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MODULE 6 

RANDOM VECTOR AND ITS JOINT DISTRIBUTION 

LECTURE 28 

Topics  

6.3 CONDITIONAL DISTRIBUTIONS 

6.4 INDEPENDENT RANDOM VARIABLES 

 

6.3 CONDITIONAL DISTRIBUTIONS 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋 =  𝑋1, … , 𝑋𝑝 : 𝛺 → ℝ𝑝  be a 𝑝 -

dimensional (𝑝 ≥ 2) random vector with distribution function 𝐹𝑋(∙). 

Definition 3.1 

Let 𝐷 ∈ ℬ𝑝  be such that 𝑃  𝑋 ∈ 𝐷  > 0. Then the conditional distribution function 

of 𝑋 given that 𝑋 ∈ 𝐷 is defined by 

𝐹𝑋|𝐷 𝑥  = 𝑃  𝑋 ∈ (−∞, 𝑥] |  𝑋 ∈ 𝐷   

        =
𝑃  𝑋 ∈  −∞, 𝑥 ∩ 𝐷  

𝑃  𝑋 ∈ 𝐷  
 

                                                   =
𝑃  𝑋1 ≤ 𝑥1, … , 𝑋𝑝 ≤ 𝑥𝑝 , 𝑋 ∈ 𝐷  

𝑃  𝑋 ∈ 𝐷  
,   𝑥 ∈ ℝ𝑝 .▄ 

 

For a given 𝐷 ∈ ℬ𝑝  it can be verified that 𝐹𝑋|𝐷 ∙  is a distribution function, i.e., it 

satisfies properties (i) − (iv)  of Theorem 1.3. For a fixed 𝑘 ∈  1,… , 𝑝 − 1 , let 

𝑌 =  𝑋1, … , 𝑋𝑘  = (𝑌1, … , 𝑌𝑘 ,  say) and 𝑍 =  𝑋𝑘+1, … , 𝑋𝑝   =  𝑍1, … , 𝑍𝑝−𝑘 , say , 

so that 𝑋 =  𝑌, 𝑍 . In many situations it may be of interest to study the conditional 

probability distribution of numerical characteristic 𝑌 given a fixed value of numerical 

characteristic 𝑍 . For example if 𝑋1  and 𝑋2  denote respectively the heights and 

weights of newly born babies in a community then it may be of interest to study the 
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probability distribution of heights of babies having weight of 3Kg (i.e., conditional 

distribution of 𝑋1 given that {𝑋2 = 3}). 

To make the above discussion precise, first suppose that 𝑋 =  𝑌, 𝑍  is of discrete type 

so that 𝑌 and 𝑍  are also of discrete type (see Theorem 2.1 (i)). Let 𝑆𝑋 , 𝑆𝑌  and 𝑆𝑍 

denote the supports of 𝑋, 𝑌 and  𝑍 respectively. Further let 𝑓𝑋 ⋅ ≑

𝑓𝑌,𝑍 ⋅  and 𝑓𝑍 ∙ denote the joint p.m.f.s of 𝑋 =  𝑌, 𝑍  and 𝑍, respectively. Let 𝑧 ∈ 𝑆𝑍 

be fixed such that 𝑓𝑍 𝑧 = 𝑃  𝑍 = 𝑧  > 0. Define𝑆𝑌 𝑍=𝑧 =  𝑦 ∈ ℝ𝑘 :  𝑦 , 𝑧 ∈ 𝑆𝑋 . 

Then 𝑆𝑌 𝑍=𝑧 ⊆ 𝑆𝑌 =  𝑦 ∈ ℝ𝑝 :  𝑦 , 𝑡 ∈ 𝑆𝑋 , for some 𝑡 ∈ ℝ𝑝−𝑘  and, using Definition 

3.1, the conditional distribution function of 𝑌 given  𝑍 = 𝑧  =  𝑍 ∈  𝑧     is given 

by 

𝐹𝑌 𝑍  𝑦 |𝑧 =
𝑃  𝑌1 ≤ 𝑦1, … , 𝑌𝑘 ≤ 𝑦𝑘 ,   𝑍 = 𝑧  

𝑃  𝑍 = 𝑧  
,   𝑦 ∈ ℝ𝑘                                  3.1  

 

                      =

 𝑓𝑋𝑥∈𝑆𝑌 𝑍=𝑧  ∩  −∞,𝑦  
 𝑥 , 𝑧 

𝑓𝑍 𝑧 
 

                 =  
𝑓𝑋 𝑥 , 𝑧 

𝑓𝑍 𝑧 
𝑥∈𝑆𝑌 𝑍=𝑧  ∩  −∞,𝑦  

 .                                                             (3.2) 

Clearly the p.m.f. corresponding to distribution function 𝐹𝑌 𝑍  ⋅ |𝑧  is (see Remark 2.1 

(xi)) 

                      𝑓𝑌 𝑍  𝑦 |𝑧 =  

𝑓𝑌,𝑍  𝑦 , 𝑧 

𝑓𝑍 𝑧 
,   if 𝑦 ∈ 𝑆𝑌 𝑍=𝑧 

0                     otherwise

                                        3.3  

                                           =
𝑓𝑌𝑍  𝑦 , 𝑧 

𝑓𝑍 𝑧 
,   𝑦 ∈ ℝ𝑘                                                      3.4  

                     = 𝑃   𝑌 = 𝑦|𝑍 = 𝑧  ,     𝑦 ∈ ℝ𝑘 .                           

 

The above discussion leads to the following definition. 
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Definition 3.2  

Let 𝑋 =   𝑋1, … , 𝑋𝑝  be a discrete type random vector. Then, under the above 

notation, 

(i) the conditional p.m.f. of 𝑌 given 𝑍 = 𝑧 (where  𝑧 ∈ 𝑆𝑍  is  fixed) is defined by 

(3.3) (or (3.4)); 

(ii) the conditional distribution function of 𝑌 given 𝑍 = 𝑧 (where 𝑧 ∈ 𝑆𝑍is fixed) 

is defined by (3.1) (or (3.2)); ▄      

Now suppose that 𝑋 =  𝑌, 𝑍  is of absolutely continuous type so that 𝑌 and 𝑍  are 

also of absolutely continuous type (see Theorem 2.1 (ii)). Let 𝑓𝑋 ∙ ≑ 𝑓𝑌,𝑍 ∙ ,

𝑓𝑌 ∙   and  𝑓𝑍 ∙ denote the p.d.f.s. of 𝑋, 𝑌 and 𝑍 respectively. Then we have 𝑃  𝑍 =

𝑧  = 0, ∀𝑧 ∈ ℝ𝑝−𝑘  (Remark 2.1 (viii)) and therefore conditional distribution 

function of 𝑌 given  𝑍 = 𝑧  cannot be defined by (3.1). For 𝑧 ∈ ℝ𝑝−𝑘 , note that 

           𝑍 = 𝑧 =  ⋯

∞

𝑛1=1

  𝑧𝑖 −
1

𝑛𝑖
< 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1,… , 𝑝 − 𝑘 

∞

𝑛𝑝−𝑘=1

, 

and therefore, using continuity of probability measures, 

𝑃  𝑍 = 𝑧  =  lim
𝑛𝑖→∞

𝑖=1,…,𝑝−𝑘

𝑃   𝑧𝑖 −
1

𝑛𝑖
< 𝑍𝑖 ≤ 𝑧𝑖,𝑖 = 1,… , 𝑝 − 𝑘   

                    = lim
𝑕𝑖↓0

𝑖=1,⋯,𝑝−𝑘

𝑃  𝑧𝑖 − 𝑕𝑖 < 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1, … , 𝑝 − 𝑘  . 

Thus if 𝑧 ∈ ℝ𝑝−𝑘  is such that 

𝑃  𝑧𝑖 − 𝛿𝑖 < 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1,… , 𝑝 − 𝑘  > 0, ∀𝛿 =  𝛿1 , … , 𝛿𝑝−𝑘 ∈  0,∞ 𝑝−𝑘 ,             (3.5) 

then the conditional distribution function of 𝑌 given 𝑍 = 𝑧 may be defined by 

𝐹𝑌 𝑍  𝑦|𝑧 = lim
𝑕𝑖↓0

𝑖=1,⋯,𝑝−𝑘

𝑃  𝑌𝑖 ≤ 𝑦𝑖 , 𝑖 = 1,… , 𝑘}|{𝑧𝑖 − 𝑕𝑖 < 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1,… , 𝑝 − 𝑘    3.6  

                = lim
𝑕𝑖↓0

𝑖=1,…,𝑝−𝑘

𝑃  𝑌𝑖 ≤ 𝑦𝑖 , 𝑖 = 1, … , 𝑘, 𝑧𝑖 − 𝑕𝑖 < 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1,… , 𝑝 − 𝑘  

𝑃  𝑧𝑖 − 𝑕𝑖 < 𝑍𝑖 ≤ 𝑧𝑖 , 𝑖 = 1,⋯ , 𝑝 − 𝑘  
 

                    = lim
𝑕𝑖↓0

𝑖=1,…,𝑝−𝑘

 ⋯
𝑦1

−∞
  ⋯

𝑧1

𝑧1−𝑕1
 𝑓𝑌,𝑍 𝑠 , 𝑡 𝑑𝑡𝑑𝑠
𝑧𝑝−𝑘
𝑧𝑝−𝑘−𝑕𝑝−𝑘

𝑦𝑘
−∞

 ⋯
𝑧1

𝑧1−𝑕1
 𝑓𝑍 𝑡 𝑑𝑡
𝑧𝑝−𝑘
𝑧𝑝−𝑘−𝑕𝑝−𝑘
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         =

 ⋯  lim
𝑕𝑖↓0

𝑖=1,…,𝑝−𝑘

1

𝑕1⋯𝑕𝑝−𝑘
 ⋯
𝑧1

𝑧1−𝑕1
 𝑓𝑌,𝑍 𝑠, 𝑡 𝑑𝑡
𝑧𝑝−𝑘
𝑧𝑝−𝑘−𝑕𝑝−𝑘

 
𝑦𝑘
−∞

𝑑𝑠
𝑦1

−∞

lim
𝑕𝑖↓0

𝑖=1,…,𝑝−𝑘

1

𝑕1⋯𝑕𝑝−𝑘
 ⋯
𝑧1

𝑧1−𝑕1
 𝑓𝑍 𝑡 𝑑𝑡
𝑧𝑝−𝑘
𝑧𝑝−𝑘−𝑕𝑝−𝑘

 

                     =
 ⋯
𝑦1

−∞
 𝑓𝑌,𝑍 𝑠 , 𝑧 𝑑𝑠
𝑦𝑘
−∞

𝑓𝑍 𝑧 
 

          =  ⋯

𝑦1

−∞

 
𝑓𝑌,𝑍 𝑠 , 𝑧 

𝑓𝑍 𝑧 

𝑦𝑘

−∞

𝑑𝑠,   𝑦 ∈ ℝ𝑘 ,                                                 (3.7) 

provided 𝑓𝑍 𝑧 > 0  and 𝑧  is such that (3.5) is satisfied. In that case the p.d.f 

corresponding to distribution function 𝐹𝑌|𝑍 ⋅ |𝑧  is given by 

𝑓𝑌|𝑍  𝑦|𝑧 =  
𝑓𝑌𝑍  𝑦, 𝑧 

𝑓𝑍 𝑧 
,   𝑦 ∈ ℝ𝑘  .                                                        (3.8) 

The above discussion is summarized in the following definition. 

Definition 3.3 

Let 𝑋 =  𝑋1, … , 𝑋𝑝  be a random vector of absolutely continuous type. Let 𝑧 ∈ ℝ𝑘  be 

such that  𝑓𝑍 𝑧 > 0 and it satisfies (3.5). Then 

(i) the conditional p.d.f. of 𝑌 given 𝑍 = 𝑧 is defined by (3.8); 

(ii) the conditional distribution function of  𝑌 given 𝑍 = 𝑧 is defined by (3.6) (or 

(3.7)). ▄ 

Remark 3.1 

Using (3.4) and (3.8), for fixed 𝑧 ∈ 𝐷 =  𝑡 ∈ ℝ𝑝−𝑘 : 𝑓𝑌|𝑍 ∙ |𝑡  is defined ,  the 

conditional p.m.f./p.d.f. of 𝑌 given 𝑍 = 𝑧 is given by 

𝑓𝑌|𝑍  𝑦|𝑧 = 𝑐 𝑧 𝑓𝑌,𝑍  𝑦, 𝑧 , 𝑦 ∈ ℝ𝑘 , 

where 𝑐 𝑧  is the normalizing constant. ▄ 
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Example 3.1  

Let 𝑋 =  𝑋1, 𝑋2, 𝑋3  be a discrete type random vector with p.m.f. 

𝑓𝑋 𝑥1, 𝑥2, 𝑥3 =  

𝑥1𝑥2𝑥3

72
,   if  𝑥1, 𝑥2 , 𝑥3 ∈  1, 2 ×  1, 2 ×  1, 3 

0,              otherwise

 . 

(i) Find the conditional p.m.f. of 𝑋1 given that  𝑋2, 𝑋3 = (2, 1); 

(ii) Find the conditional p.m.f. of (𝑋1, 𝑋3) given that 𝑋2 = 3. 

Solution. 

(i)  We have 

𝑓𝑋1| 𝑋2 ,𝑋3  𝑥1  2, 1  =
𝑃  𝑋1 = 𝑥1, 𝑋2 = 2, 𝑋3 = 1   

𝑃   𝑋2, 𝑋3 = (2, 1)   
 

                                        =  

2𝑥1

72 𝑃  𝑋2 = 2, 𝑋3 = 1   
,    if 𝑥1 ∈  1, 2 

0,                                                  otherwise

 , 

𝑃  𝑋2 = 2, 𝑋3 = 1  =  𝑃  𝑋1 = 𝑥1, 𝑋2 = 2, 𝑋3 = 1  

2

𝑥1=1

 

                                       =
2

72
 1 + 2  

                                       =
1

12
 .  

Therefore 

𝑓𝑋1| 𝑋2 ,𝑋3 
 𝑥1|(2, 1) =  

𝑥1

3
,     if 𝑥1 ∈  1, 2 

0,        otherwise

 . 

(ii) We have 

𝑓𝑋1 ,𝑋3|𝑋2
 𝑥1, 𝑥3|3 =  

𝑃  𝑋1 = 𝑥1 , 𝑋2 = 3, 𝑋3 = 𝑥3  

𝑃  𝑋2 = 3  
. 

Using Example 2.2, 𝑃  𝑋2 = 3  =
1

2
  and therefore 

𝑓𝑋1 ,𝑋3|𝑋2
 𝑥1, 𝑥3|3 =  

𝑥1𝑥3

12
, if  𝑥1, 𝑥3 ∈  1, 2 ×  1, 3 

0,                 otherwise

 .▄ 
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Example 3.2 

Let 𝑋 =  𝑋1, 𝑋2, 𝑋3  be a random vector of absolutely continuous type with joint 

p.d.f. 

𝑓𝑋 𝑥 =  

1

𝑥1𝑥2
, if  0 < 𝑥3 < 𝑥2 < 𝑥1 < 1

0,                 otherwise

 . 

(i) For   0 < 𝑥3 < 𝑥2 < 1 , find the conditional  p.d.f. of 𝑋1  given  𝑋2, 𝑋3 =

 𝑥2, 𝑥3 ; 

(ii) For 0 < 𝑥2 < 1, find the conditional p.d.f. of  𝑋1, 𝑋3  given 𝑋2 = 𝑥2. 

Solution. 

(i)  For 0 < 𝑥3 < 𝑥2 < 1 

𝑓𝑋1| 𝑋2 ,𝑋3  𝑥1| 𝑥2, 𝑥3  =
𝑓𝑋1 ,𝑋2 ,𝑋3

 𝑥1, 𝑥2, 𝑥3 

𝑓𝑋2 ,𝑋3
 𝑥2, 𝑥3 

,   𝑥1 ∈ ℝ. 

Using Example 2.3 (ii), for  0 < 𝑥3 < 𝑥2 < 1, we have 

𝑓𝑋2 ,𝑋3
 𝑥2, 𝑥3 = −

ln 𝑥2

𝑥2
. 

Therefore, 

𝑓𝑋1| 𝑋2 ,𝑋3 
 𝑥1|𝑥2, 𝑥3 =  

−
1

𝑥1 ln 𝑥2
,   if 𝑥2 < 𝑥1 < 1

0,                    otherwise

 . 

Alternatively 𝑓𝑋1| 𝑋2 ,𝑋3 
 𝑥1|𝑥2, 𝑥3  can be found by using Remark 3.1. 

(ii) For 0 < 𝑥2 < 1, 

𝑓𝑋1 ,𝑋3 𝑋2
  𝑥1, 𝑥3 𝑥2

  =
𝑓𝑋1 ,𝑋2 ,𝑋3

(𝑥1, 𝑥2, 𝑥3)

𝑓𝑋2
(𝑥2)

 ,    𝑥1, 𝑥3 ∈ ℝ2. 

Using Example 2.3 (iii) we have, for  0 < 𝑥2 < 1 , 

𝑓𝑋2
 𝑥2 = − ln 𝑥2. 

Therefore, for 0 < 𝑥2 < 1, 
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𝑓𝑋1 ,𝑋3 𝑋2
  𝑥1, 𝑥3 𝑥2

  =   
−

1

𝑥1𝑥2 ln 𝑥2
,    if 𝑥2 < 𝑥1 < 1,   0 < 𝑥3 < 𝑥2

0,                           otherwise                                    

 . 

Alternatively 𝑓𝑋1 ,𝑋3
(𝑥1, 𝑥3 𝑥2

 ) can be found using Remark 3.1. ▄ 

 

6.4 INDEPENDENT RANDOM VARIABLES 

Let  (𝛺, ℱ, 𝑃) be a probability space and let  𝑋𝜆 : 𝜆 ∈ Λ  be a collection of random 

variables, where Λ ⊆ ℝ is a non-empty index set. 

Definition 4.1 

The random variables  𝑋𝜆 : 𝜆 ∈ Λ  are said to be (statistically) independent if for any 

finite sub collection  𝜆1, … , 𝜆𝑝 ⊆ Λ we have 

𝐹𝑋𝜆1 ,… ,𝑋𝜆𝑝
 𝑥1, … , 𝑥𝑝 =  𝐹𝑋𝜆𝑖

𝑝

𝑖=1

 𝑥𝑖 ,   ∀𝑥 =  𝑥1 , … , 𝑥𝑝 ∈ ℝ𝑝 .▄ 

 

The observations made in the following remark are immediate from Definition 4.1. 

Remark 4.1 

(i) The random variables  𝑋𝜆 : 𝜆 ∈ Λ  are independent if, and only if, every finite 

sub collection {𝑋𝜆1
, … , 𝑋𝜆𝑝 } ⊆  𝑋𝜆 : 𝜆 ∈ Λ  constitutes a collection of 

independent random variables; 

 

(ii) Suppose that Λ1 ⊆ Λ2 ⊆ ℝ and Λ1 ≠ 𝜙 . Then 

 

 𝑋𝜆 : 𝜆 ∈ Λ2  are independent ⇒  𝑋𝜆 : 𝜆 ∈ Λ1  are independent; 

 

(iii)  It can be shown that (see Theorem 5.3 (ii) in the sequel) 𝑋1, … , 𝑋𝑝  are 

independent if, and only if, for any 𝐴𝑖 ∈ ℬ1, 𝑖 = 1,… , 𝑝, 

𝑃  𝑋𝑖 ∈ 𝐴𝑖 , 𝑖 = 1,… , 𝑝  =  𝑃( 𝑋𝑖 ∈ 𝐴𝑖 )

𝑝

𝑖=1

.▄ 
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Theorem 4.1 

Let X = (𝑋1, … , 𝑋𝑝)  be a 𝑝 -dimentsional (𝑝 ≥ 2)  random vector with joint 

distribution function 𝐹𝑋1 ,…,𝑋𝑝
 ∙ . Let 𝐹𝑋𝑖 ∙  denote the marginal distribution function 

of 𝑋𝑖 , 𝑖 = 1,… , 𝑝. Then the random variables 𝑋1, … , 𝑋𝑝  are independent if, and only 

if, 

𝐹𝑋1 ,… ,𝑋𝑝  𝑥1, … , 𝑥𝑝 =  𝐹𝑋𝑖 𝑥𝑖 

𝑝

𝑖=1

,   ∀𝑥 =  𝑥1, … , 𝑥𝑝 ∈ ℝ𝑝 .                 (4.1) 

Proof. First suppose that 𝑋1, … , 𝑋𝑝  are independent. Then, by definition, (4.1) 

obviously holds. Conversely suppose that (4.1) holds. Then, for any 𝑦 ∈ ℝ𝑝  and any 

permutation (𝛽1, … , 𝛽𝑝) of  1, … , 𝑝 , 

    𝑃  𝑋𝑖 ≤ 𝑦𝑖 , 𝑖 = 1,… , 𝑝  =  𝑃( 𝑋𝑖 ≤ 𝑦𝑖 )

𝑝

𝑖=1

 

 ⇒ 𝑃  𝑋𝛽𝑖 ≤ 𝑦𝛽𝑖 , 𝑖 = 1,… , 𝑝  =  𝑃( 𝑋𝛽𝑖 ≤ 𝑦𝛽𝑖 )

𝑝

𝑖=1

 

⇒ 𝐹𝑋𝛽1 ,…,𝑋𝛽𝑝
 𝑦𝛽1

, … , 𝑦𝛽𝑝 =  𝐹𝑋𝛽𝑖

𝑝

𝑖=1

 𝑦𝛽𝑖 , ∀𝑦 =  𝑦1 , … , 𝑦𝑝 ∈ ℝ𝑝 , 𝛽 =  𝛽1, … , 𝛽𝑝 ∈ 𝑆𝑝 , 

where 𝑆𝑝  denotes the set of all permutations of  1, … , 𝑝 . It follows that, for any 

 𝛽1, … , 𝛽𝑝 ∈ 𝑆𝑝  and any 𝑥 ∈ ℝ𝑝 , 

𝐹𝑋𝛽1 ,… ,𝑋𝛽𝑝
 𝑥1, … , 𝑥𝑝 =  𝐹𝑋𝛽𝑖

 𝑥𝑖 

𝑝

𝑖=1

.                                                (4.2) 

Let 𝑞 ∈ {2,… , 𝑝} and let  𝜆1, … , 𝜆𝑞 ⊆  1, … , 𝑝 = Λ , say. Let 𝜆𝑞+1, … , 𝜆𝑝  be such 

that Λ −  𝜆1, … , 𝜆𝑞 =  𝜆𝑞+1, … , 𝜆𝑝 .  Then  (𝜆1, … , 𝜆𝑞 , 𝜆𝑞+1, … , 𝜆𝑝) ∈ 𝑆𝑝  and by 

Lemma 1.2 

𝐹𝑋𝜆1
,…,𝑋𝜆𝑞

 𝑥1, … , 𝑥𝑞 =  lim
𝑥𝑗→∞

𝑗=𝑞+1,… ,𝑝

𝐹𝑋𝜆1
,…,𝑋𝜆𝑝

 𝑥1, … , 𝑥𝑝  

                                                                =  lim
𝑥𝑗→∞

𝑗=𝑞+1,⋯,𝑝

 𝐹𝑋𝜆𝑙

𝑝

𝑙=1

 𝑥𝑙              (using (4.2)) 
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                                                   =  𝐹𝑋𝜆𝑙
 𝑥𝑙 ,

𝑞

𝑙=1

  ∀𝑥 =  𝑥1, … , 𝑥𝑞 ∈ ℝ𝑞 . 

 

Hence the result follows. ▄ 

The following remark is immediate from the above theorem and Remark 1.2(ii). 

Remark 4.2 

Random variables 𝑋1, … , 𝑋𝑝  are independent if, and only if, for any 𝛽 =

 𝛽1, … , 𝛽𝑝 ∈ 𝑆𝑝  the random variables 𝑋𝛽1
, … , 𝑋𝛽𝑝  are independent. ▄ 

Theorem 4.2 

Let 𝑋 = (𝑋1, … , 𝑋𝑝)  be a 𝑝 -dimensional (𝑝 ≥ 2)  random vector of either discrete 

type or of absolutely continuous type. Let 𝑓𝑋1 ,…,𝑋𝑝
 ∙  denote the joint p.m.f. (or p.d.f.) 

of 𝑋 and let 𝑓𝑋𝑖 ∙  denote the marginal p.m.f. (or p.d.f.) of  𝑋𝑖 , 𝑖 = 1,… , 𝑝. Then 

(i) 𝑋1, … , 𝑋𝑝  are independent if, and only if, 

𝑓𝑋1 ,…,𝑋𝑝  𝑥1, … , 𝑥𝑝 =  𝑓𝑋𝑖

𝑝

𝑖=1

 𝑥𝑖 ,   ∀𝑥 =  𝑥1, … , 𝑥𝑝 ∈ ℝ𝑝 .         (4.3) 

(ii) 𝑋1, … , 𝑋𝑝  are independent if, and only if, 

𝑓𝑋1 ,… ,𝑋𝑝  𝑥1, … , 𝑥𝑝 =  𝑔𝑖

𝑝

𝑖=1

 𝑥𝑖 ,   ∀𝑥 =  𝑥1, … , 𝑥𝑝 ∈ ℝ𝑝 ,      (4.4) 

for some non-negative functions 𝑔1(⋅),… , 𝑔𝑝(⋅).  In that case 𝑓𝑋𝑖 𝑥𝑖 =

 𝑑𝑖𝑔𝑖 𝑥 , 𝑥 ∈ ℝ, 𝑖 = 1,… , 𝑝 for some positive constants 𝑑1, … , 𝑑𝑝 . 

(iii) 𝑋1, 𝑋2, … , 𝑋𝑝  are independent ⇒ 𝑆𝑋 =  𝑆𝑋𝑖
𝑝
𝑖=1 , where, for a random 

variable 𝑌, 𝑆𝑌 =  𝑦 ∈ ℝ𝑝 : 𝑓𝑌  𝑦 > 0 . 

 

Proof. 

(i)  For notational simplicity we will provide the proof for 𝑝 = 2. 

Case I. 𝑋 is of discrete type  

Let 𝑆𝑋  be the support of 𝑋 = (𝑋1, 𝑋2) and let 𝑆𝑋𝑖  be the support of 𝑋𝑖 , 𝑖 = 1, 2…. First 

suppose that (4.3) holds. Then clearly 𝑆𝑋 = 𝑆𝑋1
× 𝑆𝑋2

(see (iii) proved in the sequel). 

Therefore, for 𝑥 =  𝑥1, 𝑥2 ∈ ℝ2, 
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𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2  =  𝑓𝑋1 ,𝑋2

 𝑦1, 𝑦2 

𝑦∈𝑆𝑋∩((−∞,𝑥])

 

                          =   𝑓𝑋1

𝑦2∈𝑆𝑋2∩(−∞,𝑥2]𝑦1∈𝑆𝑋1∩(−∞,𝑥1]

 𝑦1 𝑓𝑋2
 𝑦2            (𝑆𝑋 = 𝑆𝑋1

× 𝑆𝑋2
) 

                          =   𝑓𝑋1

𝑦1∈𝑆𝑋1∩(−∞,𝑥1]

 𝑦1    𝑓𝑋2

𝑦2∈𝑆𝑋2∩(−∞,𝑥2]

 𝑦2   

                          = 𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 .                                                       

 Using Theorem 4.1 it follows that 𝑋1 and 𝑋2 are independent. 

Conversely suppose that 𝑋1 and 𝑋2 are independent.Then, by Theorem 4.1, 

𝐹𝑋1 ,𝑋2
 𝑧1, 𝑧2 =  𝐹𝑋1

 𝑧1 𝐹𝑋2
 𝑧2 ,   ∀𝑧 =  𝑧1, 𝑧2 ∈ ℝ2 . 

 Let  𝑥 =  𝑥1, 𝑥2 ∈ ℝ2 .  Define 𝑥𝑛 =  𝑥1 −
1

𝑛
 , 𝑥2 −

1

𝑛
 , 𝑛 = 1, 2, …. Then, by 

Remark 2.1 (v), 

𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 = 𝑃( 𝑋1 = 𝑥1, 𝑋2 = 𝑥2 ) 

                         = lim
𝑛→∞

  𝐹𝑋1 ,𝑋2
 𝑧1, 𝑧2 

𝑧∈∆𝑘,2((𝑥𝑛 ,𝑥])

2

𝑘=0

 

                        = lim
𝑛→∞

[𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2 − 𝐹𝑋1 ,𝑋2

 𝑥1 −
1

𝑛
, 𝑥2 −𝐹𝑋1 ,𝑋2

 𝑥1, 𝑥2 −
1

𝑛
  

            +𝐹𝑋1 ,𝑋2
 𝑥1 −

1

𝑛
 , 𝑥2 −

1

𝑛
 ] 

                      = lim
𝑛→∞

[𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 − 𝐹𝑋1
 𝑥1 −

1

𝑛
 𝐹𝑋2

 𝑥2 − 𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 −
1

𝑛
  

                                                                   +𝐹𝑋1
 𝑥1 −

1

𝑛
 𝐹𝑋2

 𝑥2 −
1

𝑛
 ] 

             = 𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 − 𝐹𝑋1
 𝑥1 − 𝐹𝑋2

 𝑥2 − 𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 − + 𝐹𝑋1
 𝑥1 − 𝐹𝑋2

 𝑥2 −  

= 𝐹𝑋2
 𝑥2  𝐹𝑋1

 𝑥1 − 𝐹𝑋1
 𝑥1 −  − 𝐹𝑋2

 𝑥2 − [𝐹𝑋1
 𝑥1 − 𝐹𝑋1

 𝑥1 − ] 

                      =  𝐹𝑋1
 𝑥1 − 𝐹𝑋1

 𝑥1 −   𝐹𝑋2
 𝑥2 − 𝐹𝑋2

 𝑥2 −   

                      = 𝑃({𝑋1 = 𝑥1}) 𝑃({𝑋2 = 𝑥2}) 
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= 𝑓𝑋1
 𝑥1 𝑓𝑋2

 𝑥2 ,                                                                            

i.e., (4.3) holds. 

Case II. 𝑋 is of absolutely continuous type 

First suppose that (4.3) holds. Then, for 𝑥 = (𝑥1, 𝑥2) ∈ ℝ, 

𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2 =    𝑓𝑋1 ,𝑋2

 𝑦1, 𝑦2 

𝑥2

−∞

𝑥1

−∞

𝑑𝑦2𝑑𝑦1 

                             =    𝑓𝑋1
 𝑦1 

𝑥2

−∞

𝑓𝑋2
 𝑦2 

𝑥1

−∞

𝑑𝑦2𝑑𝑦1 

                                     =   𝑓𝑋1
 𝑦1 𝑑𝑦1

𝑥1

−∞

   𝑓𝑋2
 𝑦2 𝑑𝑦2

𝑥2

−∞

  

       =  𝐹𝑋1
 𝑥1 𝐹𝑋2

 𝑥2 .       

Using Theorem 4.1 it follows that 𝑋1 and 𝑋2 are independent. 

Conversely suppose that 𝑋1 and 𝑋2 are independent.Then, by Theorem 4.1, 

𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2 = 𝐹𝑋1

 𝑥1 𝐹𝑋2
 𝑥2 ,    ∀𝑥 =  𝑥1, 𝑥2 ∈ ℝ2 . 

For simplicity assume that 𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2  is continuous everywhere. Then, by Remark 

2.1 (xiii) 

                                      𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 =  

𝜕2𝐹𝑋1 ,𝑋2
 𝑥1, 𝑥2 

𝜕𝑥1𝜕𝑥2
 

                            =  
𝜕2

𝜕𝑥1𝜕𝑥2
 (𝐹𝑋1

 𝑥1 𝐹𝑋2
 𝑥2 ) 

                        =   
𝜕𝐹𝑋1

 𝑥1 

𝜕𝑥1
  

𝜕𝐹𝑋2
 𝑥2 

𝜕𝑥2
  

                                                =  𝑓𝑋1
 𝑥1 𝑓𝑋2

 𝑥2 ,   ∀𝑥 =  𝑥1, 𝑥2 ∈ ℝ2 . 

(ii) First suppose that  𝑋1 and 𝑋2 are independent. Then clearly (4.4) holds with the 

choice𝑔𝑖 𝑥𝑖 = 𝑓𝑋𝑖 𝑥𝑖 , 𝑥𝑖 ∈ ℝ , 𝑖 = 1, 2.Conversely suppose that (4.4) holds. 

Let  
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                                          𝑐𝑖 =   𝑔𝑖 𝑥 

∞

−∞

𝑑𝑥,   𝑖 = 1, 2, 

so that 𝑐1 ≥ 0 , 𝑐2 ≥ 0  and  

 𝑐1𝑐2 =    𝑔1 𝑥1 𝑑𝑥1

∞

−∞

   𝑔2 𝑥2 𝑑𝑥2

∞

−∞

  

=    𝑔1 𝑥1 𝑔2 𝑥2 𝑑𝑥2

∞

−∞

𝑑𝑥1

∞

−∞

 

=    𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 𝑑𝑥2

∞

−∞

𝑑𝑥1

∞

−∞

 

  = 1.                                                     

It follows that 𝑐1 > 0, 𝑐2 > 0  and 𝑐1𝑐2 = 1. Also 

𝑓𝑋1
 𝑥1 =  𝑓𝑋1 ,𝑋2

 𝑥1, 𝑥2 𝑑𝑥2

∞

−∞

 

                =   𝑔1 𝑥1 𝑔2 𝑥2 𝑑𝑥2

∞

−∞

 

             =  𝑐2𝑔1 𝑥1 ,   𝑥1 ∈ ℝ.   

Similarly 

      𝑓𝑋2
 𝑥2 =  𝑐1𝑔2 𝑥2  ,   𝑥2 ∈ ℝ .        

 Thus we have 

               𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 = 𝑔1 𝑥1 𝑔2 𝑥2  

= (𝑐1𝑔1 𝑥1 )(𝑐2𝑔2 𝑥2 )     (𝑐1𝑐2 = 1) 

= 𝑓𝑋1
 𝑥1 𝑓𝑋2

 𝑥2  ,   ∀𝑥 =  𝑥1, 𝑥2 ∈ ℝ2. 

Using (i) it follows that 𝑋1 and 𝑋2 are independent. 

(iii) Since 𝑋1 and 𝑋2  are independent by (i), 𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 = 𝑓𝑋1

 𝑥1 𝑓𝑋2
 𝑥2 ∀𝑥 ∈

ℝ2. Therefore 
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𝑆𝑋 =   𝑥1, 𝑥2 : 𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 > 0  

         =   𝑥1, 𝑥2 : 𝑓𝑋1
 𝑥1 𝑓𝑋2

 𝑥2 > 0  

              = {𝑥: 𝑓𝑋1
 𝑥 > 0} × {𝑦: 𝑓𝑋2

 𝑦 > 0} 

                                                  = 𝑆𝑋1
× 𝑆𝑋2

.  ▄ 

Remark 4.3 

(i) Let 𝑋 =  𝑋1, 𝑋2  be a bivariate vector of either discrete type or of absolutely 

continuous type. Let 𝐷 = {𝑥2 ∈ ℝ: 𝑓𝑋1 𝑋2
  ⋅  𝑥2 )  is defined .Then by Theorem 

4.2 (i) 

        𝑋1 and 𝑋2 are independent  ⟺ 𝑓𝑋1 ,𝑋2
 𝑥1, 𝑥2 = 𝑓𝑋1

 𝑥1 𝑓𝑋2
 𝑥2 , ∀𝑥 =  𝑥1 , 𝑥2 ∈ ℝ

2 

                                                         ⟺
𝑓𝑋1 ,𝑋2

 𝑥1, 𝑥2 

𝑓𝑋2
 𝑥2 

= 𝑓𝑋1
 𝑥1 , ∀𝑥1 ∈ ℝ, 𝑥2 ∈ 𝐷 

                                               ⟺ 𝑓𝑋1 𝑋2
  𝑥1 𝑥2

  = 𝑓𝑋1
 𝑥1  ,   ∀𝑥1 ∈ ℝ, 𝑥2 ∈ 𝐷. 

It follows that 𝑋1 and 𝑋2 are independent if, and only if, for every 𝑥2 ∈ 𝐷 the 

conditional distribution of 𝑋1  given 𝑋2 = 𝑥2  is the same as unconditional 

distribution of𝑋1. Similarly, by symmetry, 𝑋1 and 𝑋2 are independent if, and 

only if, for every 𝑥1 ∈ 𝐸 = {𝑡 ∈ ℝ: 𝑓𝑋2 𝑋1
  ∙  𝑡)  is defined  the conditional 

distribution of 𝑋2 given 𝑋1 = 𝑥1 is the same as the unconditional distribution 

of 𝑋2. 

(ii) Let Λ ⊆ ℝ  be an arbitrary non-empty index set, and let  𝑋𝜆 : 𝜆 ∈ Λ  be a 

collection of random vectors defined on a probability space (𝛺, ℱ, 𝑃), where 

𝑋𝜆  may be of different dimensions. One can define the independence of 

random vectors  𝑋𝜆 : 𝜆 ∈ Λ  by extending Definition 4.1 in an obvious 

manner. We say that the random vectors  𝑋𝜆 : 𝜆 ∈ Λ  are independent if for 

any finite subcollection  𝜆1, … , 𝜆𝑝 ⊆ Λ, we have 

𝐹𝑋𝜆1 ,… ,𝑋𝜆𝑝
 𝑥1, … , 𝑥𝑝 =  𝑃( 𝑋𝜆𝑖 ∈  −∞, 𝑥𝑖 , 𝑖 = 1, … , 𝑝}  

                         =  𝑃({

𝑝

𝑖=1

𝑋𝜆𝑖 ∈ (−∞, 𝑥𝑖]}) 

                          =  𝐹𝑋𝜆𝑖

𝑝

𝑖=1

 𝑥𝑖 ,   ∀𝑥1, … , 𝑥𝑝 . 
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With above definition of independence of random vectors  𝑋𝜆 : 𝜆 ∈ Λ  the 

results stated in Theorem 4.1 and 4.2 hold with random variables 𝑋1, … , 𝑋𝑝  

replaced by random vectors 𝑋1,⋯ , 𝑋𝑝 . Morever, Remarks 4.1, 4.2 and 4.3 (i) 

also hold with random variables 𝑋𝜆𝑠 replaced by random vectors 𝑋𝜆𝑠. 

(iii) Let 𝑋  =  𝑋1, … , 𝑋𝑝  be a random vector and let 𝑘1, … , 𝑘𝑟  be positive integers 

such that  𝑘𝑖
𝑟
𝑖=1 = 𝑝.  Define 𝑌1 =  𝑋1, … , 𝑋𝑘1

 ,   𝑌2 =  𝑋𝑘1+1, … , 𝑋𝑘1+𝑘2
  

and 𝑌𝑖 =  𝑋 𝑘𝑗
𝑖−1
𝑗=1 +1

, … , 𝑋 𝑘𝑗
𝑖
𝑗=1

 , 𝑖 = 2, 3, … , 𝑟.  Suppose that 𝑋1, … , 𝑋𝑝  are 

independent random variables. Then, on using the analog of Theorem 4.1 for 

random vectors, it follows that 𝑌1, … , 𝑌𝑟  are independent random vectors. ▄ 

 


