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MODULE 5 

SOME SPECIAL ABSOLUTELY CONTINUOUS 

DISTRIBUTIONS 

LECTURE 21 

Topics  

5.1 UNIFORM OR RECTANGULAR DISTRIBUTION  
5.1.1 Quantile function and uniform distribution  

 

5.2 GAMMA AND RELATED DISTRIBUTIONS 

 

Lemma 1.1 

Let 𝑋 be a random variable having distribution function 𝐹𝑋 ⋅  and quantile function 

𝑄𝑋(⋅). Let 𝑥 ∈ ℝ, 𝑝 ∈ (0, 1) and 0 < 𝑝1 < 𝑝2 < 1. Then 

(i) 𝑄𝑋 𝐹𝑋 𝑥  ≤ 𝑥, provided 0 < 𝐹𝑋 𝑥 <  1;  

(ii) 𝐹𝑋 𝑄𝑋 𝑝  ≥ 𝑝;  

(iii) 𝐹𝑋 𝑄𝑋 𝑝  =  𝑝, provided there exists an 𝑥0 ∈ ℝ such that 𝐹𝑋 𝑥0 = 𝑝. In 

particular if 𝐹𝑋(⋅) is continuous then 𝐹𝑋 𝑄𝑋 𝑝  =  𝑝; 

(iv) 𝑄𝑋 𝑝 ≤ 𝑥 ⇔ 𝐹𝑋 𝑥 ≥ 𝑝;  

(v) 𝑄𝑋 𝑝 =  𝐹𝑋
−1(𝑝), provided 𝐹𝑋

−1(𝑝) exists; 

(vi) 𝑄𝑋 𝑝1 ≤ 𝑄𝑋(𝑝2). 

Proof. For 𝑝 ∈ (0, 1), define  

𝑆𝑝 =  𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑝 , 

so that 𝑄𝑋 𝑝 = inf 𝑆𝑝 , 𝑝 ∈ (0, 1).  

(i) Let 𝑥 ∈ ℝ be such that 0 < 𝐹𝑋 𝑥 < 1. Then 𝑥 ∈ 𝑆𝐹𝑋  𝑥 = {𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥

𝐹𝑋 𝑥 } and, therefore, 𝑥 ≥ inf𝑆𝐹𝑋  𝑥 = 𝑄(𝐹𝑋 𝑥 ), i.e., 𝑄𝑋 𝐹𝑋 𝑥  ≤ 𝑥. 

(ii) Let 𝑝 ∈ (0, 1). Then 𝑄𝑋 𝑝 = inf𝑆𝑝 . Thus there exists a sequence {𝑡𝑛 :𝑛 =

1, 2,… } in 𝑆𝑝  such that lim𝑛→∞ 𝑡𝑛 = 𝑄𝑋(𝑝). Consequently 𝑡𝑛 ≥ 𝑄𝑋 𝑝 ,𝑛 =

1, 2,… and 𝐹𝑋 𝑡𝑛 ≥ 𝑝,𝑛 = 1, 2,…. This implies that lim𝑛→∞ 𝐹𝑋(𝑡𝑛) ≥ 𝑝. 

Since 𝐹𝑋(⋅) is right continuous, 𝑡𝑛 ≥ 𝑄𝑋 𝑝 ,𝑛 = 1, 2,… and lim𝑛→∞ 𝑡𝑛 =

𝑄𝑋(𝑝), we get  
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𝐹𝑋 𝑄𝑋 𝑝  =  lim𝑛→∞ 𝐹𝑋(𝑡𝑛) ≥ 𝑝. 

(iii) Let 𝑥0 ∈ ℝ be such that 𝐹𝑋 𝑥0 = 𝑝. Then 

           𝑥0 ∈ 𝑆𝑝 = {𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑝} 

                ⇒ 𝑥0 ≥ inf𝑆𝑝 = 𝑄𝑋 𝑝 . 

Now using (ii) and the fact that 𝐹𝑋(⋅) is non-decreasing, we get 

    𝑝 = 𝐹𝑋(𝑥0) ≥ 𝐹𝑋(𝑄𝑋(𝑝)) ≥ 𝑝 

                                          ⇒ 𝐹𝑋(𝑄𝑋(𝑝)) = 𝑝. 

Note that lim𝑥→−∞ 𝐹𝑋 𝑥 = 0 and lim𝑥→∞ 𝐹𝑋 𝑥 = 1. Thus if 𝐹𝑋(⋅) is 

continuous then the intermediate value property of continuous functions 

implies that there exists an 𝑥0 ∈ ℝ such that 𝐹𝑋 𝑥0 = 𝑝 ∈ (0, 1) and 

therefore 𝐹𝑋(𝑄𝑋(𝑝)) = 𝑝. 

(iv) First suppose that 𝑄𝑋 𝑝 = inf𝑆𝑝 ≤ 𝑥. Then, since 𝐹𝑋(⋅) is non-decreasing, 

we have 

        𝐹𝑋 𝑄𝑋 𝑝  ≤ 𝐹𝑋 𝑥  

                     ⇒ 𝑝 ≤ 𝐹𝑋 𝑥 .     (using  ii ) 

Now suppose that 𝐹𝑋 𝑥 ≥ 𝑝. Then  𝑥 ∈ 𝑆𝑝 = {𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑝} and, 

therefore,  

                                                𝑥 ≥ inf𝑆𝑝 = 𝑄𝑋 𝑝 . 

(v) Since 𝑝1 < 𝑝2, we have 

𝑆𝑝2
=  𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑝2 ⊆  𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑝1 = 𝑆𝑝1

 

              ⇒ 𝑆𝑝2
⊆ 𝑆𝑝1

 

       ⇒ 𝑄𝑋 𝑝1 = inf 𝑆𝑝1
≤ inf𝑆𝑝2

= 𝑄𝑋 𝑝2 .  ▄ 

Theorem 1.3 

Let 𝑋 be a random variable with distribution function 𝐹𝑋(⋅) and quantile function 𝑄𝑋(⋅). 

(i) (Probability Integral Transformation) If the random variable 𝑋 is of 

continuous type then 𝑌 ≝ 𝐹𝑋 𝑋 ∼ 𝑈(0, 1);  

(ii) Let 𝑈 ∼ 𝑈(0,1). Then 𝑍 ≝ 𝑄𝑋 𝑈 =
𝑑
𝑋. 

Proof. 

(i) Let 𝐺(⋅) be the d.f. of 𝑌 ≝ 𝐹𝑋 𝑋 , i.e., 

𝐺 𝑦 = 𝑃  𝐹𝑋 𝑋 ≤ 𝑦  ,    𝑦 ∈ ℝ.  

Clearly, for 𝑦 < 0, 𝐺 𝑦 = 0 and, for 𝑦 ≥ 1,𝐺 𝑦 = 1. Now suppose that 

𝑦 ∈ (0, 1). By Lemma 1.1 (iv) we have 

              𝑠 ∈ ℝ:𝐹𝑋 𝑠 ≥ 𝑦 = {𝑠 ∈ ℝ: 𝑠 ≥ 𝑄𝑋 𝑦 } 
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                  ⇒ 𝑃  𝐹𝑋 𝑋 ≥ 𝑦  =  𝑃( 𝑋 ≥ 𝑄𝑋 𝑦  ) 

                   ⇒ 𝑃  𝐹𝑋 𝑋 < 𝑦  =  𝑃( 𝑋 < 𝑄𝑋 𝑦  ) 

                 ⇒ 𝑃  𝐹𝑋 𝑋 < 𝑦  =  𝑃  𝑋 ≤ 𝑄𝑋 𝑦   .     since 𝐹𝑋 ⋅  is continuous   (1.4) 

Since 𝐹𝑋(⋅) is continuous  𝑥 ∈ ℝ:𝐹𝑋 𝑥 =  𝑦 =  𝑥1, 𝑥2 , for some real numbers 𝑥1 and 

𝑥2 such that −∞ < 𝑥1 ≤ 𝑥2 < ∞ (see Figures 1.5 (a) & (b)). 

 

 

Figure 1.5 (a)                                    Figure 1.5 (b) 

 

Thus, for 𝑦 ∈ (0, 1), 

                     𝑃  𝐹𝑋 𝑋 = 𝑦  =  𝑃( 𝑥1 ≤ 𝑋 ≤ 𝑥2 ) 

                                                    = 𝐹𝑋 𝑥2 − 𝐹𝑋 𝑥1  

                                                    = 𝑦 − 𝑦 = 0.                                                        1.5  

Using (1.4), (1.5) and Lemma 1.1 (iii) we get, for 𝑦 ∈ (0, 1),  

𝐺 𝑦 =  𝑃  𝐹𝑋 𝑋 ≤ 𝑦  = 𝑃  𝐹𝑋 𝑋 < 𝑦  = 𝑃  𝑋 ≤ 𝑄𝑋 𝑦   = 𝑦. 

Also right continuity of d.f. 𝐺(⋅) implies that  

𝐺 0 =  lim
𝑥↓0

𝐺(𝑥) =  lim
𝑥↓0

𝑥 = 0. 

Therefore we have 

𝐺 𝑦 =     

0,        if 𝑦 < 0         
𝑦,       if 0 ≤ 𝑦 < 1
1,        if 𝑦 ≥ 1         

 ,      

i. e. ,𝑌 ≝ 𝐹𝑋 𝑋 ∼ 𝑈 0, 1 . 
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(ii) Let 𝑈 ∼ 𝑈(0, 1), so that 𝑃  𝑈 ≤ 𝑢  = 𝑢,∀𝑢 ∈ [0, 1] and 𝑃  0 < 𝑈 < 1  =

1.  Then the d.f. of   𝑍 ≝ 𝑄𝑋 𝑈  is 

          𝐻 𝑧 =  𝑃( 𝑍 ≤ 𝑧 ) 

                     = 𝑃( 𝑄𝑋 𝑈 ≤ 𝑧 ) 

        = 𝑃  𝑄𝑋 𝑈 ≤ 𝑧, 0 < 𝑈 < 1   (since 𝑃  0 < 𝑈 < 1  = 1) 

= 𝑃  𝐹𝑋 𝑧 ≥ 𝑈, 0 < 𝑈 < 1   (using Lemma 1.1  iv )  

                    = 𝑃( 𝑈 ≤ 𝐹𝑋 𝑧  ) 

                    = 𝐹𝑋 𝑧 ,     𝑧 ∈ ℝ 

            ⇒ 𝑍 =
𝑑
𝑋.  ▄ 

Remark 1.3 

The above theorem provides a method to generate observations from any arbitrary 

distribution using observations from 𝑈(0, 1) distribution. Suppose that we require an 

observation 𝑋 from a distribution having known d.f. 𝐹(⋅) and quantile function 𝑄 ⋅ . To 

do so, the above theorem suggests that, generate an observation 𝑈 from the 𝑈(0, 1) 

distribution and take 𝑋 = 𝑄(𝑈). ▄ 

Example 1.2 

Using a random observation 𝑈 ∼ 𝑈(0, 1), describe a method to generate a random 

observation 𝑋 from the distribution having  

(i) probability density function 

𝑓 𝑥 =  
𝑒− 𝑥 

2
,−∞ < 𝑥 < ∞; 

(ii) probability mass function 

𝑔 𝑥 =   
 
𝑛

𝑥
 𝜃𝑥 1 − 𝜃 𝑛−𝑥 ,      if 𝑥 ∈ {0, 1,… ,𝑛}

0,                        otherwise

 , 

where 𝑛 ∈ ℕ and 𝜃 ∈ (0, 1) are real constants. 

Solution. 

(i) For 𝑥 < 0, we have 

                                       𝐹 𝑥  =  𝑃  𝑋 ≤ 𝑥   

                                                                       =   𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞
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                                                   =   
𝑒𝑡

2
𝑑𝑡

𝑥

−∞

 

                                                   =  
𝑒𝑥

2
, 

and, for 𝑥 ≥ 0, we have  

                                       𝐹 𝑥  =  𝑃( 𝑋 ≤ 𝑥 ) 

                                                  =   𝑓𝑋 𝑡 𝑑𝑡
𝑥

−∞

 

           =    𝑓𝑋 𝑡 𝑑𝑡
0

−∞

 +   𝑓𝑋 𝑡 𝑑𝑡
𝑥

0

 

 

                                                  =   
𝑒𝑡

2
𝑑𝑡

0

−∞

 +   
𝑒−𝑡

2
𝑑𝑡

𝑥

0

 

                                                  = 1 −
𝑒−𝑥

2
. 

Thus the d.f. of 𝑋 is given by 

𝐹 𝑥 =   

𝑒𝑥

2
,                    if 𝑥 < 0

1 −
𝑒−𝑥

2
, if 𝑥 ≥ 0

 , 

and the q.f. of 𝑋 is given by  

𝑄 𝑝 = 𝐹−1 𝑝 =   
ln 2𝑝 ,                       if 0 < 𝑝 <

1

2

– ln 2 1 − 𝑝  , if 
1

2
≤ 𝑝 < 1

 . 

Using Theorem 1.3 (ii) the desired random observation is given by 

𝑋 = 𝑄 𝑈 =   
ln 2𝑈 ,                       if 0 < 𝑈 <

1

2

– ln 2 1 − 𝑈  , if 
1

2
≤ 𝑈 < 1

 .  

(ii) The distribution function of 𝑋 is given by 

𝐺 𝑥 =  

 
 
 

 
 

0,                                          if 𝑥 < 0                                                  

  
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗 , if 𝑘 ≤ 𝑥 < 𝑘 + 1;   𝑘 = 0, 1,… ,𝑛 − 1

𝑘

𝑗=0

1,                                          if 𝑥 ≥ 𝑛                                                 

 , 

and the quantile function of 𝑋 is given by 

𝑄 𝑝 = inf{𝑠 ∈ ℝ:𝐺 𝑠 ≥ 𝑝} 
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=

 
 
 
 

 
 
 

1, if 0 < 𝑝 ≤  1 − 𝜃 𝑛

𝑘, if   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑘−1

𝑗=0

< 𝑝 ≤   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑘

𝑗=0

;

                                  𝑘 = 0, 1,… , 𝑛 − 1

𝑛, if   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑛−1

𝑗=0

< 𝑝 < 1

.   

 

Now, using Theorem 1.3 (ii), the desired random observation is given by  

 

𝑋 =

 
 
 
 

 
 
 

1, if 0 < 𝑈 ≤  1 − 𝜃 𝑛

𝑘, if   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑘−1

𝑗=0

< 𝑈 ≤   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑘

𝑗=0

;

                          𝑘 = 0, 1,… ,𝑛 − 1

𝑛, if   
𝑛

𝑗
 𝜃𝑗  1 − 𝜃 𝑛−𝑗

𝑛−1

𝑗=0

< 𝑈 < 1

 . 

 

5.2 GAMMA AND RELATED DISTRIBUTIONS 

 We begin this section with the definition of gamma function. 

Definition 2.1    

The function Γ:  0,∞ →  0,∞ , defined by, 

Γ 𝛼 =   𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

, 𝛼 > 0 

is called the gamma function. ▄ 

To examine convergence of the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 ,          𝛼 ∈ ℝ , 

consider the following cases. 

Case I 𝛼 ≤ 0 
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In this case the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

will converge if, and only if, both the integrals  

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

1

0

 and    𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

1

 

converge.  Note that, for 𝛼 ≤ 0,  

𝑒−𝑡𝑡𝛼−1 ≥
𝑡𝛼−1

𝑒
 , ∀𝑡 ∈  0,1  

and the integral 

 𝑡𝛼−1𝑑𝑡

1

0

 

diverges. This implies that, for 𝛼 ≤ 0, the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

1

0

 

diverges. Consequently the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

diverges for 𝛼 ≤ 0. 

Case II 0 < 𝛼 < 1 

In this case again the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

will converge if, and only if, both the integrals  
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 𝑒−𝑡𝑡𝛼−1𝑑𝑡

1

0

 and    𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

1

 

converge. Note that, for 𝛼 > 0, 

0 ≤ 𝑒−𝑡𝑡𝛼−1 ≤ 𝑡𝛼−1 , ∀𝑡 ∈  0,1  

and the integral 

 𝑡𝛼−1𝑑𝑡

1

0

 

is convergent. Therefore the integral  

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

1

0

 

is convergent for any 𝛼 > 0. 

Now let us examine the convergence of the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

1

.  

Fix  𝛼 ∈ ℝ and choose 𝑘0 ∈ ℕ such that  𝑘0 > 𝛼. Then we know that 

𝑒𝑡 ≥
𝑡𝑘0

𝑘0!
  , ∀𝑡 > 0 

⟹ 0 ≤ 𝑒−𝑡𝑡𝛼−1 ≤
𝑘0!

𝑡𝑘0−𝛼+1
,   ∀𝑡 > 0. 

Also 𝑘0 − 𝛼 + 1 > 1 and, therefore, the integral 

 
1

𝑡𝑘0−𝛼+1

∞

1

𝑑𝑡 

converges. Consequently 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

1
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converges for any 𝛼 ∈ ℝ. From the above discussion it follows that the integral  

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

converges for 0 < 𝛼 < 1. 

Case III 𝛼 ≥ 1 

In this case the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

will converge if, and only if, the integral 

 𝑒−𝑡𝑡𝛼−1  𝑑𝑡

∞

1

 

converges. We have seen in the Case II above that the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

1

 

converges for any 𝛼 ∈ ℝ. 

On combining cases I – III we conclude that the integral 

 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0

 

converges if, and only if, 𝛼 > 0. 

Using integration by parts, for 𝛼 > 0, we have 

                                      Γ(𝛼 + 1) =  𝑒−𝑡𝑡𝛼𝑑𝑡

∞

0

 

          =  −𝑒−𝑡𝑡𝛼  0
∞ +  𝛼 𝑒−𝑡𝑡𝛼−1𝑑𝑡

∞

0
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                                                      = 𝛼 𝑒−𝑡𝑡𝛼−1𝑑𝑡
∞

0

 

   i. e. ,         Γ 𝛼 + 1 = 𝛼 Γ 𝛼 ,   𝛼 > 0.                                                                       (2.1) 

Note that 

                                        Γ 1 =  𝑒−𝑡
∞

0

𝑑𝑡 = 1.                                                            (2.2) 

For 𝑛 ∈ ℕ, using (2.1) and (2.2), we have 

Γ 𝑛 + 1 = 𝑛 Γ 𝑛 = 𝑛 𝑛 − 1  Γ  𝑛 − 1 = ⋯ = 𝑛 𝑛 − 1 ⋯3 ⋅ 2 ⋅ 1 Γ 1 = 𝑛! .  (2.3) 

On combining (2.1), (2.2) and (2.3) we get 

                                           Γ 𝑛 =  𝑛 − 1 ! ,    𝑛 ∈ ℕ,                                                        (2.4) 

with the convention that 0! = 1. 

We have  

                                                          Γ(
1

2
) =   𝑒−𝑡𝑡−1 2 𝑑𝑡

∞

0

 

                                                                    = 2  𝑒−𝑥
2
𝑑𝑥

∞

0

 

    ⇒  Γ(
1

2
) 

2

= 4   𝑒−𝑥
2
𝑑𝑥

∞

0

   𝑒−𝑦
2
𝑑𝑦

∞

0

  

                                                                   = 4  𝑒− 𝑥
2+𝑦2 

∞

0

𝑑𝑥𝑑𝑦.

∞

0

 

On making the transformation 𝑥 = 𝑟 cos 𝜃 and 𝑦 = 𝑟 sin𝜃 in the above integral (so that 

the Jacobian of the transformation is 𝑟), we have 

 Γ(
1

2
) 

2

= 4  𝑟𝑒−𝑟
2
𝑑𝜃 𝑑𝑟

𝜋 2 

0

∞

0
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         = 2𝜋 𝑟𝑒−𝑟
2
𝑑𝑟

∞

0

 

=  𝜋 𝑒−𝑡
∞

0

𝑑𝑡 

                                                                     =  𝜋. 

Since 

        Γ(
1

2
) =  𝑒−𝑡𝑡1 2 −1𝑑𝑡

∞

0

≥ 0, 

we get 

                                                         Γ  
1

2
  =  𝜋                                                                           (2.5) 

Also, using (2.1), 

Γ  
3

2
 =  

1

2
Γ  

1

2
 =

 𝜋

2
 , 

and 

                                                           Γ  
5

2
  =  

3

2
∙

1

2
Γ  

1

2
 =

1 ⋅ 3

22  𝜋, 

In general 

                                  Γ  
2𝑛 + 1

2
 =

1 ∙ 3 ∙ 5⋯ 2𝑛 − 1 

2𝑛  𝜋 , 𝑛 ∈ ℕ,                          (2.6) 

 

i.e., for 𝑛 ∈ ℕ, 

                                 Γ  
2𝑛 + 1

2
 =  

 2𝑛 !

𝑛! 4𝑛  𝜋, 𝑛 ∈ ℕ.                                                      (2.7) 

 


