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 Module 2: Single Step Methods
 Lecture 7: Stability

 

The Lecture Contains:

Absolute Stability

Effect of Absolute Stability

Problems
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The concept of stability is loosely defined as follows: If there exists an  for each differential
equation such that a change (perturbation) in the starting value by a fixed amount produces a
bounded change in the numerical solution for all then the method is stable. In other

words, let be the solution of (2.1) with initial condition  and let  be the solution of the same

method (2.1) with a perturbed initial condition . Then the method (2.1) is stable if there exists

positive constants  such that

whenever .

This definition will be modified when multistep methods are discussed.

Note: We also see that stability is related to a method and well posedness is related to a problem.

The Euler's method for solving

is given by

(2.16)
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A change in one of the computed values from  will cause us to solve

(2.17)

instead of (2.16). Subtracting (2.16) from this and setting  we get

which is a bounded multiple of the introduced error  and is independent of . Hence the Euler's
method is stable.
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Example: Consider solving

(2.18)

by Euler's method. Let us choose  and Let us find the value . We get

Table 1.1
h N y(1)
0.1 10 0.9044E16
0.01 100 overflow

Overflow means that the largest number retainable in the computer was exceeded and in this case
greater than 
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Question: What goes wrong with this example even though the Euler's method is shown to be
stable. This points to the shortcomings of the definition of stability given above. These are

•  the definition is applicable in the limit of small step size, and

•  the definition allows some growth of the solution for bounded times.

Remark: If the solution of the IVP is stable or asymptotically stable, we cannot tolerate any growth
in the computed solution and if the solution of the IVP is unstable, some growth of the perturbations is
acceptable. The following concept of absolute stability will provide a more useful tool when the
solutions of IVP are not growing in time.
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Absolute Stability

Definition: A method is absolutely stable for a given step size  and a given differential equation if

the change due to a perturbation of size  in one of the computed values  is no larger than  in all

subsequent values 

Remark: In contrast to the definition of stability, absolute stability is applied at a specific value of 

rather than in the limit as  Also the definition of absolute stability depends heavily on the
differential equation. In order to reduce this dependence, it is common to apply the concept to the
“test equation”

(2.19)

where  is a complex constant.

Definition: The region of absolute stability of a method is that set of all non-negative real values of
 and complex values of  for which a perturbation in a single computed value  will produce a

change in subsequent values that does not increase from step to step, when applied to the test
equation (2.19).
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To examine absolute stability of the Euler's method, we consider the test equation  For this,
we get

(2.20)

The true solution of  is

, so that by Taylor's series

(2.21)

Let , we have from (2.20)

and therefore from (2.20) & (2.21), we have

Or

(2.22)

The first expression on the RHS of (2.22) gives the local truncation error and the second expression
is the inherited error.
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Consequently, Euler's method is absolutely stable, when

which is a unit circle in the complex - plane concerned at .

We can see the effect of absolute stability very clearly in the following

Example: Let us consider the same example as given above, viz.
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We solve it by Euler's method using mesh size . We compute 
and the results are tabulated as follows:

Table-2.2

Effect of Absolute Stability
h N y(1)
1 1 0
0.1 10 0.9044 E 16
0.01 100 Overflow
0.001 1000 0.99999
0.0001 10000 0.99999
0.00001 100000 0.99999

We can notice that overflow occurs because for this problem and so with  the

error is amplified by  at each step. In 100 steps, the error in the first step is increased

by nearly in size. Once we find the computed solutions are meaningful and
converge to the true solution.
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Problems

1. Show that Euler's method fails to approximate the solution  of the initial

value problem

,  , . Explain.

2. Determine analytically the Euler approximation to the initial value problem

, .

Find also the exact solution of the problem and determine the magnified error function.
3. How large is the discretization error of the approximation to the solution of the initial value

problem

 

obtained by Euler's method?

4. What step size would you use with Euler's method to integrate  from  to 

 in order to achieve errors (ignoring round off errors) of not more than the following:

•  0.1

•  0.01

•  0.001

5. Consider solving the following initial value problem by Euler's method

•   

•  

What step size would one use to achieve an error (ignore round off errors) less than

0.01?

6. Determine error bounds (a priori, a posteriori, and an error estimate) when solving the

following initial value problems over  by Euler's method

•  

• 

• , 
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7. Determine the magnified error function for the numerical solution of the initial value

problem

, 

by the Euler's method.
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