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MODULE 1 

PROBABILITY  

LECTURE 3 

Topics  

1.2 AXIOMATIC APPROACH TO PROBABILITY AND 

PROPERTIES OF PROBABILITY MEASURE 
1.2.1 Inclusion-Exclusion Formula 

1.2.1.1   Boole’s Inequality 

1.2.1.2  Bonferroni’s Inequality 

1.2.2 Equally Likely Probability Models 

 

Theorem 2.3 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝐸1, 𝐸2 , … , 𝐸𝑛 ∈ ℱ  𝑛 ∈ ℕ, 𝑛 ≥ 2  . Then, 

under the notations of Theorem 2.2, 

1.2.1.1 Boole’s Inequality 

𝑆1,𝑛 + 𝑆2,𝑛 ≤ 𝑃   𝐸𝑖

𝑛

𝑖=1

 ≤ 𝑆1,𝑛 ; 

1.2.1.2 Bonferroni’s Inequality 

𝑃   𝐸𝑖

𝑛

𝑖=1

 ≥ 𝑆1,𝑛 −  𝑛 − 1 . 

Proof. 

(i) We will use the principle of mathematical induction. We have  

 

𝑃 𝐸1 ∪ 𝐸2 = 𝑃 𝐸1 + 𝑃 𝐸2          
𝑆1,2

−𝑃 𝐸1 ∩ 𝐸2          
𝑆2,2

 

                      = 𝑆1,2 + 𝑆2,2 

                      ≤ 𝑆1,2, 

where 𝑆1,2 = 𝑃 𝐸1 + 𝑃 𝐸2  and 𝑆2,2 = −𝑃 𝐸1 ∩ 𝐸2 ≤ 0. 
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Thus the result is true for 𝑛 = 2 . Now suppose that the result is true for 

𝑛 ∈  2, 3, … ,𝑚  for some positive integer 𝑚  ≥ 2 , i.e., suppose that for 

arbitrary events 𝐹1, … , 𝐹𝑚 ∈ ℱ 

                     𝑃   𝐹𝑖

𝑘

𝑖=1

 ≤ 𝑃 𝐹𝑖 

𝑘

𝑖=1

, 𝑘 = 2, 3, … ,𝑚                                          (2.5) 

and 

 𝑃   𝐹𝑖

𝑘

𝑖=1

 ≥ 𝑃 𝐹𝑖 

𝑘

𝑖=1

−  𝑃 𝐹𝑖 ∩ 𝐹𝑗  

1≤𝑖<𝑗≤𝑘

, 𝑘 = 2, 3, … ,𝑚.        (2.6)  

Then  

                        𝑃   𝐸𝑖

𝑚+1

𝑖=1

 = 𝑃   𝐸𝑖

𝑚

𝑖=1

 ∪ 𝐸𝑚+1  

                                  ≤ 𝑃   𝐸𝑖

𝑚

𝑖=1

 + 𝑃 𝐸𝑚+1                (using (2.5) for 𝑘 = 2) 

                                              ≤  𝑃 𝐸𝑖 

𝑚

𝑖=1

+ 𝑃 𝐸𝑚+1                     using  2.5  for 𝑘 = 𝑚  

               =  𝑃 𝐸𝑖 

𝑚+1

𝑖=1

= 𝑆1,𝑚+1.                                   2.7  

Also, 

𝑃   𝐸𝑖

𝑚+1

𝑖=1

 = 𝑃   𝐸𝑖

𝑚

𝑖=1

 ∪ 𝐸𝑚+1  

                      = 𝑃   𝐸𝑖

𝑚

𝑖=1

 + 𝑃 𝐸𝑚+1 − 𝑃   𝐸𝑖

𝑚

𝑖=1

 ∩ 𝐸𝑚+1      (using Theorem 2.2) 

= 𝑃   𝐸𝑖

𝑚

𝑖=1

 + 𝑃 𝐸𝑚+1 − 𝑃    𝐸𝑖 ∩ 𝐸𝑚+1 

𝑚

𝑖=1

 .                  (2.8) 
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Using (2.5), for 𝑘 = 𝑚, we get  

                       𝑃    𝐸𝑖 ∩ 𝐸𝑚+1 

𝑚

𝑖=1

 ≤ 𝑃

𝑚

𝑖=1

 𝐸𝑖 ∩ 𝐸𝑚+1 ,                                            2.9  

 

and using (2.6), for 𝑘 = 𝑚, we get 

    𝑃   𝐸𝑖

𝑚

𝑖=1

 ≥ 𝑆1,𝑚 + 𝑆2,𝑚 .                                                                                     (2.10) 

Now using (2.9) and (2.10) in (2.8), we get 

𝑃   𝐸𝑖

𝑚+1

𝑖=1

 ≥ 𝑆1,𝑚 + 𝑆2,𝑚 + 𝑃 𝐸𝑚+1 − 𝑃 𝐸𝑖 ∩ 𝐸𝑚+1 

𝑚

𝑖=1

 

   =  𝑃 𝐸𝑖 

𝑚+1

𝑖=1

−  𝑃 𝐸𝑖 ∩ 𝐸𝑗  

1≤𝑖<𝑗≤𝑚+1

 

                                                  = 𝑆1,𝑚+1 + 𝑆2,𝑚+1.                                                     (2.11) 

Combining (2.7) and (2.11), we get  

𝑆1,𝑚+1 + 𝑆2,𝑚+1 ≤ 𝑃  𝐸𝑖

𝑚+1 

1=1

 ≤ 𝑆1,𝑚+1, 

and the assertion follows by principle of mathematical induction. 

(ii) We have 

                                  𝑃   𝐸𝑖

𝑛

i=1

 = 1 − 𝑃   𝐸𝑖

𝑛

i=1

 

𝑐

  

                                                       = 1 − 𝑃   Ei
𝑐

n

i=1

  

                                                      ≥ 1 − 𝑃

𝑛

1=1

 𝐸𝑖
𝑐            (using Boole′s inequality) 
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                                                       = 1 −  1 − 𝑃 𝐸𝑖  

𝑛

𝑖=1

 

                                                      =  𝑃 𝐸𝑖 −  𝑛 − 1 .  ▄

𝑛

𝑖=1

 

Remark 2.4 

Under the notation of Theorem 2.2 we can in fact prove the following inequalities: 

 𝑆𝑗 ,𝑛

2𝑘

𝑗=1

≤ 𝑃  𝐸𝑗

𝑛

𝑗=1

 ≤  𝑆𝑗 ,𝑛

2𝑘−1

𝑗=1

, 𝑘 = 1,2, … ,  
𝑛

2
 , 

where  
𝑛

2
  denotes the largest integer not exceeding  

𝑛

2
 . ▄ 

Corollary 2.1 

Let  𝛺, ℱ, 𝑃  be a probability space and let 𝐸1, 𝐸2 , … , 𝐸𝑛 ∈ ℱ be events. Then 

(i) 𝑃 𝐸𝑖 = 0, 𝑖 = 1,… , 𝑛 ⇔ 𝑃  𝐸𝑖
𝑛
𝑖=1  = 0; 

(ii) 𝑃 𝐸𝑖 = 1, 𝑖 = 1,… , 𝑛 ⇔ 𝑃  𝐸𝑖
𝑛
𝑖=1  = 1. 

Proof. 

(i) First suppose that 𝑃 𝐸𝑖 = 0, 𝑖 = 1,… , 𝑛. Using Boole’s inequality, we get  

0 ≤ 𝑃   𝐸𝑖

𝑛

𝑖=1

 ≤ 𝑃 𝐸𝑖 

𝑛

𝑖=1

= 0. 

It follows that 𝑃  𝐸𝑖
𝑛
𝑖=1  = 0. 

Conversely, suppose that 𝑃  𝐸𝑗
𝑛
𝑗=1  = 0 . Then 𝐸𝑖 ⊆  𝐸𝑗

𝑛
𝑗=1 , 𝑖 = 1, … , 𝑛 , 

and therefore, 

           0 ≤ 𝑃 𝐸𝑖 ≤ 𝑃  𝐸𝑗

𝑛

𝐽=1

 = 0, 𝑖 = 1, … , 𝑛, 

i.e., 𝑃 𝐸𝑖 = 0, 𝑖 = 1,… , 𝑛. 

 

(ii) We have 

𝑃 𝐸𝑖 = 1, 𝑖 = 1,… , 𝑛 ⇔ 𝑃 𝐸𝑖
𝑐 = 0, 𝑖 = 1,… , 𝑛 
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⇔ 𝑃  𝐸𝑖
𝑐

𝑛

𝑖=1

 = 0     (using (i)) 

                              ⇔ 𝑃   𝐸𝑖
𝑐

𝑛

𝑖=1

 

𝑐

 = 1, 

                              ⇔ 𝑃   𝐸𝑖

𝑛

𝑖=1

 = 1.  ▄ 

Definition 2.4 

A countable collection  𝐸𝑖 : 𝑖 ∈ 𝛬  of events is said to be exhaustive if 𝑃  𝐸𝑖𝑖∈𝛬  = 1. ▄ 

1.2.2 Equally Likely Probability Models 

Example 2.2 

Consider a probability space  𝛺, ℱ, 𝑃 . Suppose that, for some positive integer 𝑘 ≥ 2, 

𝛺 =  𝐶𝑖
𝑘
𝑖=1 , where 𝐶1, 𝐶2, … , 𝐶𝑘  are mutually exclusive, exhaustive and equally likely 

events, i.e., 𝐶𝑖 ∩ 𝐶𝑗 = 𝜙,  if 𝑖 ≠ 𝑗,   𝑃  𝐶𝑖
𝑘
𝑖=1  =  𝑃𝑘

𝑖=1  𝐶𝑖 = 1  and 𝑃 𝐶1 = ⋯ =

𝑃 𝐶𝑘 =
1

𝑘
. Further suppose that an event 𝐸 ∈ ℱ can be written as 

𝐸 = 𝐶𝑖1 ∪ 𝐶𝑖2 ∪⋯∪ 𝐶𝑖 𝑟 , 

where   𝑖1, … , 𝑖𝑟 ⊆  1, … , 𝑘 , 𝐶𝑖 𝑗 ∩ 𝐶𝑖𝑘 = 𝜙, 𝑗 ≠ 𝑘 and 𝑟 ∈  2,… , 𝑘 . Then  

𝑃 𝐸 =  𝑃 𝐶𝑖 𝑗  

𝑟

𝑗=1

=
𝑟

𝑘
. 

Note that here 𝑘  is the total number of ways in which the random experiment can 

terminate (number of partition sets 𝐶1, … , 𝐶𝑘  ), and 𝑟  is the number of ways that are 

favorable to  𝐸 ∈ ℱ. 

Thus, for any 𝐸 ∈ ℱ, 

𝑃 𝐸 =
number of cases favorable to 𝐸

total number of cases
=
𝑟

𝑘
, 

which is the same as classical method of assigning probabilities. Here the assumption that 

𝐶1, … , 𝐶𝑘  are equally likely is a part of probability modeling. ▄ 

For a finite sample space 𝛺, when we say that an experiment has been performed at 

random we mean that various possible outcomes in  𝛺 are equally likely. For example 
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when we say that two numbers are chosen at random, without replacement, from the set 

 1, 2, 3  then 𝛺 =   1, 2 ,  1, 3 ,  2, 3   and 𝑃  1, 2  = 𝑃  1, 3  = 𝑃  2, 3  =
1

3
, 

where  𝑖, 𝑗  indicates that the experiment terminates with chosen numbers as 𝑖 and 𝑗, 𝑖, 𝑗 ∈

 1, 2, 3 , 𝑖 ≠ 𝑗. 

Example 2.3 

Suppose that five cards are drawn at random and without replacement from a deck of 52 

cards. Here the sample space 𝛺 comprises of all  
52
5
  combinations of 5 cards. Thus 

number of favorable cases=  
52
5
 = 𝑘, say. Let 𝐶1, … , 𝐶𝑘  be singleton subsets of 𝛺.Then 

𝛺 =  𝐶𝑖
𝑘
𝑖=1  and 𝑃 𝐶1 = ⋯ = 𝑃 𝐶𝑘 =

1

𝑘
. Let 𝐸1  be the event that each card is spade. 

Then  

Number of cases favorable to 𝐸1 =  
13
5
 . 

Therefore,  

                   𝑃 𝐸1 =
 

13
5
 

 
52
5
 
∙ 

Now let 𝐸2 be the event that at least one of the drawn cards is spade. Then 𝐸2
𝑐  is the event 

that none of the drawn cards is spade, and number of cases favorable to 𝐸2
𝑐 =  

39
5
 ∙ 

Therefore, 

                                                                            𝑃 𝐸2
𝑐 =

 
39
5
 

 
52
5
 

, 

and 𝑃 𝐸2 = 1 − 𝑃 𝐸2
𝑐 = 1 −

 39
5
 

 52
5
 
∙ 

Let 𝐸3 be the event that among the drawn cards three are kings and two are queens. Then 

number of cases favorable to 𝐸3 =  
4
3
  

4
2
  and, therefore, 

𝑃 𝐸3 =
 

4
3
  

4
2
 

 
52
5
 
∙ 
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Similarly, if 𝐸4 is the event that among the drawn cards two are kings, two are queens 

and one is jack, then  

           𝑃 𝐸4 =
 

4
2
  

4
2
  

4
1
 

 
52
5
 

.  ▄ 

Example 2.4 

Suppose that we have 𝑛 (≥ 2) letters and corresponding 𝑛 addressed envelopes. If these 

letters are inserted at random in 𝑛 envelopes find the probability that no letter is inserted 

into the correct envelope.  

Solution. Let us label the letters as 𝐿1, 𝐿2 , … , 𝐿𝑛  and respective envelopes as 

𝐴1, 𝐴2 , … , 𝐴𝑛 . Let 𝐸𝑖  denote the event that letter 𝐿𝑖  is (correctly) inserted into envelope 

𝐴𝑖 , 𝑖 = 1, 2, … , 𝑛. We need to find 𝑃( 𝐸𝑖
𝑐𝑛

𝑖=1 ). We have 

𝑃   𝐸𝑖
𝑐

𝑛

𝑖=1

 = 𝑃    𝐸𝑖

𝑛

𝑖=1

 

𝑐

 = 1 − 𝑃   𝐸𝑖

𝑛

𝑖=1

 = 1 − 𝑆𝑘,𝑛 ,

𝑛

𝑘=1

 

where, for 𝑘 ∈ {1, 2, … , 𝑛}, 

𝑆𝑘,𝑛 =  −1 𝑘−1  𝑃 𝐸𝑖1 ∩ 𝐸𝑖2 ∩⋯∩ 𝐸𝑖𝑘 .

1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

 

 

Note that 𝑛 letters can be inserted into 𝑛 envelopes in 𝑛! ways. Also, for 

  1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛, 𝐸𝑖1 ∩ 𝐸𝑖2 ∩⋯∩ 𝐸𝑖𝑘 is the event that letters 𝐿𝑖1 , 𝐿𝑖2 , … , 𝐿𝑖𝑘  

are inserted into correct envelopes. Clearly number of cases favorable to this event is 

(𝑛 − 𝑘)!. Therefore, for 1 ≤ 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑘 ≤ 𝑛, 

             𝑃 𝐸𝑖1 ∩ 𝐸𝑖2 ∩⋯∩ 𝐸𝑖𝑘 =
(𝑛 − 𝑘)!

𝑛!
 

 ⇒ 𝑆𝑘,𝑛  =  −1 𝑘−1  
 𝑛 − 𝑘 !

𝑛!
1≤𝑖1<𝑖2<⋯<𝑖𝑘≤𝑛

 

                                                         =  −1 𝑘−1  
𝑛

𝑘
 
 𝑛 − 𝑘 !

𝑛!
 

                                                         =
(−1)𝑘−1

𝑘!
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                              ⇒ 𝑃   𝐸𝑖
𝑐

𝑛

𝑖=1

 =
1

2!
−

1

3!
+

1

4!
− ⋯+

(−1)𝑛

𝑛!
.  ▄ 

 


