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MODULE 2  

RANDOM VARIABLE AND ITS DISTRIBUTION 

LECTURE 8 

Topics 

2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES   

 

 

2.3 DISTRIBUTION FUNCTION AND ITS PROPERTIES   

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝑋: 𝛺 → ℝ  be a r.v. so that 𝑋−1 (−∞, a] =

 𝜔 ∈ ℝ: 𝑋 𝜔 ≤ 𝑎 ∈ ℱ, ∀𝑎 ∈ ℝ. Throughout we will use the following notation: 

 a statement  say S  about 𝑋 =  𝜔 ∈ 𝛺: statement S holds ;  

e. g., 

 𝑎 < 𝑋 ≤ 𝑏 ≝  𝜔 ∈ 𝛺: 𝑎 < 𝑋 𝜔 ≤ 𝑏 ≝ 𝑋−1 (a, b] , −∞ ≤ 𝑎 < 𝑏 < ∞ 

 𝑋 = 𝑐 ≝  𝜔 ∈ 𝛺:  𝑋 𝜔 = 𝑐 ≝ 𝑋−1  c  ,   c ∈ ℝ, 

 𝑋 ∈ 𝐵 ≝  𝜔 ∈ 𝛺:  𝑋 𝜔 ∈ 𝐵 ≝ 𝑋−1 𝐵 ,   𝐵 ∈ ℬ1, 

 𝑋 ≤ c ≝  𝜔 ∈ 𝛺: 𝑋 𝜔 ≤ 𝑐 ≝ 𝑋−1 (−∞, c] , c ∈ ℝ. 

Definition 3.1 

The function 𝐹𝑋 : ℝ → ℝ, defined by, 

𝐹𝑋 𝑥 = 𝑃  𝑋 ≤ 𝑥  = 𝑃𝑋 (−∞, 𝑥] ,   𝑥 ∈ ℝ, 

is called the distribution function (d.f.) of random variable 𝑋. ▄ 

Example 3.1  

(i) Let us revisit Example 2.1 (i). The  induced probability space is  ℝ, ℬ1, 𝑃𝑋 , 

where 𝑃𝑋  0  = 𝑃𝑋  3  =
1

8
, 𝑃𝑋  1  = 𝑃𝑋  2  =

3

8
 and 

                𝑃𝑋 𝐵 = 𝑃 {𝑋 ∈ 𝐵}  

                             =  𝑃𝑋  𝑖  

𝑖∈ 0,1,2,3 ∩𝐵

,   𝐵 ∈ ℬ1. 
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Clearly, for 𝑥 ∈ ℝ, 

𝐹𝑋 𝑥 = 𝑃({𝑋 ≤ 𝑥} ) 

           = 𝑃𝑋((−∞, 𝑥] ) 

 

                                   =  𝑃𝑋  𝑖  
𝑖∈ 0,1,2,3 ∩(−∞,𝑥]

 

                                  =

 
 
 
 

 
 
 

0,          if     𝑥 < 0
1

8
,         if  0 ≤ 𝑥 < 1

1

2
,         if  1 ≤ 𝑥 < 2

7

8
,         if  2 ≤ 𝑥 < 3

1,          if     𝑥 ≥ 3

  

 

Figure 3.1. Plot of distribution function 𝐹𝑋(𝑥)  

Note that 𝐹𝑋 𝑥  is non-decreasing, right continuous, 𝐹𝑋 −∞ ≝ lim𝑥→−∞ 𝐹𝑋 𝑥 =
0  and 𝐹𝑋 ∞ ≝ lim𝑥→∞ 𝐹𝑋 𝑥 = 1 . Moreover 𝐹𝑋 𝑥  is a step function having 

discontinuities at points 0, 1, 2 and 3. 

(ii) Consider Example 2.1 (ii). The probability space induced by r.v. 𝑋 is (ℝ, ℬ1, 𝑃𝑋), 

where, for 𝐵 ∈ ℬ1, 
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𝑃𝑋 𝐵 = 2  𝑧

∞

0

𝑒−𝑧2
𝐼𝐵 𝑧 𝑑𝑧. 

Therefore, 

                                                               𝐹𝑋 𝑥 = 𝑃({𝑋 ≤ 𝑥} ) 

                                                                           = 𝑃𝑋  −∞, 𝑥   

                                                                          = 2  𝑧

∞

0

𝑒−𝑧2
𝐼(−∞,𝑥] 𝑧 𝑑𝑧, 𝑥 ∈ ℝ. 

Clearly, for 𝑥 < 0, 𝐹𝑋 𝑥 = 0. For 𝑥 ≥ 0 

𝐹𝑋 𝑥 = 2  𝑧

𝑥

0

𝑒−𝑧2
𝑑𝑧 = 1 − 𝑒−𝑥2

. 

Thus, 

                𝐹𝑋 𝑥 =  
0,                if     𝑥 < 0

1 − 𝑒−𝑥2
, if      𝑥 ≥ 0

 . 

Note that 𝐹𝑋 𝑥  is non-decreasing, continuous, 𝐹𝑋 −∞ = lim𝑥→−∞ 𝐹𝑋 𝑥 = 0 and 

𝐹𝑋 ∞ = lim𝑥→∞ 𝐹𝑋 𝑥 = 1. ▄ 

Now we will derive various properties of a distribution function. The following lemma, 

whose proof is immediate and can be found in any standard text book on calculus, will be 

useful in studying the properties of a distribution function. 

Lemma 3.1 

Let −∞ ≤ 𝑎 < 𝑏 ≤ ∞ and let 𝑓:  𝑎, 𝑏 → ℝ be a non-decreasing function 

  i. e. , 𝑓 𝑠 ≤ 𝑓(𝑡), ∀𝑎 < 𝑠 < 𝑡 < 𝑏 . 

Then  

(i) for all 𝑥 ∈ (𝑎, 𝑏] and 𝑦 ∈  𝑎, 𝑏 , 𝑓 𝑥 −  and 𝑓 𝑦 +  exist; 

(ii) for all 𝑥 ∈ (𝑎, 𝑏), 𝑓 𝑥 − ≤ 𝑓 𝑥 ≤ 𝑓 𝑥 + ; 

(iii) for 𝑎 < 𝑥 < 𝑦 < 𝑏, 𝑓(𝑥+) ≤ 𝑓(𝑦−); 

(iv) 𝑓 has at most countable number of discontinuities; 

where 𝑓 𝑐 −  and 𝑓 𝑐 +  denote, respectively, the left hand and right hand limits of the 

function 𝑓 at point 𝑐 ∈  𝑎, 𝑏 . ▄ 
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Theorem 3.1  

Let 𝐹𝑋  be the distribution function of a random variable 𝑋. Then 

(i) 𝐹𝑋  is non-decreasing; 

(ii) 𝐹𝑋  is right continuous; 

(iii) 𝐹𝑋 −∞ ≝ limx→−∞ 𝐹𝑋  𝑥 = 0 and 𝐹𝑋 ∞ ≝ lim𝑥→∞ 𝐹𝑋  𝑥 = 1. 

Proof. 

(i) Let −∞ < 𝑥 < 𝑦 < ∞ . Then  −∞, 𝑥 ⊆ (−∞, 𝑦]  and therefore, using 

monotonicity  of probability measures, we get 

𝐹𝑋 𝑥 = 𝑃𝑋  −∞, 𝑥  ≤ 𝑃𝑋 (−∞, 𝑦] = 𝐹𝑋 𝑦 . 

(ii) Fix 𝑥 ∈ ℝ. Since 𝐹𝑋  is non-decreasing, it follows from Lemma 3.1 that 𝐹𝑋 𝑥 +  

exists. Therefore  

𝐹𝑋 𝑥 + = lim
𝑛→∞

𝐹𝑋  𝑥 +
1

𝑛
 = lim

𝑛→∞
𝑃𝑋  (−∞, 𝑥 +

1

𝑛
] . 

 

Note that  −∞, 𝑥 +
1

𝑛
 ↓and Lim𝑛→∞  −∞, 𝑥 +

1

𝑛
 =   −∞, 𝑥 +

1

𝑛
 ∞

𝑛=1 = (−∞, 𝑥]. 

Now using continuity of probability measures (Theorem 4.1, Module 1) we have 

𝐹𝑋 𝑥 + = lim
𝑛→∞

𝑃𝑋  (−∞, 𝑥 +
1

𝑛
]  

                                      = 𝑃𝑋  Lim
𝑛→∞

 (−∞, 𝑥 +
1

𝑛
]  

                  = 𝑃𝑋 (−∞, 𝑥]  

                                                                             = 𝐹𝑋 𝑥 . 

(iii) Using standard arguments of calculus it follows that 𝐹𝑋 −∞ = lim
𝑛→∞

𝐹𝑋 −𝑛  and 

𝐹𝑋 ∞ = lim
𝑛→∞

𝐹𝑋   𝑛 , where limits are taken along the sequence  𝑛: 𝑛 = 1, 2, ⋯  . 

Note that  −∞, −𝑛 ↓ ,  −∞, 𝑛 ↑ , Lim
𝑛→∞

 −∞, −𝑛 =    −∞, −𝑛 ∞
𝑛=1 =

𝜙 and Lim
𝑛→∞

 −∞, 𝑛 =   −∞, 𝑛 ∞
n=1 = ℝ . Again using the continuity of 

probability measures, we get 

           𝐹𝑋 −∞ = lim
𝑛→∞

𝐹𝑋 −𝑛 =  lim
𝑛→∞

𝑃𝑋  −∞, −𝑛  = 𝑃𝑋  Lim
𝑛→∞

 −∞, −𝑛  = 𝑃𝑋 𝜙 = 0, 

and 

               𝐹𝑋 ∞ = lim
𝑛→∞

𝐹𝑋 𝑛 =  lim
𝑛→∞

𝑃𝑋  −∞, 𝑛  = 𝑃𝑋  Lim
𝑛→∞

  −∞, 𝑛  = 𝑃𝑋 ℝ = 1. ▄ 
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Remark 3.1 

(i) Using Lemma-3.1 (i)-(ii) and Theorem 3.1 (i) it follows that for a d.f. 𝐹𝑋 , 𝐹𝑋 𝑥 +  

and 𝐹𝑋 𝑥 −  exist for every 𝑥 ∈ ℝ and 𝐹𝑋  is discontinuous  at 𝑥 ∈ ℝ if and only if 

𝐹𝑋 𝑥 − < 𝐹𝑋 𝑥 + = 𝐹𝑋(𝑥). Consequently a d.f. has only  jump discontinuities 

(a discontinuity point 𝑥 ∈ ℝ of 𝐹𝑋  is called a jump discontinuity if 𝐹𝑋 𝑥 +  and 

𝐹𝑋 𝑥 −  exist but 𝐹𝑋 𝑥 − = 𝐹𝑋 𝑥 + = 𝐹𝑋 𝑥  does not hold). Moreover the size 

of the jump at a point 𝑥 ∈ ℝ of discontinuity is 𝑝𝑥 = 𝐹𝑋 𝑥 − 𝐹𝑋 𝑥 − . 

 

(ii) Using Lemma 3.1 (iv) and Theorem 3.1 (i) it follows that any d.f. 𝐹𝑋  has atmost 

countable number of discontinuities. 

(iii) Let 𝑎 ∈ ℝ. Since (−∞, a −
1

n
] ↑ and Lim𝑛→∞  (−∞, a −

1

n
] =   (−∞, a −

1

n
] ∞

𝑛=1 =

 −∞, 𝑎 , the continuity  of probability measures implies 

                                      𝑃  𝑋 < 𝑎  = 𝑃𝑋  −∞, 𝑎   

                                                                            = 𝑃𝑋  Lim
𝑛→∞

(−∞, a −
1

n
]   

                                                                            = lim
𝑛→∞

 𝑃𝑋  (−∞, a −
1

n
]   

                                                                                   = lim
𝑛→∞

𝐹𝑋  𝑎 −
1

𝑛
  

                                                                             = 𝐹𝑋 𝑎 − . 

Therefore,  

                                                     P  𝑋 < 𝑥  = 𝐹𝑋 𝑥 − ,   ∀𝑥 ∈ ℝ. 

Also, 

                 𝐹𝑋 𝑥 = 𝐹𝑋 𝑥 + ≤ 𝐹𝑋 𝑦 − , ∀ − ∞ < 𝑥 < 𝑦 < ∞ (using Lemma 3.1  iii )  

and 

𝑃  𝑋 = 𝑥  = 𝑃  𝑋 ≤ 𝑥  − 𝑃  𝑋 < 𝑥  = 𝐹𝑋 𝑥 − 𝐹𝑋 𝑥 − , ∀𝑥 ∈ ℝ. 

 Thus 𝐹𝑋  is continuous (discontinuous) at a point 𝑥 ∈ ℝ if, and only if,

𝑃   𝑋 = 𝑥  = 0  𝑃  𝑋 = 𝑥  > 0 . 

(iv) Let 𝐷𝑋  denote the set of discontinuity points (jump points) of d.f. 𝐹𝑋 . Then 𝐷𝑋  is a 

countable set and 
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  𝐹𝑋 𝑥 − 𝐹𝑋 𝑥 −  

𝑥∈𝐷𝑋

=  𝑃  𝑋 = 𝑥  

𝑥∈𝐷𝑋

= 𝑃𝑋 𝐷𝑋 ≤ 1, 

i.e., the sum of sizes of jumps of a d.f. does not exceed 1. 

 

(v) Let −∞ < 𝑎 < 𝑏 < ∞. Then  

 

𝑃  𝑎 < 𝑋 ≤ 𝑏  = 𝑃  𝑋 ≤ 𝑏  − 𝑃  𝑋 ≤ 𝑎  = 𝐹𝑋 𝑏 − 𝐹𝑋(𝑎) 

𝑃  𝑎 < 𝑋 < 𝑏  = 𝑃  𝑋 < 𝑏  − 𝑃  𝑋 ≤ 𝑎  = 𝐹𝑋 𝑏 − − 𝐹𝑋(𝑎) 

𝑃  𝑎 ≤ 𝑋 < 𝑏  = 𝑃  𝑋 < 𝑏  − 𝑃  𝑋 < 𝑎  = 𝐹𝑋 𝑏 − − 𝐹𝑋(𝑎−) 

𝑃  𝑎 ≤ 𝑋 ≤ 𝑏  = 𝑃  𝑋 ≤ 𝑏  − 𝑃  𝑋 < 𝑎  = 𝐹𝑋 𝑏 − 𝐹𝑋 𝑎 − , 

𝑃  𝑋 ≥ 𝑎  = 1 − 𝑃  𝑋 < 𝑎  = 1 − 𝐹𝑋 𝑎 − ,  

and 

                                      𝑃  𝑋 > 𝑎  = 1 − 𝑃  𝑋 ≤ 𝑎  = 1 − 𝐹𝑋 𝑎 .  ▄ 

We state the following theorem without providing the proof. The theorem essentially states 

that any function 𝐺: ℝ → ℝ  that is non-decreasing and right continuous with 𝐺 −∞ =

lim𝑥→−∞ 𝐺(𝑥) = 0  and 𝐺 ∞ = lim𝑥→∞ 𝐺 𝑥 = 1  can be regarded as d.f. of a random 

variable.  

Theorem 3.2 

Let 𝐺: ℝ → ℝ be a non-decreasing and right continuous function for which 𝐺 −∞ = 0 and 

𝐺 ∞ = 1. Then there exists a random variable 𝑋 defined on a probability space  𝛺, ℱ, 𝑃  

such that the distribution function of 𝑋 is 𝐺.▄ 

Example 3.2 

(i) Consider a function 𝐺: ℝ → ℝ, defined by, 

𝐺 𝑥 =  
0,                      if  𝑥 < 0
1 − 𝑒−𝑥 ,          if  𝑥 ≥ 0

 . 
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Figure 3.2. Plot of distribution function 𝐺(𝑥) 

Clearly 𝐺 is non-decreasing, continuous and satisfies 𝐺 −∞ = 0 and 𝐺 ∞ = 1. 

Therefore G can be treated as d.f. of some r.v., say 𝑋. Since 𝐺 is continuous we 

have  

𝑃  𝑋 = 𝑥  = 𝐺 𝑥 − 𝐺 𝑥 − = 0, ∀𝑥 ∈ ℝ, 

and, for −∞ < 𝑎 < 𝑏 < ∞, 

𝑃  𝑎 < 𝑋 < 𝑏  = 𝑃  𝑎 ≤ 𝑋 < 𝑏  = P 𝑎 ≤ 𝑋 ≤ 𝑏 = 𝑃  𝑎 < 𝑋 ≤ 𝑏   

                                   = 𝐺 𝑏 − G 𝑎 . 

Moreover, for −∞ < 𝑎 < ∞, 

𝑃  𝑋 ≥ 𝑎  = 𝑃  𝑋 > 𝑎  = 1 − 𝐺(𝑎) 

and 

𝑃  𝑋 < 𝑎  = 𝑃  𝑋 ≤ 𝑎  = 𝐺 𝑎 . 

In particular 

      𝑃  2 < 𝑋 ≤ 3  = 𝐺 3 − 𝐺 2 = 𝑒−2 − 𝑒−3; 

𝑃 {−2 < 𝑋 ≤ 3} = 𝐺 3 − 𝐺 −2 = 1 − 𝑒−3; 

     𝑃  1 ≤ 𝑋 < 4  = 𝐺 4 − 𝐺 1 = 𝑒−1 − 𝑒−4; 

   𝑃  5 ≤ 𝑋 < 8  = 𝐺 8 − 𝐺 5 = 𝑒−5 − 𝑒−8; 
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𝑃  𝑋 ≥ 2  = 1 − 𝐺 2 − 𝑒−2; 

and 

𝑃  𝑋 > 5  = 1 − 𝐺 5 = 𝑒−5. 

Note that the sum of sizes of jumps of 𝐺 is 0. 

(ii) Let 𝐻: ℝ → ℝ be given by 

 

𝐻 𝑥 =

 
  
 

  
 

0,         if     𝑥 < 0
𝑥

4
,         if   0 ≤ 𝑥 < 1

𝑥

3
          if   1 ≤ 𝑥 < 2

3𝑥

8
        if   2 ≤ 𝑥 <

5

2

1,         if     𝑥 ≥
5

2

 . 

 

Figure 3.3. Plot of distribution function 𝐻(𝑥) 

Clearly 𝐻  is non-decreasing, right continuous and satisfies 𝐻 −∞ = 0  and 𝐻 ∞ = 1 . 

Therefore 𝐻  can be treated as d.f. of some r.v., say 𝑌.  

𝐻is continuous everywhere except at points 1, 2, and 5/2where it has jump discontinuities 

with jumps of sizes 𝑃  𝑌 = 1  = 𝐻 1 − 𝐻 1 − =
1

12
, 𝑃  𝑌 = 2  = 𝐻 2 − 𝐻 2 − =

1/12 and 𝑃  𝑌 = 5/2  = 𝐻 5/2 − 𝐻(5/2−) = 1/16. Moreover for 𝑥 ∈ ℝ −  1, 2, 5/2 ,

𝑃  𝑌 = 𝑥  = 0. We also have  

𝑃   1 < 𝑌 ≤
5

2
  = 𝐻  

5

2
 − 𝐻 1 = 1 −

1

3
=

2

3
; 
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𝑃   1 < 𝑌 <
5

2
  = 𝐻  

5

2
− − 𝐻 1 =

15

16
−

1

3
=

29

48
; 

𝑃   1 ≤ 𝑌 <
5

2
  = 𝐻  

5

2
− − 𝐻 1 − =

15

16
−

1

4
=

11

16
; 

𝑃  −2 ≤ 𝑌 < 1  = 𝐻 1 − − 𝐻 −2 − =
1

4
− 0 =

1

4
; 

𝑃  𝑌 ≥ 2  = 1 − 𝐻 2 − = 1 −
2

3
=

1

3
; 

and               𝑃  𝑌 > 2  = 1 − 𝐻 2 = 1 −
3

4
=

1

4
. 

Note that sum of sizes of jumps of 𝐻 is 11/48 ∈  0, 1 . 

(iii) Let 𝐹: ℝ → ℝ be given by 

 

𝐹 𝑥 =

 
 
 
 
 

 
 
 
 

0,          if   𝑥 < 0
1

8
,          if   0 ≤ 𝑥 < 2

1

4
          if    2 ≤ 𝑥 < 3

1

2
         if     3 ≤ 𝑥 < 6

4

5
,        if      6 ≤ 𝑥 < 12

7

8
,        if    12 ≤ 𝑥 < 15

1,        if         𝑥 ≥ 15

 . 

 

Figure 3.4. Plot of distribution function 𝐹(𝑥) 
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As 𝐹  is non-decreasing and right continuous with 𝐹 −∞ = 0  and 𝐹 ∞ = 1 , it can be 

regarded as d.f. of some r.v., say 𝑍 . Clearly, except at points 0, 2, 3, 6, 12 and 15, 𝐹  is 

continuous at all other points and at discontinuity points 0, 2, 3, 6 ,12  and 15 it has jump 

discontinuities with jumps of sizes 

𝑃  𝑍 = 0  = 𝐹 0 − 𝐹 0 − =
1

8
, 

𝑃  𝑍 = 2  = 𝐹 2 − 𝐹 2 − =
1

8
, 

𝑃  𝑍 = 3  = 𝐹 3 − 𝐹 3 − =
1

4
, 

 𝑃  𝑍 = 6  = 𝐹 6 − 𝐹 6 − =
3

10
, 

         𝑃  𝑍 = 12  = 𝐹 12 − 𝐹 12 − =
3

40
,   

and 

     𝑃  𝑍 = 15  = 𝐹 15 − 𝐹 15 − =
1

8
. 

Moreover 𝑃  𝑍 = 𝑥  = 𝐹 𝑥 = 𝐹 𝑥 − = 0, ∀𝑥 ∈ ℝ −  0, 2, 3, 6, 12, 15 . Note that in 

this case sum of sizes of jumps of 𝐹 is 1. ▄ 

Remark 3.2  

Let 𝑋 be a r.v. defined on a probability space  𝛺, ℱ, 𝑃 and let  ℝ, ℬ1, 𝑃𝑋  be the probability 

space induced by 𝑋. In advanced courses on probability theory it is shown that the d.f. 𝐹𝑋  

uniquely determines the induced probability measure 𝑃𝑋  and vice-versa. Thus to study the 

induced probability space  ℝ, ℬ1, 𝑃𝑋  it suffices to study the d.f. 𝐹𝑋 . ▄ 

 

 

 


