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Lecture 36: Linear multistep methods for Stiff systems
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Lecture 36: Linear multistep methods for Stiff systems

A-stable linear multistep methods must be implicit, and have order not greater than two. The best
known A-stable method is the Trapezoidal rule, which has the additional advantage of processing an
asymptotic expansion in even powers of the step length i.e.

vt h)~y(t)+ A,h? + ALh®* + A h® + -

thus permitting efficient use of the extrapolation processes. Its disadvantage is that if a moderate step
length is used in the initial phase, then fast decaying components of the theoretical solution are
represented numerically by slowly decaying components, resulting in a slowly decaying oscillatory
error. This difficultly can be avoided either by choosing a very small step length in the initial phase or
by using a moderate step length and applying in the first few steps the same smooth procedure as is

used in Gragg's method, that is, ¥, is replaced by ¥, here ¥, = 7 ¥n41 +-y, + 3 Vo1

This procedure preserves the form of the asymptotic expansion.

The class of linear one-step methods of order one is given by

:I‘Tn+1 - :l‘:rn = h[(l - Elj fl!'.l+1 + Efn:l (9-6)

1

often referred to as the 'B— method'. It follows that this is A-stable if and only if 8 = =. One way in

which the free parameter & may be used to effect is to achieve exponential fitting; a concept
proposed by Liniger and Willoughby.
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Exponential Fitting

Definition: A numerical method is said to be exponentially fitted at a (complex) value A; if, when
the method is applied to the scalar test problem y' = Ay, w(t,) = ¥,, with exact initial conditions, it
yields the exact theoretical solution in the case when A = A,.

The method (9.6) applied to the above test equation yields

_ [ 1+8h A ]”
Yo = Yo [1"(1-ema

This coincides with the theoretical solution in the case A = A, if we choose 8 such that

(1+82h)/[1 - (1 -8)hig] = el

or
g _ 1 _ o
h i, 1-ebto’

Note that we can only exponentially fit the method (9.6) to one value of &, whereas for a general stiff
system, the Jacobian will have i eigenvalues. Strategies for choosing the value at which (9.6) should

be exponentially fitted; when we have some a-priori knowledge of the distribution of the eigen values
of the Jacobian are discussed by Liniger and Willoughby. If we have no such knowledge, Liniger
proposes B be chosen to minimize

max ohA _ 1+8h A
—mw=hAi=<0 1-{1-8Jh A

The value of B which achieves this minimization is 8 = 0.122.

There is no point is looking for A-stable methods in the one-parameter family of implicit linear two-
step methods since they all have order at least three, and so cannot be A-stable. However, if we
retain a second parameter, we may write the family in the form

Yasz = (142) Vaur + 2y, =h{[F(1+2) + 8] fey + [F(1—32) —20]f,., + 61, ] 0.7)

which now has order two in general. It is shown by liniger that methods of this family are A-stable if
and only if =1 <~ @< 1 and a+ 26 == 0. (Note that the first of these conditions implies zero
stability).
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Backward Differentiation Methods

Let us now consider linear multistep methods which are not necessarily A-stable, but are A(et)-stable
or stiffly stable. Since stiff stability implies A(ct)-stability for some ¢, we need, in view of the theorem,
look only at implicit linear multistep methods. With the usual notation for the characteristic polynomials
of a linear multistep method, the associated stability polynomial is 7t(r,h) = p(r) — ho(r). Both

A(a) and stiff stability require that the roots of m(r,h) be inside the unit circle when h is real and
h — —oo. In this limit, the roots of ﬂ[r,E) approach those of a(r), and it is thus natural to choose

o(r) so that its roots lie within the unit circle. In particular, the choice a(r) = B r*, which has all its
roots at the origin, is appropriate. The resulting class of methods

Ej}{zl}aj Vnsi = 0 By fpax (9.7)

are known as the of backward differentiation methods . The coefficients of K™ order K-step method,

of this class are given in the following table for K = 1,2, ... ,6.

1 1 1
2 (LI
= 3 1 3 3
6 A B
3 1 1 11 1 T
12 .48 36 16 _3
4 25 1 25 25 25 5
60 _300 300 200 F5 012
5 137 1 137 137 137 37 137
80 360 450 400 2225 72 10
6 147 1 147 a7 147 147 14T a7
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Regions of absolute stability for these methods may be found is Gear; for K = 1,2, ...,6, all regions

are finite, and the corresponding methods are stiffly stable and A(ct)-stable.

Finally, if we settle for something less than A(ct)-stability, the methods proposed by Robertson are of

interest. These comprise a one-parameter family obtained by taking the following linear combination
of Simpson's rule and the two-step Adams-Moultan method:

h h
(1 - ij [}"nﬂ —¥n— E(fn+2 +4 fn+1 + fn:]] + o [}’nﬂ T ¥o+1 — E( 5fn+2 +5 fn+1 - fn:]]’
0=<ao=2

These methods have order three if ot #= 1 and the regions of absolute stability are large, almost
circular, regions in the half plane Re h < 0, the intervals of absolute stability being [6a/(a - 2), 0].
(Note that as o —+ 2, zero instability threatens). Such methods are appropriate for moderately stiff

systems.
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Runge-Kutta methods for Stiff systems

Explicit Runge-Kutta methods have rather small regions of absolute stability. On the other hand it is
rather easier to find A-stable implicit Runge-Kutta methods than to find A-stable implicit linear
multistep methods. For example, Ehle has shown that Butcher's R-stage implicit Runge-Kutta
methods of order 2 R, namely

¥Yo+1 = ¥n = h q}[tnl}rnr h:]

ﬁi}[:'t,}?, h:] = Er]-{:lcr Kr‘

R
K, = f(t +ha,y+h Zhrs KB),r =12,..,R
=1

d, = Estlhrs ! r= 1121----:R

[The functions K, are no longer defined explicitly but by a set of R implicit equations, in general non
linear.]

are all A-stable; thus there exist A-stable methods of this type of arbitrarily high order. L-stable implicit
Runge-Kutta methods are also possible.

However, all such methods suffer a serious practical disadvantage in that the solution of the implicit
nonlinear equations at each step is considerably harder to achieve in the case of implicit Runge-Kutta
methods than in the case of implicit linear multistep methods. If we consider the R-stage fully implicit
Runge-Kutta method given above, applied to a m-dimensional stiff system, then it is clear that the
K.,r=12, .., K are also m-vectors. It follows that at each step we have to solve a system of m R
simultaneous nonlinear equations by some form of Newton-iteration and this will converge only if we
can find a suitably accurate initial iterate. This constitutes a formidable computational task.

If the Runge-Kutta method is semi-explicit, then the m R simultaneous equations split into R distinct
sets of equations, each set containing m equations- a less daunting prospect. The class of semi-
explicit methods developed by Butcher, namely [ That an R-stage semi explicit method can attain
higher order than an R-stage explicit method is demonstrated by the following fourth-order three-
stage method quoted by Butcher]

h
¥a#1 — ¥n ZE(K1+ 4K2+K3j
K, =f(x,,vy,)
_ 1 1 1
K, =f(x, +1h,y, + 2 hK, + > hK,)
K;=f(x,+hy, +hK,)

are not, however, A-stable.

It is clear from the above discussion that our troubles with stiff systems are not over when we find as
A-or L-stable method; the real test is the efficiency with which we can handle the resultant
implicitness.
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Problems
. Find the stiffness ratio for the system
u' =—10u+ 9V
v =10u— 11V
What is the largest step length which can be used with a fourth order Runge-Kutta method?

. Show that the Trapezoidal rule is A-stable and the backward Euler method is L-stable.
. Consider a one-parameter family of one-step methods given by

¥n+1 = ¥n = h[(l - EI:] f|::|+1 +6 fn]
Find its order and investigate A-stability of the method.

. Consider a two-parameter family of two step methods given by

Vare = (1+2) vy +ay, =h{F1+a) + 0|y + 21— 32) — 20|, + 0,

Find its order and investigate A-stability of the method.

. Show that the Trapezoidal rule is exponentially fitted at 0, and the backward Euler method is
exponentially fitted at —ca..

. Consider the backward differentiation methods
EjK:u- O ¥Vt = h By fosx
for K = 1,2. Shows that these methods are A-stable.

. Show that the following semi-explicit method of order two given by

h
¥n+1 = ¥n = 2 [Kl + KZ:]

with
K, = f(t,,v,)
Ky, = f(tn +hy,+-h K1+§ K:}

is A-stable.
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