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MODULE 7 

LIMITING DISTRIBUTIONS 

LECTURE 38 

Topics  

7.1 CONVERGENCE IN DISTRIBUTION AND 

     PROBABILITY  

Theorem 1.1 

 Let  𝑋𝑛 𝑛≥1 be a sequence of random variables such that 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞, for some 

random variable 𝑋. Let 𝐹𝑛  and 𝐹 denote the d.f.s of 𝑋𝑛 𝑛 = 1, 2, …   and 𝑋, respectively. 

Then  

lim
𝑛 ∞

𝐹𝑛  𝑥 − = 𝐹 𝑥 − = 𝐹 𝑥 = lim
𝑛 ∞

𝐹𝑛  𝑥 , ∀𝑥 ∈ 𝐶𝐹 , 

where 𝐶𝐹  is the set of continuity points of 𝐹. 

Proof. We are given that 

lim
𝑛 ∞

𝐹𝑛  𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ 𝐶𝐹  since 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞ . 

Moreover 𝐹 𝑥 − = 𝐹 𝑥 , ∀𝑥 ∈ 𝐶𝐹 .Thus it suffices to show that lim𝑛 ∞ 𝐹𝑛  𝑥 − =

𝐹 𝑥 − , ∀𝑥 ∈ 𝐶𝐹 . Let 𝑑 ∈ 𝐶𝐹  so that 𝐹 𝑑 − = 𝐹 𝑑 . Fix 𝑚 ∈ ℕ =  1, 2, …  . Since the 

set 𝐶𝐹
𝑐 = ℝ − 𝐶𝐹 of discontinuity points of 𝐹 is countable and the interval  𝑑 −

1

𝑚
, 𝑑  is 

uncountable there exists a 𝑑𝑚 ∈  𝑑 −
1

𝑚
, 𝑑 ⋂𝐶𝐹 . Then we have lim𝑛 ∞ 𝐹𝑛  𝑑𝑚 =

𝐹 𝑑𝑚  and lim𝑛 ∞ 𝐹𝑛  𝑑 = 𝐹 𝑑 . Moreover 

                                 𝐹𝑛 𝑑𝑚 ≤ 𝐹𝑛 𝑑 − ≤ 𝐹𝑛 𝑑 , 𝑛 = 1, 2, … 

                   ⇒ lim
𝑛 ∞

𝐹𝑛  𝑑𝑚 ≤ lim
𝑛 ∞

𝐹𝑛  𝑑 − ≤ lim
𝑛 ∞

𝐹𝑛  𝑑  

                   ⇒ 𝐹 𝑑𝑚  ≤ lim
𝑛 ∞

𝐹𝑛  𝑑 − ≤ 𝐹 𝑑 = 𝐹 𝑑 − .                                 (1.1) 

Since 𝑑𝑚 ∈  𝑑 −
1

𝑚
, 𝑑 ,  we have 

lim
𝑚 ∞

𝐹  𝑑𝑚  = 𝐹 𝑑 − = 𝐹 𝑑 .                                                                          (1.2)   



NPTEL- Probability and Distributions  

 

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur                                   2                    

 

 

On taking 𝑚  ∞ in (1.1) we get  

lim
𝑚 ∞

𝐹 𝑑𝑚 ≤ lim
𝑚 ∞

𝐹𝑛 𝑑 − ≤ 𝐹 𝑑 −  

 

                                                 ⇒ 𝐹 𝑑 − ≤ lim
𝑛 ∞

𝐹𝑛  𝑑 − ≤ 𝐹 𝑑 −                   (using (1.2)) 

 

                                      ⇒ lim
𝑛 ∞

𝐹𝑛  𝑑 − = 𝐹 𝑑 − ∙ ▄ 

Corollary 1.1 

Let  𝑋𝑛 𝑛≥1 be a sequence of random variables with corresponding sequence of d.f.s as 

 𝐹𝑛 𝑛≥1. Further let 𝑋 be another random variable having the d.f. 𝐹. 

(i) If 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞ , and 𝑋  is of continuous type then lim𝑛 ∞ 𝐹𝑛 𝑥 =

𝐹 𝑥 , ∀𝑥 ∈ ℝ and lim𝑛 ∞ 𝐹𝑛  𝑥 − = 𝐹 𝑥 − , ∀𝑥 ∈ ℝ. 

(ii) Suppose that 𝑃  𝑋𝑛 ∈  0, 1, 2, …    = 𝑃  𝑋 ∈  0, 1, 2, …    = 1 and 𝑋𝑛

𝑑
 𝑋,

as 𝑛  ∞ . Then lim𝑛 ∞ 𝐹𝑛  𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ ℝ and lim𝑛 ∞ 𝐹𝑛  𝑥 − =

𝐹 𝑥 − , ∀𝑥 ∈ ℝ. 

(iii) Under the assumptions of (ii), let 𝑓  and 𝑓𝑛  be the p.m.f.s of 𝑋  and 𝑋𝑛 , 

respectively, 𝑛 = 1, 2, …. Then 

𝑋𝑛

𝑑
 𝑋,   as 𝑛  ∞ ⇔ lim

𝑛 ∞
𝑓𝑛 𝑥 = 𝑓 𝑥 , ∀𝑥 ∈  0, 1, 2, …  . 

Proof. 

(i) Since 𝑋 is of continuous type we have 𝐶𝐹 = ℝ, where 𝐶𝐹  is the set of continuity 

points of 𝐹. The assertion now follows from Theorem 1.1. 

 

(ii) Fix 𝑥 ∈ ℝ. If 𝑃  𝑋 = 𝑥  = 0 then 𝑥 ∈ 𝐶𝐹  and, therefore, by Theorem 1.1. 

 

lim
𝑛 ∞

𝐹𝑛 𝑥 = 𝐹 𝑥 , and     lim
𝑛 ∞

𝐹𝑛 𝑥 − = 𝐹 𝑥 − . 

Now suppose that 𝑃  𝑋 = 𝑥  > 0 . Then 𝑥 ∈  0, 1, 2, …  and 𝑃  𝑋 = 𝑥 +

0.5  = 𝑃  𝑋 = 𝑥 − 0.5  = 0. Consequently 𝑥 ± 0.5 ∈ 𝐶𝐹, 

𝐹𝑛 𝑥 = 𝐹𝑛 𝑥 + 0.5  and 𝐹𝑛 𝑥 − = 𝐹𝑛 𝑥 − 0.5 , 𝑛 = 1,2, … 

        ⇒ lim
𝑛 ∞

𝐹𝑛 𝑥 = 𝐹 𝑥 + 0.5 = 𝐹 𝑥    and lim
𝑛 ∞

𝐹𝑛 𝑥 − = 𝐹 𝑥 − 0.5 = 𝐹 𝑥 − . 
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It follows that 

lim
𝑛 ∞

𝐹𝑛 𝑥 = 𝐹 𝑥  and lim
𝑛 ∞

𝐹𝑛 𝑥 − = 𝐹 𝑥 − , ∀𝑥 ∈ ℝ. 

(iii) First suppose that 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞. Then, for 𝑥 ∈  0, 1, 2, …  , 

                                         lim
𝑛 ∞

𝑓𝑛 𝑥 = lim
𝑛 ∞

𝑃  𝑋𝑛 = 𝑥   

                                                            = lim
𝑛 ∞

 𝐹𝑛 𝑥 − 𝐹𝑛 𝑥 −   

                                                            = 𝐹 𝑥 − 𝐹 𝑥 −      (using (ii)) 

                                                            = 𝑃  𝑋 = 𝑥   

                                                            = 𝑓 𝑥 . 

Conversely suppose that lim
𝑛 ∞

𝑓𝑛 𝑥 = 𝑓 𝑥 , ∀𝑥 ∈  0, 1, 2, …  . Then, for 𝑥 ∈ ℝ, 

                                                  𝐹𝑛 𝑥 = 𝑃  𝑋𝑛 ≤ 𝑥   

                                                              =  𝑃  𝑋𝑛 = 𝑘  

 𝑥 

𝑘=0

 

                                                              =  𝑓𝑛 𝑘 

 𝑥 

𝑘=0

 

                                                          
𝑛 ∞
    𝑓 𝑘 

 𝑥 

𝑘=0

 

                                                            = 𝐹 𝑥 , 

where  𝑥  denotes the largest integer not exceeding 𝑥. It follows that 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞. 

▄ 

For the random variables of absolutely continuous type we state the following theorem 

without providing its proof. 

Theorem 1.2 

Let  𝑋𝑛 𝑛≥1  be a sequence of random variables of absolutely continuous type with 

corresponding sequence of p.d.f.s as  𝑓𝑛 𝑛≥1. Further let 𝑋 be another random variable of 
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absolutely continuous type with p.d.f.𝑓 . Suppose that lim𝑛 ∞ 𝑓𝑛 𝑥 =𝑓 𝑥 , ∀𝑥 ∈ ℝ . 

Then 𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞. ▄ 

The following example demonstrates that if 𝑋𝑛

𝑑
 𝑋 , as 𝑛  ∞ , then 

lim𝑛 ∞ 𝐹𝑛 𝑥 − =𝐹 𝑥 −  may not hold; here 𝐹𝑛  and 𝐹 are d.f.s of 𝑋𝑛  (𝑛 = 1, 2, …) and 

𝑋, respectively. 

Example 1.5 

Let 𝑋𝑛~ 𝑁  0,
1

𝑛
 , 𝑛 = 1,2, … , and let 𝑋 be a random variable degenerate at 0  (i. e.,

𝑃  𝑋 = 0 ) = 1 . Then, for 𝑥 ∈ ℝ, 

                                                               𝐹 𝑥 = 𝑃  𝑋 ≤ 𝑥  =  
0, if 𝑥 < 0
1, if 𝑥 ≥ 0

  

𝐹𝑛 𝑥 = 𝑃  𝑋𝑛 ≤ 𝑥   

                                                                         = Φ  𝑛𝑥  

𝑛 ∞
    

0, if 𝑥 < 0
1

2
, if 𝑥 = 0

1, if 𝑥 > 0

 . 

Clearly lim𝑛 ∞ 𝐹𝑛  𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ 𝐶𝐹 = ℝ−  0 and, therefore, 𝑋𝑛

𝑑
 𝑋 , 

(equivalently 𝑋𝑛

𝑝
  0 ) as 𝑛  ∞ . However lim𝑛 ∞ 𝐹𝑛  0 − = lim𝑛 ∞ 𝐹𝑛  0 =

1

2
≠

𝐹 0 − = 0. ▄ 

The following example illustrates that, in general, the limiting distribution cannot be 

obtained by taking the limit of p.m.f.s/p.d.f.s. 

Example 1.6 

Let  𝑋𝑛 𝑛≥1 be a sequence of random variables such that 

𝑃   𝑋𝑛 =
1

2𝑛
  = 𝑃   𝑋𝑛 =

1

𝑛
  =

1

2
, 𝑛 = 1,2, …, 

and let 𝑋 be another random variable with 𝑃  𝑋 = 0  = 1. Then it is easy to verify that 

𝑋𝑛

𝑑
 𝑋, as 𝑛  ∞. The p.m.f. of 𝑋𝑛  is 

𝑓𝑛 𝑥 =  

1

2
, if 𝑥 ∈  

1

2𝑛
,
1

𝑛
 

0,          otherwise

 , 
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and the p.m.f. of 𝑋 is 

𝑓 𝑥 =  
1, if 𝑥 = 0
0, otherwise

 ∙ 

We have 

lim𝑛 ∞ 𝑓𝑛 𝑥 = 0 ≠ 𝑓 𝑥 , ∀𝑥 ∈ ℝ. ▄ 

The following theorem provides a characterization of convergence in probability. 

Theorem 1.3 

 Let  𝑋𝑛 𝑛≥1 be a sequence of random variables and let 𝑐 be a real constant. Then  

𝑋𝑛

𝑝
 𝑐, as 𝑛  ∞ ⟺ ∀𝜀 > 0, lim

𝑛 ∞
𝑃    𝑋𝑛 − 𝑐 ≥ 𝜀  = 0. 

Proof. Let 𝐹𝑛  denote the d.f. of 𝑋𝑛  (𝑛 = 1, 2, …) and let 𝐹  denote the d.f. of random 

variable degenerate at 𝑐. First suppose that 𝑋𝑛

𝑝
 𝑐, as 𝑛  ∞. Then, for 𝑥 ∈ ℝ −  𝑐 , 

                                    lim
𝑛 ∞

𝐹𝑛 𝑥 = lim
𝑛 ∞

𝑃   𝑋𝑛 ≤ 𝑥   

 =  
0,      if 𝑥 < 𝑐
1,      if 𝑥 > 𝑐

   =   𝐹 𝑥 .      

Fix 𝜀 > 0. Then 𝑐 ± 𝜀 ∈ 𝐶𝐹  and therefore, using Theorem 1.1, 

lim
𝑛 ∞

𝑃   𝑋𝑛 − 𝑐 ≥ 𝜀  = lim
𝑛 ∞

 𝑃  𝑋𝑛 ≤ 𝑐 − 𝜀  + 𝑃  𝑋𝑛 ≥ 𝑐 + 𝜀    

                   = lim
𝑛 ∞

 𝐹𝑛 𝑐 − 𝜀 + 1 − 𝐹𝑛  𝑐 + 𝜀 −                  (1.3) 

                                          =  𝐹 𝑐 − 𝜀 + 1 − 𝐹 𝑐 + 𝜀   

                                          = 0. 

Conversely, suppose that  

lim
𝑛 ∞

𝑃   𝑋𝑛 − 𝑐 ≥ 𝜀  = 0, ∀𝜀 > 0. 

Then, using (1.3), 

                                           lim
𝑛 ∞

 𝐹𝑛 𝑐 − 𝜀 + 1 − 𝐹𝑛  𝑐 + 𝜀 −  = 0, ∀𝜀 > 0, 

⇒ lim
𝑛 ∞

𝐹𝑛  𝑐 − 𝜀 = lim
𝑛 ∞

 1 − 𝐹𝑛  𝑐 + 𝜀 −  = 0, ∀𝜀 > 0 

                                                      since 𝐹𝑛 𝑐 − 𝜀 ≥ 0 and 1 − 𝐹𝑛  𝑐 + 𝜀 − ≥ 0, ∀𝑛 ≥ 1  
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                               ⇒ lim
𝑛 ∞

𝐹𝑛 𝑥 = 0, ∀𝑥 < 𝑐 and lim
𝑛 ∞

𝐹𝑛  𝑦 − = 1, ∀𝑦 > 𝑐 

                                    ⇒ lim
𝑛 ∞

𝐹𝑛 𝑥 = 0, ∀𝑥 < 𝑐 and lim
𝑛 ∞

𝐹𝑛  𝑦 = 1, ∀𝑦 > 𝑐 

                                              since 1 ≥ 𝐹𝑛 𝑦 ≥ 𝐹𝑛 𝑦 − , 𝑛 = 1,2, …  . 

Thus, for all 𝑥 ∈ ℝ −  𝑐 , 

lim
𝑛 ∞

𝐹𝑛 𝑥 =  
0, if 𝑥 < 𝑐
1, if 𝑥 > 𝑐

 = 𝐹(𝑥) 

⇒ 𝑋𝑛

𝑝
 𝑐, as 𝑛  ∞.▄ 

In many situations the above theorem in conjunction with Markov’s inequality (see 

Corollary 5.1, Module 3) turns out to be quite useful in proving convergence in 

probability. 

 


