NPTEL- Probability and Distributions

MODULE 7

LIMITING DISTRIBUTIONS
LECTURE 41

Topics

7.3 SOME PRESERVATION RESULTS

7.3 SOME PRESERVATION RESULTS

In this section, we will discuss the algebraic operations under which convergence in
probability and/or convergence in distribution is preserved.

Theorem 3.1

Let {X,,},=1 and {Y, },,=1 be sequences of random variables and let X be another random
variable.

Q) Let g: R - R be continuous at ¢ € R and let X, 5 c,asn — . Then g(X,)
5 g(c), asn - oo,

(i)  Let h: R? > R be continuous at (c;,c,), € R? and let X,, 5 ¢, Y, 5 Cy asn —
c. Then h(X,,Y,) 5 h(cy,cy), asn - oo.

(i)  Let g:R - R be continuous on a support Sy of X and let X,, iX, asn — .

d
Then g(X,,) - g(X), asn — .

(iv)  Let h: R? > R be continuous at all points in D = {(x,b): x € Sy}, where b is a
d
fixed real constant and Sy is a support of X. If X,, - X and Y, 5 b,as n = oo, then
d
h(X,,Y,) = h(X,b),asn — oo,

Proof. We shall not attempt to prove assertions (iii) and (iv) here as their proofs are
slightly involved.

Q) Fix € > 0. Since g: R — R is continuous at ¢ € R, there exists a § = & (¢, ¢) such
that
Ix—c|l<éd=]glx)—glo)l <e:
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or equivalently
lgx) =g ze=|x—c|=6.

Therefore,

0<P{lgX,) —glo)l =€) <P{lX,—c| =6}) o (since X, 5 )

= lim P({lg(X) = g(@)] = e}) = 0

= g(Xn)gg(C), asn — o,

(i)  Fix € > 0. Since h: R? - R is continuous at (c;,c,) € R?, there exists a § =
6 (&, ¢4, c;) such that

|x —ci| < Sand |y —cy| <8 = |h(x,y) — h(cy, c3)| < &,
or equivalently
|h(x,y) — h(cy,c3)| = = |x —cq| = Sor |y —c,| = 6.
Therefore,
P({|h(Xn, Y) — h(cy, )| =2 €}) < P({IXn — ¢1| = 83ULIY;, — c2] = 63)
< P{|X, —c1| = 6} + P{|Y;, — c,| = 6}) (using Boole’s inequality)
=o +0=0 (sinceXn 5 c;andY, 5 cz)
= limp,o, P ({|h(Xn, Yy) — h(cy, )| = €3) = 0
= h(X,,Y,) 5 h(cy,c),asn —» .

Throughout, we shall use the following convention. If, for a real constant ¢, we write

d
X,, = c,asn - oo, then it would mean that X,, converges in distribution, asn — oo, to a

random variable degenerate at c (i.e., X, 5 c,asn — o). Similarly, for a random
variable X, 0 x X will be treated as a random variable degenerate at 0.

Now we provide the following useful lemma whose proof, being straight forward, is left
as an exercise.
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Lemma 3.1

Q) Let X and Y be random variables and let ¢ be a real constant. If P({Y =c¢}) =1

then X +Y 4 X+ cand XY 4 cX, where 0 X X is treated as a random variable
degenerate at 0.

.. d

(i) Let {X, }n>1 and {Y,,},,1 be sequences of real numbers such that X,, =Y,,,n =
1,2, .... If, for some real constant c, X,, 5 c,asn — oo, then ¥, 5 c,asn — oo.

d

(iii)  Let {X,},»1 and {Y, },=1 be sequences of real numbers such that X,, =Y,,n =

da d
1,2,.... If, for some random variable X, X,, » X,asn - o, thenY,, - X,asn -
00,
(iv)  Let {a,},s1 be sequence of real numbers such that lima, =a € R and

n—-oo

let{X,},>; be a sequence of random variables such that X,, is degenerate at

a,n=1,2,..ThenX, 5 a,asn — . m
Theorem 3.2

Let {X,,},=1 and {Y, },,=1 be sequences of random variables and let {a,,},;s; and {b,, } ;51
be sequences of real numbers such that lima,, = a and limb,, = b.

n—-oo n—-oo

. p 14
Q) Suppose that, for some real constants ¢, and c¢,, X,, > ¢; and Y,, = c,,as n = oo.

P P P
Then, asn—->ow, X, +Y,=»c;,+c, X, —Y,—ci—¢c, and X,Y,—-cic,

. X, P
Moreover, if ¢, # 0, then 2 2—1 asn - .
n 2

d
(i)  Suppose that, for a real constant c and a random variable X,X,, —» X and
d d
Yngc,asn —o . Then, asn—- o, X,+Y,»X+c¢, X, -V, »X—c and

a . X, 4 x
X, Y, = ¢ X. Moreover, if ¢ # 0, then Y—"—>;, asn — oo,

n

(iii)  Suppose that, for a real constant ¢, X,, 5 c,asn — o.Then a,X,, + b, 5ac+
b,asn — co.

d
(iv)  Suppose that, for a random variable X, X, - X,asn -« . Then a,X, +
d
b,—-aX +b,asn — «.
Proof. (i) and (ii) follow from Theorem 3.1 (ii) and (iv) as h,(x,y) = x + y, h,(x,y) =
x —y and h3(x,y) = xy are continuous functions on R?, and h,(x,y) = g is continuous
onD = {(s,t) € R?:t # 0}.
(ili)  Let Y, be a random variable that is degenerate at a, and let Z,, be a random

variable that is degenerate at b,,,n = 1,2, ... ThenY, L aand Zy 5 b,asn - «©
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(Lemma 3.1 (iv)). Now using (i) we get X,,Y,, + Z, 5ac+ b,asn = oo. Since

an Xy + by 2 XoYn+Z,, n=12,.., (Lemma 3.1 (i)), the assertion follows on
using Lemma 3.1 (ii).

(iv)  LetY, and Z,, be as defined in (iii). Then Y, % aand Zy 5 b,asn = «. Using
da
(ii) We get XY, + Z, — aX + b,as n — oo. Since a, X, + by = XY, + Z, n =
1,2, ..., the assertion follows on using Lemma 3.1(iii). gy

Remark 3.1

The CLT asserts that if X;,X,, ... are i.i.d. random variables with mean x and finite
variance 2 > 0, then

\/%(Xn B ,l,l) d

Zn ﬂgf—)zva(O,l),asn—)OO;

where X,, = % 1 X;. Since % — 0,as n — oo, using Theorem 3.2 (iv) we get

_ o d
Xn—u=—7=Z2,-0XxZasn - w.

Vn
Note that 0 X Z is a random variable degenerate at 0. Thus it follows that

_ d
Xp—u—-0, asn — o

= P
©X,—u—->0, asn-w
P

e X, >, asn - oo,

The above discussion suggests that, under the finiteness of second moment (or variance),
the CLT is a stronger result than the WLLN. g

Example 3.1

Let {X,,},=1 and {Y, },,=1be sequences of random variables.

() If X,>In4 and Y,>2asn—w , show that X,+In¥, >In8 and
eannYngln16,asn—>oo;

da d
(i) If X,>Z~N(0,1), asn—> o , show that X2->Q, ~y? (the chi-square
distribution with one degree of freedom), asn — .

d d
(i) 1fX,>Z~N(0,1), and Y, >3, asn — oo, show that X,,¥, = V ~ N(0,9) and
d
2X, +3Y, > Q,~N(9,4),asn - oo.
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(iv)

For a given 8 > 0, if X;,X,, ... are i.i.d. U(0,0) random variables and X,,.,, =
max{Xy, .., X,},n = 1,2, ..., show that eXnn 5 e® 2+ X, +1 56%+0+

n-Xnmn) d

lande ™ ¢ ->U~U(0,1), asn - .

Solution.

(i)

(i)

(iii)

(iv)

Since hy(x) =Inx,x € (0,00) is a continuous function, using Theorem 3.1 (i) it
follows that In Ynglnz,asn — . Now on using Theorem 3.2 (i) we get
X, +InY, 3>1n4 +1In2 =1In8,asn - w. Also, since h,(x) =e*,x ER, is a

continuous function on R, on using Theorem 3.1 (i), we get e*» LAALE . 4,
asn—>o . Now on wusing Theorem 3.2(1) it follows that

eX"lnYn2>4ln2 =In16, asn — oo.
Since h;(x) = x2,x € R, is a continuous function on R, using Theorem 3.1 (iii)

d
we get X2 > Z2%, asn - . Let Q; = Z%. Since Z~N(0,1), we have Q; ~x?
d
(Theorem 4.1 (ii), Module 5). Consequently X2 - Q;~x?, asn — .

d
Using Theorem 3.2 (ii) we get X,Y, > 3Z,asn - o. Let V=3Z. Since
Z ~N(0,1) we have V =3Z ~ N(0,9) (Theorem 4.2 (ii) Module 5) and,
d
therefore, X,,Y,, > V ~ N(0,9), asn — oo. Using theorem 3.2 (iii) and (iv) we get
d
2X, —2Z and 3Y, 5 9,as n — o. Now using Theorem 3.2 (ii) we also conclude

that 2X,, + 3Yni 2Z +9,asn > . Let Q, =2Z+9. Since Z~ N(0,1), we
have Q, ~ N(9,4) (Theorem 4.2 (ii), Module 5).

From Example 1.4 we have X,., 5 0, asn—> o, and Y, =n(0 —X,.,)
i Y ~ Exp(@), asn - . Since hy(x) =e*,x €R, hs(x) =x>+x+1, x €
R, and hy(x) = e"g, x € R, are continuous functions on R, using Theorem 3.1
() and (i), we get eXnmDefx2 4x 115024941 and
e_%ni e‘g,as n—oo LetU = e—%_ Since Y ~ Exp(0), it is easy to verify that

nO-Xnumn)

Yn d
U~U(0,1). Consequently,e™ & =e & >U~U(0,1),asn — . g
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