NPTEL- Probability and Distributions

MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION
LECTURE 29

Topics

6.5 EXPECTATIONS AND MOMENTS

6.5.1 Cauchy- Schwarz Inequality for Random Variables

Theorem 4.3

Let X;, ..., X, be independent random vectors such that X; is g;-dimensional, i = 1, ..., p.
Let ;:R% >R, i=1,..,p, be Borel functions. Then ;(X;), .., ¥,(X,) are
independent.

Proof. Let X = (X1,..,X,) and let ¥; = ¢;(X;), i=1,..,p. For fixed y; € R" define
A = {g € R%:(x) < yi},i =1,..,p (where, for x,y €ER", x <y means x; < y;,i =
1,..,v) . Then, for y; e R", i=1,..,p, the joint distribution function of Y; =

Y1(X1), .Y, = ¥,(X,) is given by
Fr,. .y, (v %) = Pt € (~20, 3], 0 Yy € (=0, 1)

=P({X1 €Ay, ... X, €A}

p
— np({ﬁ €A (using Remark 4.1 (iii))
j=1

—.

-
Il
[

PG <))

—.

Il
[

)

where Fy, (+) denotes the marginal distribution function of ¥;, j = 1,2, ..., p. Now, using the

analog of Theorem 4.1 for random vectors, it follows that Y;, ..., Y, are independent. gy
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Example 4.1

Let X = (X1, X, X3) be a discrete type random vector with joint p.m.f.

X1X2X3
—, if(xq,x0,x3) €{1,2} x{1,2,3} x{1,3
fg(xl'Xz.x3)={ 72 Cr1,x2,%3) € {1, 2} x { }x{1,3}

0, otherwise

(i) Are X1, X, and X5 independent random variables?
(if) Are X; and X5 independent random variables?

Solution. (i) From Example 2.2 (ii) we have

X1 ) X2 .
—, ifx; €{1,2 —, ifx,€{1,2,3
fxl(x1)={3 . }i fxz(xz)={6 2 €1 J
0, otherwise 0, otherwise
and
X3 .
-, le3 € {1, 3}
fry(x3) = {4 :
X33 0, otherwise
Clearly

fxl,xz,x3 (x1,%2,x3) = fX1 (xl)sz (Xz)fX3 (x3), Vx = (x1,%,%3) € R3.
Now using Theorem 4.2 (i) it follows that X, X, and X3 are independent.

One can also directly infer the independence of X;, X, and X5 from Theorem 4.2 (ii) by
nothing that

S x5 (X1, X2, %3) = g1(x1)92(x2)g3(x3), Vx = (x1,%2,%3) € R3,

where
X € (1,2} if x, € {1,2,3}
—_, 1x , X ) I X )~
g1(x1) = {72 ' » 920xp) = {02 othczsrwise
0, otherwise ’
and

X3, ifx1 € {1, 3}
0, otherwise

g3(x3) = {

(if) From Example 2.2 (iii) we have
X1X3 .
—  if (xq, €{1,2} x{1,3
le.X3 (xl; X3) = { 12 1 (xl x3) { } { }

0, otherwise

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 2



NPTEL- Probability and Distributions

Clearly

fxs (1, x3) = fix, (1) fie, (x3), V(xq,x3) € R2,
Therefore X; and X3 are independent. gy
Example 4.2

Let X = (X1, X, X3) be a random vector of absolutely continuous type with p.d.f.

—, if0<x;<x, <x1 <1
f&(xl)x2;x3)= X1Xp 3 2 1 .

0, otherwise

(i) Are X1, X, and X5 independent random variables?
(ii) Let x, € (0,1) be fixed. Are X; and X5 independent given X, = x, ?
Solution. (i) We have

X1 X2

_1 .

fx, (1) = f j X1, dxszdx,, if0<x <1
0 0
0

, otherwise

_ {1, if0<x <1
~ 0, otherwise

—lnx,, if0<x,<1

fx, (x2) = {0, ( See Example 2.3 (iii))

otherwise
and
1 1
fj- ! dx.d ifo<x; <1
—axqaxy, 1 X3
X3) = X1X
fx3( 3) o 1X2
0, otherwise
In x3)?
_ ( 23) , if0<x;<1
0, otherwise
Clearly

fxy %005 61, X2, x3) # fx, (1) fx, (02) fx, (x3), V(xq,%2,%3) € R3,

and therefore X;, X, and X5 are not independent.
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Note that S& = {(xl,xZ,X3): f&(xl,xZ,X3) > O} = {(xl,xZ,X3): 0< X3 < X2 < X1 <
13}, Sx, = {x1: fx,(x1) > 0} = (0,1) = Sy, = Sy, . Since Sy # Sy, X Sy, X Sy, One can

also infer the non-independence of X1, X, and X3 from Theorem 4.2 (iii).
(ii) Fix x, € (0,1). From Example 3.2 (ii) we have

le,Xz,Xg (x1, X7, x3)

f (1, x3]%2) =
X1,X31%, (X1, X31X2 Fr, (x2)
—1 ifx, <x1 <1L0<x3<
- , 1IXx X ) X X
= X1Xp Inx; z 1 3 2,
0, otherwise
Also it is easy to see that
fxl,xz (x1,%2) — ! , ifx, <x <1
frax, (xilxz) = —f ) = X1 Inx,
X2 *2 0, otherwise

and

1
fx,. x5 (x2,x3) —, f0<x3<x
fxax, (x3lx2) = AR =1x, 3 2,
Xa>2 0, otherwise

Clearly, for fixed x, € (0,1),

fxl,xg,p(2 (x1,x3]x2) = fx1|x2 (951|?Cz)fx3 X, (x3x2), V(x1,x3) € R2.

Now using Theorem 4.2 (i) on conditional p.d.f. of (X, X3) given X, = x, it follows that,

given X, = x,, the random variables X; and X5 are conditionally independent.

One can also infer the conditional independence of X; and X5 given X, = x, directly from

Theorem 4.2 (ii) by nothing that, for a fixed x, € (0,1),

fxl,xz,x3 (x1, %7, X3)

sz (x2)

fx X3|X (x1, x3]|x3) =
143142

= c(2) fx, x5,%3 (%1, %2, x3)

= gg)(xl)gfc?(xs), (x1,%3) € R?,

where, for a fixed x, € (0,1)
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clx2) . .
1) , dfxy <xp <1 1, if0<x3<x,
Gx, (X1) = {xm and g (x3) —{ : -
’ 0, otherwise 0, otherwise
6.5 EXPECTATIONS AND MOMENTS
Let X = (Xl,. . p) be a p -dimensional random vector of either discrete type or of

absolutely continuous type. Let fx(-) and Sy = {x € RP: fy(x) > 0} denote respectively the
p.m.f. (or p.df) of X (or fy). Further let fy () and Sy, = {x € R: fx,(x) > 0} denote
respectively the p.m.f. (or p.d.f.) and support of X; (or fy,(-)), i = 1,...,p.

The proof of the following theorem, being similar to that of Theorem 3.2, Module 3, is
omitted.

Theorem 5.1
Let: RP > R be a Borel function such that E (1(X)) is finite.

Q) If X is of discrete type then

E(y(X) = ) v@AK@.

EESK

(i) If X is of absolutely continuous type then
F(w(®)) - J $(:)fi(x)dx m

Definition 5.1

Some special kind of expectations are defined below:

(i)  For non-negative integers ki, ..., k,, let (x) = xf1 ---x:;”. Then

ey = E (X5 X)),

provided it is finite, is called a joint moment of order k; + -+ + k, of X;
(i)  For non-negative integers ky, ..., k,, let(x) = (x; — E(X1)) 1 - (x, — E(X, ).
Then
By, = E((X1 = EQXD)1 - (X, — E(X,))),

provided it is finite, is called a joint central moment of order k; + -+ + k,, of X;
(i)  Lety(x) = (x —EXD)(x; —E(X;)), i,j =1,..,p. Then
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Cov(X., X)) = E((X; — EX))(X; — E(X,))),
provided it is finite, is called the covariance between X; and X;. gy
Note that
Cov(X;, X)) = E((X; —EX)?) =Var(X), i=1,..,p,

and, fori,j € {1,...,p}, i #J,

cov(, ) = £ ((x — EC) (3 - ()

= £((x - E(%)) (%~ E®D))
= Cov(Xj,Xi).

Also, for i,j € {1, ..., p},
Cov(X, X)) = E ((X EX)) (X - E(X, )))
=E(X;X)) — EXDEX).
Theorem 5.2

Let X =(Xy,..,X, )andY =(Y;,..,Y,,) be random vectors and let aj,...,a,,
b, ..., by, be real constants. Then, provided the involved expectations are finite,

P1 P1
DE| Y aXi | =) aE;
i=1 i=1
P1 P2 P1 P2
(ii) Cov zaiXi,ijY]'- =ZZai Cov(Xl,])
i=1 j=1 i=1j=1
In particular
b1 b1 P2
Var ZaiXi =Za Var(X)+ZZ Cov(Xl, ])
i=1 i=1j=
]9&1
Za Var(X;) + 2 Z Za Cov(Xl, ])
1<i<j sp1
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Proof. We will provide the proof for the absolutely continuous case. The proof for the
discrete case follows similarly.

(i)  Let fx(-) denote the joint p.d.f. of X = (Xy,...,X,, ). Then
p1 p1
E Zaixi = f Zaixi fg(i)di
i=1 RP1 \i=1
1
= Zai fxifg(l)di

i=1 RP1
pP1

= Z a; E(X;). (using Theorem 5.1)

(i) We have

pP1 D2
., aiby (X~ EG) (¥ - E(1))
i=1)=1
P1 P2
z Z a;bE ((Xi —EX)) (% - E()g))) (again using (i)
b p
= Z Z a;b; Cov(Xl, j).
i=1)=1

Also,
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p P1 P1
Var(Z al-Xl-> = Cov ZaiXi,z a; X;
i=1 i=1 j=1

P1 P1
ZZ Cov(Xl, ])
i=1j=
p1 P1
- Za Cov(X,, X,) + ZZa g Cov(X,, X))
i=1j=
L;tj
P1 P1
= Za Var(X;) + ZZ a; Cov(X;, X;)
i=1j=
Ht]
Za Var(X;) + 2 z Za Cov(Xl, ])
1<i<j =py

(smce Cov(Xl, ]) Cov()(j,Xi))..

Theorem 5.3

Let Xi, .. be independent random vectors, where X; is r;- dimensional, i = 1, ..., p.

o Xp

(i) Let Y;: R > R, i =1,2,..,p, be Borel functions. Then

]L[wi (%) |= ]L[E(tpi(&)),
i=1 i=1

provided the involved expectations are finite.

(i)For4; €B,,i=1,..p,
p
P({x;eA,i=1,..,p}) = ﬂp({& € A;}).
i=1

Proof. We will provide the proof for the absolutely continuous case. The proof for the
discrete case follows similarly and is left as an exercise.

(i) LetX = (X;,...,X,). Since Xj, ..., X,, are independent. We have

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 8



NPTEL- Probability and Distributions

p
f&(&l' )Ep) = nfil(zl) , v (&1' 'ip) ER’,
i=1

where r = YI_, ;. Therefore,

Uwi (%) | =

i=1

f f lpl( ) (ﬁf&(&'))d&"-d&,
fw fﬁ(w(x)fx(x )) dx,

i=1

([ en )| [ o e
=E (1) E (b (%))

1, if X; € 4;
|0, otherwise’

(ii) Let

so that

1, ifX,€4,i=1,..,p
) X — ] Aj i’ ) )] )
Hlpl (—l) {0, otherwise

Now using (i) we get
p p
(| [we@) ) =] [Fan ()
i=1 i=1

14
= P(X, €Api=1,..,p)) = HP({Xi €A).m
i=1

Corollary 5.1

Let X3, ..., X, be independent random variables. Then
Cov(X;, X;) =0, Vi=*}j,
and, for real constants ay, ..., ay,

p p
Var (Z al-Xl-> = Z a? Var(X,),

i=1 i=1
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provided the involved expectations are finite.
Proof. Fix i,j € {1, ...,p}, i # j. Using Theorem 5.3 (i), we have
E(X:X;) = EXDE(X)
= Cov(X;, X)) = E(X.X;) —E(X)DE(X;) = 0.
By Theorem 5.2 we have

Var(ZaX) Za Var(X;) + ZZ @ Cov(X;, X;)

i=1 i=1j=
i#j

=

p

= z a? Var(X,). (smce Cov(Xl, ]) =0, ;t]) =
i=1

Definition 5.2
(1)  The correlation coefficient between random variables X and Y is defined by

Cov (X,Y)

\/ Var(X)Var(Y) '

p(X,Y) =
provided 0 < Var(X), Var(Y) < oo.
(if) Random variables X and Y are said to be uncorrelated if Cov(X,Y) = 0. g

Note that p(X,Y) = p(Y,X). Also from Corollary 5.1 it is clear that if XandY are
independent random variables then they are uncorrelated. However, as the following
examples illustrates, the converse may not be true (i.e., uncorrected random variables may
not be independent).

Example 5.1

Let (X, Y)be a bivariate random vector of discrete type with p.m.f. given by

(x,y) (L1 (0,0) L1

fX,Y (x,y) P1 P2 P1

where p1 € (0, 1),p2 € (O, 1) and 2p1 +p, = 1.
Clearly

E(XY) =(—Dp; + (0)p, + (Dp; =0
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E(X)=(-Dp1+ 0p;+ (Dp; =0
E(Y) = (Dp1 + (0)p2 + (Dpy = 2py
= Cov(X,Y) = E(XY) — E(X)E(Y) =0
= p(X,Y) = 0.
However
PAX,Y) = (=L} =p; #2p,* = P((X = —1HP({Y = 1)),
implying that X and Y are not independent. gy

Example 5.2

Let X = (Xq,X,) be a bivariate random vector of absolutely continuous type with p.d.f.
given by

1, f0<|x<x<1
f&(xl;xz)={0 12| ! :

, otherwise
Then
1 x1
E(X1X2) = j ] XledXdel =0
0 —X1
1 x1
2
E(Xl) = J J xlded.Xl = §
0 —X1
1 x1
E(Xz) = J J de.de.Xl =0
0 —X1
and
Cov(Xy,X2) = E(X1X3) — E(X1)E(X3) = 0.
Therefore,

p(leXZ) = Or

i.e., X; and X, are uncorrelated. Also
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X1
f(x)_{fdx1,1f0<x1<1 _{le, 1f0<x1<1
s —x1 1o, otherwise
kO, otherwise
and
1
f(X)_ fdxl,if_1<x2<1 _{1—|x2|, if—1<x2<1
Xoitzl x| o, otherwise '
0, otherwise
Clearly

fryx, (1, x2) # fx, () fx, (x2), Vx = (x1,x;) € R?,
and therefore X; and X, are not independent.

One can also infer that X; and X, are not independent by directly observing from the joint
pdf  fx() that Sy ={x€R% fy(x) >0} = {(x1,%):0 < |xz| < x; <1}, 8, =
{x1 €RY: fy, (x1) > 0} = (0,1), Sx, ={x, € RU: fy,(x;) >0} =(—1,1) and that
Sx # Sx, X Sx,-m

Theorem 5.4

6.5.1 Cauchy- Schwarz Inequality for Random Variables

Let (X,Y) be a bivariate random vector. Then, provided the involved expectations are
finite,

(E(XY))? < E(X®)E(Y?). (5.1)

The equality in (5.1) is attained if, and only if, P({Y = cX}) = 1or P({X = cY}) =1, for
some real constant c.

Proof. Consider the following two cases.
Case l. E(X?) = 0.

In this case P({X = 0}) = 1 (see Theorem 3.3 (iii), Module 3) and hence P({XY = 0}) =
1. It follows that E(XY) = 0, E(X) = 0,P({X = cY}) = 1, (for ¢ = 0) and the equality in
(5.1) is attained.

Case Il. E(X)? > 0.

Then,
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0<E(Y—-21X)%) = E(X*>)22 —=2E(XY)A+ E(Y?)
ie., E(X?)A? —=2E(XY)A+E(Y?) >0, VA€ R.

This implies that the discriminant of the quadratic equation E(X?)A%? — 2E(XY)A +
E(Y?) = 0 is non- negative, i.e.,

4(E(XY))? < 4E(X®)E(Y?)
= (E(XY))? < E(X»)E(Y?),
and the equality is attained if, and only if,
E((Y —cX)?) =0, forsomec € R

& P({Y =cX}) =1, forsomec € R. g

Corollary 5.2

Let (X;,X,) be a bivariate random vector with E (X;) = u; € (—o0,©) and Var(X;) = o €
(0,00),i =1,2. Then
lp(X1, X)) < 1;
(i) p(Xy,X,) = +1if and only if, Xla_“l = d %272 for some real constant d: here
1

a2
Ui = E(Xl), i = 1,2

Proof. Taking X = X; —uy andY = X, — u, in Theorem 5.4, we get
(E((X; — )Xz — 1)) < E((X1 — 1) HE((X2 — 12)?)
 pi(Xy,X) <1
S |pX, X)) < 1,
and the equality is attained if and only if,

P((Xy —m) =c(Xy —pp)) =1,forsomec € R

e P (Xl—ﬂl — dXZ_“Z) =1, forsomed € R. g

01 02

Let X = (Y, Z) be a p-dimensional random vector of either discrete type or of absolutely
continuous type and let Y and Z, respectively, be p; and p, dimensional, so thatp = p; +
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p,. For a given z € S; (or z satisfying (3.5) and f(z) > 0) the conditional p.m.f. (or
p.d.f)of Y givenZ = z is given by

friz (vlz) = T)_ y € RP1.

Let : RPL — R be a Borel function and let z € S (or z satisfies (3.5) with f;(z) > 0) .
Then the conditional expectation of ¢(Y) given that Z = z may be defined by

EWz=2)= [ () fu. (vl2)dy.

RP1

provided the expectation is finite.

Similarly the conditional variance of IIJ(Z), given that Z = z, may be defined by

var(y(¥)|z = z) = E((¥(Y) - EQ(Y)|Z = 2))*|Z = 2).

Throughout we will use the following notation

E(p(¥)|2) = ¥*(2) (52)
where ¥~ is defined by

¥ (2) = E(w(Y)|Z = 2), (5.3)

forall z € S, (or all z satisfying (3.5) with f;(z) > 0) .
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