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 Module 2: Single Step Methods
 Lecture 4: The Euler Method

 

The Lecture Contains:

The Euler Method

Euler's Method (Analytical Interpretations)

An Analytical Example
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We shall now describe methods for solving a scalar IVP

Most of the methods that follow can be easily extended to vector systems. Since it is assumed that
the given IVP is not amenable to analytical solution, we approximate its solution at a set of discrete
points, called the mesh (or grid) points. We subdivide the internal  into a finite number of

equally spaced  subintervals as

where 

and  is called the mesh (or step) size. Since the solution at  is known (initial condition), we

need to approximate the solution at the grid points  for 

A method which involves the knowledge of the solution only at the previous point  in order to

find the solution at the current point , is called a single step method.
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The Euler Method

It is instructive to examine the simplest method, the Euler method, for solving the first-order scalar
IVP given by

(This method is also called the Euler-Cauchy, forward Euler, or explicit Euler method).

In this method, the value of the dependent variable at the current point is calculated by straight line
extrapolation from the previous point. Since the initial data is known, we can evaluate

and from this, we can calculate an approximation to  by using the first two terms of a Taylor'
series

We let , and define our approximation to  as . Thus

Similarly,

and, in general, for 

, where (2.1)
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Euler's Method (Analytical Interpretations)

1. If we approximate the derivative appearing in the differential equation at the point  by a
forward difference, we obtain

Solving for  yields the formula for the Euler's method.

2. Integrating the identity

between the limits  and , we obtain

In particular, if  and  we get

Approximating the integral by a crude rule for numerical integration (length of the interval times
the value of integrand at left end point) and identifying  with , we obtain the Euler's
method.
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3. We finally may assume the possibility of expanding the solution in a Taylor series around the
point 

Truncating the series after the linear term in  yields the Euler's method.

Remark: Each of these interpretations points the way to a class of generalizations of Euler's
method and it is interesting to note that the generalization indicated by (i) (numerical
differentiation), which seems to be the most straight forward, has proved to be the least fruitful
of the three.
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An Analytical Example

If   is a sufficiently simple function, it may be possible to solve the recurrence relation for  as

a function of and . Such an explicit solution is rarely of practical interest, because it can usually
only be found in cases where the differential equation itself can be solved in closed form. However, it
can be helpful in the study of theoretical properties of the method under consideration.

Let us find the explicit form of the Euler approximation..

Euler approximation to the solution of the IVP

Here we have  and hence

In view of , we thus find

and generally

Since , the value approximating the solution at the point  is thus given by

As  this tends to . We thus have shown that by decreasing the mesh size, the exact solution
of the IVP can be approximated arbitrarily well in the special example under consideration.
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