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 Module 3: Higher order Single Step Methods
 Lecture 10: Error bounds for Runge-Kutta methods

 

The Lecture Contains:

Lotkins Bounds

Error estimates for Runge-Kutta Methods
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Let us first define the local truncation error at  of the general explicit one-step method defined by

(3.31)

Definition: The local truncation error at  of the one step method (3.31) is defined to be 

where                     (3.32)

and  is the true solution of the initial value problem.

If we assume that no previous errors have been made, viz. , then from (3.32) and (3.11) ,
it follows that

and the truncation error defined by (3.32) is local.

The global truncation error of the one step method (3.11), denoted by , and is defined by 

where it is no longer assumed that no previous truncation errors have been
made.

Definition: The local truncation error for the non-linear method (3.11) of order p is

(3.33)

where the function  is called the principal error function , and  is called

the principal local truncation error . In other words, one can also define that the method (3.11) is of
order p, if its local truncation error is of .
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Example: Let us consider the general two-stage Runge-Kutta method obtained by getting in (3.12).
Then, by (3.17), (3.23) and (3.32), the local truncation error is

(3.34)

If the order is two, then (3.24) must hold, and we obtain

(3.35)

Thus the principal error function for the general second order Runge-Kutta method is given by

(3.36)
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Lotkins Bounds

We can find a bound for if we assume that the following bounds for f and its partial

derivatives hold for 

(3.37)

Where P and Q are positive constants and p is the order of the method. These bounds are due to
Lotkin and are called Lotkin's bounds. Here in this example, we have

Hence from (3.36), we have

(3.38)

and we obtain the following bound for the principal local truncation error:

(3.39)
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Remark: For all one-step explicit methods, the bound for the principal local truncation error is also
a bound for the whole local truncation error. In view of this, we may write

(3.40)

as the bound (Lotkin) for the local truncation error for a two-stage Runge-Kutta method.

In the case of general three stage and four stage Runge-Kutta methods, the bound for the local
truncation error is very complicated. For the classical fourth order Runge-Kutta method (3.30) the
bound for the local truncation error (using Lotkin's bounds) is given by

(3.41)

For the general explicit one-step method (3.11), the bound for the global truncation error is an order
of magnitude greater than the bound for the local truncation error. If the local truncation error 
defined by (3.32) satisfies

(3.42)

where K is a constant, then the global truncation error

satisfies the inequality

(3.43)

where  is the Lipschitz constant of with respect to y.
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Error estimates for Runge-Kutta Methods:

We have seen that the bounds for the local truncation error, as discussed earlier, are very
complicated and of little use in practice for deciding the appropriate step size control policy. What is
needed, in place of a bound, is a readily computable estimate of the local truncation error. The most
commonly used estimate arises from an application of the Richardson extrapolation. Under the usual
localizing assumption that no previous errors have been made, we can write

(3.44)

where p is the order of the Runge-Kutta method. Now let us compute

, a second approximation to ), obtained by applying the same method at  but
with step size 2h. With the same localizing assumption, it follows that

(3.45)

on expanding  about . Subtracting (3.44) from (3.45),

We get

Thus, the principal local truncation error, which is taken as an estimate for the local truncation error,
may be written as

(3.46)

This estimate is quite adequate for step size control policy.
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