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The associated difference operator; Order and error constant
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Introduction:

Most of the methods discussed earlier (particularly for 1st order equation) can be considered as a special
case of the formula

(8.1)

where  is a fixed integer,

and where  and 

denote real constants which do not depend on . We shall always assume that 

 Equation (8.1) is said to define the General linear K-step method. The

method is called linear because the values  enter linearly in (8.1); it is not assumed that f is a linear
function of y.

One way in which we were able to derive the coefficients of Adams method was by requiring that they are
exact for polynomials of degree . There are unknowns in (8.1). There is an arbitrary

normalizing factor so we set , leaving  unknowns.

Consequently, we expect to be able to choose the  and  so that this method is exact for polynomials of

degree upto . This is possible. However, it has been observed that such methods are never useful for 

, and only marginally useful when . If we were only concerned with local truncation error
and the problem had well-behaved derivatives, we would be tempted to use K-step methods of maximal
order . But it is known that for  such methods cause the small truncation errors committed in
one step to be unacceptably amplified in later steps due to instability. However, there are stable K-step
methods of order  (the Adams-Moulton method, for example) and order if K is even.
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The associated difference operator; Order and error constant:

The condition of stability has the purpose of preventing a small initial error in the computation from
growing at such a rate that convergence is jeopardized. It is clear, however, that stability alone does not
guarantee convergence. A further condition must be added which ensures that the difference equation
(8.1) is a good approximation to the differential equation .

When considering the problem of measuring the accuracy of a One-step method, we looked at the
expression

 where  is a solution of the given differential equation. The
smaller this quantity as a function of h, the higher was the accuracy of the method. Similarly, if (8.1) is to
define a good method, we expect the discrepancy between the two sides of (8.1) to be small if h is small
and if the values  are replaced by  where  is an exact solution of the given differential
equation. In order to measure this discrepancy, we associate with (8.1) the difference operator.

(8.2)

This may be regarded as a linear operator that acts on any differentiable function . For the time
being, however, we shall apply the operator L only to functions which have continuous derivatives of
sufficiently high order. We then may expand  in powers of h, and the expansion can be
pushed as far as we please. In view of the formulas

it turns out that
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where the coefficients  are constants which do not depend on the choice of the function 

A given difference operator of the form (8.2) is said to be of order p if , but 

. As in the case of one-step methods, the order may be considered as a first crude measure of

the accuracy of the method.

From the practical point of view the difference equation (8.1) is completely equivalent to the equation

(8.3)

where l is any fixed (positive or negative) integer. Proceeding as above,

we may associate with (8.3) the difference operator

(8.4)

and define its order as the order of the first non-vanishing term in its Taylor expansion in powers of h
minus 1. It is an important fact that the order p as well as the constant Cp+1 do not depend on l . For,

expanding (8.4) in powers of h is equivalent to expanding (8.2) in powers of , where y(t) is replaced by 

. We thus find, if L is of the order ,

Since  was assumed sufficiently differentiable,

and thus
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This proves the assertion, even without making use of the assumption that l was an integer.

As an example, consider the mid-point rule [Nystrom's method with ], which in the standardized
form (8.1) appears as follows:

The corresponding operator (8.2) is given by

We readily find  and thus .

Alternatively, by choosing , we may consider the operator

Again  and hence  but now . This indicates that the

constants depend, in general, on . From the point of view of practical computation, the

second method of calculating p and  is clearly preferable, since in the Taylor's expansion only

terms of odd order occur.

The error constant of the method defined by (8.1) is
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