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 Module 2: Single Step Methods
 Lecture 5: Convergence of Euler’s Method

 

The Lecture Contains:

This lecture starts with broad definitions of local truncation error, round–off error
and convergence of a difference method (more precise definitions to follow in
subsequent lectures). We also discuss convergence of Euler's method and derive a
bound (a-priori) for the error.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

file:///G|/Numerical_solutions/lecture4/4_6.htm


Objectives_template

file:///G|/Numerical_solutions/lecture5/5_2.htm[8/26/2011 11:16:06 AM]

 Module 2: Single Step Methods
 Lecture 5: Convergence of Euler's Method

  

In general, the following question arises:

Does the Euler method converge as 

The answer is given in the following theorem. Before we state the theorem, following definitions are in
order:

Definition: The local truncation error (or local error) associated with a given difference method is
that quantity which fails to satisfy the exact solution of the difference equation.

Definition : The round-off error associated with a given method is that quantity which must be
added to a finite representation of a computed number in order to make it the exact representation of
that number.

Definition : We roughly define a method as convergent for a problem if, as more grid (mesh)
points are taken, the numerical solution converges to the true solution in the absence of round-off
errors.

We shall make these definitions more precise when specific classes of methods are discussed later.
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Theorem: If  satisfies a Lipschitz condition in  and is continuous in t for  and a ll

 if the sequence  is defined by (2.1) and if , then  as 
uniformly in , where  is the solution of the IVP.

.

Remark: We will call  the starting value to distinguish it from the initial value . In practice,
we can only expect the starting value used in numerical computations to approach the initial value as
the mesh size  decreases and as we use more precision in our computation. In this theorem, we are
assuming that (2.1) is solved without round-off errors.

The proof of the above theorem is given below. It consists of deriving a bound for the error

and showing that this bound can be made arbitrarily small. If a bound for the error depends only on
the knowledge of the problem but not on its solution , it is called an a priori bound. If, on the
other hand, a knowledge of the properties of the solution is required, its error bound is called an a
posteriori bound.

 

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///G|/Numerical_solutions/lecture5/5_4.htm[8/26/2011 11:16:06 AM]

 Module 2: Single Step Methods
 Lecture 5: Convergence of Euler's Method

  

Proof: To get an a priori bound, let us write

(2.2)

where  is called the local truncation error. It is the amount by which the solution fails to satisfy the
difference method. Subtracting (2.2) from (2.1), we get

(2.3)

Let us write

(2.4)

Therefore,

This is a difference equation for . The error  is known, so it can be solved if we know  and 
. We have a bound of the Lipschitz constant  for . Suppose we also have . Then we
have

(2.5)
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To proceed further, we need the following lemma.

Lemma: If  satisfies (2.5) and  then

(2.6)

Proof of the Lemma: The first inequality of (2.6) follows by induction. It is trivially true for .
Assuming that is true for  we have from (2.5)

Hence (2.6) is true for , and thus for all 
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The second inequality in (2.6) follows from the fact that , and for 
so that  proving the lemma.

To continue the proof of the theorem, we need to investigate  the bound on the local truncation

error.

From (2.2), we have

By the Mean value theorem, we get for 

(2.7)
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The last term can be treated by the Mean value theorem to get a bound

where , which exists because of the continuity of  and  in a closed region. The
treatment of the first term in (2.7) depends on our hypothesis. If we are prepared to assume that 

 also satisfies a Lipschitz condition in t (as will happen in practice), we can bound the first term

in (2.7) by  where  is the Lipschitz constant for as a function of . Consequently,

and so from (2.6), we get

(2.8)

Thus the numerical solution converges as .
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