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A-stable linear multistep methods must be implicit, and have order not greater than two. The best
known A-stable method is the Trapezoidal rule, which has the additional advantage of processing an
asymptotic expansion in even powers of the step length i.e.

thus permitting efficient use of the extrapolation processes. Its disadvantage is that if a moderate step
length is used in the initial phase, then fast decaying components of the theoretical solution are
represented numerically by slowly decaying components, resulting in a slowly decaying oscillatory
error. This difficultly can be avoided either by choosing a very small step length in the initial phase or
by using a moderate step length and applying in the first few steps the same smooth procedure as is

used in Gragg's method, that is,  is replaced by  here .

This procedure preserves the form of the asymptotic expansion.

The class of linear one-step methods of order one is given by

(9.6)

often referred to as the ' – method'. It follows that this is A-stable if and only if . One way in

which the free parameter  may be used to effect is to achieve exponential fitting; a concept
proposed by Liniger and Willoughby.
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Exponential Fitting

Definition: A numerical method is said to be exponentially fitted at a (complex) value  if, when

the method is applied to the scalar test problem , with exact initial conditions, it

yields the exact theoretical solution in the case when .

The method (9.6) applied to the above test equation yields

This coincides with the theoretical solution in the case  if we choose  such that 

or

.

Note that we can only exponentially fit the method (9.6) to one value of , whereas for a general stiff

system, the Jacobian will have  eigenvalues. Strategies for choosing the value at which (9.6) should
be exponentially fitted; when we have some a-priori knowledge of the distribution of the eigen values
of the Jacobian are discussed by Liniger and Willoughby. If we have no such knowledge, Liniger
proposes  be chosen to minimize

The value of  which achieves this minimization is .

There is no point is looking for A-stable methods in the one-parameter family of implicit linear two-
step methods since they all have order at least three, and so cannot be A-stable. However, if we
retain a second parameter, we may write the family in the form

(9.7)

which now has order two in general. It is shown by liniger that methods of this family are A-stable if
and only if  and . (Note that the first of these conditions implies zero
stability).
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Backward Differentiation Methods

Let us now consider linear multistep methods which are not necessarily A-stable, but are -stable

or stiffly stable. Since stiff stability implies -stability for some , we need, in view of the theorem,
look only at implicit linear multistep methods. With the usual notation for the characteristic polynomials
of a linear multistep method, the associated stability polynomial is . Both 

 and stiff stability require that the roots of  be inside the unit circle when  is real and 

. In this limit, the roots of  approach those of , and it is thus natural to choose 

 so that its roots lie within the unit circle. In particular, the choice , which has all its
roots at the origin, is appropriate. The resulting class of methods

(9.7)

are known as the of backward differentiation methods . The coefficients of order K-step method,

of this class are given in the following table for .
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Regions of absolute stability for these methods may be found is Gear; for , all regions

are finite, and the corresponding methods are stiffly stable and –stable.

Finally, if we settle for something less than -stability, the methods proposed by Robertson are of
interest. These comprise a one-parameter family obtained by taking the following linear combination
of Simpson's rule and the two-step Adams-Moultan method:

,

0 

These methods have order three if  and the regions of absolute stability are large, almost

circular, regions in the half plane , the intervals of absolute stability being .

(Note that as  zero instability threatens). Such methods are appropriate for moderately stiff
systems.
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Runge-Kutta methods for Stiff systems

Explicit Runge-Kutta methods have rather small regions of absolute stability. On the other hand it is
rather easier to find A-stable implicit Runge-Kutta methods than to find A-stable implicit linear
multistep methods. For example, Ehle has shown that Butcher's R-stage implicit Runge-Kutta
methods of order 2 R, namely

[The functions  are no longer defined explicitly but by a set of R implicit equations, in general non
linear.]

are all A-stable; thus there exist A-stable methods of this type of arbitrarily high order. L-stable implicit
Runge-Kutta methods are also possible.

However, all such methods suffer a serious practical disadvantage in that the solution of the implicit
nonlinear equations at each step is considerably harder to achieve in the case of implicit Runge-Kutta
methods than in the case of implicit linear multistep methods. If we consider the R-stage fully implicit
Runge-Kutta method given above, applied to a m-dimensional stiff system, then it is clear that the 

 are also m-vectors. It follows that at each step we have to solve a system of m R
simultaneous nonlinear equations by some form of Newton-iteration and this will converge only if we
can find a suitably accurate initial iterate. This constitutes a formidable computational task.

If the Runge-Kutta method is semi-explicit, then the m R simultaneous equations split into R distinct
sets of equations, each set containing m equations- a less daunting prospect. The class of semi-
explicit methods developed by Butcher, namely [ That an R-stage semi explicit method can attain
higher order than an R-stage explicit method is demonstrated by the following fourth-order three-
stage method quoted by Butcher]

are not, however, A-stable.

It is clear from the above discussion that our troubles with stiff systems are not over when we find as
A-or L-stable method; the real test is the efficiency with which we can handle the resultant
implicitness.
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Problems

1. Find the stiffness ratio for the system

What is the largest step length which can be used with a fourth order Runge-Kutta method?

2. Show that the Trapezoidal rule is A-stable and the backward Euler method is L-stable.
3. Consider a one-parameter family of one-step methods given by

Find its order and investigate A-stability of the method.

4. Consider a two-parameter family of two step methods given by

Find its order and investigate A-stability of the method.

5. Show that the Trapezoidal rule is exponentially fitted at , and the backward Euler method is

exponentially fitted at ..

6. Consider the backward differentiation methods

for . Shows that these methods are A-stable.

7. Show that the following semi-explicit method of order two given by

with

is A-stable.
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