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Let 𝑇 =  𝑇1, … , 𝑇𝑛  be a random vector having a probability density function/probability 

mass function (p.d.f./p.m.f.) 𝑓𝑇 ∙  and let ℎ:ℝ𝑛 → ℝ be a Borel function. Suppose that the 

distribution of random variable 𝑋𝑛 = ℎ 𝑇  is desired. Very often it is not possible to 

derive the expression for distribution (i.e., p.d.f. or p.m.f.) of 𝑋𝑛 = ℎ 𝑇 . To make this 

point clear let 𝑇1, … , 𝑇𝑛  be a random sample from Be 𝑎, 𝑏  distribution, where 𝑎 and 𝑏 are 
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positive real constants, and suppose that the distribution (i.e., the distribution function or a 

p.d.f.) of the sample mean 𝑇 𝑛 =
1

𝑛
 𝑇𝑖

𝑛
𝑖=1  is desired. The form of the p.d.f. (or distribution 

function) of 𝑇 𝑛  is so complicated (it involves multiple integrals which cannot be expressed 

in a closed form) that hardly anybody would be interested in using it. Therefore, it will be 

helpful if we can approximate the distribution of 𝑇 𝑛  by a distribution which is 

mathematically tractable. In this module we will develop a theory which will help us in 

approximating distributions of a sequence  𝑋𝑛 𝑛≥1 of random variables for large values of 

𝑛 (say, as 𝑛 → ∞). Such approximations are quite useful in statistical inference problems. 

7.1  CONVERGENCE IN DISTRIBUTION AND 

      PROBABILITY  

Let  𝑋𝑛 𝑛≥1  be a sequence of random variables with corresponding sequence of 

distribution functions (d.f.s) as  𝐹𝑛 𝑛≥1. Suppose that an approximation to the distribution 

of 𝑋𝑛  (i.e., of 𝐹𝑛 ) is desired, for large values of 𝑛 (say, as 𝑛 → ∞). It may be tempting to 

approximate 𝐹𝑛 ∙  by 𝐹 𝑥 = lim𝑛→∞ 𝐹𝑛 𝑥 , 𝑥 ∈ ℝ. However, as the following examples 

illustrate, 𝐹 𝑥 = lim𝑛→∞ 𝐹𝑛 𝑥 , 𝑥 ∈ ℝ, may not be a d.f.. 

Example 7.1 

(i) Let  𝑋𝑛 𝑛≥1  be sequence of random variables with 𝑃  𝑋𝑛 = 𝑛  = 1, 𝑛 =

1, 2, …. Then the d.f. of 𝑋𝑛  is given by  

𝐹𝑛 𝑥 =  
0, if 𝑥 < 𝑛
1, if 𝑥 ≥ 𝑛

 , 𝑛 = 1, 2, …. 

We have 𝐹 𝑥 ≝ lim𝑛→∞ 𝐹𝑛 𝑥 = 0, ∀𝑥 ∈ ℝ. Clearly 𝐹 is not a d.f.. 

(ii) Let 𝑋𝑛~ 𝑈 −𝑛, 𝑛 , 𝑛 = 1, 2, ….Then the d.f. of 𝑋𝑛  is 

 

𝐹𝑛 𝑥 =  

0,                  if 𝑥 < −𝑛
𝑥 + 𝑛

2𝑛
, if − 𝑛 ≤ 𝑥 < 𝑛, 𝑛 = 1, 2, … .

1,                  if 𝑥 ≥ 𝑛

  

Clearly 𝐹 𝑥 ≝ lim𝑛→∞ 𝐹𝑛 𝑥 =
1

2
, ∀𝑥 ∈ ℝ and 𝐹(⋅) is not a d.f. ▄ 

The above examples illustrate that a sequence  𝐹𝑛 𝑛≥1 of d.f.s on ℝ may converge, at all 

points, but the limiting function 𝐹 𝑥 = lim𝑛→∞ 𝐹𝑛 𝑥 , 𝑥 ∈ ℝ, may not be a d.f.. 

The following example illustrates that if a sequence  𝐹𝑛 𝑛≥1 of d.f.s converges at every 

point then it may be too restrictive to require that  𝐹𝑛 𝑛≥1  converges to a d.f. 𝐹  at all 

points (i.e., to require that lim𝑛→∞ 𝐹𝑛 𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ ℝ, for some d.f. 𝐹). 
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Example 7.2 

Let  𝑋𝑛 𝑛≥1be a sequence of random variables with 𝑃   𝑋𝑛 =
1

𝑛
  = 1, 𝑛 = 1, 2, …. Then 

the d.f. of 𝑋𝑛  is 

𝐹𝑛 𝑥 =  
0, if 𝑥 <

1

𝑛

1, if 𝑥 ≥
1

𝑛

 , 𝑛 = 1, 2, …. 

Clearly, 

𝐹 𝑥 ≝ lim
𝑛→∞

𝐹𝑛 𝑥 =  
0, if 𝑥 ≤ 0
1, if 𝑥 > 0

 , 

is not a d.f. (it is not right continuous at 𝑥 = 0). However, 𝐹  can be converted into a 

distribution function 

𝐹∗ 𝑥 =  
0, if 𝑥 < 0
1, if 𝑥 ≥ 0

  , 

by changing its value at the point 0 (the point of discontinuity of 𝐹). Since 𝑃   𝑋𝑛 =

1

𝑛
  = 1, 𝑛 = 1, 2, … , and lim𝑛→∞

1

𝑛
= 0 , a natural approximation of 𝐹𝑛  seems to be the 

distribution function of a random variable 𝑋 that is degenerate at 0  i. e. , 𝑃  𝑋 = 0  =

1 . Note that 𝐹∗  is the d.f. of random variables 𝑋  that is degenerate at 0. The above 

discussion suggests that it is too restrictive to require 

lim
𝑛→∞

𝐹𝑛  𝑥 = 𝐹∗ 𝑥 , ∀𝑥 ∈ ℝ, 

and that exceptions may be permitted at the points of discontinuities of 𝐹∗. ▄ 

Definition 1.1 

Let  𝑋𝑛 𝑛≥1  be a sequence of random variables and let 𝐹𝑛  be the d.f. of 𝑋𝑛 , 𝑛 = 1, 2, …. 

(i) Let 𝑋 be a random variable with d.f. 𝐹. The sequence  𝑋𝑛 𝑛≥1 is said to converge 

in distribution to 𝑋 , as 𝑛 → ∞ (written as 𝑋𝑛

𝑑
→𝑋, as 𝑛 → ∞) if lim𝑛→∞ 𝐹𝑛 𝑥 =

𝐹 𝑥 , ∀𝑥 ∈ 𝐶𝐹 , where 𝐶𝐹  is the set of continuity points of 𝐹. The d.f. 𝐹  (or the 

corresponding p.d.f/p.m.f.) is called the limiting distribution of 𝑋𝑛  , as 𝑛 → ∞. 

(ii) Let 𝑐 ∈ ℝ. The sequence  𝑋𝑛 𝑛≥1 is said to converge in probability to 𝑐, as 𝑛 → ∞ 

(written as 𝑋𝑛

𝑝
→ 𝑐, as 𝑛 → ∞) if 𝑋𝑛

𝑑
→𝑋, as 𝑛 → ∞, where 𝑋 is a random variable 

that is degenerate at 𝑐. ▄ 
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Remark 1.1 

(i) Suppose that 𝑋𝑛

𝑑
→𝑋, as 𝑛 → ∞. Since the set 𝐷𝐹 = 𝐶𝐹

𝑐 =  ℝ − 𝐶𝐹  of discontinuity 

points of limiting d.f. 𝐹  is at most countable we have lim𝑛→∞ 𝐹𝑛 𝑥 = 𝐹 𝑥  

everywhere except, possibly, at a countable number of points. 

(ii) Note that the distribution function of a random variable degenerate at point 𝑐 ∈ ℝ 

is given by  

 

𝐹 𝑥 =  
0, if 𝑥 < 𝑐
1, if 𝑥 ≥ 𝑐

 ∙ 

Thus we have  

𝑋𝑛

𝑝
→ 𝑐, as 𝑛 → ∞ ⇔ lim

𝑛→∞
𝐹𝑛  𝑥 =  

0, if 𝑥 < 𝑐
1, if 𝑥 ≥ 𝑐

 ∙ 

(iii) Suppose that 𝑋𝑛

𝑑
→𝑋, as 𝑛 → ∞. If the random variable 𝑋 is of continuous type 

 i. e., 𝐶𝐹 = ℝ  then lim𝑛→∞ 𝐹𝑛  𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ ℝ. 

(iv) Note that, for a real constant 𝑐, 𝑋𝑛

𝑝
→ 𝑐 if, and only if,  𝑋𝑛 − 𝑐

𝑝
→ 0, as 𝑛 → ∞. ▄ 

Example 1.3 

Let  𝑋𝑛 𝑛≥1  be a sequence of random variables such that 𝑃  𝑋𝑛 = 0  =
1

𝑛
= 1 −

𝑃   𝑋𝑛 =
1

𝑛
  , 𝑛 = 1, 2, …. Show that 𝑋𝑛

𝑝
→ 0, as 𝑛 → ∞. 

Solution. Let 𝐹 be the d.f. of a random variable degenerate at 0, i.e., 

𝐹 𝑥 =  
0, if 𝑥 < 0
1, if 𝑥 ≥ 0

 ∙ 

Since 𝐹  is continuous everywhere except at point 0  i, e., 𝐶𝐹 = ℝ −  0  , we need to 

show that lim𝑛→∞ 𝐹𝑛 𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ ℝ −  0 , where 𝐹𝑛(⋅) is the d.f. of 𝑋𝑛 , 𝑛 = 1, 2, …. 

We have  

                          𝐹𝑛 𝑥 =

 
 
 

 
 

0,       if 𝑥 < 0
1

𝑛
,      if 0 ≤ 𝑥 <

1

𝑛
, 𝑛 = 1, 2, …

1,       if 𝑥 ≥
1

𝑛

  

𝑛→∞
    

0, if 𝑥 ≤ 0
1, if 𝑥 > 0

 ∙ 
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Clearly lim𝑛→∞ 𝐹𝑛 𝑥 = 𝐹 𝑥 , ∀𝑥 ∈ ℝ −  0 . ▄ 

Example 1.4 

 Let 𝑋1, 𝑋2, …  be a sequence of independent and identically distributed (i.i.d.)𝑈 0, 𝜃  

random variables, where 𝜃 > 0 . Let 𝑋𝑛:𝑛 = max 𝑋1, … , 𝑋𝑛  and let 𝑌𝑛 = 𝑛 𝜃 − 𝑋𝑛:𝑛 ,

𝑛 = 1, 2, …. 

(i) Show that 𝑋𝑛:𝑛

𝑝
→𝜃, as  𝑛 → ∞;  

(ii) Find the limiting distribution of {𝑌𝑛}𝑛≥1. 

Solution. 

(i) Let  𝐻𝑛  be the d.f. of 𝑋𝑛:𝑛 , 𝑛 = 1, 2, …,  and let 

𝐻 𝑥 =  
0, if 𝑥 < 𝜃
1, if 𝑥 ≥ 𝜃

  

be the d.f. of random variable degenerate at 𝜃 . We need to show that 

lim𝑛→∞𝐻𝑛 𝑥 = 𝐻 𝑥 ,   ∀𝑥 ∈ ℝ −  𝜃 . 

We have, for 𝑥 ∈ ℝ, 

                         𝐻𝑛 𝑥 = 𝑃  𝑋𝑛:𝑛 ≤ 𝑥   

                                     = 𝑃  max 𝑋1, … , 𝑋𝑛 ≤ 𝑥   

                                     = 𝑃  𝑋𝑖 ≤ 𝑥, 𝑖 = 1,… , 𝑛   

                                     =  𝑃

𝑛

𝑖=1

  𝑋𝑖 ≤ 𝑥               (since 𝑋𝑖s are independent) 

                                   =  𝐹 𝑥  𝑛 , 𝑛 = 1,2, …,        (since 𝑋𝑖s are identically distributed), 

where 

𝐹 𝑥 =  

0,          if 𝑥 < 0
𝑥

𝜃
, if 0 ≤ 𝑥 < 𝜃

1,          if 𝑥 ≥ 𝜃

  

is the common distribution function of 𝑋1, 𝑋2, …. 

Thus  
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𝐻𝑛 𝑥 =  

0,          if 𝑥 < 0

 
𝑥

𝜃
 
𝑛

,   if 0 ≤ 𝑥 < 𝜃

1,          if 𝑥 ≥ 𝜃

  

𝑛→∞
    

0, if 𝑥 < 𝜃
1, if 𝑥 ≥ 𝜃

  

                                                                = 𝐻 𝑥 , ∀𝑥 ∈ ℝ. 

(ii) For 𝑦 ∈ ℝ, we have 

                  𝐹𝑌𝑛  𝑦 = 𝑃  𝑌𝑛 ≤ 𝑦   

                               = 𝑃   𝑋𝑛:𝑛 ≥ 𝜃 −
𝑦

𝑛
   

                               = 1 − 𝐻𝑛   𝜃 −
𝑦

𝑛
 −  

               = 1 − 𝐻𝑛  𝜃 −
𝑦

𝑛
                  since 𝐻𝑛  is continuous  

                 =  

0,                                    if 𝑦 ≤ 0

1 −  1 −
𝑦

𝑛𝜃
 
𝑛

, if 0 < 𝑦 ≤ 𝑛𝜃,   𝑛 = 1, 2, …

1,                                    if 𝑦 > 𝑛𝜃

 . 

 

                              
𝑛→∞
    

0,                      if 𝑦 ≤ 0

1 − 𝑒−
𝑦

𝜃 , if 𝑦 > 0
  

 

                              = 𝐺 𝑦 ,   say. 

Note that 𝐺 ∙  is the d.f. of Exp 𝜃  random variable. Thus 𝑌𝑛
𝑑
→ 𝑌~ Exp 𝜃 , as 𝑛 → ∞. ▄ 

In the above example we saw that 𝑋𝑛:𝑛

𝑝
→ 𝜃, as 𝑛 → ∞, and 𝑛 𝜃 − 𝑋𝑛:𝑛 

𝑑
→ 𝑌 ~ Exp 𝜃 ,

as 𝑛 → ∞, i.e., the limiting distribution of 𝑋𝑛:𝑛  is degenerate  at 𝜃  and, to get a non-

degenerate limiting distribution, we needed normalized version 𝑌𝑛 = 𝑛 𝜃 − 𝑋𝑛:𝑛 of 

𝑋𝑛:𝑛 , 𝑛 = 1, 2, …. This phenomenon is observed quite commonly. Generally, we will have 

a sequence  𝑋𝑛 𝑛≥1  of random variables, such that 𝑋𝑛

𝑝
→ 𝑐, as 𝑛 → ∞  for some real 

constant 𝑐 (i.e., the limiting distribution of 𝑋𝑛  is degenerate at 𝑐). In order to get a non-

degenerate limiting distribution a normalized version 𝑍𝑛 = 𝑛𝑟 𝑋𝑛 − 𝑐   or 𝑍𝑛 =

𝑛𝑟 𝑐 − 𝑋𝑛  , 𝑟 > 0, of 𝑋𝑛 , 𝑛 = 1, 2, ….  is considered. Typically there is a choice of 

𝑟 > 0 such that the limiting distribution of 𝑍𝑛  is non-degenerate. 

 


