NPTEL- Probability and Distributions

MODULE 7

LIMITING DISTRIBUTIONS
LECTURE 38

Topics

7.1 CONVERGENCE IN DISTRIBUTION AND
PROBABILITY

Theorem 1.1

d

Let {X,},,>1 be a sequence of random variables such that X,, - X,asn — o, for some
random variable X. Let F, and F denote the d.f.s of X,,(n = 1, 2, ...) and X, respectively.
Then

limFE, (x—)=F(x—) =F(x) =1limF, (x),Vx € Cp,
n—-aoo n—oo
where Cr is the set of continuity points of F.

Proof. We are given that
d
lim E, (x) = F(x),Vx € Cr (since X, - X,asn - oo).
n—-oo

Moreover F(x —) = F(x),Vx € Cr .Thus it suffices to show thatlim,_ F, (x —) =
F(x —),Vx € Cr. Letd € Crso that F(d —) = F(d). Fixm € N = {1, 2,...}. Since the

set C; = R — Cy of discontinuity points of F is countable and the interval (d - nil d) IS

uncountable there exists a d,, € (d —%,d) NCr. Then we have lim,_.F, (d,,) =
F(d,,) and lim,_ F, (d) = F(d). Moreover

E,(d,) <E(d-)<E(d),n=12,..
= lim £, (dy,) < lim F, (d ) < lim £, (d)
= F(d,) < 111i££10Fn (d—-) <F(d) =F(d-). (1.1)
Since d,, € (d — %d) we have

lim F (dy) = F(d =) = F(d). (1.2)
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On taking m — oo in (1.1) we get

lim F(d,,) < lim F,(d =) < F(d —)

=>F(d-) < rlli_r)gli;l (d-)<F({d-) (using (1.2))

> limEd-)=Fd-) m

Corollary 1.1

Let {X,},,>1 be a sequence of random variables with corresponding sequence of d.f.s as
{E,}n,>1. Further let X be another random variable having the d.f. F.

(i)

(i)

(iii)

Proof.

(i)

d
If X,—>X, asn—> o, and X is of continuous type then lim,_,F,(x) =
F(x),Vx € Rand lim,_,FE, (x =) = F(x —),Vx € R.

d
Suppose that P({X, €{0,1,2,..}})=P({X€{0,1,2,..3}) =1 and X, > X,
asn—o . Then Ilim, ,F, (x)=F(x), Vxe€R and lim, . F, (x—) =
F(x—-),Vx € R.

Under the assumptions of (ii), let f and f, be the p.m.fs of X and X, ,
respectively, n = 1,2, .... Then

d
X,—~X, asn-» oo limf,(x) =f(x),vx€{0,1,2,...}.
n—oo

Since X is of continuous type we have Cr = R, where Cr is the set of continuity
points of F. The assertion now follows from Theorem 1.1.

Fixx € R. If P({X = x}) = 0 then x € Cr and, therefore, by Theorem 1.1.
lim E, (x) = F(x), and limF,(x =) = F(x —).

Now suppose that P({X =x})>0. Then x€{0,1,2,..}and P({X =x +
0.5}) = P({X = x — 0.5}) = 0. Consequently x + 0.5 € Cg,

E,(x) = E,(x + 0.5) and F,(x —) = E,(x — 0.5), n=12,..

:>rlli_r)1;1~;l(x) =F(x+0.5)=F(x) and 7lli_r){.lan(x —-)=F(x—-0.5)=F(x—-).
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It follows that

lim E,(x) = F(x) and lim F,(x =) = F(x —),Vx € R.
n-—-oo n—-o0

(iii)  First suppose that X, 5 X, asn — . Then, for x € {0,1,2, ...},
lim f, (x) = lim P({X, = x})
= lim £, () - F, (x -]
=F(x)—F(x—) (using (ii))
=P{X =x})
= f ().
Conversely suppose that rlll_r)?oﬁl (x) = f(x),vx €{0,1,2,...}. Then, for x € R,

E.(x) = P({X, < x})

= F(x),

d
where [x] denotes the largest integer not exceeding x. It follows that X,, - X, asn — oo.
[ |

For the random variables of absolutely continuous type we state the following theorem
without providing its proof.

Theorem 1.2

Let {X, },>1 be a sequence of random variables of absolutely continuous type with
corresponding sequence of p.d.f.s as {f, },,>1. Further let X be another random variable of
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absolutely continuous type with p.d.f. f. Suppose that lim, . f,(x) =f(x),Vx € R.

d
Then X, - X, asn - . g

d

The following example demonstrates that if X,—->X , as n-o , then
lim,,_,,, E,(x =) = F(x —) may not hold; here F, and F are d.fs of X, (n=1,2,...) and
X, respectively.

Example 1.5
LetXn~N(0,%),n =1,2,.., and let Xbe a random variable degenerate at 0 (i.e.,
P({X =0}) =1). Then, forx € R,

ifx <0
ifx >0

FG) = PUX <) = |}
Fy(x) = P(X, < x})
= CD(\/ﬁx)

0,ifx <0
n-w |1

— E,lfx = 0.
1,ifx>0

d
Clearly lim,_,F, (x) =F(x),Vx € Cr = R—{0} and, therefore, X,—-X
(equivalently X, 5o ) as n — oo . However lim,_E, (0—-) =lim,_,F, (0) = % *
F(O —) = 0. [}

The following example illustrates that, in general, the limiting distribution cannot be
obtained by taking the limit of p.m.f.s/p.d.f.s.

Example 1.6

Let {X,,},>1 be a sequence of random variables such that

R

and let X be another random variable with P({X = 0}) = 1. Then it is easy to verify that

d
X, » X,asn - o. The p.m.f. of X, is

1 £ e { 1 1}
£, GO ={2’ BXEZn ),
0, otherwise
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and the p.m.f. of X is

(1, ifx=0
fl) = {0, otherwise

We have

lim,, ., f,(x) =0 # f(x),Vx ER. g
The following theorem provides a characterization of convergence in probability.
Theorem 1.3

Let {X,,},>1 be a sequence of random variables and let ¢ be a real constant. Then
Xnic,asn—mo(:)Ve > O,Tlli_r)r(}OP({IXn —cl=¢e})=0.
Proof. Let F, denote the d.f. of X,, (n =1,2,...) and let F denote the d.f. of random
variable degenerate at c. First suppose that X,, 5 c,asn — oo. Then, for x € R — {c},
lim £, (x) = lim P ({X, < x})

_{0, ifx <c = Fx)

1, ifx>c
Fix € > 0. Then ¢ + ¢ € Cr and therefore, using Theorem 1.1,

lim P((X, — ¢l > &) = Im[P((X, < ¢ = &) + P((X, = ¢ +&)]
= 1lli_r)£10[Fn (c—e)+1- Fn((c + &) —)] (1.3)

=[F(c—¢e)+1—-F(c+¢)]
= 0.

Conversely, suppose that
lim P({|X, —c| = €}) =0,ve > 0.
n—-oo

Then, using (1.3),

lim[P;l(c—e) + 1—51((c+£) —)] =0,Ve >0,

= limE, (c—¢) = lim[l—P;l((c+€) —)] =0,ve>0
n—-oo n—oo
(since E,(c—&)>=0and1 —Fn((c+e) —) >0,vn = 1)
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= limE(x)=0vVx<candlimF,(y—-)=1Vy>c
n—oo n—o0
= limE (x)=0,Vx<candlimF, (y) =1,Vy > ¢
n—oo n-—-wo
(sincel = E,(y) =2 E,(y -),n=12,...).
Thus, forall x € R — {c},

: _ (0, ifx<c _
Tlll—r}c}an(X) - {1, ifx>c F&)

P
= X, 2 c,asn - o. g

In many situations the above theorem in conjunction with Markov’s inequality (see
Corollary 5.1, Module 3) turns out to be quite useful in proving convergence in
probability.
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