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 Module 2: Single Step Methods
 Lecture 6: Improvement of the error bound

 

The Lecture Contains:

A posteriori bound

Error Estimate

An Illustrative Example
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A posteriori bound

The error bound (2.8) for the solution demonstrates that the error behaves like  if   exists, is

continuous, and is bounded. Generally, the function  will be differentiable, and the bounds  and 

can be calculated. However, the error bound so obtained many not be very good because the

largest value of  and will have to be chosen. If we have some knowledge of the solution,

and assume that its second derivative is continuous and bounded by a known quantity, say  we can
get a better bound.

We first express  by using a Taylor's series expansion at  with remainder term to get

 for 

Therefore,

(2.9)

This is an A posteriori bound because it depends on knowledge of the second derivative of the
solution.
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Remark: It is difficult to improve the bound given in (2.9) for the error, but we can instead look for
an estimate of the error:

Error Estimate

Suppose that  has a second derivative which is continuous and bounded in the region R. Under

this hypothesis, the third derivative of  exists, and we may write

(2.10)

where . Subtracting this from the corresponding relation satisfied by the approximate
values,

we obtain 

(2.11)
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By Taylor's formula, the expression in the brackets can be written as

where  is a value between  and .

We now divide (2.11) by h and introduce the quantities

, and thus (2.11) can now be written in the form

(2.12)

where  and  is a constant

Define the function

 we can look at (2.12) as the result of applying Euler's method to the solution of a

new differential equation for a function 

(2.13)

making at each step an additional error not exceeding . The initial value  is zero, because 

.

 
 
 
 
 
 
 
 
 
 
 
 

 

 



Objectives_template

file:///G|/Numerical_solutions/lecture6/6_5.htm[8/26/2011 11:16:57 AM]

 Module 2: Single Step Methods

 Lecture 6: Improvement of the error bound

  

Thus, the error estimate has the form

(2.14)

where  is the solution of the IVP

(2.15)

where .

The function  is called the magnified error function.
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An Illustrative Example:

Let us consider solving the IVP

by Euler's method. Let us also determine the error bounds and an estimate for the error.

Here  and .

Therefore, with  we have

The a priori bound is obtained as

The Lipschitz constants  are given by

Now, 

Also, since  we have

 and hence

.
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Thus the a priori bound for the error is,

or 

For the a posteriori bound,

where . Therefore,

or 

Now the error estimate is given by

 is the solution of

Consequently, 
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Therefore, the estimate for the error is

The exact solution of the given IVP is

 so that

The Euler's method gives 

 and the actual error is 0.2491.
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