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 Module 7: Multistep Methods
 Lecture 19: Multistep Methods (Contd.)

 

The Lecture Contains:

Adams-Bashforth Method in terms of Ordinates

The Adams- Moulton Method
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Adams-Bashforth Method in terms of Ordinates :

Now if we assume that , w here  is a constant and  is an integer, and write 

. Then, the first backward difference of the function  at the point  is

defined by

Higher backward differences are defined by

, so that for instance

If we also put . One can easily verify by induction that

(7.7)

where  denotes the binomial coefficient
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Expressing the differences in terms of ordinates defined by (7.7) in (7.3) and collecting the
coefficients of equal ordinates, the Adams- Bashforth formula appears in the form

(7.8)

where the coefficients  are given by

It should be noted that the coefficients  depend on  as well as , which makes it more difficult to

change the number of differences employed. Some numerical values of the coefficients  are given

as under:

0 1 2 3 4 5

1      
3 -1     
23 -16 5    
55 -59 37 -9   
1901 -2774 2616 -1274 251  
4227 -7673 9482 -6798 -2627 -425

The numerically large values of the coefficients and the alternating signs are a disadvantage of the
method.
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ii) The Adams- Moulton Method

Here we have

(7.9)

where

The coefficients  are determined by using the method of generating functions.
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(7.10)

Thus, we have

Using the expression

we have

It follows that
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The numerical values can now be easily found from these recurrence relations and are given as
under:

m 0 1 2 3 4 5 6
1

We also note the relation

or

comparing the coefficients of , we obtain

(7.11)

Formula (7.9) is used like the Adam- Bashforth formula except that now only the values 
 are known and (7.9) is used to determine . Since  occurs as an

argument in  in the right hand term of (7.9), this equation now represents a nontrivial

equation for . In general, it will not be possible to solve this equation explicitly. Fortunately, the

special from of the equation suggests an iteration procedure which furnishes the solution very rapidly
if  is sufficiently small.
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Assuming that from some source an approximation  of a solution o f (6.9) has been obtained, we

calculate 

and from the differences 

A better approximation  is then obtained from

(7.12)

Calculating

 and re-evaluating the differences, a still better value  is

(7.13)

Generally, a sequence  of approximations is obtained recursively from the

relation

(7.14)

where . It can be proved that the sequence of numbers  thus

defined converges for sufficiently small values of  to a solution  of (7.9) and that this solution is

unique.
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