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Module 2: Single Step Methods

Lecture 6: Improvement of the error bound

The Lecture Contains:

B A posteriori bound

B Error Estimate

B An lllustrative Example
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A posteriori bound

.o Bf
The error bound (2.8) for the solution demonstrates that the error behaves like O(h) if P exists, is

continuous, and is bounded. Generally, the function f will be differentiable, and the bounds K, L, and

Zcan be calculated. However, the error bound so obtained many not be very good because the

af . .

ol and ‘Z—E‘ will have to be chosen. If we have some knowledge of the solution,
¥ t

largest value of |v'],

and assume that its second derivative is continuous and bounded by a known quantity, say C, we can
get a better bound.

We first express d,, by using a Taylor's series expansion at t, with remainder term to get
—d, = y(t,2y) —¥(t,) — h f(t, ¥(t,))

=2y () for E ety o)

Therefore,

"
r

h
|d,| = C—,and
2

h C
le,| = 31 (el® — 1) + e'®le,| (2.9)

This is an A posteriori bound because it depends on knowledge of the second derivative of the
solution.
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Remark: It is difficult to improve the bound given in (2.9) for the error, but we can instead look for
an estimate of the error:

Error Estimate

Suppose that f(t, v} has a second derivative which is continuous and bounded in the region R. Under

this hypothesis, the third derivative of y(x) exists, and we may write

h? 1
V(tpes) = ¥(t,) +hf(t,y(t,)) + v () + Eha v (E) (2.10)

where t, < & < t,.,. Subtracting this from the corresponding relation satisfied by the approximate

values,

Fn+1 = Fn + h f(tnf}?nj

we obtain (wherey, = v(t,) +e_),

Ens1 — By + h[f(tn’y(tn] + Enj - f(_tn’y(tnj)] _%hz F”(t‘nj - % hH FHE(E:) (211)
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By Taylor's formula, the expression in the brackets can be written as
1 2

f(ta v(ta)) en + 5 £y (tav0)ed

where v is a value between y(t_) and y,.

We now divide (2.11) by h and introduce the quantities

e, = h™'e,, and thus (2.11) can now be written in the form

— — — 1 -

Ens1 =T By + h [fy[tn!}?[tn])en - EF” [tn]] + ern (2.12)
where |rn| = C, and C is a constant

Define the function

glt) = Y(t, y(t)), we can look at (2.12) as the result of applying Euler's method to the solution of a

new differential equation for a function e(x),
1
e'(t) = g(t) e(t) — Zy" (1) (2.13)
making at each step an additional error not exceeding h%C. The initial value e, is zero, because

g, = 0.
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Thus, the error estimate has the form

e, = h&(t,)+ 0(h?) (2.14)
where &(t) is the solution of the IVP

§'(0) = g(1) () — 2"

5(0) = Eﬂfh (2.15)
where g(t) = affa},.

The function &(t) is called the magnified error function.
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An lllustrative Example:

Let us consider solving the IVP

v =t+v, te[0.1]

y(0)=1

by Euler's method. Let us also determine the error bounds and an estimate for the error.
Here f(ty) =t+y, andt, = 0,y, = 1.

Therefore, with h = 0.1, we have

¥1 =¥y +hf(tyy,) =11

v, =y, +h f(t1’F1] =122

Vip = ¥s + h(ts, ys) = 3.1874

The a priori bound is obtained as

le,| = h%[e“’ — 1) +ePle,l

The Lipschitz constants K and L are given by
|§‘ =L and ‘if‘ =K

dy dt

Now, f(t,v) =t + vy, therefore K=L = 1.
Also, since y(t) = 2 e*— t — 1, we have

v'(t) = 2e" — 1 and hence

Z=max |y'(t)|=2e—1, for te[0,1]
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Thus the a priori bound for the error is,
1+1(Ze—1)

ool ShFEEZ (e—1) (v gg=0)

=h.2e(e—1) = h(9.26)

or le | = 0.926

For the a posteriori bound,

h C b b

EI (EL — 1) + EL |ED|

where C = max |y'"(t)| . Therefore,
h

le,| = —.2e(e— 1)

~h (4.63)

or le | < 0.463

Now the error estimate is given by

e, = h 8(t), where 8(t) is the solution of
§(t) =8(t) —e8(0)=0
Consequently, 8(t) = —t ef, and

5(1) = —e = —2.71828
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Therefore, the estimate for the error is

e, ~ —0.271

The exact solution of the given IVP is

v(t) = 2 e*— t — 1 so that

v(1) =2 (e— 1) = 3.43656

The Euler's method gives (with h = 0.1)

Vip = ¥(1) = 3.187485, and the actual error is 0.2491.
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