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MODULE 5

SPECIAL ABSOLUTELY CONTINUOUS DISTRIBUTIONS
AND THEIR PROPERTIES

LECTURE 20
Topics
5.1 UNIFORM OR RECTANGULAR DISTRIBUTION

5.1.1 Quantile function and uniform distribution

Recall that a random variable (r.v.) X is said to be of absolutely continuous type if there
exists a function fy: R — [0,00) such that the distribution function (d.f.) of X is given by

Fy(x) = fo(t)dt, x €R.

The function fy(-) is called a probability density function (p.d.f) of r.v. X and the set
Sy = {x € R: fy(x) > 0} is called the support of the p.d.f. fx(:) (or of r.v. X).
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NPTEL- Probability and Distributions

We have seen that the probability distribution of an absolutely continuous type r.v. is
completely determined by its p.d.f (or its d.f.). Recall that a function g: R - R is a p.d.f
of some r.v. if, and only if, g(x) = 0,Vx € R and

0

fg(x) dx = 1.

—00

5.1 UNIFORM OR RECTANGULAR DISTRIBUTION

Let a and B be real numbers such that—o < a < f < . An absolutely continuous type
r.v. X is said to have uniform (or rectangular) distribution over the interval (a, §) (written
as X ~ U(a, B)) if the p.d.f. of X isgiven by

1
fx(x)={—,3—a’ ifa<x<[>’.

0, otherwise

Clearly fy(x) > 0, Vx € Sy = (a,8) and
[ rwax=1,

i.e., fy(-) is a proper p.d.f. with support Sy = (a, B).

We have a family {U(a,B): — o < a < 8 < «} of uniform distributions corresponding
to different choices of e and f (—o < a < f§ < ).

Suppose that X ~ U(a, B), for some —oo < a < f < o. Then, for r € {1,2, ...},

1 = EX")

= f_c:xr fx(x)dx

B xr
a ﬁ —a
,Br+1 _ ar+1

T r+DB-a

Bl -]

dx
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Thus an uniform distribution is highly platykurtic (i.e., in comparison with normal
distribution having mean (a + 8)/2, p.d.f. of U(a,B) distribution has a flatter peak
around its mean). The flatness of p.d.f. around mean is due to distribution being less
concentrated around its mean. Moreover the value of coefficient of skewness f; =0
suggests that the distribution of X may be symmetric about the mean p;. Clearly

il —x)=fx(x—p), Vx€eR,

and, therefore, the distribution of X ~ U(a, ) is symmetric about u; = (a + B)/2.

fy(x)

o B

Figure 1.1. Plot of p.d.f. of U(a, B) distribution.

Since the distribution of X ~ U(a, B) is symmetric about (a + £)/2, we have

_a+ﬁga+ﬁ_

X
2 2

X,

or equivalently

d
X=a+p—-X.

The distribution function of X ~ U(a, B) is given by

Fe(x) = f fe(t) dt

0, ifx <a
ie., Fy(x) = F—a’ ifa<x<p,
1, ifx=B

Since the distribution of X ~ U(a, B) is symmetric about y; = (a + 8)/2, we have
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: a+p
Median = Mean = >
One may directly check that
a+p 1
Fx ( 2 ) 2

implying that (a + )/2 isthe median of X ~ U(«, ).

The lower quartile g; and the upper quartile g3 of X ~ U(a, ) are given by

1 3
Fy(q1) = P and Fx(q3) = 2

B+ 3a 3+a
and q3 = .

=q1 =

Also,

3—Q1=ﬁ—a

Quartile deviation (QD) = 1 > 1

The moment generating function of X ~ U(e, B) is given by

Myx(t) = E(e*)

= fooet"fx(x)dx
_ B etx it
« B—a
eth _ ot
e, My ={ (G- TF0.
1, ift=0

The following theorem provides a characterization of X ~ U(a,) in terms of the
property that, for any interval I < [a, 8], P({X € I}) depends only on the length of the

interval I and not on the location of I on [, S].

Theorem 1.1

Let @ and S be real constants such that —o < a < <o and let X be a random
variable of absolutely continuous type with P(fa < X < 8}) = 1. Then X ~ U(a, B), if,
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and only if, P({X € I}) = P({X € J}), for any pair of intervals I,] < [a, #] having the
same lengths.

Proof. First suppose that X ~ U(a,f) anda < a < b < . Then
P({X € (a,b)}) = P({X € [a,b)}) = P({X € (a,b]}) = P({X € [a,b]})
= Fy(b) — Fx(a)
_ b—a
p—a
depends only on the length (= b — a) of the interval (a, b)/[a, b)/(a, b]/[a, b].

Conversely suppose that P({X € I}) = P({X € J}) for any pair of intervals I,] < [a, B]
having the same lengths. For 0 < s < 1, let

G(s)=Pa<X<a+(B-a)})=Fla+(B—a)s),
where Fy(-) isthe d.f. of X. Then,for0 <s; <1, 0<s,<1, 0<s;+5s,<1,
Pla+(B-—a)si;<X<a+B-a)s1+s))=PH{a<X<a+ (f—a)s,}),
and therefore
G(si+s)=PHa<X<a+ (B —a)s;+s2)})
=Pla<X<a+PB-a)si)+PHa+(B-a)s;<X<a+ (B —a)(s;+52)})
=Pa<X<a+(B-a)s)+PUa<X <a+(B-a)s))
= G(s1) + G(s2).
By induction, for0 <s; <1, i=1,..,nand 0 < }); 5; < 1, we have
G(sy+sy++5,)=G(s1) +G(s) + -+ G(sp).

Consequently

1
G(ms) = mG(s), VO<s< - (1.1)
s s s
and G(s)=G<—+---+—>=nG(—), 0<s<l1. (1.2)
n n n
n times

Also, form,n € {1,2 .....}, m <n,
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n n n
1
=mG (?1) (using(1.1))
=—G(1) (using (1.2))
mF
=—Fx(F)
_m
T
=G6(r) =r, VreQn(0,1), (1.3)

where Q denotes the set of rational numbers. Now let x € (0,1). Choose a sequence

{rr,n=1,2,.} in Qn(0,1) such that r, | x (existence of such a sequence is
guaranteed). Then

G(x) = 7111_1)1010 G(r,) (since G(x) = Fy(a + (f — a)x) is right continuous)

= lim 7,

lim (using (1.3))
= x.

It follows that

Fy(a+ (B —a)x) = x, vx € (0,1)

= Fy(x) = ;TZ , Vx € (a,B).

Also, since Fy is continuouson Rand P({a < X < B}) = 1, we have

0, ifx<a
Fy(x) = 'B_a,ifan</3
1, ifx>p

=X~ U((Z,ﬁ)-

Theorem 1.2
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Suppose that X ~ U(a, 8), for some real constants a and 8 such that —o < a < 8 < 0.
X—a
ThenY = ,B’Ta ~ U(O,l)

Proof. The p.d.fof X is

1
—, ifa<x<
fie () = {ﬂ—a k
0, otherwise
LetY = ;(%Z = h(X), say. Clearly h(x) = ;:Z x € Sy = (a, B) is strictly increasing on

Sy. Therefore the rv. Y = ;(%Z is of absolutely continuous type with support Sy =

h(Sy) = (0,1) and p.d.f.

d
) = £ (0 00) |57 0| s O

We have h(Sy) = (0,1) and A~ 1(y) = a + (B — a)y, y € h(Syx) = (0, 1). Therefore

fr) =fxla+ B — )Y —allpn(®)
{1, ifo<y<1

- 0, otherwise
y X« U(o,1)
=1 = ~ .
B—a 1w

Example 1.1

Let a > 0 be a real constant. A point X is chosen at random on the interval (0, a) (i.e.,
X ~U(0,a)).

Q) If Y denotes the area of equilateral triangle having sides of length X, find the
mean and variance of Y.

(i) If the point X divides the interval (0,a) into subintervals I; = (0,X) and
I, = [X, a), find the probability that the larger of these two subintervals is at
least the double the size of the smaller subinterval.

Solution.

(1 In the equilateral triangle ABC
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Figure 1.2

X V3
AB=BC=X, BD=andAD= —X.

Therefore
Y = 1><Xx\/§X— \/§X2
2 27 4
V3 . V3,
E(Y) = TE(X )= 7%
3 3
2y — 4y — =4
E(r?) = -EX" = o-a
2 at
and Var(Y) = E(Y?) - (E(V)) = 0

(i) The required probability is
p = P({max{X,a — X} > 2 min{X, a — X}})

=p({a-x>20x <))+ P({x>26-0,x>})

=p({r=g)+ p(fr>3el)
=FX(%)+1—FX(§a)

1, 2.2
3

3 3 ®
Remark 1.1

Uniform distribution is applicable in situations where the outcome of random experiment
is a number X chosen at random from an interval [, ] in the sense that if I € [a, B] is
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any interval then P({X € I}) depends only on the length of I and not on its location in

[(l,ﬁ]. [ |

5.1.1 Quantile function and uniform distribution
We begin this section with the definition of quantile function.
Definition 1.1

Let X be a random variable (not necessarily of absolutely continuous type) with
distribution function Fy (-).

Q) The function Qy:(0,1) » R, defined by, Qx(p) =inf{s € R:Fy(s) =
p},0 < p < 1, is called the quantile function (g.f.) of the random variable X
(or of distribution function Fx(-)).

(i) For a fixed p € (0,1), the quantity Qx(p) = inf{s € R: Fx(s) = p} is called
the p-th quantile of X (or of Fx()). m

Q\(p)

50

Figure 1.3. Plot of quantile function.
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K F) F(x)

L
—

P Po

Qx(po) ! Q(po) Qx(po)

Figure 1.4. (a) Figure 1.4. (b) Figure 1.4. (c)

Remark 1.2

If the distribution function Fy (+) is continuous and strictly increasing on R then Qx (p) =
Fi'(p), 0<p<l.g
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