝑇 ≥ 𝑗 + 𝑘  ≥ 𝑃  𝑇 ≥ 𝑗  𝑃  𝑇 ≥ 𝑘  ,    ∀𝑗,𝑘 ∈ 𝑆𝑇 .  ▄ 

 

The following theorem illustrates that, among all discrete probability distributions having 

the support 𝑆 = {0, 1, 2,… }, the geometric distribution characterizes the lack of memory 

property.  

Theorem 1.1 

Let 𝑇 be a discrete type random variable with support 𝑆𝑇 = {0, 1, 2,… }. Then 𝑇 has the 

lack of memory property if, and only if, 𝑇~Ge(𝑝), for some 𝑝 ∈ (0,1). 

Proof. We have seen that if 𝑇~Ge(𝑝) , for some 𝑝 ∈ (0,1) , then 𝑇  has the lack of 

memory property. Conversely suppose that 𝑇 has the lack of memory property. Then  

𝑃  𝑇 ≥ 𝑗 + 𝑘  = 𝑃  𝑇 ≥ 𝑗  𝑃  𝑇 ≥ 𝑘  , ∀𝑗,𝑘 ∈  0,1,2,…  . 

Let 𝑃  𝑇 = 0  = 𝑝. Then 𝑝 ∈ (0,1), and, for 𝑗 ∈  0, 1, 2, ,…  , 

𝑃  𝑇 ≥ 𝑗 + 1  = 𝑃  𝑇 ≥ 𝑗  𝑃  𝑇 ≥ 1   

                                                                         = 𝑃  𝑇 ≥ 𝑗  (1 − 𝑝) 
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                                                                         = 𝑃  𝑇 ≥ 𝑗 − 1  (1 − 𝑝)2 

⋮ 

                                                                          = 𝑃  𝑇 ≥ 0  (1 − 𝑝)𝑗+1 

                                                                         = (1 − 𝑝)𝑗+1. 

Thus, for 𝑘 ∈  0, 1, 2,… ,   

                                                  𝑃  𝑇 = 𝑘  = 𝑃  𝑇 ≥ 𝑘  − 𝑃  𝑇 ≥ 𝑘 + 1   

                                                                         = (1 − 𝑝)𝑘 − (1 − 𝑝)𝑘+1 

                                                                         = 𝑝(1 − 𝑝)𝑘 ,  

i.e., 𝑇~ Ge(𝑝). ▄ 

Example 1.3 

Consider a sequence of independent Bernoulli trials with probability of success in each 

trial being 𝑝. Let 𝑍 denote the number of trials required to get the 𝑟-th success, where 𝑟 is 

a given positive integer. Let 𝑋 = 𝑍 − 𝑟. 

(i) Find the probability distributions of 𝑋 and 𝑍; 

(ii) For 𝑟 = 1, show that 𝑃  𝑍 > 𝑚 + 𝑛  =  𝑃  𝑍 > 𝑚  𝑃  𝑍 > 𝑛  ,∀𝑚,𝑛 ∈

{0, 1,…}(or equivalently 𝑃({𝑍 > 𝑚 + 𝑛|𝑍 > 𝑚}) = 𝑃  𝑍 > 𝑛  ,∀𝑚,𝑛 ∈

{0, 1,…}; this property is also known as the lack of memory property). 

Solution. 

(i) Clearly 𝑋 = 𝑍 − 𝑟  denotes the number of failures preceding the 𝑟 -th success. 

Therefore 𝑋~ NB(r,𝑝) and the p.m.f. of 𝑍 is given by 

𝑓𝑍 𝑧 = 𝑃  𝑍 = 𝑧   

                                                                           =  𝑃({𝑋 = 𝑧 − 𝑟}) 

                                                                           =   
 𝑧−1
𝑟−1

 𝑝𝑟𝑞𝑧−𝑟 ,       if 𝑧 ∈ {𝑟, 𝑟 + 1,… }

0,                           otherwise              
 , 

where 𝑞 = 1 − 𝑝. 

(ii) We have 𝑋~ NB r,𝑝 and 𝑍 = 𝑋 + 1 . Therefore, for 𝑚,𝑛 ∈ {0, 1, 2, }, 𝑃  𝑋 ≥

𝑚 + 𝑛  ≥ 𝑃  𝑋 ≥ 𝑚  𝑃  𝑋 ≥ 𝑛   and 

𝑃  𝑍 > 𝑚 + 𝑛  =  𝑃  𝑋 > 𝑚 + 𝑛 − 1   
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                                = 𝑃  𝑋 ≥ 𝑚 + 𝑛   

                                = 𝑃  𝑋 ≥ 𝑚  𝑃  𝑋 ≥ 𝑛   

                                = 𝑃  𝑍 ≥ 𝑚 + 1  𝑃( 𝑍 ≥ 𝑛 + 1 ) 

                                = 𝑃  𝑍 > 𝑚  𝑃  𝑍 > 𝑛  . ▄    

Example 1.4 

A person repeatedly rolls a fair dice independently until an upper face with two or three 

dots is observed twice. Find the probability that the person would require eights rolls to 

achieve this. 

Solution. In each trial let us label the outcome of observing an upper face with two or 

three dots as success and observing any other outcome as a failure. Then we have a 

sequence of independent Bernoulli trials with probability of success in each trial as 𝑝 =
1

3
. 

Let 𝑍  denote the number of trials required to get the second success. Then, using 

Example 1.3, 𝑋 ≝ 𝑍 − 2 ∼ NB(2,𝑝). Therefore, the required probability is  

𝑃  𝑍 = 8  = 𝑃  𝑋 = 6  =   
7

1
  

1

3
 

2

 1 −
1

3
 

6

=
448

6561
. ▄ 

Example 1.5 

Consider a person playing a sequence of games. Suppose that the games are played 

independently and the probability of person winning any game is 𝑝 ∈ (0, 1). Let the r.v. 

𝑍 denote the number of games the person will have to play to record the first win. Then, 

by Example 1.3, 𝑃  𝑍 > 12} {𝑍 > 10  = 𝑃( 𝑍 > 2 ), i.e., the conditional probability 

that the person will require at least three additional games to record the first win, given 

that the person has lost the first ten games, is the same as the probability that he will 

require at least three games, since he started playing, to record the first win. Here the 

information ({𝑍 > 10}) that the person has lost first ten games has no bearing on the 

additional number of games he will require to record a win. ▄ 

Example 1.6  

Two teams (say Team A and Team B) play a series of games until one team wins 5 

games. If the probability of Team A (Team B) winning any game is 0.7 (0.3), find the 

probability that the series will end in 8 games. 

Solution. Let 𝑋1 (𝑋2) denote the number of games Team A (Team B) will have to play to 

secure the fifth win. Then the required probability is 𝑝 = 𝑃  𝑋1 = 8  +  𝑃({𝑋2 = 8}). 

By Example 1.3, we have 𝑋1 = 𝑌1 + 5 and 𝑋2 = 𝑌2 + 5 , where 𝑌1 ∼ NB(5, 0.7)  and 

𝑌2 ∼ NB(5, 0.3). Therefore 
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𝑃  𝑋1 = 8  =  𝑃  𝑌1 = 3  =   
7

4
  0.7 5 1 − 0.7 3 =  .1588   approximately , 

𝑃  𝑋2 = 8  =  𝑃  𝑌2 = 3  =   
7

4
  0.3 5 1 − 0.3 3 =  .0292  (approximately) 

and the required probability is 

𝑝 = 𝑃  𝑋1 = 8  +  𝑃({𝑋2 = 8}) = 0.188 (approximately). ▄ 

 

4.3 THE HYPERGEOMETRIC DISTRIBUTION   

Consider a population comprising of 𝑁 (≥ 2) units out of which 𝑎  ∈  1,2,… ,𝑁 − 1   

are labeled as 𝑆  (success) and 𝑁 − 𝑎  are labeled as 𝐹  (failure). Suppose that we are 

interested in drawing a sample of size 𝑛  ∈  1,2,… ,𝑁 − 1  ) from this population, 

drawing one unit at a time. Let 𝑋  denote the number of successes (𝑆) in the drawn 

sample. We consider the following two cases. 

Case I: Draws are independent and sampling is with replacement (i.e., after each draw 

the drawn unit is replaced back into the population) 

A sampling of this kind is called a simple random sampling with replacement. As 

discussed in Remark 1.1, in this case, we have a sequence of 𝑛 independent Bernoulli 

trials with probability of success is each trial as 𝑝 =
𝑎

𝑁
 and, therefore, 𝑋 ~ Bin  𝑛,

𝑎

𝑁
 . 

Case II: Sampling is without replacement (i.e., drawn units are not replaced back into the 

population) 

A sampling of this kind is called a simple random sampling without replacement. In this 

case  

              𝑃  obtaining 𝑆 in first draw  =
𝑎

𝑁
;  

         𝑃  obtaining  𝑆 in second draw  =
𝑎

𝑁
⋅
𝑎 − 1

𝑁 − 1
+  
𝑁 − 𝑎

𝑁
⋅

𝑎

𝑁 − 1
=
𝑎

𝑁
;    

𝑃  obtaining 𝑆 in third draw  =
𝑎

𝑁
⋅
𝑎 − 1

𝑁 − 1
⋅
𝑎 − 2

𝑁 − 2
+  

𝑎

𝑁
⋅
𝑁 − 𝑎

𝑁 − 1
⋅
𝑎 − 1

𝑁 − 2
 

                                                   +
𝑁 − 𝑎

𝑁
⋅

𝑎

𝑁 − 1
⋅
𝑎 − 1

𝑁 − 2
+
𝑁 − 𝑎

𝑁
⋅
𝑁 − 𝑎 − 1

𝑁 − 1
⋅

𝑎

𝑁 − 1
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                                                                   =
𝑎

𝑁
. 

In general, it can be shown that (see Theorem 2.1 in the sequel) 

𝑃  obtaining 𝑆 in 𝑘 − th draw  =
𝑎

𝑁
 ,   𝑘 = 1,2,… ,𝑛. 

Note that 

𝑃  obtaining 𝑆 in first two draws  =
𝑎

𝑁
⋅
𝑎 − 1

𝑁 − 1
 

                                                                     ≠
𝑎

𝑁
⋅
𝑎

𝑁
 

                               = 𝑃  obtaining 𝑆 in first draw  × 𝑃({obtaining 𝑆 in second draw}) , 

implying that the draws are not independent. Thus, in this case, although we have a 

sequence of Bernoulli trials with the same probability (𝑝 =
𝑎

𝑁
) of success in each trial, the 

trials are not independent. Therefore, in this case, we cannot conclude that  𝑋~ Bin(𝑛,
𝑎

𝑁
 ).  

It can be seen that the distribution of 𝑋 remains the same whether we sample one by one 

without replacement or select a subset of size 𝑛 at random (so that each of   
𝑁
𝑛
  subsets 

of size 𝑛 has the same probability of getting selected as desired sample) . Clearly, for 

𝑃( 𝑋 = 𝑘 ) to be non-zero, we must have 𝑘 ∈ ℕ, 0 ≤ 𝑘 ≤ 𝑛, 0 ≤ 𝑘 ≤ 𝑎 and 0 ≤ 𝑛 −

𝑘 ≤ 𝑁 − 𝑎 , i.e., 𝑘 ∈ 𝑆𝑋 =   𝑚 ∈ ℕ: max 0,𝑛 − 𝑁 + 𝑎 ≤ 𝑚 ≤ min(𝑛, 𝑎) . Note that, 

for 𝑥 ∈ 𝑆𝑋 , the event {𝑋 = 𝑥} occurs if, and only if,  the selected subset (sample) contains 

𝑥 successes and 𝑛 − 𝑥 failures. It follows that the total number of equally likely cases 

favorable to the event  𝑋 = 𝑥  is  𝑎
𝑥
  𝑁−𝑎

𝑛−𝑥
 . Since the total number of possible subsets 

(samples) of size 𝑛 of 𝑁 units is  𝑁
𝑛
 , the p.m.f. of 𝑋 is given by 

𝑓𝑋 𝑥 =   

 
 
 

 
  
𝑎
𝑥
  
𝑁 − 𝑎
𝑛 − 𝑥

 

 
𝑁
𝑛
 

,       if  𝑥 ∈ 𝑆𝑋 =  max 0,𝑛 − 𝑁 + 𝑎 ,… , min 𝑛,𝑎  

0,                           otherwise                                                                  

 .        (2.1) 

The probability distribution with p.m.f. (2.1) is called the Hypergeometric distribution 

and is denoted by Hyp 𝑎,𝑛,𝑁 ,𝑎,𝑛,𝑁 ∈ ℕ,𝑁 ≥ 2,𝑎,𝑛 ≤ 𝑁 − 1 . We shall use the 

notation 𝑋 ∼ Hyp(𝑎,𝑛,𝑁) to indicate that the r.v. 𝑋  follows Hyp(𝑎, 𝑛,𝑁) distribution. 

Clearly we have a family {Hyp 𝑎,𝑛,𝑁 ,𝑎,𝑛,𝑁 ∈ ℕ,𝑁 ≥ 2,𝑎,𝑛 ≤ 𝑁 − 1} of 
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hypergeometric distributions corresponding to different choices of (𝑎, 𝑛,𝑁)  such that 

𝑁 ∈  2, 3,…  ,𝑎 ∈  1, 2,… ,𝑁 − 1  and 𝑛 ∈ {1, 2,… ,𝑁 − 1}.  

    Since            𝑓𝑋 𝑥 

𝑥∈𝑆𝑋

= 1, we have the following identity 

          
𝑎
𝑘
 

min (𝑛 ,𝑎)

𝑘=max (0,𝑛−𝑁+𝑎)

 
𝑁 − 𝑎
𝑛 − 𝑘

 =   
𝑁
𝑛
 .                                                           (2.2) 

For a positive integer 𝑟, the 𝑟-th factorial moment of 𝑋 is given by  

                        𝛦 𝑋(𝑟) =  𝛦   (𝑋 − 𝑗)

𝑟−1

𝑗=0

  

         =
1

 
𝑁
𝑛
 

   (𝑘 − 𝑗)

𝑟−1

𝑗=0

  
𝑎
𝑘
 

min (𝑛 ,𝑎)

𝑘=max (0,𝑛−𝑁+𝑎)

 
𝑁 − 𝑎
𝑛 − 𝑘

 . 

Clearly, for 𝑟 ∈ ℕ and 𝑟 > min 𝑛,𝑎 ,  𝐸 𝑋 𝑟  = 0.  For 𝑟 ∈ ℕ and 𝑟 ≤ min(𝑛,𝑎), we 

have 

                        𝛦 𝑋(𝑟) =
1

 
𝑁
𝑛
 

   (𝑘 − 𝑗)

𝑟−1

𝑗=0

 

min (𝑛 ,𝑎)

𝑘=max (𝑟 ,𝑛−𝑁+𝑎)

 
𝑎
𝑘
  
𝑁 − 𝑎
𝑛 − 𝑘

  

                                       =  
𝑎 𝑟 

 
𝑁
𝑛
 

  
𝑎 − 𝑟
𝑘 − 𝑟

  
𝑁 − 𝑎
𝑛 − 𝑘

 

min (𝑛 ,𝑎)

𝑘=max (𝑟 ,𝑛−𝑁+𝑎)

 

                                      =
𝑎(𝑟)

 
𝑁
𝑛
 

  
𝑎 − 𝑟
𝑘

  
𝑁 − 𝑎

𝑛 − r − 𝑘
 

min (𝑛−𝑟 ,𝑎−𝑟)

𝑘=max (0,𝑛−𝑁+𝑎−𝑟)

 

                                      =
𝑎(𝑟)

 
𝑁
𝑛
 

  
𝑎 − 𝑟
𝑘

  
(𝑁 − 𝑟) − (𝑎 − 𝑟)

 𝑛 − 𝑟 − 𝑘
 

min (𝑛−𝑟 ,𝑎−𝑟)

𝑘=max (0,(𝑛−𝑟)−(𝑁−𝑟)+𝑎−𝑟)

 

                                      =  
 
𝑁 − 𝑟
𝑛 − 𝑟

 

 
𝑁
𝑛
 

𝑎 𝑟 ,                                                               (using  2.2 ) 
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where 𝑎 𝑟 = 𝑎 𝑎 − 1 ⋯  𝑎 − 𝑟 + 1 . 

Thus, for 𝑟 ∈ ℕ, we have  

𝛦 𝑋(𝑟) =

 
 
 

 
  

𝑁 − 𝑟
𝑛 − 𝑟

 

 
𝑁
𝑛
 

𝑎(𝑟), if 𝑟 ≤ min 𝑛,𝑎 

       0,                         if 𝑟 > min(𝑛,𝑎)   

.   

In particular   

 𝛦 𝑋 = 𝛦 𝑋 1  = 𝑛
𝑎

𝑁
= 𝑛𝑝, 

where 𝑝 = 𝑎/𝑁. For 𝑛 ≥ 2,𝑎 ≥ 2 

𝛦 𝑋 𝑋 − 1  = 𝛦 𝑋 2  = 𝑛 𝑛 − 1 
𝑎 𝑎 − 1 

𝑁 𝑁 − 1 
; 

                                                 Var 𝑋 =  𝛦 𝑋2 −  𝛦 𝑋  
2
 

                                                                =  𝛦 𝑋 X − 1  + 𝛦 𝑋 −  𝛦 𝑋  
2
 

                                                                = 𝑛  
𝑎

𝑁
  1 −

𝑎

𝑁
 
𝑁 − 𝑛

𝑁 − 1
 

                                                  Var 𝑋 = 𝑛𝑝 1 − 𝑝  1 −
𝑛 − 1

𝑁 − 1
 .                               (2.3) 

 

Remark 2.1 

In the case of sampling with replacement we have 𝑋 ∼ Bin  𝑛,
𝑎

𝑁
 ,𝐸 𝑋 =  𝑛𝑝 = 𝑛

𝑎

𝑁
 and 

Var 𝑋 = 𝑛𝑝 1 − 𝑝 = 𝑛
𝑎

𝑁
 1 −

𝑎

𝑁
 , where 𝑝 =

𝑎

𝑁
. The factor (1 −

𝑛−1

𝑁−1
) , which on 

multiplying to the variance of  Bin  𝑛,
𝑎

𝑁
  distribution yields the variance of Hyp 𝑎,𝑛,𝑁  

distribution (see (2.3)), is called the finite population correction (f.p.c.). Clearly if the 

sample size 𝑛 is significantly smaller than the population size 𝑁 (𝑛 ≪ 𝑁) then the f.p.c. 

will be close to 1 and therefore the variances of Bin  𝑛,
𝑎

𝑁
  and Hyp 𝑎, 𝑛,𝑁  distributions 

will be very close. In fact we will see later (Theorem 2.2) that when 𝑛 ≪ 𝑁 and 𝑛 ≪ 𝑎 ≡

𝑎𝑁 (say) are such that 
𝑎𝑁

𝑁
 is a fixed quantity (i.e., as 𝑁 → ∞,𝑎𝑁 → ∞ and 

𝑎𝑁

𝑁
→ 𝑝, where 

𝑝 ∈ (0, 1) is a fixed quantity) then Bin  𝑛,
𝑎

𝑁
  provides an approximation to Hyp 𝑎, 𝑛,𝑁  
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distribution (see Figures 2.1 and 2.2). Regarding choice of sample size 𝑛 for using this 

approximation, a guideline, based on various empirical studies, is that the sample size 𝑛 

should not exceed 10% of the population size 𝑁. ▄ 

Since the support 𝑆𝑋 =  𝑚 ∈ ℕ: max 0,𝑛 − 𝑁 + 𝑎 ≤ 𝑚 ≤ min(𝑛,𝑎)  is finite the 

m.g.f. 𝑀𝑋 𝑡 = 𝐸 𝑒𝑡𝑋  exists, although a closed form expression for it cannot be 

obtained.  

Theorem 2.1 

Under the above notation, let 𝐴𝑖 , 𝑖 = 1, 2,… ,𝑛, denote the probability of observing a 

success in the 𝑖-th trial. Then 𝑃 𝐴𝑖 =  
𝑎

𝑁
, 𝑖 = 1, 2,… ,𝑛, i.e., the probability of success in 

each trial is the same. 

Proof. Clearly 𝑃 𝐴1 =
𝑎

𝑁
 and  

                                                  𝑃 𝐴2 =  𝑃 𝐴1
𝐶 ∩ 𝐴2 +  𝑃(𝐴1 ∩ 𝐴2) 

                                                               =  𝑃 𝐴1
𝐶 𝑃 𝐴2|𝐴1

𝐶 +  𝑃 𝐴1 𝑃(𝐴2|𝐴1) 

                                                               =  
𝑁 − 𝑎

𝑁
⋅

𝑎

𝑁 − 1
+  

𝑎

𝑁
⋅
𝑎 − 1

𝑁 − 1
 

                                                               =  
𝑎

𝑁
. 

Now suppose that 𝑃 𝐴𝑚 =
𝑎

𝑁
, for some 𝑚 ∈ {1, 2,… ,𝑛 − 1} . Let us denote the 

probability mass function defined in (2.1) by 𝑝 𝑥 𝑎,𝑛,𝑁 , 𝑥 ∈ ℕ and the corresponding 

r.v. by 𝑋𝑎 ,𝑛 ,𝑁. Then the r.v. 𝑋𝑎 ,𝑚 ,𝑁 denotes the number of successes in the first 𝑚 trails 

and, therefore,  

               𝑃 𝐴𝑚+1 =   𝑃  𝑋𝑎 ,𝑚 ,𝑁 = 𝑘  𝑃(𝐴𝑚+1| 𝑋𝑎 ,𝑚 ,𝑁 = 𝑘 )

𝑚

𝑘=0

 

                                 =   𝑝 𝑘 𝑎,𝑚,𝑁 
𝑎 − 𝑘

𝑁 −𝑚

𝑚

𝑘=0

 

                              =   
 𝑎
𝑘
  𝑁−𝑎

𝑚−𝑘
 

 𝑁
𝑚
 

min  𝑚 ,𝑎 

𝑘=max  0,𝑚−𝑁+𝑎 

𝑎 − 𝑘

𝑁 −𝑚
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                             =
𝑎

𝑁 −𝑚
 

 𝑎
𝑘
  𝑁−𝑎

𝑚−𝑘
 

 𝑁
𝑚
 

min  𝑚 ,𝑎 

𝑘=max  0,𝑚−𝑁+𝑎 

−
1

𝑁 −𝑚
 𝑘

 𝑎
𝑘
  𝑁−𝑎

𝑚−𝑘
 

 𝑁
𝑚
 

min  𝑚 ,𝑎 

𝑘=max  0,𝑚−𝑁+𝑎 

 

                            =  
𝑎

𝑁 −𝑚
−

1

𝑁 −𝑚
𝐸(𝑋𝑎 ,𝑚 ,𝑁) 

                            =  
𝑎

𝑁 −𝑚
−

1

𝑁 −𝑚
𝑚
𝑎

𝑁
 

                            =  
𝑎

𝑁
.  

The result now follows by principle of mathematical induction. ▄ 

Remark 2.2 

Under the hypergeometric distribution described above we have a sequence of 𝑛 

dependent Bernoulli trials with probability of success in each trial being 𝑝 = 𝑎/𝑁. The 

hypergeometric distribution provides the distribution of 𝑋, the number of successes in 

𝑛 ∈ {1, 2,… ,𝑁 − 1}  dependent Bernoulli trials. If the trials were independent the 

distribution of 𝑋 would be provided by the binomial distribution. Our intuition suggests 

that, under sampling without replacement from an infinite population having infinite 

number of successes, the Bernoulli trials should be independent. This is in fact true and it 

can be shown that if 𝑁 → ∞,𝑎 ≡ 𝑎𝑁 → ∞  and  
𝑎𝑁

𝑁
→ 𝑝 (where 𝑝 ∈  0, 1 is a fixed 

quantity) then the trials are independent. The above discussion suggests that if the 

population size 𝑁  and 𝑎  (the number of 𝑆  in the population) are infinite and 
𝑎

𝑁
= 𝑝 ∈

(0, 1)  is a fixed quantity then the distribution of 𝑋  remains the same whether the 

sampling is done with replacement or without replacement. In such situations, therefore, 

one may use either hypergeometric or binomial distribution to provide the distribution of 

𝑋. The following theorem corroborates this observation. ▄ 

Theorem 2.2  

Let 𝑋𝑎𝑁 ,𝑛 ,𝑁 ∼ Hyp(𝑎𝑁 ,𝑛,𝑁), where 𝑎𝑁  depends on 𝑁 and lim𝑁→∞
𝑎𝑁

𝑁
= 𝑝 ∈ (0, 1). Let 

𝑓𝑎𝑁 ,𝑛 ,𝑁(⋅) denote the p.m.f. of 𝑋𝑎𝑁 ,𝑛 ,𝑁. Then 

lim
𝑁→∞

𝑓𝑎𝑁 ,𝑛 ,𝑁 𝑘 =  lim
𝑁→∞

𝑃({𝑋𝑎𝑁 ,𝑛 ,𝑁 = 𝑘}) =   
 
𝑛

𝑘
 𝑝𝑘 1 − 𝑝 𝑛−𝑘 ,     if 𝑘 ∈ {0, 1,… ,𝑛}

0,                                   otherwise          

 . 

i.e., for large 𝑁  and large 𝑎𝑁 , so that 𝑝 =
𝑎𝑁

𝑁
 is a fixed quantity, Hyp(𝑎𝑁 ,𝑛,𝑁) 

probabilities can be approximated by Bin  𝑛,
𝑎

𝑁
  probabilities. 
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Proof. For notational convenience let us denote 𝑋𝑎𝑁 ,𝑛 ,𝑁  by 𝑋. The support of r.v. 𝑋 is 

𝑆𝑋 =  𝑚 ∈ ℕ: max 0,𝑛 − 𝑁 + 𝑎𝑁 ≤ 𝑚 ≤ min(𝑛,𝑎𝑁) . Note that 

𝑛 − 𝑁 + 𝑎𝑁 = 𝑁  
𝑛

𝑁
− 1 +

𝑎𝑁
𝑁
 → −∞,   and     𝑎𝑁 = 𝑁

𝑎𝑁
𝑁

→ ∞,   as 𝑁 → ∞. 

It follows that, as 𝑁 → ∞, 

max 0,𝑛 − 𝑁 + 𝑎𝑁 → 0    and min 𝑛,𝑎𝑁 → 𝑛. 

Also, for 𝑘 ∈ 𝑆𝑋 , 

                           𝑓𝑋 𝑘 =  
 
𝑎𝑁
𝑘
  
𝑁 − 𝑎𝑁
𝑛 − 𝑘

 

 
𝑁
𝑛
 

 

=   
𝑛

𝑘
    

𝑎𝑁 − 𝑗

𝑁 − 𝑗
 

𝑘−1

𝑗=0

    
𝑁 − 𝑎𝑁 − 𝑗

𝑁 − 𝑘 − 𝑗
 

𝑛−𝑘−1

𝑗=0

  

𝑁→∞
    

𝑛

𝑘
    𝑝 

𝑘−1

𝑗=0

    1 − 𝑝 

𝑛−𝑘−1

𝑗=0

  

                                      =  
𝑛

𝑘
 𝑝𝑘 1 − 𝑝 𝑛−𝑘 .  

Therefore 

lim
𝑁→∞

𝑓𝑎𝑁 ,𝑛 ,𝑁 𝑘 =  
 
𝑛

𝑘
 𝑝𝑘 1 − 𝑝 𝑛−𝑘 ,     if  𝑘 ∈ {0, 1,… , 𝑛}

0,                                    otherwise           

 . ▄ 
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Figure 2.1. Plot of p.m.f. of Hyp(25, 5,50) 

 

Figure 2.2. Plot of p.m.f. of Bin(5,
1

2
) 

 

 


